1
|
Kumar HS, Shah N, Shah P, Kotecha U, Mistri M, Jarullah B. Whole Genome Sequencing-Based Diagnosis of Spinocerebellar Ataxia Type 3 Repeat Expansion Neuromuscular Disorders in an Undiagnosed Patient: Breaking Past Diagnostic Boundaries. Neurol India 2025; 73:513-518. [PMID: 40152810 DOI: 10.4103/neurol-india.neurol-india-d-24-00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/16/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is a neuromuscular disorder (NMD) that is a complicated and progressive genetic disorder. SCA3 is predominantly caused by repeat expansions (REs) of short tandem repeats (STRs). SCA3 is caused by a CAG repeat expansion of the ATXN3 gene and is transmitted in an autosomal dominant manner and located on chromosomal position 14q32. OBJECTIVE The objective of this study was to identify the ATNX3 gene and assess the clinical accuracy of whole genome sequencing (WGS) in finding REs in previously undiagnosed patients with SCA3 for better management. METHODS AND MATERIALS Thirty-three referral cases for SCA3 were analyzed using WGS and triplet-repeat PCR (TP-PCR) techniques to detect REs for the ATXN3 gene. RESULTS A case of SCA3 was discovered to be positive for the ATXN3 gene for 59 CAG REs revealed by WGS and validated by TP-PCR. This mutation was found in a 26-year-old male patient who had previously been undiagnosed by other genetic tests. CONCLUSION To identify REs in the ATXN3 gene by validating WGS with previously inconclusive genetic tests, the study propose that WGS could potentially be implemented as the frontline, cost-effective, less turnaround time molecular testing for more accurate diagnoses and better-informed treatment strategies.
Collapse
Affiliation(s)
- Hari Shankar Kumar
- Department of Biotechnology and Microbiology, SMMPISR, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, India
- Inherited Genomics, Neuberg Center for Genomic Medicine, Ahmedabad, Gujarat, India
| | - Nidhi Shah
- Department of Pathology and Lab Medicine, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Parth Shah
- Department of Pathology and Lab Medicine, Dartmouth Hitchcock Medical Center, Lebanon, USA
| | - Udhaya Kotecha
- Inherited Genomics, Neuberg Center for Genomic Medicine, Ahmedabad, Gujarat, India
| | - Mehul Mistri
- Inherited Genomics, Neuberg Center for Genomic Medicine, Ahmedabad, Gujarat, India
| | - Bushra Jarullah
- Department of Biotechnology and Microbiology, SMMPISR, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
3
|
Abstract
Genome sequencing has greatly contributed to our understanding of parasitic protozoa. This is particularly the case for Cryptosporidium species (phylum Apicomplexa) which are difficult to propagate. Because of their polymorphic nature, simple sequence repeats have been used extensively as genotypic markers to differentiate between isolates, but no global analysis of amino acid repeats in Cryptosporidium genomes has been reported. Taking advantage of several newly sequenced Cryptosporidium genomes, a comparative analysis of single-amino-acid repeats (SAARs) in seven species was undertaken. This analysis revealed a striking difference between the SAAR profile of the gastric and intestinal species which infect mammals and one species which infects birds. In average, total SAAR length in gastric species is only 25% of the cumulative SAAR length in the genome of Cryptosporidium parvum, Cryptosporidium hominis and Cryptosporidium meleagridis, species infectious to humans. The SAAR profile in the avian parasite Cryptosporidium baileyi stands out due to the presence of long asparagine repeats. Cryptosporidium baileyi proteins with repeats ⩾20 residues are significantly enriched in regulatory functions. As postulated for the related apicomplexan species Plasmodium falciparum, these observations suggest that Cryptosporidium SAARs evolve in response to selective pressure. The putative selective mechanisms driving SAAR evolution in Cryptosporidium species are unknown.
Collapse
|
4
|
Modelling in miniature: Using Drosophila melanogaster to study human neurodegeneration. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.ddmod.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
6
|
Shimada MK, Sanbonmatsu R, Yamaguchi-Kabata Y, Yamasaki C, Suzuki Y, Chakraborty R, Gojobori T, Imanishi T. Selection pressure on human STR loci and its relevance in repeat expansion disease. Mol Genet Genomics 2016; 291:1851-69. [PMID: 27290643 DOI: 10.1007/s00438-016-1219-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 05/21/2016] [Indexed: 12/30/2022]
Abstract
Short Tandem Repeats (STRs) comprise repeats of one to several base pairs. Because of the high mutability due to strand slippage during DNA synthesis, rapid evolutionary change in the number of repeating units directly shapes the range of repeat-number variation according to selection pressure. However, the remaining questions include: Why are STRs causing repeat expansion diseases maintained in the human population; and why are these limited to neurodegenerative diseases? By evaluating the genome-wide selection pressure on STRs using the database we constructed, we identified two different patterns of relationship in repeat-number polymorphisms between DNA and amino-acid sequences, although both patterns are evolutionary consequences of avoiding the formation of harmful long STRs. First, a mixture of degenerate codons is represented in poly-proline (poly-P) repeats. Second, long poly-glutamine (poly-Q) repeats are favored at the protein level; however, at the DNA level, STRs encoding long poly-Qs are frequently divided by synonymous SNPs. Furthermore, significant enrichments of apoptosis and neurodevelopment were biological processes found specifically in genes encoding poly-Qs with repeat polymorphism. This suggests the existence of a specific molecular function for polymorphic and/or long poly-Q stretches. Given that the poly-Qs causing expansion diseases were longer than other poly-Qs, even in healthy subjects, our results indicate that the evolutionary benefits of long and/or polymorphic poly-Q stretches outweigh the risks of long CAG repeats predisposing to pathological hyper-expansions. Molecular pathways in neurodevelopment requiring long and polymorphic poly-Q stretches may provide a clue to understanding why poly-Q expansion diseases are limited to neurodegenerative diseases.
Collapse
Affiliation(s)
- Makoto K Shimada
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan.
| | - Ryoko Sanbonmatsu
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yumi Yamaguchi-Kabata
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Chisato Yamasaki
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Ranajit Chakraborty
- Health Science Center, University of North Texas, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Takashi Gojobori
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Ibn Al-Haytham Building (West), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tadashi Imanishi
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
7
|
Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T, Yoshizaki T, Okano H, Suzuki N. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem 2013; 288:8043-8052. [PMID: 23364790 DOI: 10.1074/jbc.m112.408211] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.
Collapse
Affiliation(s)
- Yoshihiro Nihei
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Daisuke Ito
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Yohei Okada
- Physiologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Kanrinmaru Project, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Wado Akamatsu
- Physiologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takuya Yagi
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahito Yoshizaki
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Physiologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norihiro Suzuki
- Department of Neurologyt, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Bonda M, Perrin V, Vileno B, Runne H, Kretlow A, Forró L, Luthi-Carter R, Miller LM, Jeney S. Synchrotron infrared microspectroscopy detecting the evolution of Huntington's disease neuropathology and suggesting unique correlates of dysfunction in white versus gray brain matter. Anal Chem 2011; 83:7712-20. [PMID: 21888376 DOI: 10.1021/ac201102p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.
Collapse
Affiliation(s)
- Markus Bonda
- Laboratory of Complex Matter Physics, Ecole Polytechnique Fédéralede Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Seyhan AA. RNAi: a potential new class of therapeutic for human genetic disease. Hum Genet 2011; 130:583-605. [PMID: 21537948 DOI: 10.1007/s00439-011-0995-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/17/2011] [Indexed: 12/19/2022]
Abstract
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
Collapse
Affiliation(s)
- Attila A Seyhan
- Pfizer Inc., Translational Immunology, Inflammation and Immunology, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
10
|
Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS One 2010; 5:e13240. [PMID: 20949034 PMCID: PMC2951901 DOI: 10.1371/journal.pone.0013240] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer's disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins.
Collapse
|
11
|
Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009; 110:1737-65. [PMID: 19650870 DOI: 10.1111/j.1471-4159.2009.06302.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expansion of CAG trinucleotide repeat within the coding region of several genes results in the production of proteins with expanded polyglutamine (PolyQ) stretch. The expression of these pathogenic proteins leads to PolyQ diseases, such as Huntington's disease or several types of spinocerebellar ataxias. This family of neurodegenerative disorders is characterized by constant progression of the symptoms and molecularly, by the accumulation of mutant proteins inside neurons causing their dysfunction and eventually death. So far, no effective therapy actually preventing the physical and/or mental decline has been developed. Experimental therapeutic strategies either target the levels or processing of mutant proteins in an attempt to prevent cellular deterioration, or they are aimed at the downstream pathologic effects to reverse or ameliorate the caused damages. Certain pathomechanistic aspects of PolyQ disorders are discussed here. Relevance of disease models and recent knowledge of therapeutic possibilities is reviewed and updated.
Collapse
Affiliation(s)
- Peter O Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | | |
Collapse
|
12
|
Gonzalez-Alegre P, Paulson HL. Technology insight: therapeutic RNA interference--how far from the neurology clinic? ACTA ACUST UNITED AC 2007; 3:394-404. [PMID: 17611488 DOI: 10.1038/ncpneuro0551] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/10/2007] [Indexed: 12/15/2022]
Abstract
As an evolutionarily conserved cellular pathway to regulate endogenous gene expression, RNA interference (RNAi) has been implicated in diverse biological processes. Biologists now routinely exploit this cellular pathway to suppress virtually any target gene in a sequence-specific manner, including dominantly acting genes that cause incurable neurodegenerative disorders. The development of RNAi as potential therapy for such diseases has generated considerable interest, partly because of the success of early studies of therapeutic RNAi in rodent models for a range of neurodegenerative diseases. In this article, we review the progress of RNAi therapy to date, and assess the challenges ahead for the application of such therapy to neurodegenerative diseases. We discuss the various strategies that might be used to achieve this goal, outline the preclinical studies that have already been completed, and highlight the experimental questions that need to be answered before human clinical trials can begin.
Collapse
|
13
|
Darnell G, Orgel JPRO, Pahl R, Meredith SC. Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol 2007; 374:688-704. [PMID: 17945257 DOI: 10.1016/j.jmb.2007.09.023] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Polyglutamine (poly(Q)) expansion is associated with protein aggregation into beta-sheet amyloid fibrils and neuronal cytotoxicity. In the mutant poly(Q) protein huntingtin, associated with Huntington's disease, both aggregation and cytotoxicity may be abrogated by a polyproline (poly(P)) domain flanking the C terminus of the poly(Q) region. To understand structural changes that may occur with the addition of the poly(P) sequence, we synthesized poly(Q) peptides with 3-15 glutamine residues and a corresponding set of poly(Q) peptides flanked on the C terminus by 11 proline residues (poly(Q)-poly(P)), as occurs in the huntingtin sequence. The shorter soluble poly(Q) peptides (three or six glutamine residues) showed polyproline type II-like (PPII)-like helix conformation when examined by circular dichroism spectroscopy and were monomers as judged by size-exclusion chromatography (SEC), while the longer poly(Q) peptides (nine or 15 glutamine residues) showed a beta-sheet conformation by CD and defined oligomers by SEC. Soluble poly(Q)-poly(P) peptides showed PPII-like content but SEC showed poorly defined, overlapping oligomeric peaks, and as judged by CD these peptides retained significant PPII-like structure with increasing poly(Q) length. More importantly, addition of the poly(P) domain increased the threshold for fibril formation to approximately 15 glutamine residues. X-ray diffraction, electron microscopy, and film CD showed that, while poly(Q) peptides with >or=6 glutamine residues formed beta-sheet-rich fibrils, only the longest poly(Q)-poly(P) peptide (15 glutamine residues) did so. From these and other observations, we propose that poly(Q) domains exist in a "tug-of-war" between two conformations, a PPII-like helix and a beta-sheet, while the poly(P) domain is conformationally constrained into a proline type II helix (PPII). Addition of poly(P) to the C terminus of a poly(Q) domain induces a PPII-like structure, which opposes the aggregation-prone beta-sheet. These structural observations may shed light on the threshold phenomenon of poly(Q) aggregation, and support the hypothesized evolution of "protective" poly(P) tracts adjacent to poly(Q) aggregation domains.
Collapse
Affiliation(s)
- Gregory Darnell
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
14
|
Rüb U, Brunt ER, Petrasch-Parwez E, Schöls L, Theegarten D, Auburger G, Seidel K, Schultz C, Gierga K, Paulson H, van Broeckhoven C, Deller T, de Vos RAI. Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol 2006; 32:635-49. [PMID: 17083478 DOI: 10.1111/j.1365-2990.2006.00772.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dysphagia, which can lead to nutritional deficiencies, weight loss and dehydration, represents a risk factor for aspiration pneumonia. Although clinical studies have reported the occurrence of dysphagia in patients with spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), type 6 (SCA6) and type 7 (SCA7), there are neither detailed clinical records concerning the kind of ingestive malfunctions which contribute to dysphagia nor systematic pathoanatomical studies of brainstem regions involved in the ingestive process. In the present study we performed a systematic post mortem study on thick serial tissue sections through the ingestion-related brainstem nuclei of 12 dysphagic patients who suffered from clinically diagnosed and genetically confirmed spinocerebellar ataxias assigned to the CAG-repeat or polyglutamine diseases (two SCA2, seven SCA3, one SCA6 and two SCA7 patients) and evaluated their medical records. Upon pathoanatomical examination in all of the SCA2, SCA3, SCA6 and SCA7 patients, a widespread neurodegeneration of the brainstem nuclei involved in the ingestive process was found. The clinical records revealed that all of the SCA patients were diagnosed with progressive dysphagia and showed dysfunctions detrimental to the preparatory phase of the ingestive process, as well as the lingual, pharyngeal and oesophageal phases of swallowing. The vast majority of the SCA patients suffered from aspiration pneumonia, which was the most frequent cause of death in our sample. The findings of the present study suggest (i) that dysphagia in SCA2, SCA3, SCA6 and SCA7 patients may be associated with widespread neurodegeneration of ingestion-related brainstem nuclei; (ii) that dysphagic SCA2, SCA3, SCA6 and SCA7 patients may suffer from dysfunctions detrimental to all phases of the ingestive process; and (iii) that rehabilitative swallow therapy which takes specific functional consequences of the underlying brainstem lesions into account might be helpful in preventing aspiration pneumonia, weight loss and dehydration in SCA2, SCA3, SCA6 and SCA7 patients.
Collapse
Affiliation(s)
- U Rüb
- Department of Clinical Neuroanatomy, J W Goethe-University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rüb U, De Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, Bohl J, Ghebremedhin E, Gierga K, Seidel K, Den Dunnen W, Heinsen H, Paulson H, Deller T. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 2006; 16:218-27. [PMID: 16911479 PMCID: PMC8095748 DOI: 10.1111/j.1750-3639.2006.00022.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the last years progress has been made regarding the involvement of the thalamus during the course of the currently known polyglutamine diseases. Although recent studies have shown that the thalamus consistently undergoes neurodegeneration in Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2) it is still unclear whether it is also a consistent target of the pathological process of spinocerebellar ataxia type 3 (SCA3). Accordingly we studied the thalamic pathoanatomy and distribution pattern of ataxin-3 immunopositive neuronal intranuclear inclusions (NI) in nine clinically diagnosed and genetically confirmed SCA3 patients and carried out a detailed statistical analysis of our findings. During our pathoanatomical study we disclosed (i) a consistent degeneration of the ventral anterior, ventral lateral and reticular thalamic nuclei; (ii) a degeneration of the ventral posterior lateral nucleus and inferior and lateral subnuclei of the pulvinar in the majority of these SCA3 patients; and (iii) a degeneration of the ventral posterior medial and lateral posterior thalamic nuclei, the lateral geniculate body and some of the limbic thalamic nuclei in some of them. Upon immunocytochemical analysis we detected NI in all of the thalamic nuclei of all of our SCA3 patients. According to our statistical analysis (i) thalamic neurodegeneration and the occurrence of ataxin-3 immunopositive thalamic NI was not associated with the individual length of the CAG-repeats in the mutated SCA3 allele, the patients age at disease onset and the duration of SCA3 and (ii) thalamic neurodegeneration was not correlated with the occurrence of ataxin-3 immunopositive thalamic NI. This lack of correlation may suggest that ataxin-3 immunopositive NI are not immediately decisive for the fate of affected nerve cells but rather represent unspecific and pathognomonic morphological markers of SCA3.
Collapse
Affiliation(s)
- Udo Rüb
- Institute for Clinical Neuroanatomy
| | - Rob A.I. De Vos
- Laboratorium Pathologie Oost Nederland, Burg. Edo Bergsmalaan 1, Enschede, the Netherlands
| | | | | | - Ludger Schöls
- Center of Neurology and Hertie‐Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Georg Auburger
- Section Molecular Neurogenetics, Department of Neurology, Johann Wolfgang Goethe‐University, Frankfurt/Main, Germany
| | - Jürgen Bohl
- Neuropathology Division, University Clinic of Mainz, Mainz, Germany
| | | | | | | | - Wilfred Den Dunnen
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Helmut Heinsen
- Morphological Brain Research Unit, Julius Maximilians University, Würzburg, Germany
| | - Henry Paulson
- Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | |
Collapse
|
16
|
Mauri PL, Riva M, Ambu D, De Palma A, Secundo F, Benazzi L, Valtorta M, Tortora P, Fusi P. Ataxin-3 is subject to autolytic cleavage. FEBS J 2006; 273:4277-86. [PMID: 16939621 DOI: 10.1111/j.1742-4658.2006.05419.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein ataxin-3 is responsible for spinocerebellar ataxia type 3, a neurodegenerative disease triggered when the length of a stretch of consecutive glutamines exceeds a critical threshold. Different physiologic roles have been suggested for this protein. More specifically, recent papers have shown that the highly conserved N-terminal Josephin domain of ataxin-3 binds ubiquitin and has ubiquitin hydrolase activity, thanks to a catalytic device specific to cysteine proteases. This article shows that the protein also has autoproteolytic activity, sustained by the same residues responsible for the ubiquitin hydrolase activity. The autolytic activity was abolished when these residues, i.e. Cys14 and His119, were replaced by noncatalytic ones. Furthermore, we found that pretreatment of the protein with tosyl l-phenylalanine chloromethyl ketone also abolished this activity, and that this site-specific reagent covalently bound His119, findings supported by MS experiments. MS also allowed us to establish that the attack was aspecific, as cleavage sites were observed at the carboxyl side of apolar, acidic and polar uncharged residues, clustered in the C-terminal, unstructured domain of the protein. In contrast, the Josephin domain was preserved from attack. We propose that the autolytic activity reported here may play a role in pathogenesis, as fragments carrying expanded polyglutamines are thought to be significantly more toxic than the whole protein.
Collapse
|
17
|
Schulz JB, Nicotera P. Introduction: Targeted modulation of neuronal apoptosis: a double-edged sword? Brain Pathol 2006; 10:273-5. [PMID: 10764046 PMCID: PMC8098519 DOI: 10.1111/j.1750-3639.2000.tb00260.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- J B Schulz
- Department of Neurology and Medical School, University of Tübingen, Germany.
| | | |
Collapse
|
18
|
Gierga K, Bürk K, Bauer M, Orozco Diaz G, Auburger G, Schultz C, Vuksic M, Schöls L, de Vos RAI, Braak H, Deller T, Rüb U. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol 2005; 109:617-31. [PMID: 15906049 DOI: 10.1007/s00401-005-1014-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 02/01/2005] [Accepted: 02/14/2005] [Indexed: 01/11/2023]
Abstract
Although the cranial nerves, their nuclei and related fiber tracts are crucial for a variety of oculomotor, somatomotor, somatosensory, auditory, vestibular-related, autonomic and ingestion-related functions, knowledge regarding the extent of their involvement in spinocerebellar ataxia type 2 (SCA2) patients is incomplete. Accordingly, we performed a pathoanatomical analysis of these structures in six clinically diagnosed SCA2 patients. Unconventionally thick serial sections through the brainstem stained for lipofuscin pigment (aldehyde-fuchsin) and Nissl material (Darrow red) showed that all oculomotor, somatomotor, somatosensory, auditory, vestibular and autonomic cranial nerve nuclei may undergo neurodegeneration during SCA2. Similarly, examination of myelin-stained thick serial sections revealed that nearly all cranial nerves and associated fiber tracts may sustain atrophy and myelin loss in SCA2 patients. In view of the known functional role of the affected cranial nerves, their nuclei and associated fiber tracts, the present findings provide appropriate pathoanatomical explanations for some of the disease-related and unexplained symptoms seen in SCA2 patients: double vision, gaze palsy, slowing of saccades, ptosis, ingestion-related malfunctions, impairments of the optokinetic nystagmus and the vestibulo-ocular reaction, facial and tongue fasciculation-like movements, impaired centripetal transmission of temperature-related information from the face, dystonic posture of the neck, as well as abnormalities of the brainstem auditory evoked potentials.
Collapse
Affiliation(s)
- K Gierga
- Institute of Clinical Neuroanatomy, J.W. Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rüb U, Del Turco D, Bürk K, Diaz GO, Auburger G, Mittelbronn M, Gierga K, Ghebremedhin E, Schultz C, Schöls L, Bohl J, Braak H, Deller T. Extended pathoanatomical studies point to a consistent affection of the thalamus in spinocerebellar ataxia type 2. Neuropathol Appl Neurobiol 2005; 31:127-40. [PMID: 15771706 DOI: 10.1111/j.1365-2990.2004.00617.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The involvement of the thalamus during the course of the currently known polyglutamine diseases is still a matter of debate. While it is well-known that this diencephalic nuclear complex undergoes neurodegeneration in some polyglutamine diseases such as Huntington's disease (HD), it has remained unclear whether and to what extent the thalamus is also involved in spinocerebellar ataxia type 2 (SCA2) patients. Encouraged by our recent post-mortem findings in one German SCA2 patient and the results of a recent nuclear magnetic resonance (NMR) study, we extended our pathoanatomical analysis to serial thick sections stained for lipofuscin granules and Nissl substance through the thalami of four additional German and Cuban SCA2 patients. According to this analysis the thalamus is consistently affected by the destructive process of SCA2. In particular, during our study we observed a consistent involvement of the lateral geniculate body, the lateral posterior, ventral anterior, ventral lateral, ventral posterior lateral, and ventral posterior medial thalamic nuclei as well as the extraterritorial reticular nucleus. In four of the SCA2 cases studied additional damage was seen in the inferior and lateral nuclei of the pulvinar, whereas in the minority of the patients a subset of the limbic nuclei of the thalamus (i.e. anterodorsal, anteroprincipal, laterodorsal, fasciculosus, mediodorsal, central lateral, central medial, cucullar, and paracentral nuclei, medial nucleus of the pulvinar) underwent neurodegeneration. These interindividual differences in the distribution pattern of thalamic neurodegeneration indicate that the thalamic nuclei differ in their proclivities to degenerate in SCA2 and may suggest that they become involved at different phases in the evolution of the underlying degenerative process.
Collapse
Affiliation(s)
- U Rüb
- Institute for Clinical Neuroanatomy, J. W. Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rüb U, Gierga K, Brunt ER, de Vos RAI, Bauer M, Schöls L, Bürk K, Auburger G, Bohl J, Schultz C, Vuksic M, Burbach GJ, Braak H, Deller T. Spinocerebellar ataxias types 2 and 3: degeneration of the pre-cerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J Neural Transm (Vienna) 2005; 112:1523-45. [PMID: 15785863 DOI: 10.1007/s00702-005-0287-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 01/08/2005] [Indexed: 02/07/2023]
Abstract
The pre-cerebellar nuclei act as a gate for the entire neocortical, brainstem and spinal cord afferent input destined for the cerebellum. Since no pathoanatomical studies of these nuclei had yet been performed in spinocerebellar ataxia type 2 (SCA2) or type 3 (SCA3), we carried out a detailed postmortem study of the pre-cerebellar nuclei in six SCA2 and seven SCA3 patients in order to further characterize the extent of brainstem degeneration in these ataxic disorders. By means of unconventionally thick serial sections through the brainstem stained for lipofuscin pigment and Nissl material, we could show that all of the pre-cerebellar nuclei (red, pontine, arcuate, prepositus hypoglossal, superior vestibular, lateral vestibular, medial vestibular, interstitial vestibular, spinal vestibular, vermiform, lateral reticular, external cuneate, subventricular, paramedian reticular, intercalate, interfascicular hypoglossal, and conterminal nuclei, pontobulbar body, reticulotegmental nucleus of the pons, inferior olive, and nucleus of Roller) are among the targets of both of the degenerative processes underlying SCA2 and SCA3. These novel findings are in contrast to the current neuropathological literature, which assumes that only a subset of pre-cerebellar nuclei in SCA2 and SCA3 may undergo neurodegeneration. Widespread damage to the pre-cerebellar nuclei separates all three phylogenetically and functionally defined regions of the cerebellum, impairs their physiological functions and thus explains the occurrence of gait, stance, limb and truncal ataxia, dysarthria, truncal and postural instability with disequilibrium, impairments of the vestibulo-ocular reaction and optokinetic nystagmus, slowed and saccadic smooth pursuits, dysmetrical horizontal saccades, and gaze-evoked nystagmus during SCA2 and SCA3.
Collapse
Affiliation(s)
- U Rüb
- Institute of Clinical Neuroanatomy, J. W. Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Berke SJS, Schmied FAF, Brunt ER, Ellerby LM, Paulson HL. Caspase-mediated proteolysis of the polyglutamine disease protein ataxin-3. J Neurochem 2004; 89:908-18. [PMID: 15140190 DOI: 10.1111/j.1471-4159.2004.02369.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinocerebellar ataxia type-3, also known as Machado-Joseph Disease, is one of many inherited neurodegenerative disorders caused by polyglutamine-encoding CAG repeat expansions in otherwise unrelated disease genes. Polyglutamine disorders are characterized by disease protein misfolding and aggregation; often within the nuclei of affected neurons. Although the precise mechanism of polyglutamine-mediated cell death remains elusive, evidence suggests that proteolysis of polyglutamine disease proteins by caspases contributes to pathogenesis. Using cellular models we now show that the endogenous spinocerebellar ataxia type-3 disease protein, ataxin-3, is proteolyzed in apoptotic paradigms, resulting in the loss of full-length ataxin-3 and the corresponding appearance of an approximately 28-kDa fragment containing the glutamine repeat. Broad-spectrum caspase inhibitors block ataxin-3 proteolysis and studies suggest that caspase-1 is a primary mediator of cleavage. Site-directed mutagenesis experiments eliminating three, six or nine potential caspase cleavage sites in the protein suggest redundancy in the site(s) at which cleavage can occur, as previously described for other disease proteins; but also map a major cleavage event to a cluster of aspartate residues within the ubiquitin-binding domain of ataxin-3 near the polyglutamine tract. Finally, caspase-mediated cleavage of expanded ataxin-3 resulted in increased ataxin-3 aggregation, suggesting a potential role for caspase-mediated proteolysis in spinocerebellar ataxia type-3 pathogenesis.
Collapse
Affiliation(s)
- Sarah J Shoesmith Berke
- Neuroscience Graduate Program and Department of Neurology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
22
|
Michalik A, Van Broeckhoven C. Proteasome degrades soluble expanded polyglutamine completely and efficiently. Neurobiol Dis 2004; 16:202-11. [PMID: 15207277 DOI: 10.1016/j.nbd.2003.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2003] [Revised: 10/27/2003] [Accepted: 12/18/2003] [Indexed: 11/25/2022] Open
Abstract
To date, nine progressive neurodegenerative diseases are caused by expansion of the CAG repeat coding for polyglutamine, including Huntington's disease and several forms of spinocerebellar ataxia. Expanded polyglutamine causes dominant toxic gain-of-function related to its ability to aggregate. Polyglutamine aggregates inhibit the proteasome, suggesting that reduced degradation of misfolded proteins might contribute to polyglutamine toxicity. Moreover, several observations indicate that soluble proteins harboring expanded polyglutamine display altered turnover. To examine whether soluble polyglutamine interfered with proteasome-mediated degradation, we analyzed degradation of model proteasome substrates carrying either 103 or 25 glutamines in transfected cells. Expanded and normal size polyglutamine were degraded to completion and with similar efficiency. Moreover, targeting of expanded polyglutamine for proteasome-mediated degradation did not compromise proteasome activity. Thus, we propose that polyglutamine-containing disease proteins can be readily digested by the proteasome if they carried a degradation signal.
Collapse
Affiliation(s)
- Andrej Michalik
- Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), University of Antwerp (UIA), Antwerpen, Belgium
| | | |
Collapse
|
23
|
Rüb U, Brunt ER, de Vos RAI, Del Turco D, Del Tredici K, Gierga K, Schultz C, Ghebremedhin E, Bürk K, Auburger G, Braak H. Degeneration of the central vestibular system in spinocerebellar ataxia type 3 (SCA3) patients and its possible clinical significance. Neuropathol Appl Neurobiol 2004; 30:402-14. [PMID: 15305986 DOI: 10.1111/j.1365-2990.2004.00554.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the vestibular complex represents an important component of the neural circuits crucial for the maintenance of truncal and postural stability, and it is integrated into specialized oculomotor circuits, knowledge regarding the extent of the involvement of its nuclei and associated fibre tracts in cases with spinocerebellar ataxia type 3 (SCA3) is incomplete. Accordingly, we performed a pathoanatomical analysis of the vestibular complex and its associated fibre tracts in four clinically diagnosed and genetically confirmed SCA3 patients with the aim of providing more exact information as to the involvement of the vestibular system in this disorder. By means of unconventionally thick serial sections through the vestibular nuclei stained for lipofuscin pigment and Nissl material, we could show that all five nuclei of this complex (interstitial, lateral, medial, spinal, and superior vestibular nuclei) are subject to neurodegenerative processes in SCA3, whereby examination of thick serial sections stained for myelin revealed that all associated fibre tracts (ascending tract of Deiters, juxtarestiform body, lateral and medial vestibulospinal tracts, medial longitudinal fascicle, vestibular portion of the eighth cranial nerve) underwent atrophy and demyelinization in all four of the patients studied. The reported lesions can help to explain the truncal and postural instability as well as the impaired optokinetic nystagmus, vestibulo-ocular reaction, and horizontal gaze-holding present in SCA3 cases.
Collapse
Affiliation(s)
- U Rüb
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe University, Theodor-Stern-Kai, Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rüb U, Schultz C, Del Tredici K, Gierga K, Reifenberger G, de Vos RAI, Seifried C, Braak H, Auburger G. Anatomically based guidelines for systematic investigation of the central somatosensory system and their application to a spinocerebellar ataxia type 2 (SCA2) patient. Neuropathol Appl Neurobiol 2003; 29:418-33. [PMID: 14507334 DOI: 10.1046/j.1365-2990.2003.00504.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dysfunctions of the somatosensory system are among the clinical signs that characterize a variety of polyglutamine or CAG-repeat diseases. Deficits within this system may hinder the perception of potential threats, be detrimental to somatomotor functions, and result in uncoordinated movements, ataxia, and falls. Despite the considerable clinical relevance of such deficits, however, no systematic pathoanatomical studies of the central somatosensory system in polyglutamine diseases are currently available. The present paper has two goals: (1) recommendation of an economical tissue sampling method and optimized histological processing of this tissue to allow rapid and reliable evaluation of the structural integrity of all known relay stations and interconnecting fibre tracts within this complex system, and (2) the proposal of guidelines for a rapid and detailed pathoanatomical investigative procedure of the human central somatosensory system. In so doing, we draw on the current state of neuroanatomic research and apply the methods and guidelines proposed here to a 25-year-old female patient with spinocerebellar ataxia type 2 (SCA2). The use of 100 microm serial sections through the SCA2 patient's central somatosensory components showed that obvious neuronal loss occurred in nearly all of the relay stations of this system (Clarke's column; cuneate, external cuneate and gracile nuclei; spinal, principal and mesencephalic trigeminal nuclei; ventral posterior lateral and ventral posterior medial nuclei of the thalamus), whereas the majority of interconnecting fibre tracts (dorsal spinocerebellar tract; cuneate and gracile fascicles; medial lemniscus; spinal trigeminal tract, trigeminal nerve and mesencephalic trigeminal tract) displayed signs of atrophy accompanied by demyelinization. These pathological findings suffice to explain the patient's impaired senses of vibration, position and temperature. Moreover, together with the lesions seen in the motor cerebellothalamocortical feedback loop (pontine nuclei, deep cerebellar nuclei and cerebellar cortex, ventral lateral nucleus of the thalamus), they also account for the somatomotor deficits that were observed in the young woman (gait, stance, and limb ataxia, falls, and impaired writing). In proposing these new guidelines, we hope to enable others to study the hitherto unknown morphological counterparts of somatosensory dysfunctions in additional CAG-repeat disease patients.
Collapse
Affiliation(s)
- U Rüb
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Evert BO, Vogt IR, Vieira-Saecker AM, Ozimek L, de Vos RAI, Brunt ERP, Klockgether T, Wüllner U. Gene expression profiling in ataxin-3 expressing cell lines reveals distinct effects of normal and mutant ataxin-3. J Neuropathol Exp Neurol 2003; 62:1006-18. [PMID: 14575237 DOI: 10.1093/jnen/62.10.1006] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a late-onset neurodegenerative disorder caused by the expansion of a polyglutamine tract within the gene product, ataxin-3. We have previously shown that mutant ataxin-3 causes upregulation of inflammatory genes in transgenic SCA3 cell lines and human SCA3 pontine neurons. We report here a complex pattern of transcriptional changes by microarray gene expression profiling and Northern blot analysis in a SCA3 cell model. Twenty-three differentially expressed genes involved in inflammatory reactions, nuclear transcription, and cell surface-associated processes were identified. The identified corresponding proteins were analyzed by immunohistochemistry in human disease and control brain tissue to evaluate their implication in SCA3 pathogenesis. In addition to several inflammatory mediators upregulated in mutant ataxin-3 expressing cell lines and pontine neurons of SCA3 patients, we identified a profound repression of genes encoding cell surface-associated proteins in cells overexpressing normal ataxin-3. Correspondingly, these genes were upregulated in mutant ataxin-3 expressing cell lines and in pontine neurons of SCA3 patients. These findings identify for the first time target genes transcriptionally regulated by normal ataxin-3 and support the hypothesis that both loss of normal ataxin-3 and gain of function through protein-protein interacting properties of mutant ataxin-3 contribute to SCA3 pathogenesis.
Collapse
Affiliation(s)
- Bernd O Evert
- Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Michalik A, Martin JJ, Van Broeckhoven C. Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. Eur J Hum Genet 2003; 12:2-15. [PMID: 14571264 DOI: 10.1038/sj.ejhg.5201108] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant, late-onset, slowly progressive disorder, primarily characterized by gradual loss of motor coordination, resulting from dysfunction and degeneration of the cerebellum and its connecting pathways. The disease is caused by expansion of a CAG trinucleotide repeat within the SCA7 gene, which encodes a polyglutamine tract within a novel protein, termed ataxin-7. The expansion of polyglutamine-encoding CAG repeats in dissimilar genes underlies eight neurodegenerative conditions besides SCA7, including a number of dominant ataxias related to SCA7. Although elongated polyglutamine itself can initiate neuronal dysfunction and death, its toxicity is modulated by the context of the disease proteins, as evidenced by the differing clinical and pathological presentation of the various disorders. In this respect, it is exciting that SCA7 constitutes the only polyglutamine disorder, in which the photoreceptors of the retina are also severely affected, leading to retinal degeneration and blindness. Since the discovery of the SCA7 mutation, numerous studies attempted to pinpoint the molecular mechanisms underlying the unique features of SCA7, particularly the retinal involvement. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder.
Collapse
Affiliation(s)
- A Michalik
- Department of Molecular Genetics, Neurogenetics Group, Flanders Interuniversity Institute for Biotechnology, Antwerpen, Belgium
| | | | | |
Collapse
|
27
|
Schmitt I, Evert BO, Khazneh H, Klockgether T, Wuellner U. The human MJD gene: genomic structure and functional characterization of the promoter region. Gene 2003; 314:81-8. [PMID: 14527720 DOI: 10.1016/s0378-1119(03)00706-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Machado-Joseph disease (MJD) is a progressive neurodegenerative disorder caused by expansion of a CAG motif within the translated region of the human MJD (hMJD) gene which has been mapped to chromosome 14q. In this study, the hMJD gene was identified in two overlapping bacterial artificial chromosome (BAC) clones and contained 11 exons resulting in a 6.14 kb transcript. The 5'-flanking region of the hMJD gene included a TATA-less promoter with GC-rich regions, a CCAAT box and multiple potential SP1 binding sites. Luciferase reporter assays performed in neuronal and non-neuronal human cell lines demonstrated a core promoter within the 200 bp region immediately upstream of the putative transcriptional start site (-89 according to the start codon). DNA-protein interactions defined by electrophoretic mobility shift assays (EMSA) revealed specific binding of nuclear proteins to the putative core promoter region.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, Neurobiology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | | | | | | | |
Collapse
|
28
|
Agius LM. Dysregulatory dysequilibrium of gene transcription and of nuclear transport in polyglutamine neuro-degeneration. Med Hypotheses 2003; 60:869-73. [PMID: 12699716 DOI: 10.1016/s0306-9877(03)00068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyglutamine neurodegeneration as an essential expansion mutation of the CAG-trinucleotide repeat encoding glutamine would appear to constitute an integral process of aggregation/accumulation that self-propagates a secondary process of possible nuclear sequestration. Within such a scheme of progressive expansion of polyglutamine stretches in strict parallel correlation with increased CAG trinucleotide repeats in genes such as ataxin-7 and its messenger RNA, it would appear that a fundamental relationship of accumulation directly inducing biophysical disruption between nuclear/nucleolar and cytoplasmic protein machineries would constitute a dysfunctional dysequilibrium accounting for self-progressive neuronal degeneration with atrophy of the cerebral cortex and ganglia such as the caudate, that is limited often to specific population groups of neurons. It is for example in terms of Huntington's disease as an autosomal dominant disorder with high penetrance on a background of onset of dementia mainly in the fourth and fifth decades of life that one might conceive of polyglutamine neurodegeneration as fundamentally a developmental disturbance affecting neuronal maturation that accounts for abnormal neurophysiological and biochemical aspects of interaction of nucleus with cytoplasm. Polyglutamine expansion and trinucleotide repeats as both progressive processes of accumulation and synthesis would constitute a complex interplay of inducing and induced effects that both contribute in probably multiple ways to the self-progressive nature of a nuclear sequestration process.
Collapse
Affiliation(s)
- Lawrence M Agius
- Department of Pathology, St. Luke's Hospital, University of Malta, Malta.
| |
Collapse
|
29
|
Steffan JS, Thompson LM. Targeting aggregation in the development of therapeutics for the treatment of Huntington's disease and other polyglutamine repeat diseases. Expert Opin Ther Targets 2003; 7:201-13. [PMID: 12667098 DOI: 10.1517/14728222.7.2.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) is one of a number of familial polyglutamine (polyQ) repeat diseases. These neurodegenerative disorders are caused by expression of otherwise unrelated proteins that contain an expansion of a polyQ tract, rendering them toxic to specific subsets of vulnerable neurons. These expanded repeats have an inherent propensity to aggregate; insoluble neuronal nuclear and cytoplasmic polyQ aggregates or inclusions are hallmarks of the disorders [1,2]. In HD, inclusions in diseased brains often precede onset of symptoms, and have been proposed to be involved in pathogenicity [3-5]. Various strategies to block the process of aggregation have been developed in an effort to create drugs that decrease neurotoxicity. A discussion of the effect of antibodies, caspase inhibitors, chemical inhibitors, heat-shock proteins, suppressor peptides and transglutaminase inhibitors upon aggregation and disease is presented.
Collapse
Affiliation(s)
- Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260, USA.
| | | |
Collapse
|
30
|
Lee JA, Lim CS, Lee SH, Kim H, Nukina N, Kaang BK. Aggregate formation and the impairment of long-term synaptic facilitation by ectopic expression of mutant huntingtin in Aplysia neurons. J Neurochem 2003; 85:160-9. [PMID: 12641738 DOI: 10.1046/j.1471-4159.2003.01650.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Huntington's disease (HD) is caused by an expansion of a polyglutamine (polyQ) tract within huntingtin (htt) protein. To examine the cytotoxic effects of polyQ-expanded htt, we overexpressed an enhanced green fluorescent protein (EGFP)-tagged N-terminal fragment of htt with 150 glutamine residues (Nhtt150Q-EGFP) in Aplysia neurons. A combined confocal and electron microscopic study showed that Aplysia neurons expressing Nhtt150Q-EGFP displayed numerous abnormal aggregates (diameter 0.5-5 microm) of filamentous structures, which were formed rapidly (approximately 2 h) but which were sustained for at least 18 days in the cytoplasm. Furthermore, the overexpression of Nhtt150Q-EGFP in sensory cells impaired 5-hydroxytryptamine (5-HT)-induced long-term synaptic facilitation in sensori-motor synapses without affecting basal synaptic strength or short-term facilitation. This study demonstrates the stability of polyQ-based aggregates and their specific effects on long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jin-A Lee
- National Research Laboratory, Institute of Molecular Biology and Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RAI, Braak H. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 2003; 25:115-27. [PMID: 12663059 DOI: 10.1016/s0891-0618(02)00099-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nucleus raphe interpositus (RIP) plays an important role in the premotor network for saccades. Its omnipause neurons gate the activity of the burst neurons for vertical saccades lying within the rostral interstitial nucleus of the medial longitudinal fascicle and that for horizontal saccades residing in the caudal subnucleus of the pontine reticular formation. In the present study we investigated the RIP in five patients with clinically diagnosed and genetically confirmed spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease. Polyethylene glycol-embedded 100 microm serial sections stained for lipofuscin pigment and Nissl material as well as paraffin-embedded Nissl stained thin sections revealed the hitherto overlooked involvement of this pontine nucleus in the degenerative process underlying SCA3, whereby in four of our SCA3 patients the RIP underwent a conspicuous loss of presumed omnipause neurons. As observed in other affected brain structures, the RIP of all our SCA3 patients displayed reactive astrocytes and activated microglial cells, while some of the few of its surviving neurons harbored an ataxin-3-immunopositive intranuclear inclusion body. The findings of the present pathoanatomical study suggest that (1) neurodegeneration in the brain stem of terminal SCA3 patients is more widespread than previously thought and is not confined to cranial nerve nuclei involved in the generation of saccades but likewise involves the premotor network for saccades and (2) damage to the RIP may contribute to slowing of horizontal saccades in SCA3 patients but is not associated with saccadic oscillations as occasionally speculated.
Collapse
Affiliation(s)
- U Rüb
- Department of Clinical Neuroanatomy, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rüb U, Brunt ER, Del Turco D, de Vos RAI, Gierga K, Paulson H, Braak H. Guidelines for the pathoanatomical examination of the lower brain stem in ingestive and swallowing disorders and its application to a dysphagic spinocerebellar ataxia type 3 patient. Neuropathol Appl Neurobiol 2003; 29:1-13. [PMID: 12581335 DOI: 10.1046/j.1365-2990.2003.00437.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the fact that considerable progress has been made in the last 20 years regarding the three-phase process of ingestion and the lower brain stem nuclei involved in it, no comprehensive descriptions of the ingestion-related lower brain stem nuclei are available for neuropathologists confronted with ingestive malfunctions. Here, we propose guidelines for the pathoanatomical investigation of these nuclei based on current knowledge with respect to ingestion and the nuclei responsible for this process. The application of these guidelines is described by drawing upon the example of the lower brain stem of a male patient with spinocerebellar ataxia type 3, also known as Machado-Joseph disease, who displayed malfunctions during the preparatory phase of ingestion, as well as lingual and pharyngeal phases of swallowing. By way of the representative application of the recommended investigation procedure to 100 microm serial sections through the patient's brain stem stained for lipofuscin pigment and Nissl material, we observed neuronal loss together with astrogliosis in nearly all of the ingestion-related lower brain stem nuclei (motor, principal and spinal trigeminal nuclei; facial nucleus; parvocellular reticular nucleus; ambiguous nucleus, motor nucleus of the dorsal glossopharyngeal and vagal area; gelatinous, medial, parvocellular and pigmented solitary nuclei; hypoglossal nucleus). In view of their known functional role in the three-phase process of ingestion, damage to these nuclei not only offers an explanation of the patient's malfunctions related to the preparatory phase of ingestion and lingual and pharyngeal phases of swallowing, but also suggests that the patient may have suffered from additional esophageal phase swallowing malfunctions not mentioned in his medical records.
Collapse
Affiliation(s)
- U Rüb
- Department of Clinical Neuroanatomy, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Albrecht M, Hoffmann D, Evert BO, Schmitt I, Wüllner U, Lengauer T. Structural modeling of ataxin-3 reveals distant homology to adaptins. Proteins 2003; 50:355-70. [PMID: 12486728 DOI: 10.1002/prot.10280] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine disorder caused by a CAG repeat expansion in the coding region of a gene encoding ataxin-3, a protein of yet unknown function. Based on a comprehensive computational analysis, we propose a structural model and structure-based functions for ataxin-3. Our predictive strategy comprises the compilation of multiple sequence and structure alignments of carefully selected proteins related to ataxin-3. These alignments are consistent with additional information on sequence motifs, secondary structure, and domain architectures. The application of complementary methods revealed the homology of ataxin-3 to ENTH and VHS domain proteins involved in membrane trafficking and regulatory adaptor functions. We modeled the structure of ataxin-3 using the adaptin AP180 as a template and assessed the reliability of the model by comparison with known sequence and structural features. We could further infer potential functions of ataxin-3 in agreement with known experimental data. Our database searches also identified an as yet uncharacterized family of proteins, which we named josephins because of their pronounced homology to the Josephin domain of ataxin-3.
Collapse
Affiliation(s)
- Mario Albrecht
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Poirier MA, Li H, Macosko J, Cai S, Amzel M, Ross CA. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 2002; 277:41032-7. [PMID: 12171927 DOI: 10.1074/jbc.m205809200] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathology of Huntington's disease is characterized by neuronal degeneration and inclusions containing N-terminal fragments of mutant huntingtin (htt). To study htt aggregation, we examined purified htt fragments in vitro, finding globular and protofibrillar intermediates participating in the genesis of mature fibrils. These intermediates were high in beta-structure. Furthermore, Congo Red, a dye that stains amyloid fibrils, prevented the assembly of mutant htt into mature fibrils, but not the formation of protofibrils. Other proteins capable of forming ordered aggregates, such as amyloid beta and alpha-synuclein, form similar intermediates, suggesting that the mechanisms of mutant htt aggregation and possibly htt toxicity may overlap with other neurodegenerative disorders.
Collapse
Affiliation(s)
- Michelle A Poirier
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, 615 Ross Research Building, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
35
|
Katsuno M, Adachi H, Kume A, Li M, Nakagomi Y, Niwa H, Sang C, Kobayashi Y, Doyu M, Sobue G. Testosterone reduction prevents phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Neuron 2002; 35:843-54. [PMID: 12372280 DOI: 10.1016/s0896-6273(02)00834-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a polyglutamine disease caused by the expansion of a CAG repeat in the androgen receptor (AR) gene. We generated a transgenic mouse model carrying a full-length AR containing 97 CAGs. Three of the five lines showed progressive muscular atrophy and weakness as well as diffuse nuclear staining and nuclear inclusions consisting of the mutant AR. These phenotypes were markedly pronounced in male transgenic mice, and dramatically rescued by castration. Female transgenic mice showed only a few manifestations that markedly deteriorated with testosterone administration. Nuclear translocation of the mutant AR by testosterone contributed to the phenotypic difference with gender and the effects of hormonal interventions. These results suggest the therapeutic potential of hormonal intervention for SBMA.
Collapse
Affiliation(s)
- Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ferro P, Catalano MG, Dell'Eva R, Fortunati N, Pfeffer U. The androgen receptor CAG repeat: a modifier of carcinogenesis? Mol Cell Endocrinol 2002; 193:109-20. [PMID: 12161010 DOI: 10.1016/s0303-7207(02)00104-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The first exon of the human androgen receptor (AR) contains a translated CAG (poly-glutamine) repeat. The repeat length is polymorphic in the normal population ranging from 8 to 35 repeats. Expansions to over 40 repeats lead to spinal bulbar muscular atrophy (SBMA), a late onset neurodegenerative disease. The repeat is located between the two parts of a bipartite amino-terminal transactivation function and the repeat length, also within in the normal range, is inversely correlated to the transactivation power of the receptor. P160 type co-activators bind more strongly to shorter repeats. A correlation between AR CAG repeat length and total risk, age at diagnosis, recurrence after surgery and aggressive growth has been reported for tumors of classical androgen target tissues. In the prostate, where androgens exert a mitogenic effect, the cancer risk increases with decreasing AR-CAG repeat length. In contrast, in the breast, where the hormone probably acts as anti-mitogen, a higher risk and earlier onset of breast cancer has been reported for carriers of BRCA1 mutations who also have long CAG repeats in the receptor gene. Somatic alterations during carcinogenesis appear to be frequent in endometrial and in colon cancer. In the endometrium the AR CAG repeat prevalently undergoes expansions consistent with the putative protective function of androgens in this tissue. Frequent repeat reductions during colon carcinogenesis would be consistent with a mitogenic effect of androgens. Analysis of AR protein expression by Western blot reveals expression of the AR in healthy and neoplastic colon tissues. Normal mucosa of the colon expresses both AR-isoforms of 110 and 87 kDa, while the tumor samples have lost the expression of the 110-kDa isoform. The 87-kDa isoform is devoid of the amino-terminal portion of the receptor molecule that also contains the poly-glutamine tract. The temporal and causal relation between isoform switch and somatic repeat reductions during colon carcinogenesis is as yet unclear, but the two events could both enhance p160 mediated androgen signaling. The recent finding that smad3 interacts with the AR in a way similar to p160 links the AR to TGFbeta signaling. Interruption of this signaling pathway is a frequent event in colon carcinogenesis.
Collapse
Affiliation(s)
- Paola Ferro
- Laboratory of Molecular Biology, National Cancer Research Institute, Largo R. Benzi 10, 16132 Genoa, Italy
| | | | | | | | | |
Collapse
|
37
|
Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 2002. [PMID: 11978824 DOI: 10.1523/jneurosci.22-09-03473.2002] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new strategy based on lentiviral-mediated delivery of mutant huntingtin (htt) was used to create a genetic model of Huntington's disease (HD) in rats and to assess the relative contribution of polyglutamine (CAG) repeat size, htt expression levels, and protein length on the onset and specificity of the pathology. Lentiviral vectors coding for the first 171, 853, and 1520 amino acids of wild-type (19 CAG) or mutant htt (44, 66, and 82 CAG) driven by either the phosphoglycerate kinase 1 (PGK) or the cytomegalovirus (CMV) promoters were injected in rat striatum. A progressive pathology characterized by sequential appearance of ubiquitinated htt aggregates, loss of dopamine- and cAMP-regulated phosphoprotein of 32 kDa staining, and cell death was observed over 6 months with mutant htt. Earlier onset and more severe pathology occurred with shorter fragments, longer CAG repeats, and higher expression levels. Interestingly, the aggregates were predominantly located in the nucleus of PGK-htt171-injected rats, whereas they were present in both the nucleus and processes of CMV-htt171-injected animals expressing lower transgene levels. Finally, a selective sparing of interneurons was observed in animals injected with vectors expressing mutant htt. These data demonstrate that lentiviral-mediated expression of mutant htt provides a robust in vivo genetic model for selective neural degeneration that will facilitate future studies on the pathogenesis of cell death and experimental therapeutics for HD.
Collapse
|
38
|
Maselli AG, Davis R, Furukawa R, Fechheimer M. Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin-crosslinking protein. J Cell Sci 2002; 115:1939-49. [PMID: 11956325 DOI: 10.1242/jcs.115.9.1939] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the serendipitous development of the first cultured cell models of Hirano bodies. Myc-epitope-tagged forms of the 34 kDa actin bundling protein (amino acids 1-295) and the CT fragment (amino acids 124-295) of the 34 kDa protein that exhibits activated actin binding and calcium-insensitive actin filament crosslinking activity were expressed in Dictyosteliumand mammalian cells to assess the behavior of these modified forms in vivo. Dictyostelium cells expressing the CT-myc fragment: (1) form ellipsoidal regions that contain ordered assemblies of F-actin, CT-myc, myosin II, cofilin and α-actinin; (2) grow and develop more slowly than wildtype, but produce normal morphogenetic structures; (3) perform pinocytosis and phagocytosis normally; and (4) produce a level of total actin equivalent to wildtype, but a higher level of F-actin. The paracrystalline inclusions bear a striking resemblance to Hirano bodies, which are associated with a number of pathological conditions. Furthermore, expression of the CT fragment in murine L cells results in F-actin rearrangements characterized by loss of stress fibers, accumulation of numerous punctate foci, and large perinuclear aggregates, the Hirano bodies. Thus, failure to regulate the activity and/or affinity of an actin crosslinking protein can provide a signal for formation of Hirano bodies. More generally, formation of Hirano bodies is a cellular response to or a consequence of aberrant function of the actin cytoskeleton. The results reveal that formation of Hirano bodies is not necessarily related to cell death. These cultured cell models should facilitate studies of the biochemistry, genetics and physiological effects of Hirano bodies.
Collapse
Affiliation(s)
- Andrew G Maselli
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
39
|
Ding Q, Lewis JJ, Strum KM, Dimayuga E, Bruce-Keller AJ, Dunn JC, Keller JN. Polyglutamine expansion, protein aggregation, proteasome activity, and neural survival. J Biol Chem 2002; 277:13935-42. [PMID: 11782460 DOI: 10.1074/jbc.m107706200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is one of eight established triplet repeat neurodegenerative disorders, which are collectively caused by the genetic expansion of polyglutamine repeats. While the mechanism(s) by which polyglutamine expansion causes neurodegeneration in each of these disorders is being intensely investigated, the underlying cause of polyglutamine toxicity has not been fully elucidated. A number of studies have focused on the potential role of protein aggregation and disruption of the proteasome proteolytic pathway in polyglutamine-mediated neurodegeneration. However, at present it is not clear whether polyglutamine-mediated protein aggregation is sufficient to induce cell death, nor has it been clearly determined whether proteasome inhibition precedes, coincides, or occurs as the result of the formation of polyglutamine-associated protein aggregation. To address these important components of polyglutamine toxicity, in the present study we utilized neural SH-SY5Y cells stably transfected with polyglutamine-green fluorescent protein constructs to examine the effects of polyglutamine expansion on protein aggregation, proteasome activity, and neural cell survival. Data from the present study demonstrate that polyglutamine expansion does not dramatically impair proteasome activity or elevate protein aggregate formation under basal conditions, but does significantly impair the ability of the proteasome to respond to stress, and increases stress-induced protein aggregation following stress, all in the absence of neural cell death.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Anatomy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lebre AS, Brice A. Maladies par expansion de polyglutamine : données moléculaires et physiopathologiques. Med Sci (Paris) 2001. [DOI: 10.1051/medsci/200117111149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
41
|
Bevivino AE, Loll PJ. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta -fibrils. Proc Natl Acad Sci U S A 2001; 98:11955-60. [PMID: 11572942 PMCID: PMC59749 DOI: 10.1073/pnas.211305198] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein ataxin-3 contains a polyglutamine region; increasing the number of glutamines beyond 55 in this region gives rise to the neurodegenerative disease spinocerebellar ataxia type 3. This disease and other polyglutamine expansion diseases are characterized by large intranuclear protein aggregates (nuclear inclusions). By using full-length human ataxin-3, we have investigated the changes in secondary structure, aggregation behavior, and fibril formation associated with an increase from the normal length of 27 glutamines (Q27 ataxin-3) to a pathogenic length of 78 glutamines (Q78 ataxin-3). Q78 ataxin-3 aggregates strongly and could be purified only when expressed with a solubility-enhancing fusion-protein partner. A marked decrease in alpha-helical secondary structure accompanies expansion of the polyglutamine tract, suggesting destabilization of the native protein. Proteolytic removal of the fusion partner in the Q78 protein, but not in the Q27 protein, leads to the formation of SDS-resistant aggregates and Congo-red reactive fibrils. Infrared spectroscopy of fibrils reveals a high beta-sheet content and suggests a parallel, rather than an antiparallel, sheet conformation. We present a model for a polar zipper composed of parallel polyglutamine beta-sheets. Our data show that intact ataxin-3 is fully competent to form aggregates, and posttranslational cleavage or other processing is not necessary to generate a misfolding event. The data also suggest that the protein aggregation phenotype associated with glutamine expansion may derive from two effects: destabilization of the native protein structure and an inherent propensity for beta-fibril formation on the part of glutamine homopolymers.
Collapse
Affiliation(s)
- A E Bevivino
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
42
|
Ferro P, dell'Eva R, Pfeffer U. Are there CAG repeat expansion-related disorders outside the central nervous system? Brain Res Bull 2001; 56:259-64. [PMID: 11719259 DOI: 10.1016/s0361-9230(01)00663-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Expansions of poly-glutamine tracts in proteins that are expressed in the central nervous system cause neurodegenerative diseases. The altered proteins accumulate over long periods of time, forming nuclear inclusions, and lead to neuronal cell death. A similar mechanism could also be operant in non-dividing cells outside the central nervous system because nuclear inclusions are not limited to neurons. In addition, variations of the repeat length within the normal range may affect cellular function as it has been shown for the androgen receptor that is involved in neoplastic degeneration of several tissues. We have identified a poly-glutamine/poly-proline repeat in the homeobox gene DLX6. DLX genes are expressed in non-proliferative cells of the apical ectodermal ridge of developing limbs. Ablation of these cells leads to limb malformation. We propose that CAG triplet expansions in this gene could lead to cell death in the apical ectodermal ridge causing limb malformations. Indeed, autosomal dominant limb malformations with increasing severity in successive generations have been linked to the chromosomal region that contains DLX6. The analysis of a limited number of patients affected by split hand/foot malformation so far revealed only a slight modifier effect of repeat length within the normal range and no expansions have been detected.
Collapse
Affiliation(s)
- P Ferro
- Laboratory of Molecular Biology, National Cancer Research Institute, Genova, Italy
| | | | | |
Collapse
|
43
|
Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 2001. [PMID: 11466410 DOI: 10.1523/jneurosci.21-15-05389.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine disorder caused by a CAG repeat expansion in the coding region of a gene encoding ataxin-3. To study putative alterations of gene expression induced by expanded ataxin-3, we performed PCR-based cDNA subtractive hybridization in a cell culture model of SCA3. In rat mesencephalic CSM14.1 cells stably expressing expanded ataxin-3, we found a significant upregulation of mRNAs encoding the endopeptidase matrix metalloproteinase 2 (MMP-2), the transmembrane protein amyloid precursor protein, the interleukin-1 receptor-related Fos-inducible transcript, and the cytokine stromal cell-derived factor 1alpha (SDF1alpha). Immunohistochemical studies of the corresponding or associated proteins in human SCA3 brain tissue confirmed these findings, showing increased expression of MMP-2 and amyloid beta-protein (Abeta) in pontine neurons containing nuclear inclusions. In addition, extracellular Abeta-immunoreactive deposits were detected in human SCA3 pons. Furthermore, pontine neurons of SCA3 brains strongly expressed the antiinflammatory interleukin-1 receptor antagonist, the proinflammatory cytokine interleukin-1beta, and the proinflammatory chemokine SDF1. Finally, increased numbers of reactive astrocytes and activated microglial cells were found in SCA3 pons. These results suggest that inflammatory processes are involved in the pathogenesis of SCA3.
Collapse
|
44
|
Abstract
The last decade has seen great changes in the diagnosis of inherited ataxias. Previously mysterious diseases are now recognized to be caused by specific mutations for which genetic screening is readily available. In many cases, the discovery of the molecular basis has broadened the definition of possible clinical manifestations of particular inherited ataxias. The type of mutation underlying the more common forms of inherited ataxia-unstable trinucleotide repeat expansions-helps to explain some of the unusual features of these diseases. This article reviews recent genetic advances in ataxia. The aim is not to present an exhaustive summary but rather to provide guidance in evaluating ataxia, particularly with respect to recent molecular genetic findings.
Collapse
Affiliation(s)
- H Paulson
- Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa 52242-1101, USA.
| | | |
Collapse
|
45
|
Evert BO, Vogt IR, Kindermann C, Ozimek L, de Vos RA, Brunt ER, Schmitt I, Klockgether T, Wüllner U. Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 2001; 21:5389-96. [PMID: 11466410 PMCID: PMC6762679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine disorder caused by a CAG repeat expansion in the coding region of a gene encoding ataxin-3. To study putative alterations of gene expression induced by expanded ataxin-3, we performed PCR-based cDNA subtractive hybridization in a cell culture model of SCA3. In rat mesencephalic CSM14.1 cells stably expressing expanded ataxin-3, we found a significant upregulation of mRNAs encoding the endopeptidase matrix metalloproteinase 2 (MMP-2), the transmembrane protein amyloid precursor protein, the interleukin-1 receptor-related Fos-inducible transcript, and the cytokine stromal cell-derived factor 1alpha (SDF1alpha). Immunohistochemical studies of the corresponding or associated proteins in human SCA3 brain tissue confirmed these findings, showing increased expression of MMP-2 and amyloid beta-protein (Abeta) in pontine neurons containing nuclear inclusions. In addition, extracellular Abeta-immunoreactive deposits were detected in human SCA3 pons. Furthermore, pontine neurons of SCA3 brains strongly expressed the antiinflammatory interleukin-1 receptor antagonist, the proinflammatory cytokine interleukin-1beta, and the proinflammatory chemokine SDF1. Finally, increased numbers of reactive astrocytes and activated microglial cells were found in SCA3 pons. These results suggest that inflammatory processes are involved in the pathogenesis of SCA3.
Collapse
Affiliation(s)
- B O Evert
- Department of Neurology, University of Bonn, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|