1
|
Furlan B, Sobrinos-Sanguino M, Sammartino M, Monterroso B, Zorrilla S, Lanzini A, Suigo L, Valoti E, Massidda O, Straniero V. Targeting Bacterial Cell Division with Benzodioxane-Benzamide FtsZ Inhibitors as a Novel Strategy to Fight Gram-Positive Ovococcal Pathogens. Int J Mol Sci 2025; 26:714. [PMID: 39859428 PMCID: PMC11765573 DOI: 10.3390/ijms26020714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, Streptococcus pneumoniae constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial proteins involved in this process emerged as novel attractive targets. FtsZ is an essential cell division protein, and FtsZ inhibitors, especially the benzamide derivatives, have been exploited in the last decade. In this work, we identified, for the first time, some benzodioxane-benzamide inhibitors capable of targeting FtsZ in Streptococcus pneumoniae, in addition to their previously demonstrated activity against other bacteria. These promising benzamides, with minimal inhibitory concentrations (MICs) ranging from 25 to 80 µg/mL, demonstrated bactericidal activity against S. pneumoniae. This was evidenced by their ability to dramatically affect growth and viability, further supported by the morphological changes observed through microscopy. Moreover, the compounds were characterized in vitro, combining turbidity measurements and confocal imaging, and significant alteration of a GTP-induced FtsZ assembly was found, in line with our previous data from other microorganisms.
Collapse
Affiliation(s)
- Berenice Furlan
- Dipartimento di Biologia Cellulare e Integrata, Università degli Studi di Trento, Via Sommarive, 9, 38123 Trento, Italy;
| | - Marta Sobrinos-Sanguino
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.S.-S.); (M.S.); (S.Z.)
| | - Marcella Sammartino
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.S.-S.); (M.S.); (S.Z.)
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milan, Italy; (A.L.); (L.S.); (E.V.)
| | - Begoña Monterroso
- Instituto de Química Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain;
| | - Silvia Zorrilla
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (M.S.-S.); (M.S.); (S.Z.)
| | - Alessia Lanzini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milan, Italy; (A.L.); (L.S.); (E.V.)
| | - Lorenzo Suigo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milan, Italy; (A.L.); (L.S.); (E.V.)
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, TX 77030, USA
| | - Ermanno Valoti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milan, Italy; (A.L.); (L.S.); (E.V.)
| | - Orietta Massidda
- Dipartimento di Biologia Cellulare e Integrata, Università degli Studi di Trento, Via Sommarive, 9, 38123 Trento, Italy;
- Centro Interdipartmentale di Scienze Mediche, Via Santa M. Maddalena, 1, 38122 Trento, Italy
| | - Valentina Straniero
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133 Milan, Italy; (A.L.); (L.S.); (E.V.)
| |
Collapse
|
2
|
Liu X, Boelter G, Vollmer W, Banzhaf M, den Blaauwen T. Peptidoglycan Endopeptidase PBP7 Facilitates the Recruitment of FtsN to the Divisome and Promotes Peptidoglycan Synthesis in Escherichia coli. Mol Microbiol 2024; 122:743-756. [PMID: 39344863 PMCID: PMC11586513 DOI: 10.1111/mmi.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Escherichia coli has many periplasmic hydrolases to degrade and modify peptidoglycan (PG). However, the redundancy of eight PG endopeptidases makes it challenging to define specific roles to individual enzymes. Therefore, the cellular role of PBP7 (encoded by pbpG) is not clearly defined. In this work, we show that PBP7 localizes in the lateral cell envelope and at midcell. The C-terminal α-helix of PBP7 is crucial for midcell localization but not for its activity, which is dispensable for this localization. Additionally, midcell localization of PBP7 relies on the assembly of FtsZ up to FtsN in the divisome, and on the activity of PBP3. PBP7 was found to affect the assembly timing of FtsZ and FtsN in the divisome. The absence of PBP7 slows down the assembly of FtsN at midcell. The ΔpbpG mutant exhibited a weaker incorporation of the fluorescent D-amino acid HADA, reporting on transpeptidase activity, compared to wild-type cells. This could indicate reduced PG synthesis at the septum of the ΔpbpG strain, explaining the slower accumulation of FtsN and suggesting that endopeptidase-mediated PG cleavage may be a rate-limiting step for septal PG synthesis.
Collapse
Affiliation(s)
- Xinwei Liu
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gabriela Boelter
- Institute of Microbiology & Infection and School of BiosciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences InstituteFaculty of Medical Sciences, Newcastle University, Framlington PlaceNewcastle upon TyneUK
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of BiosciencesUniversity of BirminghamEdgbastonBirminghamUK
- Centre for Bacterial Cell Biology, Biosciences InstituteFaculty of Medical Sciences, Newcastle University, Framlington PlaceNewcastle upon TyneUK
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. mBio 2024; 15:e0168724. [PMID: 39041810 PMCID: PMC11323482 DOI: 10.1128/mbio.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.
Collapse
Affiliation(s)
- Abbigale Perkins
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - Mwidy Sava Mounange-Badimi
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
4
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600433. [PMID: 38979378 PMCID: PMC11230281 DOI: 10.1101/2024.06.24.600433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionallity of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.
Collapse
Affiliation(s)
- Abbigale Perkins
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - Mwidy Sava Mounange-Badimi
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - William Margolin
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
5
|
Zhang L, Yang J, Xu X, Zhang J, Qiu Z, Ju Y, Luo B, Liu Y, Gou X, Sui J, Chen B, Wang Y, Tao T, He L, Yang T, Luo Y. Discovery and Optimization of Novel SaFabI Inhibitors as Specific Therapeutic Agents for MRSA Infection. J Med Chem 2024; 67:10096-10134. [PMID: 38845361 DOI: 10.1021/acs.jmedchem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
As the rate-limiting enzyme in fatty acid biosynthesis, Staphylococcus aureus enoyl-acyl carrier protein reductase (SaFabI) emerges as a compelling target for combating methicillin-resistant S. aureus (MRSA) infections. Herein, compound 1, featuring a 4-(1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one scaffold, was identified as a potent SaFabI inhibitor (IC50 = 976.8 nM) from an in-house library. Subsequent optimization yielded compound n31, with improved inhibitory efficacy on enzymatic activity (IC50 = 174.2 nM) and selective potency against S. aureus (MIC = 1-2 μg/mL). Mechanistically, n31 directly inhibited SaFabI in cellular contexts. Moreover, n31 exhibited favorable safety and pharmacokinetic profiles, and dose-dependently treated MRSA-induced skin infections, outperforming the approved drug, linezolid. The chiral separation of n31 resulted in (S)-n31, with superior activities (IC50 = 94.0 nM, MIC = 0.25-1 μg/mL) and in vivo therapeutic efficacy. In brief, our research proposes (S)-n31 as a promising candidate for SaFabI-targeted therapy, offering specific anti-S. aureus efficacy and potential for further development.
Collapse
Affiliation(s)
- Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxing Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Xu
- Editorial Office of Chinese Journal of Medical Genetics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Ju
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xupeng Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baoyi Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of Traditional Chinese Medicine, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu 610041, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of Traditional Chinese Medicine, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu 610041, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of Traditional Chinese Medicine, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
7
|
Adeleye SA, Yadavalli SS. Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.565030. [PMID: 37961685 PMCID: PMC10635034 DOI: 10.1101/2023.10.31.565030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint particular residues in QueE that contribute distinctly to each of its functions - Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueEs secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of one gene, one enzyme, one function, which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
Collapse
|
8
|
Adeleye SA, Yadavalli SS. Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator. PLoS Genet 2024; 20:e1011287. [PMID: 38768229 PMCID: PMC11142719 DOI: 10.1371/journal.pgen.1011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/31/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
Collapse
Affiliation(s)
- Samuel A. Adeleye
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America
| | - Srujana S. Yadavalli
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America
| |
Collapse
|
9
|
Yan D, Xue J, Xiao J, Lyu Z, Yang X. Protocol for single-molecule labeling and tracking of bacterial cell division proteins. STAR Protoc 2024; 5:102766. [PMID: 38085639 PMCID: PMC10733747 DOI: 10.1016/j.xpro.2023.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we present a protocol for labeling and tracking individual molecules, particularly cell division proteins in live bacterial cells. The protocol encompasses strain construction, single-molecule imaging, trajectory segmentation, and motion property analysis. The protocol enables the identification of distinctive motion states associated with different cell division proteins. Subsequent assessments of the dynamic behaviors of these proteins provide insights into their activities and interactions at the septum during cell division. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021),1 Lyu et al. (2022),2 and Mahone et al. (2024).3.
Collapse
Affiliation(s)
- Di Yan
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jinchan Xue
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Xinxing Yang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Kalia VC, Patel SKS, Karthikeyan KK, Jeya M, Kim IW, Lee JK. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers (Basel) 2024; 16:410. [PMID: 38337299 DOI: 10.3390/polym16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
Collapse
Affiliation(s)
- Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kugalur K Karthikeyan
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Marimuthu Jeya
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Carrasco V, Berríos-Pastén C, Canales N, Órdenes A, Wilson CAM, Monasterio O. Bioinformatics, thermodynamics, and mechanical resistance of the FtsZ-ZipA complex of Escherichia coli supports a highly dynamic protein interaction in the divisome. Biochim Biophys Acta Gen Subj 2023; 1867:130471. [PMID: 37806464 DOI: 10.1016/j.bbagen.2023.130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
In most microorganisms, cell division is guided by the divisome, a multiprotein complex that assembles at the equator of the cell and is responsible for the synthesis of new cell wall material. FtsZ, the first protein to assemble into this complex forms protofilaments in the cytosol which are anchored to the inner side of the cytosolic membrane by the proteins ZipA and FtsA. FtsZ protofilaments generate a force that deforms the cytosolic membrane and may contribute to the constriction force that leads to the septation of the cell. It has not been studied yet how the membrane protein anchors respond to this force generated by FtsZ. Here we studied the effect of force in the FtsZ-ZipA interaction. We used SMD and obtained the distance to the transition state of key interacting amino acids and SASA of FtsZ and ZipA through the dissociation. The SMD mechanism was corroborated by ITC, and the thermodynamic parameters ΔG0, ΔH0 and ΔS0 were obtained. Finally, we used force spectroscopy by optical tweezers to determine the lifetime of the interaction and rupture probability and their dependence on force at single molecule level. We also obtained the transition state distance, and free energy of the interaction. With the gathering of structural, thermodynamic, kinetic and force parameters we conclude that interaction between FtsZ and ZipA proteins is consistence with the highly dynamic treadmilling process and at least seven ZipA molecules are required to bind to a FtsZ protofilaments to transduce a significant force.
Collapse
Affiliation(s)
- Valentina Carrasco
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Santiago, Chile..
| | - Camilo Berríos-Pastén
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile.
| | - Nicolás Canales
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile.
| | - Alexis Órdenes
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Santiago, Chile..
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras, 3425 Ñuñoa, Región Metropolitana, Chile.
| |
Collapse
|
12
|
Ta DM, Aguilar A, Bon P. Label-free image scanning microscopy for kHz super-resolution imaging and single particle tracking. OPTICS EXPRESS 2023; 31:36420-36428. [PMID: 38017795 DOI: 10.1364/oe.504581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 11/30/2023]
Abstract
We report the modification of a label-free image scanning microscope (ISM) to perform asynchronous 2D imaging at up to 24kHz while keeping the lateral resolution gain and background rejection of a regular label-free ISM setup. Our method uses a resonant mirror oscillating at 12kHz for one-direction scanning and a chromatic line for instantaneous scanning in the other direction. We adapt optical photon reassignment in this scanning regime to perform fully optical super-resolution imaging. We exploit the kHz imaging capabilities of this confocal imaging system for single nanoparticle tracking down to 20 nm for gold and 50 nm for silica particles as well as imaging freely moving Lactobacillus with improved resolution.
Collapse
|
13
|
Alotaibi BS. Targeting Filamenting temperature-sensitive mutant Z (FtsZ) with bioactive phytoconstituents: An emerging strategy for antibacterial therapy. PLoS One 2023; 18:e0290852. [PMID: 37647309 PMCID: PMC10468062 DOI: 10.1371/journal.pone.0290852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The rise and widespread occurrence of bacterial resistance has created an evident need for novel antibacterial drugs. Filamenting temperature-sensitive mutant Z (FtsZ) is a crucial bacterial protein that forms a ring-like structure known as the Z-ring, playing a significant role in cell division. Targeting FtsZ is an effective approach for developing antibiotics that disrupt bacterial cell division and halt growth. This study aimed to use a virtual screening approach to search for bioactive phytoconstituents with the potential to inhibit FtsZ. The screening process proceeded with the filtering compounds from the IMPPAT library of phytochemicals based on their physicochemical properties using the Lipinski rule of five. This was followed by molecular docking, Pan-assay interference compounds (PAINS) filter, absorption, distribution, metabolism, excretion, and toxicity (ADMET), prediction of activity spectra for biologically active substances (PASS), and molecular dynamics (MD) simulations. These filters ensured that any adverse effects that could impede the identification of potential inhibitors of FtsZ were eliminated. Following this, two phytocompounds, Withaperuvin C and Trifolirhizin, were selected after the screening, demonstrating noteworthy binding potential with FtsZ's GTP binding pocket, acting as potent GTP-competitive inhibitors of FtsZ. The study suggested that these compounds could be further investigated for developing a novel class of antibiotics after required studies.
Collapse
Affiliation(s)
- Bader Saud Alotaibi
- Department of Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Saudi Arabia
| |
Collapse
|
14
|
Inaba J, Kim BM, Zhao Y, Jansen AM, Wei W. The Endoplasmic Reticulum Is a Key Battleground between Phytoplasma Aggression and Host Plant Defense. Cells 2023; 12:2110. [PMID: 37626920 PMCID: PMC10453741 DOI: 10.3390/cells12162110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Phytoplasmas are intracellular plant pathogens that heavily rely on host cell nutrients for survival and propagation due to their limited ability to synthesize essential substrates. The endoplasmic reticulum (ER), which plays a vital role in various cellular processes, including lipid and protein biosynthesis, is an attractive target for numerous intracellular pathogens to exploit. This study investigated the impact of potato purple top (PPT) phytoplasma infection on the ER in tomato plants. Abnormal accumulation of ER-resident proteins, disrupted ER network structures, and formation of protein aggregates in the phloem were observed using confocal microscopy and transmission electron microscopy, indicating a phytoplasma-infection-induced disturbance in ER homeostasis. The colocalization of phytoplasmas with the accumulated ER-resident proteins suggests an association between ER stress, unfolded protein response (UPR) induction, and phytoplasma infection and colonization, with the ER stress response likely contributing to the host plant's defense mechanisms. Quantitative real-time PCR revealed a negative correlation between ER stress/UPR activation and PPT phytoplasma titer, implying the involvement of UPR in curbing phytoplasma proliferation. Inducing ER stress and activating the UPR pathway effectively decreased phytoplasma titer, while suppressing the ER-resident protein, binding immunoglobulin protein (BiP) increased phytoplasma titer. These results highlight the ER as an intracellular battleground where phytoplasmas exploit host components for survival and multiplication, while host plants deploy defense mechanisms to counteract the invasion. Understanding the intricate interactions between phytoplasmas and plant hosts at the subcellular level, particularly within the ER, provides valuable insights for developing new strategies to control phytoplasma diseases.
Collapse
Affiliation(s)
- Junichi Inaba
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Bo Min Kim
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| | - Andrew M. Jansen
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (J.I.); (B.M.K.); (Y.Z.)
| |
Collapse
|
15
|
Mallik S, Dodia H, Ghosh A, Srinivasan R, Good L, Raghav SK, Beuria TK. FtsE, the Nucleotide Binding Domain of the ABC Transporter Homolog FtsEX, Regulates Septal PG Synthesis in E. coli. Microbiol Spectr 2023; 11:e0286322. [PMID: 37014250 PMCID: PMC10269673 DOI: 10.1128/spectrum.02863-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
The peptidoglycan (PG) layer, a crucial component of the tripartite E.coli envelope, is required to maintain cellular integrity, protecting the cells from mechanical stress resulting from intracellular turgor pressure. Thus, coordinating synthesis and hydrolysis of PG during cell division (septal PG) is crucial for bacteria. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, the mechanism and regulation of septal PG synthesis are unclear. In addition, how septal PG synthesis and hydrolysis are coordinated has remained unclear. Here, we have shown that overexpression of FtsE leads to a mid-cell bulging phenotype in E.coli, which is different from the filamentous phenotype observed during overexpression of other cell division proteins. Silencing of the common PG synthesis genes murA and murB reduced bulging, confirming that this phenotype is due to excess PG synthesis. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations and previous results suggest that FtsEX plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Overall, our study findings support a model in which FtsE plays a role in coordinating septal PG synthesis with bacterial cell division. IMPORTANCE The peptidoglycan (PG) layer is an essential component of the E.coli envelope that is required to maintain cellular shape and integrity. Thus, coordinating PG synthesis and hydrolysis at the mid-cell (septal PG) is crucial during bacterial division. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, its role in regulation of septal PG synthesis is unclear. Here, we demonstrate that overexpression of FtsE in E.coli leads to a mid-cell bulging phenotype due to excess PG synthesis. This phenotype was reduced upon silencing of common PG synthesis genes murA and murB. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations suggest that the FtsEX complex plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Our study indicates that FtsE plays a role in coordinating septal PG synthesis with bacterial cell division.
Collapse
Affiliation(s)
- Sunanda Mallik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hiren Dodia
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Ghosh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Ramanujam Srinivasan
- National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Liam Good
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | | |
Collapse
|
16
|
Kunoh T, Yamamoto T, Ono E, Sugimoto S, Takabe K, Takeda M, Utada AS, Nomura N. Identification of lthB, a Gene Encoding a Putative Glycosyltransferase Family 8 Protein Required for Leptothrix Sheath Formation. Appl Environ Microbiol 2023; 89:e0191922. [PMID: 36951572 PMCID: PMC10132092 DOI: 10.1128/aem.01919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
The bacterium Leptothrix cholodnii generates cell chains encased in sheaths that are composed of woven nanofibrils. The nanofibrils are mainly composed of glycoconjugate repeats, and several glycosyltransferases (GTs) are required for its biosynthesis. However, only one GT (LthA) has been identified to date. In this study, we screened spontaneous variants of L. cholodnii SP6 to find those that form smooth colonies, which is one of the characteristics of sheathless variants. Genomic DNA sequencing of an isolated variant revealed an insertion in the locus Lcho_0972, which encodes a putative GT family 8 protein. We thus designated this protein LthB and characterized it using deletion mutants and antibodies. LthB localized adjacent to the cell envelope. ΔlthB cell chains were nanofibril free and thus sheathless, indicating that LthB is involved in nanofibril biosynthesis. Unlike the ΔlthA mutant and the wild-type strain, which often generate planktonic cells, most ΔlthB organisms presented as long cell chains under static conditions, resulting in deficient pellicle formation, which requires motile planktonic cells. These results imply that sheaths are not required for elongation of cell chains. Finally, calcium depletion, which induces cell chain breakage due to sheath loss, abrogated the expression of LthA, but not LthB, suggesting that these GTs cooperatively participate in glycoconjugate biosynthesis under different signaling controls. IMPORTANCE In recent years, the regulation of cell chain elongation of filamentous bacteria via extracellular signals has attracted attention as a potential strategy to prevent clogging of water distribution systems and filamentous bulking of activated sludge in industrial settings. However, a fundamental understanding of the ecology of filamentous bacteria remains elusive. Since sheath formation is associated with cell chain elongation in most of these bacteria, the molecular mechanisms underlying nanofibril sheath formation, including the intracellular signaling cascade in response to extracellular stimuli, must be elucidated. Here, we isolated a sheathless variant of L. cholodnii SP6 and thus identified a novel glycosyltransferase, LthB. Although mutants with deletions of lthA, encoding another GT, and lthB were both defective for nanofibril formation, they exhibited different phenotypes of cell chain elongation and pellicle formation. Moreover, LthA expression, but not LthB expression, was influenced by extracellular calcium, which is known to affect nanofibril formation, indicating the functional diversities of LthA and LthB. Such molecular insights are critical for a better understanding of ecology of filamentous bacteria, which, in turn, can be used to improve strategies to control filamentous bacteria in industrial facilities.
Collapse
Affiliation(s)
- Tatsuki Kunoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Erika Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kyosuke Takabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Minoru Takeda
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Andrew S. Utada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
Hwang Y, Harshey RM. A Second Role for the Second Messenger Cyclic-di-GMP in E. coli: Arresting Cell Growth by Altering Metabolic Flow. mBio 2023; 14:e0061923. [PMID: 37036337 PMCID: PMC10127611 DOI: 10.1128/mbio.00619-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
c-di-GMP primarily controls motile to sessile transitions in bacteria. Diguanylate cyclases (DGCs) catalyze the synthesis of c-di-GMP from two GTP molecules. Typically, bacteria encode multiple DGCs that are activated by specific environmental signals. Their catalytic activity is modulated by c-di-GMP binding to autoinhibitory sites (I-sites). YfiN is a conserved inner membrane DGC that lacks these sites. Instead, YfiN activity is directly repressed by periplasmic YfiR, which is inactivated by redox stress. In Escherichia coli, an additional envelope stress causes YfiN to relocate to the mid-cell to inhibit cell division by interacting with the division machinery. Here, we report a third activity for YfiN in E. coli, where cell growth is inhibited without YfiN relocating to the division site. This action of YfiN is only observed when the bacteria are cultured on gluconeogenic carbon sources, and is dependent on absence of the autoinhibitory sites. Restoration of I-site function relieves the growth-arrest phenotype, and disabling this function in a heterologous DGC causes acquisition of this phenotype. Arrested cells are tolerant to a wide range of antibiotics. We show that the likely cause of growth arrest is depletion of cellular GTP from run-away synthesis of c-di-GMP, explaining the dependence of growth arrest on gluconeogenic carbon sources that exhaust more GTP during production of glucose. This is the first report of c-di-GMP-mediated growth arrest by altering metabolic flow. IMPORTANCE The c-di-GMP signaling network in bacteria not only controls a variety of cellular processes such as motility, biofilms, cell development, and virulence, but does so by a dizzying array of mechanisms. The DGC YfiN singularly represents the versatility of this network in that it not only inhibits motility and promotes biofilms, but also arrests growth in Escherichia coli by relocating to the mid-cell and blocking cell division. The work described here reveals that YfiN arrests growth by yet another mechanism in E. coli, changing metabolic flow. This function of YfiN, or of DGCs without autoinhibitory I-sites, may contribute to antibiotic tolerant persisters in relevant niches such as the gut where gluconeogenic sugars are found.
Collapse
Affiliation(s)
- YuneSahng Hwang
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, Texas, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
18
|
Puls JS, Brajtenbach D, Schneider T, Kubitscheck U, Grein F. Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. SCIENCE ADVANCES 2023; 9:eade9023. [PMID: 36947615 PMCID: PMC10032595 DOI: 10.1126/sciadv.ade9023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bacterial cell wall biosynthesis is the target of many important antibiotics. Its spatiotemporal organization is closely coordinated with cell division. However, the role of peptidoglycan synthesis within cell division is not fully understood. Even less is known about the impact of antibiotics on the coordination of these two essential processes. Visualizing the essential cell division protein FtsZ and other key proteins in Staphylococcus aureus, we show that antibiotics targeting peptidoglycan synthesis arrest cell division within minutes of treatment. The glycopeptides vancomycin and telavancin completely inhibit septum constriction in all phases of cell division. The beta-lactam oxacillin stops division progress by preventing recruitment of the major peptidoglycan synthase PBP2 to the septum, revealing PBP2 as crucial for septum closure. Our work identifies cell division as key cellular target of these antibiotics and provides evidence that peptidoglycan synthesis is the essential driving force of septum constriction throughout cell division of S. aureus.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
19
|
López‐Escarpa D, Castanheira S, García‐del Portillo F. OmpR and Prc contribute to switch the Salmonella morphogenetic program in response to phagosome cues. Mol Microbiol 2022; 118:477-493. [PMID: 36115022 PMCID: PMC9827838 DOI: 10.1111/mmi.14982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Salmonella enterica serovar Typhimurium infects eukaryotic cells residing within membrane-bound phagosomes. In this compartment, the pathogen replaces the morphogenetic penicillin-binding proteins 2 and 3 (PBP2/PBP3) with PBP2SAL /PBP3SAL , two proteins absent in Escherichia coli. The basis for this switch is unknown. Here, we show that PBP3 protein levels drop drastically when S. Typhimurium senses acidity, high osmolarity and nutrient scarcity, cues that activate virulence functions required for intra-phagosomal survival and proliferation. The protease Prc and the transcriptional regulator OmpR contribute to lower PBP3 levels whereas OmpR stimulates PBP2SAL /PBP3SAL production. Surprisingly, despite being essential for division in E. coli, PBP3 levels also drop in non-pathogenic and pathogenic E. coli exposed to phagosome cues. Such exposure alters E. coli morphology resulting in very long bent and twisted filaments indicative of failure in the cell division and elongation machineries. None of these aberrant shapes are detected in S. Typhimurium. Expression of PBP3SAL restores cell division in E. coli exposed to phagosome cues although the cells retain elongation defects in the longitudinal axis. By switching the morphogenetic program, OmpR and Prc allow S. Typhimurium to properly divide and elongate inside acidic phagosomes maintaining its cellular dimensions and the rod shape.
Collapse
Affiliation(s)
- David López‐Escarpa
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Sónia Castanheira
- Laboratory of Intracellular Bacterial PathogensNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | | |
Collapse
|
20
|
Chen X, Li Y, Bai K, Gu M, Xu X, Jiang N, Chen Y, Li J, Luo L. Class A Penicillin-Binding Protein C Is Responsible for Stress Response by Regulation of Peptidoglycan Assembly in Clavibacter michiganensis. Microbiol Spectr 2022; 10:e0181622. [PMID: 36040162 PMCID: PMC9603630 DOI: 10.1128/spectrum.01816-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
The cell wall peptidoglycan of bacteria is essential for their survival and shape development. The penicillin-binding proteins (PBPs) are responsible for the terminal stage of peptidoglycan assembly. It has been shown that PBPC, a member of class A high-molecular-weight PBP, played an important role in morphology maintenance and stress response in Clavibacter michiganensis. Here, we reported the stress response strategies under viable but nonculturable (VBNC) state and revealed the regulation of peptidoglycan assembly by PBPC in C. michiganensis cells. Using atomic force microscopy imaging, we found that peptidoglycan of C. michiganensis cells displayed a relatively smooth and dense surface, whereas ΔpbpC was characterized by a "ridge-and-groove" surface, which was more distinctive after Cu2+ treatment. The peptidoglycan layer of wild type cells exhibited a significant increase in thickness and slight increase in cross-linkage following Cu2+ treatment. Compared with wild type, the thickness and cross-linkage of peptidoglycan decreased during log phase in ΔpbpC cells, but the peptidoglycan cross-linkage increased significantly under Cu2+ stress, while the thickness did not change. It is noteworthy that the above changes in the peptidoglycan layer resulted in a significant increase in the accumulation of amylase and exopolysaccharide in ΔpbpC. This study elucidates the role of PBPC in Gram-positive rod-shaped plant pathogenic bacterium in response to environmental stimuli by regulating the assembling of cell wall peptidoglycan, which is significant in understanding the survival of C. michiganensis under stress and the field epidemiology of tomato bacterial canker disease. IMPORTANCE Peptidoglycan of cell walls in bacteria is a cross-linked and meshlike scaffold that provides strength to withstand the external pressure. The increased cross-linkage in peptidoglycan and altered structure in VBNC cells endowed the cell wall more resistant to adversities. Here we systematically evaluated the stress response strategies in Gram-positive rod-shaped bacterium C. michiganensis log phase cells and revealed a significant increase of peptidoglycan thickness and slight increase of cross-linkage after Cu2+ treatment. Most strikingly, knocking-out of PBPC leads to a significant increase in cross-linking of peptidoglycan in response to Cu2+ treatment. Understanding the stress resistance mechanism and survival strategy of phytopathogenic bacteria is the basis of exploring bacterial physiology and disease epidemiology.
Collapse
Affiliation(s)
- Xing Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yao Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Kaihong Bai
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Meng Gu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Xiaoli Xu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Yu Chen
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Shinn MK, Cohan MC, Bullock JL, Ruff KM, Levin PA, Pappu RV. Connecting sequence features within the disordered C-terminal linker of Bacillus subtilis FtsZ to functions and bacterial cell division. Proc Natl Acad Sci U S A 2022; 119:e2211178119. [PMID: 36215496 PMCID: PMC9586301 DOI: 10.1073/pnas.2211178119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered regions (IDRs) can function as autoregulators of folded enzymes to which they are tethered. One example is the bacterial cell division protein FtsZ. This includes a folded core and a C-terminal tail (CTT) that encompasses a poorly conserved, disordered C-terminal linker (CTL) and a well-conserved 17-residue C-terminal peptide (CT17). Sites for GTPase activity of FtsZs are formed at the interface between GTP binding sites and T7 loops on cores of adjacent subunits within dimers. Here, we explore the basis of autoregulatory functions of the CTT in Bacillus subtilis FtsZ (Bs-FtsZ). Molecular simulations show that the CT17 of Bs-FtsZ makes statistically significant CTL-mediated contacts with the T7 loop. Statistical coupling analysis of more than 1,000 sequences from FtsZ orthologs reveals clear covariation of the T7 loop and the CT17 with most of the core domain, whereas the CTL is under independent selection. Despite this, we discover the conservation of nonrandom sequence patterns within CTLs across orthologs. To test how the nonrandom patterns of CTLs mediate CTT-core interactions and modulate FtsZ functionalities, we designed Bs-FtsZ variants by altering the patterning of oppositely charged residues within the CTL. Such alterations disrupt the core-CTT interactions, lead to anomalous assembly and inefficient GTP hydrolysis in vitro and protein degradation, aberrant assembly, and disruption of cell division in vivo. Our findings suggest that viable CTLs in FtsZs are likely to be IDRs that encompass nonrandom, functionally relevant sequence patterns that also preserve three-way covariation of the CT17, the T7 loop, and core domain.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Megan C. Cohan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jessie L. Bullock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Kiersten M. Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Petra A. Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
22
|
Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int J Biol Macromol 2022; 219:428-437. [PMID: 35932806 DOI: 10.1016/j.ijbiomac.2022.07.241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022]
Abstract
Salmonella Typhi is emerging as a drug-resistant pathogen, particularly in developing countries. Hence, the progressive development of new antibiotics against novel drug targets is essential to prevent the spread of infections and mortality. The cell division protein FtsZ is an ideal drug target as the cell wall synthesis in bacteria is driven by the dynamic treadmilling nature of the FtsZ. The polymerization of the FtsZ provides the essential mechanical constricting force and flexibility to modulate the cell wall synthesis. Any alteration in FtsZ polymerization leads to the bactericidal or bacteriostatic effect. In this study, we have evaluated the secondary metabolites of natural compounds berberine chloride, cinnamaldehyde, scopoletin, quercetin and eugenol as potential inhibitors of FtsZ from Salmonella Typhi (stFtsZ) using computational, biochemical, and in vivo cell-based assays. Out of these five compounds, berberine chloride and cinnamaldehyde exhibited the best binding affinity of Kd = 7 μM and 10 μM, respectively and inhibit stFtsZ GTPase activity and polymerization by 70 %. The compound berberine chloride showed the best MIC of 500 μg/mL and 175 μg/mL against gram-negative and gram-positive bacterial strains. The findings support that these natural compounds can be used as a backbone structure to develop a broad spectrum of antibacterial agents.
Collapse
|
23
|
Development and Application of Two Inducible Expression Systems for Streptococcus suis. Microbiol Spectr 2022; 10:e0036322. [PMID: 35758678 PMCID: PMC9430170 DOI: 10.1128/spectrum.00363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important zoonotic bacterial pathogen posing a threat to the pig industry as well as public health, for which the mechanisms of growth and cell division remain largely unknown. Developing convenient genetic tools that can achieve strictly controlled gene expression is of great value for investigating these fundamental physiological processes of S. suis. In this study, we first identified three strong constitutive promoters, Pg, Pt, and Pe, in S. suis. Promoter Pg was used to drive the expression of repressor genes tetR and lacI, and the operator sequences were added within promoters Pt and Pe. By optimizing the insertion sites of the operator sequence, we successfully constructed an anhydrotetracycline (ATc)-inducible expression system and an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible expression system in S. suis. We showed that these two systems provided inducer-concentration- and induction-time-dependent expression of the reporter gene. By using these tools, we investigated the subcellular localization of a key cell division protein, FtsZ, which showed that it could be correctly localized to the midcell region. In addition, we constructed a conditional knockout strain for the glmS gene, which is an essential gene, and showed that our ATc-inducible promoter could provide strictly controlled expression of glmS in trans, suggesting that our inducible expression systems can be used for deletion of essential genes in S. suis. Therefore, for the first time we developed two inducible expression systems in S. suis and showed their applications in the study of an important cell division protein and an essential gene. These genetic tools will further facilitate the functional study of other important genes of S. suis. IMPORTANCE Streptococcus suis is an important zoonotic bacterial pathogen. Studying the mechanisms of cell growth and division is important for the identification of novel antimicrobial drug targets. Inducible expression systems can provide strictly controlled expression of the protein of interest and are useful tools to study the functions of physiologically important proteins. However, there is a lack of convenient genetic tools that can achieve inducible protein expression in S. suis. In this study, we developed two (ATc-inducible and IPTG-inducible) inducible expression systems and showed their applications in a subcellular localization study of a cell division protein and the construction of conditional knockout of essential genes in S. suis. These systems will be useful for functional studies of important proteins of S. suis.
Collapse
|
24
|
Wozniak KJ, Burby PE, Nandakumar J, Simmons LA. Structure and kinase activity of bacterial cell cycle regulator CcrZ. PLoS Genet 2022; 18:e1010196. [PMID: 35576203 PMCID: PMC9135335 DOI: 10.1371/journal.pgen.1010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/26/2022] [Accepted: 04/09/2022] [Indexed: 11/24/2022] Open
Abstract
CcrZ is a recently discovered cell cycle regulator that connects DNA replication initiation with cell division in pneumococci and may have a similar function in related bacteria. CcrZ is also annotated as a putative kinase, suggesting that CcrZ homologs could represent a novel family of bacterial kinase-dependent cell cycle regulators. Here, we investigate the CcrZ homolog in Bacillus subtilis and show that cells lacking ccrZ are sensitive to a broad range of DNA damage. We demonstrate that increased expression of ccrZ results in over-initiation of DNA replication. In addition, increased expression of CcrZ activates the DNA damage response. Using sensitivity to DNA damage as a proxy, we show that the negative regulator for replication initiation (yabA) and ccrZ function in the same pathway. We show that CcrZ interacts with replication initiation proteins DnaA and DnaB, further suggesting that CcrZ is important for replication timing. To understand how CcrZ functions, we solved the crystal structure bound to AMP-PNP to 2.6 Å resolution. The CcrZ structure most closely resembles choline kinases, consisting of a bilobal structure with a cleft between the two lobes for binding ATP and substrate. Inspection of the structure reveals a major restructuring of the substrate-binding site of CcrZ relative to the choline-binding pocket of choline kinases, consistent with our inability to detect activity with choline for this protein. Instead, CcrZ shows activity on D-ribose and 2-deoxy-D-ribose, indicating adaptation of the choline kinase fold in CcrZ to phosphorylate a novel substrate. We show that integrity of the kinase active site is required for ATPase activity in vitro and for function in vivo. This work provides structural, biochemical, and functional insight into a newly identified, and conserved group of bacterial kinases that regulate DNA replication initiation.
Collapse
Affiliation(s)
- Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
25
|
Ithurbide S, Gribaldo S, Albers SV, Pende N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol 2022; 30:665-678. [PMID: 35246355 DOI: 10.1016/j.tim.2022.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Compared with the extensive knowledge on cell division in model eukaryotes and bacteria, little is known about how archaea divide. Interestingly, both endosomal sorting complex required for transport (ESCRT)-based and FtsZ-based cell division systems are found in members of the Archaea. In the past couple of years, several studies have started to shed light on FtsZ-based cell division processes in members of the Euryarchaeota. In this review we highlight recent findings in this emerging field of research. We present current knowledge of the cell division machinery of halophiles which relies on two FtsZ proteins, and we compare it with that of methanobacteria, which relies on only one FtsZ. Finally, we discuss how these differences relate to the distinct cell envelopes of these two archaeal model systems.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Craven SJ, Condon SGF, Díaz Vázquez G, Cui Q, Senes A. The coiled-coil domain of Escherichia coli FtsLB is a structurally detuned element critical for modulating its activation in bacterial cell division. J Biol Chem 2022; 298:101460. [PMID: 34871549 PMCID: PMC8749076 DOI: 10.1016/j.jbc.2021.101460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
The FtsLB complex is a key regulator of bacterial cell division, existing in either an off state or an on state, which supports the activation of septal peptidoglycan synthesis. In Escherichia coli, residues known to be critical for this activation are located in a region near the C-terminal end of the periplasmic coiled-coil domain of FtsLB, raising questions about the precise role of this conserved domain in the activation mechanism. Here, we investigate an unusual cluster of polar amino acids found within the core of the FtsLB coiled coil. We hypothesized that these amino acids likely reduce the structural stability of the domain and thus may be important for governing conformational changes. We found that mutating these positions to hydrophobic residues increased the thermal stability of FtsLB but caused cell division defects, suggesting that the coiled-coil domain is a "detuned" structural element. In addition, we identified suppressor mutations within the polar cluster, indicating that the precise identity of the polar amino acids is important for fine-tuning the structural balance between the off and on states. We propose a revised structural model of the tetrameric FtsLB (named the "Y-model") in which the periplasmic domain splits into a pair of coiled-coil branches. In this configuration, the hydrophilic terminal moieties of the polar amino acids remain more favorably exposed to water than in the original four-helix bundle model ("I-model"). We propose that a shift in this architecture, dependent on its marginal stability, is involved in activating the FtsLB complex and triggering septal cell wall reconstruction.
Collapse
Affiliation(s)
- Samuel J Craven
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samson G F Condon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gladys Díaz Vázquez
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
27
|
HONGBO Z, HASEBE A, ALAM A, YUNQING L, HOSHIKA S, YAMAUTI M, SANO H. Antibacterial potential of colloidal platinum nanoparticles against Streptococcus mutans . Dent Mater J 2022; 41:368-375. [DOI: 10.4012/dmj.2021-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhang HONGBO
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Akira HASEBE
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
| | - Arefin ALAM
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Liu YUNQING
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Shuhei HOSHIKA
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Monica YAMAUTI
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| | - Hidehiko SANO
- Department of Restorative Dentistry, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine
| |
Collapse
|
28
|
Liechti GW. Localized Peptidoglycan Biosynthesis in Chlamydia trachomatis Conforms to the Polarized Division and Cell Size Reduction Developmental Models. Front Microbiol 2021; 12:733850. [PMID: 34956109 PMCID: PMC8699169 DOI: 10.3389/fmicb.2021.733850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size regulation in bacteria is a function of two basic cellular processes: the expansion of the cell envelope and its constriction at spatially defined points at what will eventually become the division plane. In most bacterial species, both cell wall expansion and restriction are dependent on peptidoglycan (PG), a structural polymer comprised of sugars and amino acids that imparts strength and rigidity to bacterial membranes. Pathogenic Chlamydia species are unique in that their cell walls contain very little PG, which is restricted almost entirely to the apparent division plane of the microbe's replicative forms. Very little is known about the degree to which PG affects the size and shape of C. trachomatis during its division process, and recent studies suggest the process is initiated via a polarized mechanism. We conducted an imaging study to ascertain the dimensions, orientation, and relative density of chlamydial PG throughout the organism's developmental cycle. Our analysis indicates that PG in replicating C. trachomatis can be associated with four, broad structural forms; polar/septal disks, small/thick rings, large rings, and small/thin rings. We found that PG density appeared to be highest in septal disks and small/thick rings, indicating that these structures likely have high PG synthesis to degradation ratios. We also discovered that as C. trachomatis progresses through its developmental cycle PG structures, on average, decrease in total volume, indicating that the average cell volume of chlamydial RBs likely decreases over time. When cells infected with C. trachomatis are treated with inhibitors of critical components of the microbe's two distinct PG synthases, we observed drastic differences in the ratio of PG synthesis to degradation, as well as the volume and shape of PG-containing structures. Overall, our results suggest that C. trachomatis PG synthases differentially regulate the expansion and contraction of the PG ring during both the expansion and constriction of the microbe's cell membrane during cell growth and division, respectively.
Collapse
Affiliation(s)
- George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
29
|
Kohga H, Saito Y, Kanamaru M, Uchiyama J, Ohta H. The lack of the cell division protein FtsZ induced generation of giant cells under acidic stress in cyanobacterium Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2021; 150:343-356. [PMID: 33146872 DOI: 10.1007/s11120-020-00792-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Bacteria exposed to environmental stresses often exhibit superior acclimation abilities to environmental change. Acid treatment causes an increase in the cell length of the cyanobacterium Synechocystis sp. PCC6803 under light conditions. We aimed to elucidate the relationship between acidic stress and cell enlargement. After being synchronized under dark conditions, the cells were cultivated at different pH (pH 8.0 or pH 6.0) levels under light conditions. Synechocystis 6803 cells exhibited only cell growth occurred (cell volume expansion) and slow proliferation under the acidic condition. In the recovery experiment of the enlarged cells, they proliferated normally at pH 8.0, and the cell lengths decreased to the normal cell size under light conditions. Inhibition of cell division might be caused by acidic stress. To understand the effect of acidic stress on cell division, we evaluated the expression of FtsZ via Western blotting. The FtsZ concentration in cells was lower at pH 6.0 than at pH 8.0 and was not sufficient for cell division in the photoautotrophic conditions. ClpXP is well known as a regulator of the Z-ring dynamics in E. coli. The transcriptional level of four clpXP genes was upregulated approximately threefold at pH 6.0 after 24 h compared with that in cells grown at pH 8.0. The lack of FtsZ may be caused by the upregulation of clpXP expression under acidic condition. Therefore, ClpXP may participate in the degradation of FtsZ and be involved in the regulation of cell division via FtsZ under acidic stress in Synechocystis 6803.
Collapse
Affiliation(s)
- Hidetaka Kohga
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yoshikazu Saito
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mirai Kanamaru
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Junji Uchiyama
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hisataka Ohta
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| |
Collapse
|
30
|
The Escherichia coli Outer Membrane β-Barrel Assembly Machinery (BAM) Crosstalks with the Divisome. Int J Mol Sci 2021; 22:ijms222212101. [PMID: 34829983 PMCID: PMC8620860 DOI: 10.3390/ijms222212101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023] Open
Abstract
The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.
Collapse
|
31
|
Briggs NS, Bruce KE, Naskar S, Winkler ME, Roper DI. The Pneumococcal Divisome: Dynamic Control of Streptococcus pneumoniae Cell Division. Front Microbiol 2021; 12:737396. [PMID: 34737730 PMCID: PMC8563077 DOI: 10.3389/fmicb.2021.737396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Cell division in Streptococcus pneumoniae (pneumococcus) is performed and regulated by a protein complex consisting of at least 14 different protein elements; known as the divisome. Recent findings have advanced our understanding of the molecular events surrounding this process and have provided new understanding of the mechanisms that occur during the division of pneumococcus. This review will provide an overview of the key protein complexes and how they are involved in cell division. We will discuss the interaction of proteins in the divisome complex that underpin the control mechanisms for cell division and cell wall synthesis and remodelling that are required in S. pneumoniae, including the involvement of virulence factors and capsular polysaccharides.
Collapse
Affiliation(s)
- Nicholas S. Briggs
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Souvik Naskar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
32
|
A Dynamic, Ring-Forming Bactofilin Critical for Maintaining Cell Size in the Obligate Intracellular Bacterium Chlamydia trachomatis. Infect Immun 2021; 89:e0020321. [PMID: 33941579 DOI: 10.1128/iai.00203-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bactofilins are polymer-forming cytoskeletal proteins that are widely conserved in bacteria. Members of this protein family have diverse functional roles such as orienting subcellular molecular processes, establishing cell polarity, and aiding in cell shape maintenance. Using sequence alignment to the conserved bactofilin domain, we identified a bactofilin ortholog, BacACT, in the obligate intracellular pathogen Chlamydia trachomatis. Chlamydia species are obligate intracellular bacteria that undergo a developmental cycle alternating between infectious nondividing elementary bodies (EBs) and noninfectious dividing reticulate bodies (RBs). As Chlamydia divides by a polarized division process, we hypothesized that BacACT may function to establish polarity in these unique bacteria. Utilizing a combination of fusion constructs and high-resolution fluorescence microscopy, we determined that BacACT forms dynamic, membrane-associated filament- and ring-like structures in Chlamydia's replicative RB form. Contrary to our hypothesis, these structures are distinct from the microbe's cell division machinery and do not colocalize with septal peptidoglycan or MreB, the major organizer of the bacterium's division complex. Bacterial two-hybrid assays demonstrated BacACT interacts homotypically but does not directly interact with proteins involved in cell division or peptidoglycan biosynthesis. To investigate the function of BacACT in chlamydial development, we constructed a conditional knockdown strain using a newly developed CRISPR interference system. We observed that reducing bacACT expression significantly increased chlamydial cell size. Normal RB morphology was restored when an additional copy of bacACT was expressed in trans during knockdown. These data reveal a novel function for chlamydial bactofilin in maintaining cell size in this obligate intracellular bacterium.
Collapse
|
33
|
DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. J Bacteriol 2021; 203:e0016321. [PMID: 34031039 DOI: 10.1128/jb.00163-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rod-shaped Gram-negative bacteria, FtsZ localization at midcell position is regulated by the gradient of MinCDE complex across the poles. In round-shaped bacteria, which lack predefined poles, the next plane of cell division is perpendicular to the previous plane, and determination of the FtsZ assembly site is still intriguing. Deinococcus radiodurans, a coccus bacterium, is characterized by its extraordinary resistance to DNA damage. DivIVA, a putative component of the Min system in this bacterium, interacts with cognate cell division and genome segregation proteins. Here, we report that deletion of a chromosomal copy of DivIVA was possible only when the wild-type copy of DivIVA was expressed in trans on a plasmid. However, deletion of the C-terminal domain (CTD) of DivIVA (CTD mutant) was possible but produced distinguishable phenotypes, like smaller cells, slower growth, and tilted septum orientation, in D. radiodurans. In trans expression of DivIVA in the CTD mutant could restore these features of the wild type. Interestingly, the overexpression of DivIVA led to delayed separation of tetrads from an octet state in both trans-complemented divIVA-mutant and wild-type cells. The CTD mutant showed upregulation of the yggS-divIVAN operon. Both the wild type and CTD mutant formed FtsZ foci; however, unlike wild type, the position of foci in the mutant cells was found to be away from conjectural midcell position in cocci. Notably, DivIVA-red fluorescent protein (DivIVA-RFP) localizes to the septum during cell division at the new division site. These results suggested that DivIVA is an essential protein in D. radiodurans, and its C-terminal domain plays an important role in the regulation of its expression and orientation of new septal growth in this bacterium. IMPORTANCE In rod-shaped Gram-negative bacteria, the midcell position for binary fission is relatively easy to model. In cocci that do not have predefined poles, the plane of next cell division is shown to be perpendicular to the previous plane. However, the molecular basis of perpendicularity is not known in cocci. The DivIVA protein of Deinococcus radiodurans, a coccus bacterium, physically interacts with the septum and establishes macromolecular interactions with genome segregation proteins through its N-terminal domain and with MinC through the C-terminal domain. Here, we have brought forth some evidence to suggest that DivIVA is essential for growth and plays an important role in cell polarity determination, and its C-terminal domain plays a crucial role in the growth of new septa in the correct orientation as well as in the regulation of DivIVA expression.
Collapse
|
34
|
The archaeal protein SepF is essential for cell division in Haloferax volcanii. Nat Commun 2021; 12:3469. [PMID: 34103513 PMCID: PMC8187382 DOI: 10.1038/s41467-021-23686-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
In most bacteria, cell division depends on the tubulin homolog FtsZ and other proteins, such as SepF, that form a complex termed the divisome. Cell division also depends on FtsZ in many archaea, but other components of the divisome are unknown. Here, we demonstrate that a SepF homolog plays important roles in cell division in Haloferax volcanii, a halophilic archaeon that is known to have two FtsZ homologs with slightly different functions (FtsZ1 and FtsZ2). SepF co-localizes with both FtsZ1 and FtsZ2 at midcell. Attempts to generate a sepF deletion mutant were unsuccessful, suggesting an essential role. Indeed, SepF depletion leads to severe cell division defects and formation of large cells. Overexpression of FtsZ1-GFP or FtsZ2-GFP in SepF-depleted cells results in formation of filamentous cells with a high number of FtsZ1 rings, while the number of FtsZ2 rings is not affected. Pull-down assays support that SepF interacts with FtsZ2 but not with FtsZ1, although SepF appears delocalized in the absence of FtsZ1. Archaeal SepF homologs lack a glycine residue known to be important for polymerization and function in bacteria, and purified H. volcanii SepF forms dimers, suggesting that polymerization might not be important for the function of archaeal SepF.
Collapse
|
35
|
Yang X, McQuillen R, Lyu Z, Phillips-Mason P, De La Cruz A, McCausland JW, Liang H, DeMeester KE, Santiago CC, Grimes CL, de Boer P, Xiao J. A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Nat Microbiol 2021; 6:584-593. [PMID: 33495624 PMCID: PMC8085133 DOI: 10.1038/s41564-020-00853-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
Synthesis of septal peptidoglycan (sPG) is crucial for bacterial cell division. FtsW, an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a peptidoglycan glycosyltransferase (PGTase). Despite its importance, the septal PGTase activity of FtsW has not been demonstrated in vivo. How its activity is spatiotemporally regulated in vivo has also remained elusive. Here, we confirmed FtsW as an essential septum-specific PGTase in vivo using an N-acetylmuramic acid analogue incorporation assay. Next, using single-molecule tracking coupled with genetic manipulations, we identified two populations of processively moving FtsW molecules: a fast-moving population correlated with the treadmilling dynamics of the essential cytoskeletal FtsZ protein and a slow-moving population dependent on active sPG synthesis. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving population. Our results suggest a two-track model, in which inactive sPG synthases follow the 'Z-track' to be distributed along the septum and FtsN promotes their release from the Z-track to become active in sPG synthesis on the slow 'sPG-track'. This model provides a mechanistic framework for the spatiotemporal coordination of sPG synthesis in bacterial cell division.
Collapse
Affiliation(s)
- Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Polly Phillips-Mason
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | - Ana De La Cruz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Joshua W. McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Kristen E. DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Piet de Boer
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA.,Correspondence and requests for materials should be addressed to X.Y. (), P.d.B. () and J.X. ()
| |
Collapse
|
36
|
Abstract
Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.
Collapse
|
37
|
Mitchell SJ, Verma D, Griswold KE, Bailey-Kellogg C. Building blocks and blueprints for bacterial autolysins. PLoS Comput Biol 2021; 17:e1008889. [PMID: 33793553 PMCID: PMC8051824 DOI: 10.1371/journal.pcbi.1008889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/16/2021] [Accepted: 03/17/2021] [Indexed: 01/31/2023] Open
Abstract
Bacteria utilize a wide variety of endogenous cell wall hydrolases, or autolysins, to remodel their cell walls during processes including cell division, biofilm formation, and programmed death. We here systematically investigate the composition of these enzymes in order to gain insights into their associated biological processes, potential ways to disrupt them via chemotherapeutics, and strategies by which they might be leveraged as recombinant antibacterial biotherapies. To do so, we developed LEDGOs (lytic enzyme domains grouped by organism), a pipeline to create and analyze databases of autolytic enzyme sequences, constituent domain annotations, and architectural patterns of multi-domain enzymes that integrate peptidoglycan binding and degrading functions. We applied LEDGOs to eight pathogenic bacteria, gram negatives Acinetobacter baumannii, Klebsiella pneumoniae, Neisseria gonorrhoeae, and Pseudomonas aeruginosa; and gram positives Clostridioides difficile, Enterococcus faecium, Staphylococcus aureus, and Streptococcus pneumoniae. Our analysis of the autolytic enzyme repertoires of these pathogens reveals commonalities and differences in their key domain building blocks and architectures, including correlations and preferred orders among domains in multi-domain enzymes, repetitions of homologous binding domains with potentially complementarity recognition modalities, and sequence similarity patterns indicative of potential divergence of functional specificity among related domains. We have further identified a variety of unannotated sequence regions within the lytic enzymes that may themselves contain new domains with important functions.
Collapse
Affiliation(s)
- Spencer J. Mitchell
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
| | - Deeptak Verma
- Computational and Structural Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America
- Lyticon LLC, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
38
|
Anaerobic Production of Isoprene by Engineered Methanosarcina Species Archaea. Appl Environ Microbiol 2021; 87:AEM.02417-20. [PMID: 33452028 DOI: 10.1128/aem.02417-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/25/2020] [Indexed: 01/14/2023] Open
Abstract
Isoprene is a valuable petrochemical used for a wide variety of consumer goods, such as adhesives and synthetic rubber. We were able to achieve a high yield of renewable isoprene by taking advantage of the naturally high-flux mevalonate lipid synthesis pathway in anaerobic methane-producing archaea (methanogens). Our study illustrates that by genetically manipulating Methanosarcina species methanogens, it is possible to create organisms that grow by producing the hemiterpene isoprene. Mass balance measurements show that engineered methanogens direct up to 4% of total carbon flux to isoprene, demonstrating that methanogens produce higher isoprene yields than engineered yeast, bacteria, or cyanobacteria, and from inexpensive feedstocks. Expression of isoprene synthase resulted in increased biomass and changes in gene expression that indicate that isoprene synthesis depletes membrane precursors and redirects electron flux, enabling isoprene to be a major metabolic product. Our results demonstrate that methanogens are a promising engineering chassis for renewable isoprene synthesis.IMPORTANCE A significant barrier to implementing renewable chemical technologies is high production costs relative to those for petroleum-derived products. Existing technologies using engineered organisms have difficulty competing with petroleum-derived chemicals due to the cost of feedstocks (such as glucose), product extraction, and purification. The hemiterpene monomer isoprene is one such chemical that cannot currently be produced using cost-competitive renewable biotechnologies. To reduce the cost of renewable isoprene, we have engineered methanogens to synthesize it from inexpensive feedstocks such as methane, methanol, acetate, and carbon dioxide. The "isoprenogen" strains we developed have potential to be used for industrial production of inexpensive renewable isoprene.
Collapse
|
39
|
Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 2021; 44:490-506. [PMID: 32472934 PMCID: PMC7391070 DOI: 10.1093/femsre/fuaa018] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the 1960s several groups reported the isolation and preliminary genetic mapping of
Escherichia coli strains tolerant towards the
action of colicins. These pioneering studies kick-started two new fields in bacteriology;
one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal)
system to kill bacteria, the other on the physiological role of this cell
envelope-spanning assembly. The following half century has seen significant advances in
the first of these fields whereas the second has remained elusive, until recently. Here,
we review work that begins to shed light on Tol-Pal function in Gram-negative bacteria.
What emerges from these studies is that Tol-Pal is an energised system with fundamental,
interlinked roles in cell division – coordinating the re-structuring of peptidoglycan at
division sites and stabilising the connection between the outer membrane and underlying
cell wall. This latter role is achieved by Tol-Pal exploiting the proton motive force to
catalyse the accumulation of the outer membrane peptidoglycan associated lipoprotein Pal
at division sites while simultaneously mobilising Pal molecules from around the cell.
These studies begin to explain the diverse phenotypic outcomes of tol-pal
mutations, point to other cell envelope roles Tol-Pal may have and raise many new
questions.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Cara Press
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
40
|
McCausland JW, Yang X, Squyres GR, Lyu Z, Bruce KE, Lamanna MM, Söderström B, Garner EC, Winkler ME, Xiao J, Liu J. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. Nat Commun 2021; 12:609. [PMID: 33504807 PMCID: PMC7840769 DOI: 10.1038/s41467-020-20873-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
The FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ's treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme's diffusion and FtsZ's treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.
Collapse
Affiliation(s)
- Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Melissa M Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Bill Söderström
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| | - Jian Liu
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Simulations of Proposed Mechanisms of FtsZ-Driven Cell Constriction. J Bacteriol 2021; 203:JB.00576-20. [PMID: 33199285 PMCID: PMC7811198 DOI: 10.1128/jb.00576-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 01/24/2023] Open
Abstract
FtsZ is thought to generate constrictive force to divide the cell, possibly via one of two predominant models in the field. In one, FtsZ filaments overlap to form complete rings which constrict as filaments slide past each other to maximize lateral contact. To divide, bacteria must constrict their membranes against significant force from turgor pressure. A tubulin homolog, FtsZ, is thought to drive constriction, but how FtsZ filaments might generate constrictive force in the absence of motor proteins is not well understood. There are two predominant models in the field. In one, FtsZ filaments overlap to form complete rings around the circumference of the cell, and attractive forces cause filaments to slide past each other to maximize lateral contact. In the other, filaments exert force on the membrane by a GTP-hydrolysis-induced switch in conformation from straight to bent. Here, we developed software, ZCONSTRICT, for quantitative three-dimensional (3D) simulations of Gram-negative bacterial cell division to test these two models and identify critical conditions required for them to work. We find that the avidity of any kind of lateral interactions quickly halts the sliding of filaments, so a mechanism such as depolymerization or treadmilling is required to sustain constriction by filament sliding. For filament bending, we find that a mechanism such as the presence of a rigid linker is required to constrain bending to within the division plane and maintain the distance observed in vivo between the filaments and the membrane. Of these two models, only the filament bending model is consistent with our lab’s recent observation of constriction associated with a single, short FtsZ filament. IMPORTANCE FtsZ is thought to generate constrictive force to divide the cell, possibly via one of two predominant models in the field. In one, FtsZ filaments overlap to form complete rings which constrict as filaments slide past each other to maximize lateral contact. In the other, filaments exert force on the membrane by switching conformation from straight to bent. Here, we developed software, ZCONSTRICT, for three-dimensional (3D) simulations to test these two models. We find that a mechanism such as depolymerization or treadmilling are required to sustain constriction by filament sliding. For filament bending, we find that a mechanism that constrains bending to within the division plane is required to maintain the distance observed in vivo between the filaments and the membrane.
Collapse
|
42
|
LaBreck CJ, Trebino CE, Ferreira CN, Morrison JJ, DiBiasio EC, Conti J, Camberg JL. Degradation of MinD oscillator complexes by Escherichia coli ClpXP. J Biol Chem 2020; 296:100162. [PMID: 33288679 PMCID: PMC7857489 DOI: 10.1074/jbc.ra120.013866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
MinD is a cell division ATPase in Escherichia coli that oscillates from pole to pole and regulates the spatial position of the cell division machinery. Together with MinC and MinE, the Min system restricts assembly of the FtsZ-ring to midcell, oscillating between the opposite ends of the cell and preventing FtsZ-ring misassembly at the poles. Here, we show that the ATP-dependent bacterial proteasome complex ClpXP degrades MinD in reconstituted degradation reactions in vitro and in vivo through direct recognition of the MinD N-terminal region. MinD degradation is enhanced during stationary phase, suggesting that ClpXP regulates levels of MinD in cells that are not actively dividing. ClpXP is a major regulator of growth phase–dependent proteins, and these results suggest that MinD levels are also controlled during stationary phase. In vitro, MinC and MinD are known to coassemble into linear polymers; therefore, we monitored copolymers assembled in vitro after incubation with ClpXP and observed that ClpXP promotes rapid MinCD copolymer destabilization and direct MinD degradation by ClpXP. The N terminus of MinD, including residue Arg 3, which is near the ATP-binding site in sequence, is critical for degradation by ClpXP. Together, these results demonstrate that ClpXP degradation modifies conformational assemblies of MinD in vitro and depresses Min function in vivo during periods of reduced proliferation.
Collapse
Affiliation(s)
- Christopher J LaBreck
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Catherine E Trebino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Colby N Ferreira
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Josiah J Morrison
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Eric C DiBiasio
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Joseph Conti
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Jodi L Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
| |
Collapse
|
43
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
44
|
Küssau T, Van Wyk N, Johansen MD, Alsarraf HMAB, Neyret A, Hamela C, Sørensen KK, Thygesen MB, Beauvineau C, Kremer L, Blaise M. Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus. Cells 2020; 9:cells9112410. [PMID: 33158165 PMCID: PMC7694207 DOI: 10.3390/cells9112410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.
Collapse
Affiliation(s)
- Tanja Küssau
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Niël Van Wyk
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Matt D. Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Husam M. A. B. Alsarraf
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Aymeric Neyret
- CEMIPAI CNRS UM UMS3725, CEDEX 5, 34293 Montpellier, France;
| | - Claire Hamela
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
| | - Kasper K. Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Mikkel B. Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (K.K.S.); (M.B.T.)
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France;
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- INSERM, IRIM, 34293 Montpellier, France
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, CEDEX 5, 34293 Montpellier, France; (T.K.); (N.V.W.); (M.D.J.); (H.M.A.B.A.); (C.H.)
- Correspondence: (L.K.); (M.B.); Tel.: +33-(0)-434-359-447 (L.K. & M.B.)
| |
Collapse
|
45
|
Gomand F, Mitchell WH, Burgain J, Petit J, Borges F, Spagnolie SE, Gaiani C. Shaving and breaking bacterial chains with a viscous flow. SOFT MATTER 2020; 16:9273-9291. [PMID: 32930313 DOI: 10.1039/d0sm00292e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some food and ferment manufacturing steps such as spray-drying result in the application of viscous stresses to bacteria. This study explores how a viscous flow impacts both bacterial adhesion functionality and bacterial cell organization using a combined experimental and modeling approach. As a model organism we study Lactobacillus rhamnosus GG (LGG) "wild type" (WT), known to feature strong adhesive affinities towards beta-lactoglobulin thanks to pili produced by the bacteria on cell surfaces, along with three cell-surface mutant strains. Applying repeated flows with high shear-rates reduces bacterial adhesive abilities up to 20% for LGG WT. Bacterial chains are also broken by this process, into 2-cell chains at low industrial shear rates, and into single cells at very high shear rates. To rationalize the experimental observations we study numerically and analytically the Stokes equations describing viscous fluid flow around a chain of elastically connected spheroidal cell bodies. In this model setting we examine qualitatively the relationship between surface traction (force per unit area), a proxy for pili removal rate, and bacterial chain length (number of cells). Longer chains result in higher maximal surface tractions, particularly at the chain extremities, while inner cells enjoy a small protection from surface tractions due to hydrodynamic interactions with their neighbors. Chain rupture therefore may act as a mechanism to preserve surface adhesive functionality in bacteria.
Collapse
Affiliation(s)
- Faustine Gomand
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France. and Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - William H Mitchell
- Department of Mathematics, Statistics, and Computer Science, Macalester College, 1600 Grand Ave, St. Paul, MN 55105, USA.
| | - Jennifer Burgain
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Jérémy Petit
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Frédéric Borges
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| | - Saverio E Spagnolie
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | - Claire Gaiani
- LIBio - Université de Lorraine, 2 avenue de la Forêt de Haye, 54500 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
46
|
Liang B, Quan B, Li J, Loton C, Bredeche MF, Lindner AB, Xu L. Artificial modulation of cell width significantly affects the division time of Escherichia coli. Sci Rep 2020; 10:17847. [PMID: 33082450 PMCID: PMC7576201 DOI: 10.1038/s41598-020-74778-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial cells have characteristic spatial and temporal scales. For instance, Escherichia coli, the typical rod-shaped bacteria, always maintains a relatively constant cell width and cell division time. However, whether the external physical perturbation of cell width has an impact on cell division time remains largely unexplored. In this work, we developed two microchannel chips, namely straight channels and ‘necked’ channels, to precisely regulate the width of E. coli cells and to investigate the correlation between cell width and division time of the cells. Our results show that, in the straight channels, the wide cells divide much slower than narrow cells. In the ‘necked’ channels, the cell division is remarkably promoted compared to that in straight channels with the same width. Besides, fluorescence time-lapse microscopy imaging of FtsZ dynamics shows that the cell pre-constriction time is more sensitive to cell width perturbation than cell constriction time. Finally, we revealed a significant anticorrelation between the death rate and the division rate of cell populations with different widths. Our work provides new insights into the correlation between the geometrical property and division time of E. coli cells and sheds new light on the future study of spatial–temporal correlation in cell physiology.
Collapse
Affiliation(s)
- Baihui Liang
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Baogang Quan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China
| | - Chantal Loton
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Marie-Florence Bredeche
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France
| | - Ariel B Lindner
- Systems Engineering and Evolution Dynamics Lab, INSERM U1001, Paris Descartes University, 75014, Paris, France.,Faculty of Medicine, Paris Descartes University, 75014, Paris, France.,Centre for Research and Interdisciplinarity (CRI), Paris Descartes University, 75014, Paris, France
| | - Luping Xu
- Center for Nano and Micro Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
47
|
Peptidoglycan Sensing Prevents Quiescence and Promotes Quorum-Independent Colony Growth of Uropathogenic Escherichia coli. J Bacteriol 2020; 202:JB.00157-20. [PMID: 32778561 DOI: 10.1128/jb.00157-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.
Collapse
|
48
|
Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae. mBio 2020; 11:mBio.01488-20. [PMID: 32873757 PMCID: PMC7468199 DOI: 10.1128/mbio.01488-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell division is a central process that requires exquisite orchestration of both the cell wall biosynthetic and lytic machineries. The essential membrane complex FtsEX, widely conserved across bacteria, plays a central role by recruiting proteins to the divisome apparatus and by regulating periplasmic muralytic activity from the cytosol. FtsEX is a member of the type VII family of the ABC-superfamily, but instead of being a transporter, it couples the ATP hydrolysis catalyzed by FtsE to mechanically transduce a conformational signal that provokes the activation of peptidoglycan (PG) hydrolases. So far, no structural information is available for FtsE. Here, we provide the structural characterization of FtsE, confirming its ATPase nature and revealing regions with high structural plasticity which are key for FtsE binding to FtsX. The complementary binding region in FtsX has also been identified and validated in vivo. Our results provide evidence on how the difference between the ATP/ADP-bound states in FtsE would dramatically alter the interaction of FtsEX with the PG hydrolase PcsB in pneumococcal division. FtsEX is a membrane complex widely conserved across diverse bacterial genera and involved in critical processes such as recruitment of division proteins and in spatial and temporal regulation of muralytic activity during cell division or sporulation. FtsEX is a member of the ABC transporter superfamily. The component FtsX is an integral membrane protein, whereas FtsE is an ATPase and is required for the transmission of a conformational signal from the cytosol through the membrane to regulate the activity of cell wall hydrolases in the periplasm. Both proteins are essential in the major human respiratory pathogenic bacterium Streptococcus pneumoniae, and FtsX interacts with the modular peptidoglycan hydrolase PcsB at the septum. Here, we report high-resolution structures of pneumococcal FtsE bound to different nucleotides. Structural analysis revealed that FtsE contains all the conserved structural motifs associated with ATPase activity and afforded interpretation of the in vivo dimeric arrangement in both the ADP and ATP states. Interestingly, three specific FtsE regions with high structural plasticity were identified that shape the cavity in which the cytosolic region of FtsX would be inserted. The residues corresponding to the FtsX coupling helix, responsible for contacting FtsE, were identified and validated by in vivo mutagenesis studies showing that this interaction is essential for cell growth and proper morphology.
Collapse
|
49
|
Abstract
Bacteria surround their cell membrane with a net-like peptidoglycan layer, called sacculus, to protect the cell from bursting and maintain its cell shape. Sacculus growth during elongation and cell division is mediated by dynamic and transient multiprotein complexes, the elongasome and divisome, respectively. In this Review we present our current understanding of how peptidoglycan synthases are regulated by multiple and specific interactions with cell morphogenesis proteins that are linked to a dynamic cytoskeletal protein, either the actin-like MreB or the tubulin-like FtsZ. Several peptidoglycan synthases and hydrolases require activation by outer-membrane-anchored lipoproteins. We also discuss how bacteria achieve robust cell wall growth under different conditions and stresses by maintaining multiple peptidoglycan enzymes and regulators as well as different peptidoglycan growth mechanisms, and we present the emerging role of LD-transpeptidases in peptidoglycan remodelling.
Collapse
|
50
|
Fontelo R, Soares da Costa D, Reis R, Novoa-Carballal R, Pashkuleva I. Bactericidal nanopatterns generated by block copolymer self-assembly. Acta Biomater 2020; 112:174-181. [PMID: 32525051 DOI: 10.1016/j.actbio.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
We describe the bactericidal capacity of nanopatterned surfaces created by self-assembly of block copolymers. Distinct nanotopographies were generated by spin-coating with polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) followed by solvent vapor annealing. We demonstrate that the bactericidal efficiency of the developed coatings depends on the morphology and the chemistry of the surface: cylindrical nanotopographies presenting both blocks at the surface have stronger bactericidal effect on Escherichia coli than micellar patterns with only PS exposed at the surface. The identified mechanism of bacterial death is a mechanical stress exerted by the nanostructures on the cell-wall. Moreover, the developed nanopatterns are not cytotoxic, which makes them an excellent option for coating of implantable materials and devices. The proposed approach represents an efficient tool in the fight against bacteria, which acts via compromising the bacterial wall integrity. STATEMENT OF SIGNIFICANCE: Bacterial infections represent an important risk during biomaterial implantation in surgeries due to the increase of antibiotic resistance. Bactericidal surfaces are a promising solution to avoid the use of antibiotics, but most of those systems do not allow mammalian cell survival. Nanopatterned silicon surfaces have demonstrated to be simultaneously bactericidal and allow mammalian cell culture but are made by physical methods (e.g. plasma etching) applicable to few materials and small surfaces. In this article we show that block copolymer self-assembly can be used to develop surfaces that kill bacteria (E. coli) but do not harm mammalian cells. Block copolymer self-assembly has the advantage of being applicable to many different types of substrates and large surface areas.
Collapse
|