1
|
Narayan G, Oura P. Comparison of background characteristics and neuropathology findings between medico-legal autopsy cases with traumatic axonal injury, vascular axonal injury, or absence of axonal injury in β-amyloid precursor protein stain. Int J Legal Med 2025; 139:1335-1342. [PMID: 39836211 PMCID: PMC12003499 DOI: 10.1007/s00414-025-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
In forensic neuropathology, the β-amyloid precursor protein (β-APP) immunostain is used to diagnose axonal injury (AI). The two most common aetiologies are traumatic (TAI) and ischaemic (vascular; VAI). We aimed to identify background characteristics and neuropathology findings that are suggestive of TAI, VAI, or no AI in neuropathologically examined medico-legal autopsy cases. The dataset comprised 166 cases from Finland over the period 2016-2023. The diagnosis of AI was based on β-APP stain (TAI, VAI, or no AI). Data on background characteristics and neuropathology findings were collected from cause-of-death investigation documents. Prevalence ratios were calculated for each variable to enable comparisons between the AI categories. The sample were 71.7% males; median age was 41 years (range 0-96). There were 26 cases with TAI, 44 with VAI, and 96 with no AI. The variables that showed statistical significance and had at least two-fold prevalence among TAI cases compared to VAI cases were: a documented recent injury; and presence of any extracranial/cranial/intracranial injury (including subdural haemorrhage [SDH], subarachnoid haemorrhage [SAH], intracerebral/ventricular haemorrhage [ICVH], or contusion) in autopsy or neuropathology. Correspondingly, variables indicating TAI over no AI were: a documented recent injury; postinjury survival ≥ 24 h; and presence of any extracranial/cranial/intracranial injury (including SDH, SAH, ICVH, contusion), herniation, or infarction in autopsy or neuropathology. Postinjury survival < 30 min was identified as an indicator of no AI over TAI. Finally, variables indicating VAI over no AI were: postinjury survival ≥ 24 h; lack of external injury to the head; and presence of SDH, brain oedema, herniation, or infarction in autopsy or neuropathology. In conclusion, we report several differences in characteristics and findings between cases diagnosed with TAI, VAI, and no AI. Our findings may help estimate the likelihood and potential aetiology of AI based on background characteristics and other neuropathology findings.
Collapse
Affiliation(s)
- Gaia Narayan
- Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
| | - Petteri Oura
- Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland.
| |
Collapse
|
2
|
Hillyard M, Westley R, Kettlewell J. Do caregivers of traumatic brain injury survivors experience post-traumatic growth? A mixed-methods study exploring the positive experiences of informal caregivers. BRAIN IMPAIR 2025; 26:IB24019. [PMID: 40036141 DOI: 10.1071/ib24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Background There are currently 5.7million informal caregivers in the UK, with many experiencing psychological distress, compromised social functioning and poor quality of life. Improving the negative impact of caregiving has been a key focus of research in this population. However, there is limited research on the positive experiences of informal caregivers, particularly those caring for traumatic brain injury (TBI) survivors. This study aimed to explore whether informal TBI caregivers have positive experiences resulting from their role and investigate the possibility of post-traumatic growth (PTG). Methods Mixed-methods study. Quantitative data analysed using descriptive statistics. Qualitative data were analysed thematically. Data sets were synthesised and compared for agreement. Online semi-structured interviews were conducted with informal TBI caregivers, alongside a demographic questionnaire and validated PTG measure (Post-Traumatic Growth Inventory - Short Form, PTGI-SF). Results Ten TBI caregivers were recruited (n =10 male). The highest-scoring PTGI-SF domain across participants was 'personal strength' (mean=8.3; standard deviation, s.d.=1.5). The lowest-scoring domain was 'greater appreciation for life' (mean=7.1, s.d.=2.6). Six qualitative themes included: (1) deepened personal connections, (2) strengthened spiritual beliefs, (3) personal growth and resilience, (4) transformed life priorities and purpose, (5) improved coping mechanisms and (6) emergence of new opportunities and pathways. Findings revealed how caregivers adapted positively through caregiving experiences. Conclusions TBI caregivers appeared to experience PTG through caring. Future studies should employ mixed-methods to explore PTG in female TBI caregivers, adaptive coping strategies and the prevalence of occupational burden, facilitating the development of targeted interventions.
Collapse
Affiliation(s)
- Molly Hillyard
- University of Nottingham School of Medicine, Centre for Rehabilitation and Ageing Research, UK
| | - Ryan Westley
- University of Nottingham School of Medicine, Centre for Rehabilitation and Ageing Research, UK
| | - Jade Kettlewell
- University of Nottingham School of Medicine, Centre for Academic Primary Care, UK; and University of Nottingham School of Medicine, Mental Health and Clinical Neuroscience, UK; and NIHR Nottingham Biomedical Research Centre, UK
| |
Collapse
|
3
|
Kapapa T, Wernheimer V, Hoffmann A, Merz T, Zink F, Wolfschmitt EM, McCook O, Vogt J, Wepler M, Messerer DAC, Hartmann C, Scheuerle A, Mathieu R, Mayer S, Gröger M, Denoix N, Clazia E, Radermacher P, Röhrer S, Datzmann T. Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma. Cells 2024; 14:17. [PMID: 39791718 PMCID: PMC11720468 DOI: 10.3390/cells14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies. Clinical management issues such as whether intracranial pressure (ICP), cerebral perfusion pressure (CPP) or decompressive craniectomy improve patient outcome remain partly unanswered. Experimental drug approaches for the treatment of secondary brain injury (SBI) have not found clinical application. The complex, cellular and molecular pathways of SBI remain incompletely understood, and there are insufficient experimental (animal) models that reflect the pathophysiology of human TBI to develop translational therapeutic approaches. Therefore, we investigated different injury patterns after acute subdural hematoma (ASDH) as TBI in a post-hoc approach to assess the impact on SBI in a long-term, human-sized porcine TBI animal model. Post-mortem brain tissue analysis, after ASDH, bilateral ICP, CPP, cerebral oxygenation and temperature monitoring, and biomarker analysis were performed. Extracerebral, intraparenchymal-extraventricular and intraventricular blood, combined with brainstem and basal ganglia injury, influenced the experiment and its outcome. Basal ganglia injury affects the duration of the experiment. Recognition of these different injury patterns is important for translational interpretation of results in this animal model of SBI after TBI.
Collapse
Affiliation(s)
- Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Vanida Wernheimer
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tamara Merz
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Fabia Zink
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Oscar McCook
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Josef Vogt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Martin Wepler
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Claire Hartmann
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Angelika Scheuerle
- Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Michael Gröger
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Nicole Denoix
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Enrico Clazia
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Stefan Röhrer
- Department of Neurosurgery, Ostalb-Hospital Aalen, Im Kälblesrain 1, 73430 Aalen, Germany
| | - Thomas Datzmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
4
|
Laakko E, Oura P. Identifying latent subgroups of primary head injury: an explorative latent class analysis on neuropathologically examined medico-legal autopsy cases. Forensic Sci Med Pathol 2024:10.1007/s12024-024-00913-5. [PMID: 39542972 DOI: 10.1007/s12024-024-00913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Traumatic brain injury (TBI) is a significant global health concern and frequently encountered in medico-legal autopsies. Previous studies suggest that certain TBI subtypes are more likely to co-occur than others. Therefore, we aimed to explore the potential of latent class analysis (LCA) to identify and characterize primary head injury combinations in neuropathologically examined medico-legal autopsy cases. The dataset comprised 78 cases from the Forensic Medicine Unit of the Finnish Institute for Health and Welfare over the period of 2016-2022. Data on background and circumstantial characteristics as well as primary and secondary head and brain injuries were collected from police documents, medical records, general autopsy reports and neuropathology reports. Latent class solutions with two to five classes were explored to identify clustering of primary head injuries among the sample. The dataset comprised 69.2% males and the median age was 49 years. In LCA, the solutions appeared reasonable, and each class appeared to represent a distinct TBI profile. The two-class solution was found to fit the present dataset best. Class 1 was characterized by older age, presence of an underlying CNS disease, and less diverse primary head injuries; these were interpreted as suggestive of lower traumatic forces. Class 2 was characterized by male sex and assaults as a prominent injury circumstance; subarachnoid and intracerebral/ventricular haemorrhages and contusions were classified exclusively into this class. In conclusion, this study identified two distinct subgroups of primary head injuries. Understanding typical injury combinations related to distinct circumstances could assist not only forensic pathologists but also clinicians treating TBI patients. However, the present latent class solution should not be interpreted as "ground truth", but instead further research is needed.
Collapse
Affiliation(s)
- Essi Laakko
- Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland
| | - Petteri Oura
- Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki, FI-00014, Finland.
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland.
| |
Collapse
|
5
|
Fullerton JL, Hay J, Bryant-Craig C, Atkinson J, Smith DH, Stewart W. Pediatric Traumatic Brain Injury and Microvascular Blood-Brain Barrier Pathology. JAMA Netw Open 2024; 7:e2446767. [PMID: 39585695 PMCID: PMC11589795 DOI: 10.1001/jamanetworkopen.2024.46767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024] Open
Abstract
Importance Pediatric traumatic brain injury (TBI) is a major cause of morbidity and mortality, with an increased risk of catastrophic outcome compared with adult TBI, including diffuse brain swelling and so-called second impact syndrome. Nevertheless, the biological substrates driving adverse outcomes in pediatric TBI remain poorly described. Objective To compare neuropathological evidence of brain swelling and blood-brain barrier (BBB) disruption after moderate or severe acute TBI in adult vs pediatric case material. Design, Setting, and Participants In this retrospective case series, cases of pediatric (aged 3-18 years) and adult (aged ≥19 years) TBI were accrued from January 1, 1979, to December 31, 2005, and underwent laboratory-based assessment of autopsy material from the Glasgow TBI Archive. Data analysis was performed from January 2019 to January 2024. Exposures Single moderate or severe TBI. Main Outcomes and Measures Evaluation of representative brain tissue sections stained for markers of endothelia (CD34) and BBB integrity (fibrinogen and immunoglobin G). Results Eighty-one pediatric patients (mean [SD] age, 12.1 [4.6] years; 50 [62%] male) and 62 adult patients (mean [SD] age, 38.7 [12.9] years; 35 [56%] male) were studied. At autopsy, when present, brain swelling was more often diffuse and bilateral among pediatric patients (64 of 81 cases [83%]) when compared with adult patients (21 of 62 [34%]) (P < .001). Histologic evidence of BBB disruption was common in material from both adult (57 of 62 [91%]) and pediatric (65 of 81 [80%]) (P = .06) patients. In pediatric patients, however, this was a predominantly microvascular, capillary-level pathology, which was a less common finding in adult case material (mean [SD], 84.7% [8.6%] vs 31.2% [7.7%]; P < .001). Conclusions and Relevance This autopsy case series of patients dying in the acute phase after single moderate or severe TBI provides neuropathological evidence of age-dependent differences in vascular pathology. Specifically, although BBB disruption in pediatric material was typically confined to microvascular, capillary-level vessels, in adult case material, BBB disruption more typically involved larger-diameter vessels. This observation of distinct microvascular pathology in pediatric acute TBI requires further investigation. In the meantime, this study presents an intriguing potential candidate pathology contributing to diffuse brain swelling in this age group.
Collapse
Affiliation(s)
- Josie L. Fullerton
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Jennifer Hay
- The Francis Crick Institute, London, United Kingdom
| | | | - Josephine Atkinson
- Centre of Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas H. Smith
- Penn Centre for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - William Stewart
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| |
Collapse
|
6
|
Laaksonen J, Mäkinen H, Oura P. Prevalence of secondary brain injuries and association with trauma circumstances in neuropathologically examined medico-legal autopsy cases with primary head trauma. Leg Med (Tokyo) 2024; 71:102502. [PMID: 39111167 DOI: 10.1016/j.legalmed.2024.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 11/25/2024]
Abstract
Primary head injury is often followed by secondary brain damage. However, the association between injury circumstances and the prevalence of secondary injuries remains unclear. We report the prevalence and association of secondary brain injuries with the circumstances in which a head injury was sustained. The sample comprised 76 neuropathologically examined medico-legal autopsy cases with an acute primary head injury. Neuropathology reports were analysed to determine the prevalence of various secondary injuries, i.e., hypoxic-ischaemic neuronal injury, brain oedema, and vascular axonal injury (VAI). The prevalences were compared between cases from three distinct injury circumstances, i.e., fall, assault, and strangulation. The sample had a median age of 49 years (interquartile range 27-73) and 71.1% were identified as male. As for distinct injury circumstances, the sample comprised 14 fall cases, 21 assault victims, and 6 strangulation victims. The prevalence of hypoxic-ischaemic neuronal injury was highest in strangulations (100.0%), followed by assaults (81.0%) and falls (64.3%); of specific brain regions, statistically significant differences between the three case groups were found in frontal and parietal cortex (p ≤ 0.018) and the hippocampus (p = 0.005). Brain oedema was present in approximately half of assault (47.6%) and strangulation cases (50.0%), contrastingly to the lower prevalence in falls (7.1%; p = 0.024). The prevalence of VAI appeared higher among assault (23.8%) and strangulation cases (16.7%) compared to falls (7.1%), but the differences were not statistically significant. We conclude that hypoxic-ischaemic neuronal injury and brain oedema were more prevalent among assault and strangulation cases compared to falls.
Collapse
Affiliation(s)
- Johannes Laaksonen
- Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki FI-00014, Finland
| | - Hilla Mäkinen
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki FI-00271, Finland
| | - Petteri Oura
- Department of Forensic Medicine, University of Helsinki, P.O. Box 21, Helsinki FI-00014, Finland; Forensic Medicine Unit, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki FI-00271, Finland.
| |
Collapse
|
7
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 PMCID: PMC12011104 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
8
|
Sanker V, Kundu M, El Kassem S, El Nouiri A, Emara M, Maaz ZA, Nazir A, Bekele BK, Uwishema O. Posttraumatic hydrocephalus: Recent advances and new therapeutic strategies. Health Sci Rep 2023; 6:e1713. [PMID: 38028696 PMCID: PMC10652704 DOI: 10.1002/hsr2.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hydrocephalus or ventriculomegaly is a condition brought on by an overabundance of cerebrospinal fluid (CSF) in the ventricular system. The major contributor to posttraumatic hydrocephalus (PTH) is traumatic brain injuries (TBIs), especially in individuals with occupations set in industrial settings. A variety of criteria have been employed for the diagnosis of PTH, including the combination of neurological symptoms like nerve deficits and headache, as well as an initial improvement followed by a worsened relapse of altered consciousness and neurological deterioration, which is detected by computed tomography-brain imaging that reveals gradual ventriculomegaly. Aim In this article, we discuss and summarize briefly the current understandings and advancements in the management of PTH. Methods The available literature for this review was searched on various bibliographic databases using an individually verified, prespecified approach. The level of evidence of the included studies was considered as per the Centre for Evidence-Based Medicine recommendations. Results The commonly practiced current treatment modality involves shunting CSF but is often associated with complications and recurrence. The lack of a definitive management strategy for PTH warrants the utilization of novel and innovative modalities such as stem cell transplantations and antioxidative stress therapies. Conclusion One of the worst complications of a TBI is PTH, which has a high morbidity and mortality rate. Even though there hasn't been a successful method in stopping PTH from happening, hemorrhage-derived blood, and its metabolic by-products, like iron, hemoglobin, free radicals, thrombin, and red blood cells, may be potential targets for PTH hindrance and management. Also, using stem cell transplantations in animal models and antioxidative stress therapies in future studies can lower PTH occurrence and improve its outcome. Moreover, the integration of clinical trials and theoretical knowledge should be encouraged in future research projects to establish effective and updated management guidelines for PTH.
Collapse
Affiliation(s)
- Vivek Sanker
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Society of Brain Mapping and TherapeuticsLos AngelesCaliforniaUSA
| | - Mrinmoy Kundu
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Institute of Medical Sciences and SUM HospitalBhubaneswarIndia
| | - Sarah El Kassem
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Ahmad El Nouiri
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Mohamed Emara
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- College of MedicineUniversity of SharjahSharjahUnited Arab Emirates
| | - Zeina Al Maaz
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Faculty of MedicineBeirut Arab UniversityBeirutLebanon
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
| | - Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- School of MedicineAddis Ababa UniversityAddis AbabaEthiopia
- Milken Institute of Public HealthGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of medicineClinton Global Initiative UniversityNew YorkNew YorkUSA
- Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
9
|
Tessier M, Garcia MS, Goubert E, Blasco E, Consumi A, Dehapiot B, Tian L, Molinari F, Laurin J, Guillemot F, Hübner CA, Pellegrino C, Rivera C. Bumetanide induces post-traumatic microglia-interneuron contact to promote neurogenesis and recovery. Brain 2023; 146:4247-4261. [PMID: 37082944 PMCID: PMC10545516 DOI: 10.1093/brain/awad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Although the Na-K-Cl cotransporter (NKCC1) inhibitor bumetanide has prominent positive effects on the pathophysiology of many neurological disorders, the mechanism of action is obscure. Attention paid to elucidating the role of Nkcc1 has mainly been focused on neurons, but recent single cell mRNA sequencing analysis has demonstrated that the major cellular populations expressing NKCC1 in the cortex are non-neuronal. We used a combination of conditional transgenic animals, in vivo electrophysiology, two-photon imaging, cognitive behavioural tests and flow cytometry to investigate the role of Nkcc1 inhibition by bumetanide in a mouse model of controlled cortical impact (CCI). Here, we found that bumetanide rescues parvalbumin-positive interneurons by increasing interneuron-microglia contacts shortly after injury. The longitudinal phenotypic changes in microglia were significantly modified by bumetanide, including an increase in the expression of microglial-derived BDNF. These effects were accompanied by the prevention of CCI-induced decrease in hippocampal neurogenesis. Treatment with bumetanide during the first week post-CCI resulted in significant recovery of working and episodic memory as well as changes in theta band oscillations 1 month later. These results disclose a novel mechanism for the neuroprotective action of bumetanide mediated by an acceleration of microglial activation dynamics that leads to an increase in parvalbumin interneuron survival following CCI, possibly resulting from increased microglial BDNF expression and contact with interneurons. Salvage of interneurons may normalize ambient GABA, resulting in the preservation of adult neurogenesis processes as well as contributing to bumetanide-mediated improvement of cognitive performance.
Collapse
Affiliation(s)
- Marine Tessier
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | - Marta Saez Garcia
- Neuroscience Center, 00014 University of Helsinki, Helsinki, Finland
| | | | - Edith Blasco
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | | | - Benoit Dehapiot
- Aix Marseille Univ, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13288 Marseille, France
| | - Li Tian
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | | | - Jerome Laurin
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
| | | | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, 07747 Jena, Germany
| | | | - Claudio Rivera
- Aix Marseille Univ, INSERM, INMED, 13273 Marseille, France
- Neuroscience Center, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Morrison O, Destrade M, Tripathi BB. An atlas of the heterogeneous viscoelastic brain with local power-law attenuation synthesised using Prony-series. Acta Biomater 2023; 169:66-87. [PMID: 37507033 DOI: 10.1016/j.actbio.2023.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This review addresses the acute need to acknowledge the mechanical heterogeneity of brain matter and to accurately calibrate its local viscoelastic material properties accordingly. Specifically, it is important to compile the existing and disparate literature on attenuation power-laws and dispersion to make progress in wave physics of brain matter, a field of research that has the potential to explain the mechanisms at play in diffuse axonal injury and mild traumatic brain injury in general. Currently, viscous effects in the brain are modelled using Prony-series, i.e., a sum of decaying exponentials at different relaxation times. Here we collect and synthesise the Prony-series coefficients appearing in the literature for twelve regions: brainstem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocampus, thalamus, grey matter, white matter, homogeneous brain, and for eight different mammals: pig, rat, human, mouse, cow, sheep, monkey and dog. Using this data, we compute the fractional-exponent attenuation power-laws for different tissues of the brain, the corresponding dispersion laws resulting from causality, and the averaged Prony-series coefficients. STATEMENT OF SIGNIFICANCE: Traumatic brain injuries are considered a silent epidemic and finite element methods (FEMs) are used in modelling brain deformation, requiring access to viscoelastic properties of brain. To the best of our knowledge, this work presents 1) the first multi-frequency viscoelastic atlas of the heterogeneous brain, 2) the first review focusing on viscoelastic modelling in both FEMs and experimental works, 3) the first attempt to conglomerate the disparate existing literature on the viscoelastic modelling of the brain and 4) the largest collection of viscoelastic parameters for the brain (212 different Prony-series spanning 12 different tissues and 8 different animal surrogates). Furthermore, this work presents the first brain atlas of attenuation power-laws essential for modelling shear waves in brain.
Collapse
Affiliation(s)
- Oisín Morrison
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Michel Destrade
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Bharat B Tripathi
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
11
|
Chang C, Zuo H, Li Y. Recent advances in deciphering hippocampus complexity using single-cell transcriptomics. Neurobiol Dis 2023; 179:106062. [PMID: 36878328 DOI: 10.1016/j.nbd.2023.106062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq) technologies have emerged as revolutionary and powerful tools, which have helped in achieving significant progress in biomedical research over the last decade. scRNA-seq and snRNA-seq resolve heterogeneous cell populations from different tissues and help reveal the function and dynamics at the single-cell level. The hippocampus is an essential component for cognitive functions, including learning, memory, and emotion regulation. However, the molecular mechanisms underlying the activity of hippocampus have not been fully elucidated. The development of scRNA-seq and snRNA-seq technologies provides strong support for attaining an in-depth understanding of hippocampal cell types and gene expression regulation from the single-cell transcriptome profiling perspective. This review summarizes the applications of scRNA-seq and snRNA-seq in the hippocampus to further expand our knowledge of the molecular mechanisms related to hippocampal development, health, and diseases.
Collapse
Affiliation(s)
- Chenxu Chang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hongyan Zuo
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yang Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
12
|
Zhao J, Wang W, Yan K, Zhao H, Zhang Z, Wang Y, Zhu W, Chen S. RNA-seq reveals Nup62 as a potential regulator for cell division after traumatic brain injury in mice hippocampus. PeerJ 2023; 11:e14913. [PMID: 36908815 PMCID: PMC10000302 DOI: 10.7717/peerj.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Background Hippocampus impairment is a common condition encountered in the clinical diagnosis and treatment of traumatic brain injury (TBI). Several studies have investigated this phenomenon. However, its molecular mechanism remains unclear. Methods In this study, Illumina RNA-seq technology was used to determine the gene expression profile in mice hippocampus after TBI. We then conducted bioinformatics analysis to identify the altered gene expression signatures and mechanisms related to TBI-induced pathology in the hippocampus. Real-time quantitative polymerase chain reaction and western blot were adopted to verify the sequencing results. Results The controlled cortical impact was adopted as the TBI model. Hippocampal specimens were removed for sequencing. Bioinformatics analysis identified 27 upregulated and 17 downregulated differentially expressed genes (DEGs) in post-TBI mouse models. Potential biological functions of the genes were determined via Gene Set Enrichment Analysis (GSEA)-based Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which suggested a series of functional changes in the nervous system. Specifically, the nucleoporin 62 (Nup62) DEG was discussed and verified. Gene ontology biological process enriched analysis suggests that the cell division was upregulated significantly. The present study may be helpful for the treatment of impaired hippocampus after TBI in the future.
Collapse
Affiliation(s)
- Jianwei Zhao
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Weihua Wang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Ke Yan
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Haifeng Zhao
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Zhen Zhang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Yu Wang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Wenyu Zhu
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| |
Collapse
|
13
|
Neuroprotective effects of Vaccinium myrtillus on damage-related brain injury. J Chem Neuroanat 2023; 127:102193. [PMID: 36414183 DOI: 10.1016/j.jchemneu.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury may trigger the secondary brain injury, which has the potential to be reversible and thus preventable. Anthocyanins are phylotherapeutic plants, which are reported to exhibit anti-inflammatory properties. This study aimed to evaluate the therapeutic efficiency of an anthocyanin, namely Vaccinium myrtillus, to alleviate secondary brain injury and identify possible mechanism of actions. It is hypothesized that lipid peroxidation and Na+ -K+ -ATPase activity may be involved in neuronal ischemia. Thus, brain tissue Malondialdehyde content, Na+ -K+ -ATPase content, and cleaved caspase-3 content was investigated following moderate head trauma in a rat model. Twenty-four Sprague-Dawley male rats were allocated into four groups: Control, Trauma, Solvent-Control, and Treatment. Trauma and Solvent-Control groups showed more prominent brain edema, neuronal ischemia, vascular congestion, increase in brain tissue Malondialdehyde and cleaved caspase-3 levels, and decreased Na+-K+-ATPase activity compared to the Control group. Although the Treatment group had comparable histological signs to the Trauma and Solvent-Control groups, Malondialdehyde level and Na+-K+-ATPase activity was similar to Control group, and cleaved caspase-3 levels were lower compared to Trauma and Solvent-Control groups. We conclude that anthocyanin extracts may alleviate secondary brain injury via anti-oxidative and anti-apoptotic mechanisms.
Collapse
|
14
|
Wang Y, Jia W, Zhu J, Xu R, Lin Y. Tetrahedral framework nucleic acids promote cognitive impairment recovery post traumatic brain injury. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
A 5-HT6R Agonist Alleviates Cognitive Dysfunction after Traumatic Brain Injury in Rats by Increasing BDNF Expression. Behav Brain Res 2022; 433:113997. [DOI: 10.1016/j.bbr.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
|
16
|
Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med 2022; 136:1321-1339. [PMID: 35488928 PMCID: PMC9375765 DOI: 10.1007/s00414-022-02807-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
The accumulation of βAPP caused by axonal injury is an active energy-dependent process thought to require blood circulation; therefore, it is closely related to the post-injury survival time. Currently, the earliest reported time at which axonal injury can be detected in post-mortem traumatic brain injury (TBI) tissue by βAPP (Beta Amyloid Precursor Protein) immunohistochemistry is 35 min. The aim of this study is to investigate whether βAPP staining for axonal injury can be detected in patients who died rapidly after TBI in road traffic collision (RTC), in a period of less than 30 min. We retrospectively studied thirty-seven patients (group 1) died very rapidly at the scene; evidenced by forensic assessment of injuries short survival, four patients died after a survival period of between 31 min and 12 h (group 2) and eight patients between 2 and 31 days (group 3). The brains were comprehensively examined and sampled at the time of the autopsy, and βAPP immunohistochemistry carried out on sections from a number of brain areas. βAPP immunoreactivity was demonstrated in 35/37 brains in group 1, albeit with a low frequency and in a variable pattern, and with more intensity and frequency in all brains of group 2 and 7/8 brains from group 3, compared with no similar βAPP immunoreactivity in the control group. The results suggest axonal injury can be detected in those who died rapidly after RTC in a period of less than 30 min, which can help in the diagnosis of severe TBI with short survival time.
Collapse
|
17
|
Kalra S, Banderwal R, Arora K, Kumar S, Singh G, Chawla PA, Behl T, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Aleya L, Dhiman A. An update on pathophysiology and treatment of sports-mediated brain injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16786-16798. [PMID: 34994929 DOI: 10.1007/s11356-021-18391-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Traumatic brain injury (TBI) is a neurological disorder which represents a major health issue worldwide. It causes mortality and disability among all group ages, caused by external force, sports-related events or violence and road traffic accidents. In the USA, approximately one-third people die annually due to injury and 1.7 million people suffer from traumatic brain injury. Every year in India around 1.6 million individuals suffer from sustain brain injury with 200,000 deaths and approximately one million person needed recovery treatment at any stage of time. Sports-related head impact and trauma has become an extremely controversial public health and medico-legal problem that accounts for 20% of all brain injury (including concussion). It is difficult to reverse the primary injury but the secondary injury can be minimized by using proper pharmacological intervention during the initial hours of injury. This article highlights the pathophysiology and types of TBI along with treatment therapies. Till date, there is no single medication that can decrease the progression of the disease so that symptomatic treatment is given to the patient by determining proper pathology. Recently various herbal medicine therapies and traditional supplements have been developed for TBI. Nutritional supplementation and nutraceuticals have exposed potential in the treatment of TBI when used before and after TBI. The compiled data will enable the readers to know the pathophysiology as well as the allopathic and natural remedies to treat the TBI.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rittu Banderwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kaushal Arora
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Anju Dhiman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
18
|
A Neuropathological Study of Diffuse Vascular Injury in Fatal Motor Vehicle Collisions. J Neuropathol Exp Neurol 2022; 81:88-96. [DOI: 10.1093/jnen/nlab133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
In Canada, 42 929 people were involved in fatal motor vehicle collisions (MVCs) between 1999 and 2018. Traumatic brain injuries (TBIs), including diffuse vascular injury (DVI), were the most frequent cause of death. The neuroanatomical injury pattern and severity of DVI in relation to data on MVC dynamics and other MVC factors were the focus of the current study. Five cases of fatal MVCs investigated by Western University’s Motor Vehicle Safety (MOVES) Research Team with the neuropathological diagnosis of DVI were reviewed. DVI was seen in single and multiple vehicle collisions, with/without rollover and with/without partial occupant ejection. DVI occurred regardless of seatbelt use and airbag deployment and in vehicles equipped with/without antilock brakes. All DVI cases sustained head impacts and had focal TBIs, including basal skull fractures and subarachnoid hemorrhages. DVI was seen in MVCs that ranged in severity based on the change in velocity (delta-V) during the crash (minimum 31 km/hour) and occupant compartment intrusion (minimum 25 cm). In all cases, DVI in frontal white matter, corpus callosum and pontine tegmentum were common. In cases with more extensive DVI, pronounced vehicle rotation occurred before the final impact. Extensive DVI was seen in drivers who experienced sudden acceleration during vehicle rotation and deceleration.
Collapse
|
19
|
Injury Metrics for Assessing the Risk of Acute Subdural Hematoma in Traumatic Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413296. [PMID: 34948905 PMCID: PMC8702226 DOI: 10.3390/ijerph182413296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Worldwide, the ocurrence of acute subdural hematomas (ASDHs) in road traffic crashes is a major public health problem. ASDHs are usually produced by loss of structural integrity of one of the cerebral bridging veins (CBVs) linking the parasagittal sinus to the brain. Therefore, to assess the risk of ASDH it is important to know the mechanical conditions to which the CBVs are subjected during a potentially traumatic event (such as a traffic accident or a fall from height). Recently, new studies on CBVs have been published allowing much more accurate prediction of the likelihood of mechanical failure of CBVs. These new data can be used to propose new damage metrics, which make more accurate predictions about the probability of occurrence of ASDH in road crashes. This would allow a better assessement of the effects of passive safety countermeasures and, consequently, to improve vehicle restraint systems. Currently, some widely used damage metrics are based on partially obsolete data and measurements of the mechanical behavior of CBVs that have not been confirmed by subsequent studies. This paper proposes a revision of some existing metrics and constructs a new metric based on more accurate recent data on the mechanical failure of human CBVs.
Collapse
|
20
|
Ackermans NL, Varghese M, Wicinski B, Torres J, De Gasperi R, Pryor D, Elder GA, Gama Sosa MA, Reidenberg JS, Williams TM, Hof PR. Unconventional animal models for traumatic brain injury and chronic traumatic encephalopathy. J Neurosci Res 2021; 99:2463-2477. [PMID: 34255876 PMCID: PMC8596618 DOI: 10.1002/jnr.24920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death worldwide. It is a complex injury that influences cellular physiology, causes neuronal cell death, and affects molecular pathways in the brain. This in turn can result in sensory, motor, and behavioral alterations that deeply impact the quality of life. Repetitive mild TBI can progress into chronic traumatic encephalopathy (CTE), a neurodegenerative condition linked to severe behavioral changes. While current animal models of TBI and CTE such as rodents, are useful to explore affected pathways, clinical findings therein have rarely translated into clinical applications, possibly because of the many morphofunctional differences between the model animals and humans. It is therefore important to complement these studies with alternative animal models that may better replicate the individuality of human TBI. Comparative studies in animals with naturally evolved brain protection such as bighorn sheep, woodpeckers, and whales, may provide preventive applications in humans. The advantages of an in-depth study of these unconventional animals are threefold. First, to increase knowledge of the often-understudied species in question; second, to improve common animal models based on the study of their extreme counterparts; and finally, to tap into a source of biological inspiration for comparative studies and translational applications in humans.
Collapse
Affiliation(s)
- Nicole L Ackermans
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Torres
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita De Gasperi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Dylan Pryor
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Miguel A Gama Sosa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terrie M Williams
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Bayly PV, Alshareef A, Knutsen AK, Upadhyay K, Okamoto RJ, Carass A, Butman JA, Pham DL, Prince JL, Ramesh KT, Johnson CL. MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury. Ann Biomed Eng 2021; 49:2677-2692. [PMID: 34212235 PMCID: PMC8516723 DOI: 10.1007/s10439-021-02820-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
Computational models of the brain and its biomechanical response to skull accelerations are important tools for understanding and predicting traumatic brain injuries (TBIs). However, most models have been developed using experimental data collected on animal models and cadaveric specimens, both of which differ from the living human brain. Here we describe efforts to noninvasively measure the biomechanical response of the human brain with MRI-at non-injurious strain levels-and generate data that can be used to develop, calibrate, and evaluate computational brain biomechanics models. Specifically, this paper reports on a project supported by the National Institute of Neurological Disorders and Stroke to comprehensively image brain anatomy and geometry, mechanical properties, and brain deformations that arise from impulsive and harmonic skull loadings. The outcome of this work will be a publicly available dataset ( http://www.nitrc.org/projects/bbir ) that includes measurements on both males and females across an age range from adolescence to older adulthood. This article describes the rationale and approach for this study, the data available, and how these data may be used to develop new computational models and augment existing approaches; it will serve as a reference to researchers interested in using these data.
Collapse
Affiliation(s)
- Philip V Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ahmed Alshareef
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kshitiz Upadhyay
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Ruth J Okamoto
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John A Butman
- Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - K T Ramesh
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
22
|
Holcomb JM, Fisicaro RA, Miller LE, Yu FF, Davenport EM, Xi Y, Urban JE, Wagner BC, Powers AK, Whitlow CT, Stitzel JD, Maldjian JA. Regional White Matter Diffusion Changes Associated with the Cumulative Tensile Strain and Strain Rate in Nonconcussed Youth Football Players. J Neurotrauma 2021; 38:2763-2771. [PMID: 34039024 PMCID: PMC8820832 DOI: 10.1089/neu.2020.7580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to assess the relationship between regional white matter diffusion imaging changes and finite element strain measures in nonconcussed youth football players. Pre- and post-season diffusion-weighted imaging was performed in 102 youth football subject-seasons, in which no concussions were diagnosed. The diffusion data were normalized to the IXI template. Percent change in fractional anisotropy (%ΔFA) images were generated. Using data from the head impact telemetry system, the cumulative maximum principal strain one times strain rate (CMPS1 × SR), a measure of the cumulative tensile brain strain and strain rate for one season, was calculated for each subject. Two linear regression analyses were performed to identify significant positive or inverse relationships between CMPS1 × SR and %ΔFA within the international consortium for brain mapping white matter mask. Age, body mass index, days between pre- and post-season imaging, previous brain injury, attention disorder diagnosis, and imaging protocol were included as covariates. False discovery rate correction was used with corrected alphas of 0.025 and voxel thresholds of zero. Controlling for all covariates, a significant, positive linear relationship between %ΔFA and CMPS1 × SR was identified in the bilateral cingulum, fornix, internal capsule, external capsule, corpus callosum, corona radiata, corticospinal tract, cerebral and middle cerebellar peduncle, superior longitudinal fasciculus, and right superior fronto-occipital fasciculus. Post hoc analyses further demonstrated significant %ΔFA differences between high-strain football subjects and noncollision control athletes, no significant %ΔFA differences between low-strain subjects and noncollision control athletes, and that CMPS1 × SR significantly explained more %ΔFA variance than number of head impacts alone.
Collapse
Affiliation(s)
- James M. Holcomb
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan A. Fisicaro
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Logan E. Miller
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Fang F. Yu
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Yin Xi
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jillian E. Urban
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ben C. Wagner
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Joel D. Stitzel
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
23
|
Singh A, Ganpule SG, Khan MK, Iqbal MA. Measurement of brain simulant strains in head surrogate under impact loading. Biomech Model Mechanobiol 2021; 20:2319-2334. [PMID: 34455505 DOI: 10.1007/s10237-021-01509-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
Impact-induced traumatic brain injury (TBI) is a major source of disability and mortality. Knowledge of brain strains during impact (accelerative) loading is critical for the overall management of TBI, including the development of injury thresholds, personal protective equipment, and validation of computational models. Despite these needs, the current understanding of brain strains in humans or humanlike surrogates is limited, especially for injury causing loading magnitudes. Toward this end, we measured full-field, in-plane (2D) strains in a brain simulant using the hemispherical head surrogate. The hemispherical head was mounted on the Hybrid-III neck and subjected to impact loading using a linear impactor system. The resulting head kinematics was measured using a triaxial accelerometer and angular rate sensors. Dynamic, 2D strains in a brain simulant were obtained using high-speed imaging and digital image correlation. Concurrent finite element (FE) simulations of the experiment were also performed to gain additional insights. The role of stiff membranes of the head was also studied using experiments. Our results suggest that rotational modes dominate the response of the brain simulant. The wave propagation in the brain simulant as a result of impact has a timescale of ~100 ms. We obtain peak strains of ~20%, ~40%, ~60% for peak rotational accelerations of ~838, ~5170, ~11,860 rad/s2, respectively. Further, peak strains in cortical regions are higher than subcortical regions by up to ~70%. The agreement between the experiments and FE simulations is reasonable in terms of spatiotemporal evolution of strain pattern and peak strain magnitudes. Experiments with the addition of falx and tentorium indicate significant strain concentration (up to 115%) in the brain simulant near the interface of falx or tentorium and brain simulant. Overall, this work provides important insights into the biomechanics of strain in the brain simulant during impact loading.
Collapse
Affiliation(s)
- A Singh
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - M K Khan
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - M A Iqbal
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
24
|
Sánchez-Molina D, García-Vilana S, Llumà J, Galtés I, Velázquez-Ameijide J, Rebollo-Soria MC, Arregui-Dalmases C. Mechanical Behavior of Blood Vessels: Elastic and Viscoelastic Contributions. BIOLOGY 2021; 10:831. [PMID: 34571709 PMCID: PMC8472519 DOI: 10.3390/biology10090831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
The mechanical properties of the cerebral bridging veins (CBVs) were studied using advanced microtensile equipment. Detailed high-quality curves were obtained at different strain rates, showing a clearly nonlinear stress-strain response. In addition, the tissue of the CBVs exhibits stress relaxation and a preconditioning effect under cyclic loading, unequivocal indications of viscoelastic behavior. Interestingly, most previous literature that conducts uniaxial tensile tests had not found significant viscoelastic effects in CBVs, but the use of more sensitive tests allowed to observe the viscoelastic effects. For that reason, a careful mathematical analysis is presented, clarifying why in uniaxial tests with moderate strain rates, it is difficult to observe any viscoelastic effect. The analysis provides a theoretical explanation as to why many recent studies that investigated mechanical properties did not find a significant viscoelastic effect, even though in other circumstances, the CBV tissue would clearly exhibit viscoelastic behavior. Finally, this study provides reference values for the usual mechanical properties, as well as calculations of constitutive parameters for nonlinear elastic and viscoelastic models that would allow more accurate numerical simulation of CBVs in Finite Element-based computational models in future works.
Collapse
Affiliation(s)
- David Sánchez-Molina
- Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; (S.G.-V.); (J.L.); (J.V.-A.)
| | - Silvia García-Vilana
- Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; (S.G.-V.); (J.L.); (J.V.-A.)
| | - Jordi Llumà
- Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; (S.G.-V.); (J.L.); (J.V.-A.)
| | - Ignasi Galtés
- Institut de Medicina Legal i Ciències Forenses de Catalunya, G.V. Corts Catalanes, 111, 08014 Barcelona, Spain;
- Departament de Psiquiatria i de Medicina Legal, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Juan Velázquez-Ameijide
- Escola d’Enginyeria de Barcelona Est, Universitat Politècnica de Catalunya, Av. Eduard Maristany, 16, 08019 Barcelona, Spain; (S.G.-V.); (J.L.); (J.V.-A.)
| | | | | |
Collapse
|
25
|
Adatia K, Newcombe VFJ, Menon DK. Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influence on Outcome. Neurocrit Care 2021; 34:312-324. [PMID: 32462411 PMCID: PMC7253145 DOI: 10.1007/s12028-020-00994-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Secondary injuries remain an important cause of the morbidity and mortality associated with traumatic brain injury (TBI). Progression of cerebral contusions occurs in up to 75% of patients with TBI, and this contributes to subsequent clinical deterioration and requirement for surgical intervention. Despite this, the role of early clinical and radiological factors in predicting contusion progression remains relatively poorly defined due to studies investigating progression of all types of hemorrhagic injuries as a combined cohort. In this review, we summarize data from recent studies on factors which predict contusion progression, and the effect of contusion progression on clinical outcomes.
Collapse
Affiliation(s)
- Krishma Adatia
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | | | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Kwiecien JM, Dąbrowski W, Yaron JR, Zhang L, Delaney KH, Lucas AR. The Role of Astrogliosis in Formation of the Syrinx in Spinal Cord Injury. Curr Neuropharmacol 2021; 19:294-303. [PMID: 32691715 PMCID: PMC8033977 DOI: 10.2174/1570159x18666200720225222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
A massive localized trauma to the spinal cord results in complex pathologic events driven by necrosis and vascular damage which in turn leads to hemorrhage and edema. Severe, destructive and very protracted inflammatory response is characterized by infiltration by phagocytic macrophages of a site of injury which is converted into a cavity of injury (COI) surrounded by astroglial reaction mounted by the spinal cord. The tissue response to the spinal cord injury (SCI) has been poorly understood but the final outcome appears to be a mature syrinx filled with the cerebrospinal fluid with related neural tissue loss and permanent neurologic deficits. This paper reviews known pathologic mechanisms involved in the formation of the COI after SCI and discusses the integrative role of reactive astrogliosis in mechanisms involved in the removal of edema after the injury. A large proportion of edema fluid originating from the trauma and then from vasogenic edema related to persistent severe inflammation, may be moved into the COI in an active process involving astrogliosis and specifically over-expressed aquaporins.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Wojciech Dąbrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, ul. Jaczewskiego 8, Lublin 20-090 Poland
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| | - Kathleen H. Delaney
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
27
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Gabrieli D, Schumm SN, Vigilante NF, Parvesse B, Meaney DF. Neurodegeneration exposes firing rate dependent effects on oscillation dynamics in computational neural networks. PLoS One 2020; 15:e0234749. [PMID: 32966291 PMCID: PMC7510994 DOI: 10.1371/journal.pone.0234749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to neurodegeneration in the injured circuitry, either through primary structural damage to the neuron or secondary effects that disrupt key cellular processes. Moreover, traumatic injuries can preferentially impact subpopulations of neurons, but the functional network effects of these targeted degeneration profiles remain unclear. Although isolating the consequences of complex injury dynamics and long-term recovery of the circuit can be difficult to control experimentally, computational networks can be a powerful tool to analyze the consequences of injury. Here, we use the Izhikevich spiking neuron model to create networks representative of cortical tissue. After an initial settling period with spike-timing-dependent plasticity (STDP), networks developed rhythmic oscillations similar to those seen in vivo. As neurons were sequentially removed from the network, population activity rate and oscillation dynamics were significantly reduced. In a successive period of network restructuring with STDP, network activity levels returned to baseline for some injury levels and oscillation dynamics significantly improved. We next explored the role that specific neurons have in the creation and termination of oscillation dynamics. We determined that oscillations initiate from activation of low firing rate neurons with limited structural inputs. To terminate oscillations, high activity excitatory neurons with strong input connectivity activate downstream inhibitory circuitry. Finally, we confirm the excitatory neuron population role through targeted neurodegeneration. These results suggest targeted neurodegeneration can play a key role in the oscillation dynamics after injury.
Collapse
Affiliation(s)
- David Gabrieli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Samantha N. Schumm
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Vigilante
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brandon Parvesse
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Rouleau N, Bonzanni M, Erndt-Marino JD, Sievert K, Ramirez CG, Rusk W, Levin M, Kaplan DL. A 3D Tissue Model of Traumatic Brain Injury with Excitotoxicity That Is Inhibited by Chronic Exposure to Gabapentinoids. Biomolecules 2020; 10:E1196. [PMID: 32824600 PMCID: PMC7463727 DOI: 10.3390/biom10081196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Injury progression associated with cerebral laceration is insidious. Following the initial trauma, brain tissues become hyperexcitable, begetting further damage that compounds the initial impact over time. Clinicians have adopted several strategies to mitigate the effects of secondary brain injury; however, higher throughput screening tools with modular flexibility are needed to expedite mechanistic studies and drug discovery that will contribute to the enhanced protection, repair, and even the regeneration of neural tissues. Here we present a novel bioengineered cortical brain model of traumatic brain injury (TBI) that displays characteristics of primary and secondary injury, including an outwardly radiating cell death phenotype and increased glutamate release with excitotoxic features. DNA content and tissue function were normalized by high-concentration, chronic administrations of gabapentinoids. Additional experiments suggested that the treatment effects were likely neuroprotective rather than regenerative, as evidenced by the drug-mediated decreases in cell excitability and an absence of drug-induced proliferation. We conclude that the present model of traumatic brain injury demonstrates validity and can serve as a customizable experimental platform to assess the individual contribution of cell types on TBI progression, as well as to screen anti-excitotoxic and pro-regenerative compounds.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Mattia Bonzanni
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Joshua D. Erndt-Marino
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| | - Katja Sievert
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - Camila G. Ramirez
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - William Rusk
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Science and Technology Center, 4 Colby Street, School of Engineering, Tufts University, Medford, MA 02155, USA; (N.R.); (M.B.); (J.D.E.-M.); (K.S.); (C.G.R.); (W.R.)
- Department of Biomedical Engineering, Initiative for Neural Science, Disease, and Engineering (INSciDE), Science & Engineering Complex, 200 College Avenue, Tufts University, Medford, MA 02155, USA
- Department of Biology, Allen Discovery Center at Tufts University, Science & Engineering Complex, 200 College, Avenue, Medford, MA 021553, USA;
| |
Collapse
|
30
|
McInnes KA, Abebe ZA, Whyte T, Bashir A, Barron C, Wellington CL, Cripton PA. An Automated Kinematic Measurement System for Sagittal Plane Murine Head Impacts. J Biomech Eng 2020; 142:084503. [PMID: 32006027 DOI: 10.1115/1.4046202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Mild traumatic brain injuries are typically caused by nonpenetrating head impacts that accelerate the skull and result in deformation of the brain within the skull. The shear and compressive strains caused by these deformations damage neural and vascular structures and impair their function. Accurate head acceleration measurements are necessary to define the nature of the insult to the brain. A novel murine head tracking system was developed to improve the accuracy and efficiency of kinematic measurements obtained with high-speed videography. A three-dimensional (3D)-printed marker carrier was designed for rigid fixation to the upper jaw and incisors with an elastic strap around the snout. The system was evaluated by impacting cadaveric mice with the closed head impact model of engineered rotational acceleration (CHIMERA) system using an energy of 0.7 J (5.29 m/s). We compared the performance of the head-marker system to the previously used skin-tracking method and documented significant improvements in measurement repeatability (aggregate coefficient of variation (CV) within raters from 15.8 to 1.5 and between raters from 15.5 to 1.5), agreement (aggregate percentage error from 24.9 to 8.7), and temporal response (aggregate temporal curve agreement from 0.668 to 0.941). Additionally, the new system allows for automated software tracking, which dramatically decreases the analysis time required (74% reduction). This novel head tracking system for mice offers an efficient, reliable, and real-time method to measure head kinematics during high-speed impacts using CHIMERA or other rodent or small mammal head impact models.
Collapse
Affiliation(s)
- Kurt A McInnes
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Zelalem A Abebe
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Thomas Whyte
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227 - 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Carlos Barron
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227 - 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Rm. G227 - 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - Peter A Cripton
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; International Collaboration on Repair Discoveries, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada; Department of Orthopaedics, University of British Columbia, 11th Floor - 2775 Laurel Street Vancouver, BC V5Z 1M9, Canada; School of Biomedical Engineering, University of British Columbia, 251 - 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
31
|
A critical review of radiotracers in the positron emission tomography imaging of traumatic brain injury: FDG, tau, and amyloid imaging in mild traumatic brain injury and chronic traumatic encephalopathy. Eur J Nucl Med Mol Imaging 2020; 48:623-641. [DOI: 10.1007/s00259-020-04926-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
32
|
Bertozzi G, Maglietta F, Sessa F, Scoto E, Cipolloni L, Di Mizio G, Salerno M, Pomara C. Traumatic Brain Injury: A Forensic Approach: A Literature Review. Curr Neuropharmacol 2020; 18:538-550. [PMID: 31686630 PMCID: PMC7457403 DOI: 10.2174/1570159x17666191101123145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/27/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is the principal cause of invalidity and death in the population under 45 years of age worldwide. This mini-review aims to systematize the forensic approach in neuropathological studies, highlighting the proper elements to be noted during external, radiological, autoptical, and histological examinations with particular attention paid to immunohistochemistry and molecular biology. In the light of the results of this mini-review, an accurate forensic approach can be considered mandatory in the examination of suspected TBI with medico-legal importance, in order to gather all the possible evidence to corroborate the diagnosis of a lesion that may have caused, or contributed to, death. From this point of view, only the use of an evidence-based protocol can reach a suitable diagnosis, especially in those cases in which there are other neuropathological conditions (ischemia, neurodegeneration, neuro-inflammation, dementia) that may have played a role in death. This is even more relevant when corpses, in an advanced state of decomposition, are studied, where the radiological, macroscopic and histological analyses fail to give meaningful answers. In these cases, immune-histochemical and molecular biology diagnostics are of fundamental importance and a forensic neuropathologist has to know them. Particularly, MiRNAs are promising biomarkers for TBI both for brain damage identification and for medico-legal aspects, even if further investigations are required to validate the first experimental studies. In the same way, the genetic substrate should be examined during any forensic examination, considering its importance in the outcome of TBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cristoforo Pomara
- Address correspondence to this author at the Department of Medical and Surgical Sciences and Advanced Technologies GF Ingrassia, University of Catania, Catania, Italy; Via S. Sofia 78, 95123 Catania, Italy; Tel: (39) 095.3782153; E-mail:
| |
Collapse
|
33
|
Madhukar A, Ostoja-Starzewski M. Finite Element Methods in Human Head Impact Simulations: A Review. Ann Biomed Eng 2019; 47:1832-1854. [DOI: 10.1007/s10439-019-02205-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/12/2019] [Indexed: 12/01/2022]
|
34
|
Weber MT, Arena JD, Xiao R, Wolf JA, Johnson VE. CLARITY reveals a more protracted temporal course of axon swelling and disconnection than previously described following traumatic brain injury. Brain Pathol 2018; 29:437-450. [PMID: 30444552 DOI: 10.1111/bpa.12677] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/06/2018] [Indexed: 11/30/2022] Open
Abstract
Diffuse axonal injury (DAI) is an important consequence of traumatic brain injury (TBI). At the moment of trauma, axons rarely disconnect, but undergo cytoskeletal disruption and transport interruption leading to protein accumulation within swellings. The amyloid precursor protein (APP) accumulates rapidly and the standard histological evaluation of axonal pathology relies upon its detection. APP+ swellings first appear as varicosities along intact axons, which can ultimately undergo secondary disconnection to leave a terminal "axon bulb" at the disconnected, proximal end. However, sites of disconnection are difficult to determine with certainty using standard, thin tissue sections, thus limiting the comprehensive evaluation of axon degeneration. The tissue-clearing technique, CLARITY, permits three-dimensional visualization of axons that would otherwise be out of plane in standard tissue sections. Here, we examined the morphology and connection status of APP+ swellings using CLARITY at 6 h, 24 h, 1 week and 1 month following the controlled cortical impact (CCI) model of TBI in mice. Remarkably, many APP+ swellings that appeared as terminal bulbs when viewed in standard 8-µm-thick regions of tissue were instead revealed to be varicose swellings along intact axons when three dimensions were fully visible. Moreover, the percentage of these potentially viable axon swellings differed with survival from injury and may represent the delayed onset of distinct mechanisms of degeneration. Even at 1-month post-CCI, ~10% of apparently terminal bulbs were revealed as connected by CLARITY and are thus potentially salvageable. Intriguingly, the diameter of swellings decreased with survival, including varicosities along intact axons, and may reflect reversal of, or reduced, axonal transport interruption in the chronic setting. These data indicate that APP immunohistochemistry on standard thickness tissue sections overestimates axon disconnection, particularly acutely post-injury. Evaluating cleared tissue demonstrates a surprisingly delayed process of axon disconnection and thus longer window of therapeutic opportunity than previously appreciated. Intriguingly, a subset of axon swellings may also be capable of recovery.
Collapse
Affiliation(s)
- Maura T Weber
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rui Xiao
- The Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA
| | - John A Wolf
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
35
|
Carnevale JA, Segar DJ, Powers AY, Shah M, Doberstein C, Drapcho B, Morrison JF, Williams JR, Collins S, Monteiro K, Asaad WF. Blossoming contusions: identifying factors contributing to the expansion of traumatic intracerebral hemorrhage. J Neurosurg 2018; 129:1305-1316. [PMID: 29303442 DOI: 10.3171/2017.7.jns17988] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/06/2017] [Indexed: 11/06/2022]
Abstract
Here, the authors examined the factors involved in the volumetric progression of traumatic brain contusions. The variables significant in this progression are identified, and the expansion rate of a brain bleed can now effectively be predicted given the presenting characteristics of the patient.
Collapse
Affiliation(s)
- Joseph A Carnevale
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - David J Segar
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- 2Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew Y Powers
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Meghal Shah
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Benjamin Drapcho
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - John F Morrison
- 3Department of Neurosurgery, University at Buffalo, New York
| | - John R Williams
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- 5Department of Neurological Surgery, University of Washington, Seattle, Washington; and
| | | | - Kristina Monteiro
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Wael F Asaad
- 1Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- 7Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
36
|
Gerzanich V, Stokum JA, Ivanova S, Woo SK, Tsymbalyuk O, Sharma A, Akkentli F, Imran Z, Aarabi B, Sahuquillo J, Simard JM. Sulfonylurea Receptor 1, Transient Receptor Potential Cation Channel Subfamily M Member 4, and KIR6.2:Role in Hemorrhagic Progression of Contusion. J Neurotrauma 2018; 36:1060-1079. [PMID: 30160201 PMCID: PMC6446209 DOI: 10.1089/neu.2018.5986] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In severe traumatic brain injury (TBI), contusions often are worsened by contusion expansion or hemorrhagic progression of contusion (HPC), which may double the original contusion volume and worsen outcome. In humans and rodents with contusion-TBI, sulfonylurea receptor 1 (SUR1) is upregulated in microvessels and astrocytes, and in rodent models, blockade of SUR1 with glibenclamide reduces HPC. SUR1 does not function by itself, but must co-assemble with either KIR6.2 or transient receptor potential cation channel subfamily M member 4 (TRPM4) to form KATP (SUR1-KIR6.2) or SUR1-TRPM4 channels, with the two having opposite effects on membrane potential. Both KIR6.2 and TRPM4 are reportedly upregulated in TBI, especially in astrocytes, but the identity and function of SUR1-regulated channels post-TBI is unknown. Here, we analyzed human and rat brain tissues after contusion-TBI to characterize SUR1, TRPM4, and KIR6.2 expression, and in the rat model, to examine the effects on HPC of inhibiting expression of the three subunits using intravenous antisense oligodeoxynucleotides (AS-ODN). Glial fibrillary acidic protein (GFAP) immunoreactivity was used to operationally define core versus penumbral tissues. In humans and rats, GFAP-negative core tissues contained microvessels that expressed SUR1 and TRPM4, whereas GFAP-positive penumbral tissues contained astrocytes that expressed all three subunits. Förster resonance energy transfer imaging demonstrated SUR1-TRPM4 heteromers in endothelium, and SUR1-TRPM4 and SUR1-KIR6.2 heteromers in astrocytes. In rats, glibenclamide as well as AS-ODN targeting SUR1 and TRPM4, but not KIR6.2, reduced HPC at 24 h post-TBI. Our findings demonstrate upregulation of SUR1-TRPM4 and KATP after contusion-TBI, identify SUR1-TRPM4 as the primary molecular mechanism that accounts for HPC, and indicate that SUR1-TRPM4 is a crucial target of glibenclamide.
Collapse
Affiliation(s)
- Volodymyr Gerzanich
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jesse A Stokum
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Svetlana Ivanova
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Seung Kyoon Woo
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Orest Tsymbalyuk
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amit Sharma
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Fatih Akkentli
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ziyan Imran
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bizhan Aarabi
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Juan Sahuquillo
- 2 Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.,3 Department of Neurosurgery, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,4 Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,5 Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers. J Mech Behav Biomed Mater 2018; 88:288-295. [PMID: 30196184 DOI: 10.1016/j.jmbbm.2018.08.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022]
Abstract
This paper presents a three-dimensional micromechanical model of brain white matter tissue as a transversely isotropic soft composite described by the generalized Ogden hyperelastic model. The embedded element technique, with corrected stiffness redundancy in large deformations, was used for the embedment of a histology-informed probabilistic distribution of the axonal fibers in the extracellular matrix. The model was linked to a multi-objective, multi-parametric optimization algorithm, using the response surface methodology, for characterization of material properties of the axonal fibers and extracellular matrix in an inverse finite element analysis. The optimum hyperelastic characteristics of the tissue constituents, obtained based on the axonal and transverse direction test results of the corona radiata tissue samples, indicated that the axonal fibers were almost thirteen times stiffer than the extracellular matrix under large deformations. Simulation of the same tissue under a different loading condition, as well as that of another white matter tissue, i.e., the corpus callosum, in the axonal and transverse directions, using the optimized hyperelastic characteristics revealed tissue responses very close to those of the experiments. The results of the model at the sub-tissue level indicated that the stress concentrations were considerably large around the small axons, which might contribute into the brain injury.
Collapse
|
38
|
Zhang BL, Fan YS, Wang JW, Zhou ZW, Wu YG, Yang MC, Sun DD, Zhang JN. Cognitive impairment after traumatic brain injury is associated with reduced long-term depression of excitatory postsynaptic potential in the rat hippocampal dentate gyrus. Neural Regen Res 2018; 13:1753-1758. [PMID: 30136690 PMCID: PMC6128047 DOI: 10.4103/1673-5374.238618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury can cause loss of neuronal tissue, remote symptomatic epilepsy, and cognitive deficits. However, the mechanisms underlying the effects of traumatic brain injury are not yet clear. Hippocampal excitability is strongly correlated with cognitive dysfunction and remote symptomatic epilepsy. In this study, we examined the relationship between traumatic brain injury-induced neuronal loss and subsequent hippocampal regional excitability. We used hydraulic percussion to generate a rat model of traumatic brain injury. At 7 days after injury, the mean modified neurological severity score was 9.5, suggesting that the neurological function of the rats was remarkably impaired. Electrophysiology and immunocytochemical staining revealed increases in the slope of excitatory postsynaptic potentials and long-term depression (indicating weakened long-term inhibition), and the numbers of cholecystokinin and parvalbumin immunoreactive cells were clearly reduced in the rat hippocampal dentate gyrus. These results indicate that interneuronal loss and changes in excitability occurred in the hippocampal dentate gyrus. Thus, traumatic brain injury-induced loss of interneurons appears to be associated with reduced long-term depression in the hippocampal dentate gyrus.
Collapse
Affiliation(s)
- Bao-Liang Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yue-Shan Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Ji-Wei Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zi-Wei Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yin-Gang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Meng-Chen Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong-Dong Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
39
|
Ganpule S, Daphalapurkar NP, Cetingul MP, Ramesh K. Effect of bulk modulus on deformation of the brain under rotational accelerations. SHOCK WAVES 2018; 28:127-139. [PMID: 29662272 PMCID: PMC5898454 DOI: 10.1007/s00193-017-0791-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury (TBI) and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well-characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2 mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber-bundles for modeling white-matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformation in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.
Collapse
Affiliation(s)
- S. Ganpule
- Indian Institute of Technology Roorkee, Roorkee, India, 247667
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - N. P. Daphalapurkar
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| | | | - K.T. Ramesh
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| |
Collapse
|
40
|
Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 2017; 6:20. [PMID: 28702179 PMCID: PMC5504572 DOI: 10.1186/s40035-017-0088-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.
Collapse
Affiliation(s)
- Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Glen Acosta
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| | - Joseph Fernandez
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
41
|
Paterno R, Folweiler KA, Cohen AS. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. Curr Neurol Neurosci Rep 2017; 17:52. [PMID: 28500417 PMCID: PMC5861722 DOI: 10.1007/s11910-017-0762-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI is alteration in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase, i.e., encoding, maintenance, or retrieval, is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally, we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury.
Collapse
Affiliation(s)
- Rosalia Paterno
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA.
| | - Kaitlin A Folweiler
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Joseph Stokes, Jr. Research Institute, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Abramson Research Center, Rm. 816-h, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Singh A. Extent of impaired axoplasmic transport and neurofilament compaction in traumatically injured axon at various strains and strain rates. Brain Inj 2017. [PMID: 28650256 DOI: 10.1080/02699052.2017.1321781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PRIMARY OBJECTIVE Secondary axotomy is more prevalent than the primary axotomy and involves subtle intraaxonal changes in response to the injury leading to cytoskeletal disruptions including neurofilament (NF) misalignment and compaction, which is associated with the genesis of impaired axoplasmic transport (IAT). Recent studies have reported two differential axonal responses to injury, one associated with the cytoskeletal collapse and another with the IAT. The objective of this study was to determine the extent of IAT and early NF changes in axons that were subjected to a stretch of various degrees at different strain rates. RESEARCH DESIGN AND METHODS Fifty-six L5 dorsal spinal nerve roots were subjected to a predetermined strain at a specified displacement rate (0.01 and 15 mm/second) only once. The histological changes were determined by performing standard immunohistochemical procedures using beta amyloid precursor protein (β APP) and NF-68 kDa antibodies. RESULTS AND CONCLUSIONS No significant differences in the occurrence rate of either of the staining in the axons were observed when subjected to similar loading conditions, and the occurrence rate of both β APP and NF68 staining was strain and rate-dependent.
Collapse
Affiliation(s)
- Anita Singh
- a Department of Biomedical Engineering , Widener University , Chester , PA , USA
| |
Collapse
|
43
|
Ganpule S, Daphalapurkar NP, Ramesh KT, Knutsen AK, Pham DL, Bayly PV, Prince JL. A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics. J Neurotrauma 2017; 34:2154-2166. [PMID: 28394205 DOI: 10.1089/neu.2016.4744] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diffuse axonal injury (DAI) is a debilitating consequence of traumatic brain injury (TBI) attributed to abnormal stretching of axons caused by blunt head trauma or acceleration of the head. We developed an anatomically accurate, subject-specific, three-dimensional (3D) computational model of the human brain, and used it to study the dynamic deformations in the substructures of the brain when the head is subjected to rotational accelerations. The computational head models use anatomy and morphology of the white matter fibers obtained using MRI. Subject-specific full-field shearing motions in live human brains obtained through a recently developed tagged MRI imaging technique are then used to validate the models by comparing the measured and predicted heterogeneous dynamic mechanical response of the brain. These results are used to elucidate the dynamics of local shearing deformations in the brain substructures caused by rotational acceleration of the head. Our work demonstrates that the rotational dynamics of the brain has a timescale of ∼100 ms as determined by the shearing wave speeds, and thus the injuries associated with rotational accelerations likely occur over these time scales. After subject-specific validation using the live human subject data, a representative subject-specific head model is used to simulate a real life scenario that resulted in a concussive injury. Results suggest that regions of the brain, in the form of a toroid, encompassing the white matter, the cortical gray matter, and outer parts of the limbic system have a higher susceptibility to injury under axial rotations of the head.
Collapse
Affiliation(s)
- Shailesh Ganpule
- 1 Hopkins Extreme Materials Institute, Johns Hopkins University , Baltimore, Maryland
| | - Nitin P Daphalapurkar
- 1 Hopkins Extreme Materials Institute, Johns Hopkins University , Baltimore, Maryland
| | - Kaliat T Ramesh
- 1 Hopkins Extreme Materials Institute, Johns Hopkins University , Baltimore, Maryland
| | - Andrew K Knutsen
- 2 Center for Neuroscience and Regenerative Medicine , The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Dzung L Pham
- 2 Center for Neuroscience and Regenerative Medicine , The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Philip V Bayly
- 3 Department of Mechanical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Jerry L Prince
- 4 Department of Electrical and Computer Engineering, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
44
|
Johnson VE, Stewart W, Arena JD, Smith DH. Traumatic Brain Injury as a Trigger of Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2017; 15:383-400. [PMID: 28674990 DOI: 10.1007/978-3-319-57193-5_15] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although millions of individuals suffer a traumatic brain injury (TBI) worldwide each year, it is only recently that TBI has been recognized as a major public health problem. Beyond the acute clinical manifestations, there is growing recognition that a single severe TBI (sTBI) or repeated mild TBIs (rTBI) can also induce insidious neurodegenerative processes, which may be associated with early dementia, in particular chronic traumatic encephalopathy (CTE). Identified at autopsy examination in individuals with histories of exposure to sTBI or rTBI, CTE is recognized as a complex pathology featuring both macroscopic and microscopic abnormalities. These include cavum septum pellucidum, brain atrophy and ventricular dilation, together with pathologies in tau, TDP-43, and amyloid-β. However, the establishment and characterization of CTE as a distinct disease entity is in its infancy. Moreover, the relative "dose" of TBI, such as the frequency and severity of injury, associated with risk of CTE remains unknown. As such, there is a clear and pressing need to improve the recognition and diagnosis of CTE and to identify mechanistic links between TBI and chronic neurodegeneration.
Collapse
Affiliation(s)
- Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.,University of Glasgow, Glasgow, G12 8QQ, UK
| | - John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
46
|
Lifshitz J, Rowe RK, Griffiths DR, Evilsizor MN, Thomas TC, Adelson PD, McIntosh TK. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj 2016; 30:1293-1301. [PMID: 27712117 DOI: 10.1080/02699052.2016.1193628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After 30 years of characterisation and implementation, fluid percussion injury (FPI) is firmly recognised as one of the best-characterised reproducible and clinically relevant models of TBI, encompassing concussion through diffuse axonal injury (DAI). Depending on the specific injury parameters (e.g. injury site, mechanical force), FPI can model diffuse TBI with or without a focal component and may be designated as mild-to-severe according to the chosen mechanical forces and resulting acute neurological responses. Among FPI models, midline FPI may best represent clinical diffuse TBI, because of the acute behavioural deficits, the transition to late-onset behavioural morbidities and the absence of gross histopathology. REVIEW The goal here was to review acute and chronic physiological and behavioural deficits and morbidities associated with diffuse TBI induced by midline FPI. In the absence of neurodegenerative sequelae associated with focal injury, there is a need for biomarkers in the diagnostic, prognostic, predictive and therapeutic approaches to evaluate outcomes from TBI. CONCLUSIONS The current literature suggests that midline FPI offers a clinically-relevant, validated model of diffuse TBI to investigators wishing to evaluate novel therapeutic strategies in the treatment of TBI and the utility of biomarkers in the delivery of healthcare to patients with brain injury.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - Rachel K Rowe
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Daniel R Griffiths
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Megan N Evilsizor
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Theresa C Thomas
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | - P David Adelson
- a Translational Neurotrauma Research Program , BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona, College of Medicine - Phoenix , Phoenix , AZ , USA.,d Neuroscience Graduate Program , Arizona State University , Tempe , AZ , USA
| | | |
Collapse
|
47
|
|
48
|
Conti B, Villacin MK, Simmons JW. Trauma Anesthesia for Traumatic Brain Injury. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0141-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Harris NG, Verley DR, Gutman BA, Thompson PM, Yeh HJ, Brown JA. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis. Exp Neurol 2016; 277:124-138. [PMID: 26730520 PMCID: PMC4761291 DOI: 10.1016/j.expneurol.2015.12.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI.
Collapse
Affiliation(s)
- N G Harris
- UCLA Brain Research Center, Department of Neurosurgery, University of California, Los Angeles, USA.
| | - D R Verley
- UCLA Brain Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - B A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Department of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P M Thompson
- Departments of Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H J Yeh
- Department of Neurology, University of California, Los Angeles, USA
| | - J A Brown
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| |
Collapse
|
50
|
Traumatic Brain Injury in the Military: Biomechanics and Finite Element Modelling. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2016. [DOI: 10.1007/8415_2016_189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|