1
|
Singh S, Khan S, Shahid M, Sardar M, Hassan MI, Islam A. Targeting tau in Alzheimer's and beyond: Insights into pathology and therapeutic strategies. Ageing Res Rev 2025; 104:102639. [PMID: 39674375 DOI: 10.1016/j.arr.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Tauopathies encompass a group of approximately 20 neurodegenerative diseases characterized by the accumulation of the microtubule-associated protein tau in brain neurons. The pathogenesis of intracellular neurofibrillary tangles, a hallmark of tauopathies, is initiated by hyperphosphorylated tau protein isoforms that cause neuronal death and lead to diseases like Alzheimer's, Parkinson's disease, frontotemporal dementia, and other complex neurodegenerative diseases. Current applications of tau biomarkers, including imaging, cerebrospinal fluid, and blood-based assays, assist in the evaluation and diagnosis of tauopathies. Emerging research is providing various potential strategies to prevent cellular toxicity caused by tau aggregation such as: 1) suppressing toxic tau aggregation, 2) preventing post-translational modifications of tau, 3) stabilizing microtubules and 4) designing tau-directed immunogens. This review aims to discuss the role of tau in tauopathies along with neuropathological features of the different tauopathies and the new developments in treating tau aggregation with the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Sunidhi Singh
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Sumaiya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Hamilton CA, Matthews FE, Attems J, Donaghy PC, Erskine D, Taylor JP, Thomas AJ. Associations between multimorbidity and neuropathology in dementia: consideration of functional cognitive disorders, psychiatric illness and dementia mimics. Br J Psychiatry 2024; 224:237-244. [PMID: 38584319 PMCID: PMC7615979 DOI: 10.1192/bjp.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BACKGROUND Multimorbidity, the presence of two or more health conditions, has been identified as a possible risk factor for clinical dementia. It is unclear whether this is due to worsening brain health and underlying neuropathology, or other factors. In some cases, conditions may reflect the same disease process as dementia (e.g. Parkinson's disease, vascular disease), in others, conditions may reflect a prodromal stage of dementia (e.g. depression, anxiety and psychosis). AIMS To assess whether multimorbidity in later life was associated with more severe dementia-related neuropathology at autopsy. METHOD We examined ante-mortem and autopsy data from 767 brain tissue donors from the UK, identifying physical multimorbidity in later life and specific brain-related conditions. We assessed associations between these purported risk factors and dementia-related neuropathological changes at autopsy (Alzheimer's-disease related neuropathology, Lewy body pathology, cerebrovascular disease and limbic-predominant age-related TDP-43 encephalopathy) with logistic models. RESULTS Physical multimorbidity was not associated with greater dementia-related neuropathological changes. In the presence of physical multimorbidity, clinical dementia was less likely to be associated with Alzheimer's disease pathology. Conversely, conditions which may be clinical or prodromal manifestations of dementia-related neuropathology (Parkinson's disease, cerebrovascular disease, depression and other psychiatric conditions) were associated with dementia and neuropathological changes. CONCLUSIONS Physical multimorbidity alone is not associated with greater dementia-related neuropathological change; inappropriate inclusion of brain-related conditions in multimorbidity measures and misdiagnosis of neurodegenerative dementia may better explain increased rates of clinical dementia in multimorbidity.
Collapse
Affiliation(s)
- Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alan J Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
4
|
Mai M, Guo X, Huang Y, Zhang W, Xu Y, Zhang Y, Bai X, Wu J, Zu H. DHCR24 Knockdown Induces Tau Hyperphosphorylation at Thr181, Ser199, Ser262, and Ser396 Sites via Activation of the Lipid Raft-Dependent Ras/MEK/ERK Signaling Pathway in C8D1A Astrocytes. Mol Neurobiol 2022; 59:5856-5873. [PMID: 35804281 PMCID: PMC9395500 DOI: 10.1007/s12035-022-02945-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/28/2022] [Indexed: 02/01/2023]
Abstract
The synthetase 3β-hydroxysterol-Δ24 reductase (DHCR24) is a key regulator involved in cholesterol synthesis and homeostasis. A growing body of evidence indicates that DHCR24 is downregulated in the brain of various models of Alzheimer's disease (AD), such as astrocytes isolated from AD mice. For the past decades, astrocytic tau pathology has been found in AD patients, while the origin of phosphorylated tau in astrocytes remains unknown. A previous study suggests that downregulation of DHCR24 is associated with neuronal tau hyperphosphorylation. Herein, the present study is to explore whether DHCR24 deficiency can also affect tau phosphorylation in astrocytes. Here, we showed that DHCR24 knockdown could induce tau hyperphosphorylation at Thr181, Ser199, Thr231, Ser262, and Ser396 sites in C8D1A astrocytes. Meanwhile, we found that DHCR24-silencing cells had reduced the level of free cholesterol in the plasma membrane and intracellular organelles, as well as cholesterol esters. Furthermore, reduced cellular cholesterol level caused a decreased level of the caveolae-associated protein, cavin1, which disrupted lipid rafts/caveolae and activated rafts/caveolae-dependent Ras/MEK/ERK signaling pathway. In contrast, overexpression of DHCR24 prevented the overactivation of Ras/MEK/ERK signaling by increasing cellular cholesterol content, therefore decreasing tau hyperphosphorylation in C8D1A astrocytes. Herein, we firstly found that DHCR24 knockdown can lead to tau hyperphosphorylation in the astrocyte itself by activating lipid raft-dependent Ras/MEK/ERK signaling, which might contribute to the pathogenesis of AD and other degenerative tauopathies.
Collapse
Affiliation(s)
- Meiting Mai
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Xiaorou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Yixuan Xu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Ying Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Xiaojing Bai
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-hang Road, Jinshan district, Shanghai, 201508 China
| |
Collapse
|
5
|
Caamaño-Moreno M, Gargini R. Tauopathies: the role of tau in cellular crosstalk and synaptic dysfunctions. Neuroscience 2022; 518:38-53. [PMID: 35272005 DOI: 10.1016/j.neuroscience.2022.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
Tauopathies are a group of neurodegenerative diseases among which are many of the most prevalent and with higher incidence worldwide, such as Alzheimer's disease (AD). According to the World Health Organization, this set of diseases will continue to increase their incidence, affecting millions of people by 2050. All of them are characterized by aberrant aggregation of tau protein in neurons and glia that are distributed in different brain regions according to their susceptibility. Numerous studies reveal that synaptic regulation not only has a neuronal component, but glia plays a fundamental role in it beyond its neuroinflammatory role. Despite this, it has not been emphasized how the glial inclusions of tau in this cell type directly affect this and many other essential functions, whose alterations have been related to the development of tauopathies. In this way, this review shows how tau inclusions in glia influence the synaptic dysfunctions that result in the cognitive symptoms characteristic of tauopathies. Thus, the mechanisms affected by inclusions in neurons, astrocytes, and oligodendrocytes are unraveled.
Collapse
Affiliation(s)
- Marta Caamaño-Moreno
- Instituto de investigaciones Biomédicas I+12, Hospital 12 de Octubre, Madrid, Spain
| | - Ricardo Gargini
- Instituto de investigaciones Biomédicas I+12, Hospital 12 de Octubre, Madrid, Spain; Neurooncology Unit, Instituto de Salud Carlos III-UFIEC, 28220 Madrid, Spain.
| |
Collapse
|
6
|
Perea JR, García E, Vallés-Saiz L, Cuadros R, Hernández F, Bolós M, Avila J. p38 activation occurs mainly in microglia in the P301S Tauopathy mouse model. Sci Rep 2022; 12:2130. [PMID: 35136118 PMCID: PMC8826411 DOI: 10.1038/s41598-022-05980-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the accumulation of hyperphosphorylated tau protein in the brain. Many of these pathologies also present an inflammatory component determined by the activation of microglia, the resident immune cells of the brain. p38 MAPK is one of the molecular pathways involved in neuroinflammation. Although this kinase is expressed mainly in glia, its activation in certain neurodegenerative diseases such as Alzheimer's Disease has been associated with its ability to phosphorylate tau in neurons. Using the P301S Tauopathy mouse model, here we show that p38 activation increases during aging and that this occurs mainly in microglia of the hippocampus rather than in neurons. Furthermore, we have observed that these mice present an activated microglial variant called rod microglia. Interestingly, p38 activation in this subpopulation of microglia is decreased. On the basis of our findings, we propose that rod microglia might have a neuroprotective phenotype in the context of tau pathology.
Collapse
Affiliation(s)
- Juan R Perea
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain.,Center for Networked Biomedical Research On Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Esther García
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain.,Center for Networked Biomedical Research On Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marta Bolós
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain.,Center for Networked Biomedical Research On Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid (UAM-CSIC) (Campus de Cantoblanco), 1 Nicolás Cabrera st, 28049, Madrid, Spain. .,Center for Networked Biomedical Research On Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
7
|
Hamilton CA, Matthews FE, Erskine D, Attems J, Thomas AJ. Neurodegenerative brain changes are associated with area deprivation in the United Kingdom: findings from the Brains for Dementia Research study. Acta Neuropathol Commun 2021; 9:198. [PMID: 34924033 PMCID: PMC8684681 DOI: 10.1186/s40478-021-01301-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022] Open
Abstract
Socioeconomic disadvantage is associated with greater risk of dementia. This has been theorised to reflect inequalities in cognitive reserve, healthcare access, lifestyle, and other health factors which may contribute to the clinical manifestation of dementia. We aimed to assess whether area deprivation in the United Kingdom was associated with greater risk or severity of the specific neurodegenerative diseases which lead to dementia in a multi-centre cohort with autopsy assessment. Participants underwent clinical assessment prior to brain tissue donation post-mortem. Each then underwent detailed, standardised neuropathological assessment. National area deprivation statistics were derived for each participant’s neighbourhood, for use as a predictor in binary and ordinal logistic models assessing the respective presence and severity of staging of key neuropathological changes, adjusting for theorised confounders. Individuals from among the 20% most deprived neighbourhoods in the United Kingdom had significantly higher neurofibrillary tangle and neuritic plaque staging, and increased risk of cerebral amyloid angiopathy. These findings were not explained by a greater risk of diabetes or hypertension, APOE genotype, alcohol misuse or tobacco smoking, sex, or age differences. A sensitivity analysis conditioning on baseline cognitive impairment did not meaningfully change the observed association. Socioeconomic disadvantage may contribute to dementia incidence through a greater severity of specific neuropathological changes (neurofibrillary tangles, neuritic plaques, and cerebral amyloid angiopathy), independent of other indirect influences. Mechanisms through which deprivation is associated with these require further exploration.
Collapse
|
8
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
9
|
Ferrer I, Andrés-Benito P, Sala-Jarque J, Gil V, Del Rio JA. Capacity for Seeding and Spreading of Argyrophilic Grain Disease in a Wild-Type Murine Model; Comparisons With Primary Age-Related Tauopathy. Front Mol Neurosci 2020; 13:101. [PMID: 32670019 PMCID: PMC7326954 DOI: 10.3389/fnmol.2020.00101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
Argyrophilic grain disease (AGD) is a common 4R-tauopathy, causing or contributing to cognitive impairment in the elderly. AGD is characterized neuropathologically by pre-tangles in neurons, dendritic swellings called grains, threads, thorn-shaped astrocytes, and coiled bodies in oligodendrocytes in the limbic system. AGD has a characteristic pattern progressively involving the entorhinal cortex, amygdala, hippocampus, dentate gyrus, presubiculum, subiculum, hypothalamic nuclei, temporal cortex, and neocortex and brainstem, thus suggesting that argyrophilic grain pathology is a natural model of tau propagation. One series of WT mice was unilaterally inoculated in the hippocampus with sarkosyl-insoluble and sarkosyl-soluble fractions from “pure” AGD at the age of 3 or 7/12 months and killed 3 or 7 months later. Abnormal hyper-phosphorylated tau deposits were found in ipsilateral hippocampal neurons, grains (dots) in the hippocampus, and threads, dots and coiled bodies in the fimbria, as well as the ipsilateral and contralateral corpus callosum. The extension of lesions was wider in animals surviving 7 months compared with those surviving 3 months. Astrocytic inclusions were not observed at any time. Tau deposits were mainly composed of 4Rtau, but also 3Rtau. For comparative purposes, another series of WT mice was inoculated with sarkosyl-insoluble fractions from primary age-related tauopathy (PART), a pure neuronal neurofibrillary tangle 3Rtau + 4Rtau tauopathy involving the deep temporal cortex and limbic system. Abnormal hyper-phosphorylated tau deposits were found in neurons in the ipsilateral hippocampus, coiled bodies and threads in the fimbria, and the ipsilateral and contralateral corpus callosum, which extended with time along the anterior-posterior axis and distant regions such as hypothalamic nuclei and nuclei of the septum when comparing mice surviving 7 months with mice surviving 3 months. Astrocytic inclusions were not observed. Tau deposits were mainly composed of 4Rtau and 3Rtau. These results show the capacity for seeding and spreading of AGD tau and PART tau in the brain of WT mouse, and suggest that characteristics of host tau, in addition to those of inoculated tau, are key to identifying commonalities and differences between human tauopathies and corresponding murine models.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Julia Sala-Jarque
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Rio
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Institute for Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol 2019; 19:10. [PMID: 30691440 PMCID: PMC6350285 DOI: 10.1186/s12896-019-0502-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background Spinal cord injury (SCI) remains a huge medical problem nowadays as there is no hospital providing the versatile strategies for repairing central nervous system and restoring function. Herein, we focused on PC-12 cells as an important research tool and studied the potential role of resveratrol (RSV) in inflammation induced by LPS. Results RSV improved inflammatory injury and functional recovery in rat model of SCI. RSV inhibited LPS-induced inflammatory injury in PC-12 cells via increasing viability, decreasing apoptosis, and suppressing IL-1β, IL-6, and TNF-α expression. miR-132 was down-regulated after LPS treatment but up-regulated after RSV administration. miR-132 silence curbed the protective effect of RSV. The results including increase of cell growth, suppression of inflammatory response, and blocking of NF-κB and p38MAPK pathways produced by RSV were all reversed by miR-132 silence. Conclusion RSV could up-regulate miR-132 and further ameliorate inflammatory response in PC-12 cells by inhibiting NF-κB and p38MAPK pathways.
Collapse
Affiliation(s)
- Guiqi Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Yi Liu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Lichen Xu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Chunhe Sha
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Haibin Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China
| | - Weibing Xu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, No.826, Xinan Road, Shahekou District, Dalian, 116033, Liaoning, China.
| |
Collapse
|
11
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
12
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
13
|
Abstract
Astrocytes are involved in many diseases of the central nervous system, not only as reactive cells to neuronal damage but also as primary actors in the pathological process. Astrogliopathy is a term used to designate the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Astrocytopathy is utilized to name non-reactive astrogliosis covering hypertrophy, atrophy and astroglial degeneration with loss of function in astrocytes and pathological remodeling, as well as senescent changes. Astrogliopathy and astrocytopathy are hallmarks of tauopathies—neurodegenerative diseases with abnormal hyper-phosphorylated tau aggregates in neurons and glial cells. The involvement of astrocytes covers different disease-specific types such as tufted astrocytes, astrocytic plaques, thorn-shaped astrocytes, granular/fuzzy astrocytes, ramified astrocytes and astrocytes with globular inclusions, as well as others which are unnamed but not uncommon in familial frontotemporal degeneration linked to mutations in the tau gene. Knowledge of molecular differences among tau-containing astrocytes is only beginning, and their distinct functional implications remain rather poorly understood. However, tau-containing astrocytes in certain conditions have deleterious effects on neuronal function and nervous system integrity. Moreover, recent studies have shown that tau-containing astrocytes obtained from human brain tauopathies have a capacity for abnormal tau seeding and spreading in wild type mice. Inclusive conceptions include a complex scenario involving neurons, glial cells and local environmental factors that potentiate each other and promote disease progression in tauopathies.
Collapse
|
14
|
Ferrer I. Sisyphus in Neverland. J Alzheimers Dis 2018; 62:1023-1047. [PMID: 29154280 PMCID: PMC5870014 DOI: 10.3233/jad-170609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
The study of life and living organisms and the way in which these interact and organize to form social communities have been central to my career. I have been fascinated by biology, neurology, and neuropathology, but also by history, sociology, and art. Certain current historical, political, and social events, some occurring proximally but others affecting people in apparently distant places, have had an impact on me. Epicurus, Seneca, and Camus shared their philosophical positions which I learned from. Many scientists from various disciplines have been exciting sources of knowledge as well. I have created a world of hypothesis and experiments but I have also got carried away by serendipity following unexpected observations. It has not been an easy path; errors and wanderings are not uncommon, and opponents close to home much more abundant than one might imagine. Ambition, imagination, resilience, and endurance have been useful in moving ahead in response to setbacks. In the end, I have enjoyed my dedication to science and I am grateful to have glimpsed beauty in it. These are brief memories of a Spanish neuropathologist born and raised in Barcelona, EU.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Service of Pathological Anatomy, Bellvitge University Hospital; CIBERNED; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
15
|
Ferrer I. Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 2017; 27:645-674. [PMID: 28804999 PMCID: PMC8029391 DOI: 10.1111/bpa.12538] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Astrogliopathy refers to alterations of astrocytes occurring in diseases of the nervous system, and it implies the involvement of astrocytes as key elements in the pathogenesis and pathology of diseases and injuries of the central nervous system. Reactive astrocytosis refers to the response of astrocytes to different insults to the nervous system, whereas astrocytopathy indicates hypertrophy, atrophy/degeneration and loss of function and pathological remodeling occurring as a primary cause of a disease or as a factor contributing to the development and progression of a particular disease. Reactive astrocytosis secondary to neuron loss and astrocytopathy due to intrinsic alterations of astrocytes occur in neurodegenerative diseases, overlap each other, and, together with astrocyte senescence, contribute to disease-specific astrogliopathy in aging and neurodegenerative diseases with abnormal protein aggregates in old age. In addition to the well-known increase in glial fibrillary acidic protein and other proteins in reactive astrocytes, astrocytopathy is evidenced by deposition of abnormal proteins such as β-amyloid, hyper-phosphorylated tau, abnormal α-synuclein, mutated huntingtin, phosphorylated TDP-43 and mutated SOD1, and PrPres , in Alzheimer's disease, tauopathies, Lewy body diseases, Huntington's disease, amyotrophic lateral sclerosis and Creutzfeldt-Jakob disease, respectively. Astrocytopathy in these diseases can also be manifested by impaired glutamate transport; abnormal metabolism and release of neurotransmitters; altered potassium, calcium and water channels resulting in abnormal ion and water homeostasis; abnormal glucose metabolism; abnormal lipid and, particularly, cholesterol metabolism; increased oxidative damage and altered oxidative stress responses; increased production of cytokines and mediators of the inflammatory response; altered expression of connexins with deterioration of cell-to-cell networks and transfer of gliotransmitters; and worsening function of the blood brain barrier, among others. Increased knowledge of these aspects will permit a better understanding of brain aging and neurodegenerative diseases in old age as complex disorders in which neurons are not the only players.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of BarcelonaBarcelonaSpain
- Institute of NeuropathologyPathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, Hospitalet de LlobregatBarcelonaSpain
- Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos IIIMadridSpain
| |
Collapse
|
16
|
Rodriguez RD, Suemoto CK, Molina M, Nascimento CF, Leite REP, de Lucena Ferretti-Rebustini RE, Farfel JM, Heinsen H, Nitrini R, Ueda K, Pasqualucci CA, Jacob-Filho W, Yaffe K, Grinberg LT. Argyrophilic Grain Disease: Demographics, Clinical, and Neuropathological Features From a Large Autopsy Study. J Neuropathol Exp Neurol 2016; 75:628-35. [PMID: 27283329 DOI: 10.1093/jnen/nlw034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Argyrophilic grain disease (AGD) is a frequent late-onset, 4-repeat tauopathy reported in Caucasians with high educational attainment. Little is known about AGD in non-Caucasians or in those with low educational attainment. We describe AGD demographics, clinical, and neuropathological features in a multiethnic cohort of 983 subjects ≥50 years of age from São Paulo, Brazil. Clinical data were collected through semistructured interviews with an informant and included in the Informant Questionnaire on Cognitive Decline in the Elderly, the Clinical Dementia Rating, and the Neuropsychiatric Inventory. Neuropathologic assessment relied on internationally accepted criteria. AGD was frequent (15.2%) and was the only neuropathological diagnosis in 8.9% of all cases (mean, 78.9 ± 9.4 years); it rarely occurred as an isolated neuropathological finding. AGD was associated with older age, lower socioeconomic status (SES), and appetite disorders. This is the first study of demographic, clinical, and neuropathological aspects of AGD in different ethnicities and subjects from all socioeconomic strata. The results suggest that prospective studies of AGD patients include levels of hormones related to appetite control as possible antemortem markers. Moreover, understanding the mechanisms behind higher susceptibility to AGD of low SES subjects may disclose novel environmental risk factors for AGD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Roberta Diehl Rodriguez
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Claudia Kimie Suemoto
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Mariana Molina
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Camila Fernandes Nascimento
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Renata Elaine Paraizo Leite
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Renata Eloah de Lucena Ferretti-Rebustini
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - José Marcelo Farfel
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Helmut Heinsen
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Ricardo Nitrini
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Kenji Ueda
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Carlos Augusto Pasqualucci
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Wilson Jacob-Filho
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Kristine Yaffe
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY)
| | - Lea Tenenholz Grinberg
- From the Discipline of Pathophysiology (RDR, MM, CFN), Behavioral and Cognitive Neurology Unit, Department of Neurology (RDR, RN), Brazilian Brain Bank of the Aging Brain Study Group, LIM-22 (CKS, REPL, REdLF-R, JMF, HH, RN, CAP, WJ-F, LTG), Discipline of Geriatrics, University of São Paulo, São Paulo, Brazil (CKS, REPL, JMF, WJ-F); Medical-Surgical Nursing Department, University of São Paulo School of Nursing, São Paulo, Brazil (REdLF-R); Department of Pathology, University of São Paulo, São Paulo, Brazil (HH, CAP, LTG); Department of Psychiatry, Morphological Brain Research Unit, University of Würzburg, Würzburg, Germany (HH); Department of Neurochemistry, Tokyo Institute of Psychiatry, Setagaya-ku/Tokyo, Japan (KU); Memory and Aging Center, Department of Neurology and Pathology (KY, LTG); and Department of Psychiatry, University of California, San Francisco, California (KY).
| |
Collapse
|
17
|
Abstract
Argyrophilic grain disease (AGD) is an under-recognized, distinct, highly frequent sporadic tauopathy, with a prevalence reaching 31.3% in centenarians. The most common AGD manifestation is slowly progressive amnestic mild cognitive impairment, accompanied by a high prevalence of neuropsychiatric symptoms. AGD diagnosis can only be achieved postmortem based on the finding of its three main pathologic features: argyrophilic grains, oligodendrocytic coiled bodies and neuronal pretangles. AGD is frequently seen together with Alzheimer's disease-type pathology or in association with other neurodegenerative diseases. Recent studies suggest that AGD may be a defense mechanism against the spread of other neuropathological entities, particularly Alzheimer's disease. This review aims to provide an in-depth overview of the current understanding on AGD.
Collapse
Affiliation(s)
- Roberta Diehl Rodriguez
- MD, Department of Pathology, University of São Paulo, SP, Brazil; Brazilian Aging Brain Study Group, LIM-22, University of São Paulo, São Paulo, Brazil
| | - Lea Tenenholz Grinberg
- MD, PhD, Department of Pathology, University of São Paulo, SP, Brazil; Memory and Aging Center, Department of Neurology and Pathology, University of California, San Francisco; Brazilian Aging Brain Study Group, LIM-22, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Verma M, Steer EK, Chu CT. ERKed by LRRK2: a cell biological perspective on hereditary and sporadic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1273-81. [PMID: 24225420 DOI: 10.1016/j.bbadis.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/14/2013] [Accepted: 11/03/2013] [Indexed: 02/08/2023]
Abstract
The leucine rich repeat kinase 2 (LRRK2/dardarin) is implicated in autosomal dominant familial and sporadic Parkinson's disease (PD); mutations in LRRK2 account for up to 40% of PD cases in some populations. LRRK2 is a large protein with a kinase domain, a GTPase domain, and multiple potential protein interaction domains. As such, delineating the functional pathways for LRRK2 and mechanisms by which PD-linked variants contribute to age-related neurodegeneration could result in pharmaceutically tractable therapies. A growing number of recent studies implicate dysregulation of mitogen activated protein kinases 3 and 1 (also known as ERK1/2) as possible downstream mediators of mutant LRRK2 effects. As these master regulators of growth, differentiation, neuronal plasticity and cell survival have also been implicated in other PD models, a set of common cell biological pathways may contribute to neuronal susceptibility in PD. Here, we review the literature on several major cellular pathways impacted by LRRK2 mutations--autophagy, microtubule/cytoskeletal dynamics, and protein synthesis--in context of potential signaling crosstalk involving the ERK1/2 and Wnt signaling pathways. Emerging implications for calcium homeostasis, mitochondrial biology and synaptic dysregulation are discussed in relation to LRRK2 interactions with other PD gene products. It has been shown that substantia nigra neurons in human PD and Lewy body dementia patients exhibit cytoplasmic accumulations of ERK1/2 in mitochondria, autophagosomes and bundles of intracellular fibrils. Both experimental and human tissue data implicate pathogenic changes in ERK1/2 signaling in sporadic, toxin-based and mutant LRRK2 settings, suggesting engagement of common cell biological pathways by divergent PD etiologies.
Collapse
Affiliation(s)
- Manish Verma
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Erin K Steer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
19
|
Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation. Acta Neuropathol 2013; 125:581-93. [PMID: 23371364 DOI: 10.1007/s00401-013-1080-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022]
Abstract
Post-translational modifications play a key role in tau protein aggregation and related neurodegeneration. Because hyperphosphorylation alone does not necessarily cause tau aggregation, other post-translational modifications have been recently explored. Tau acetylation promotes aggregation and inhibits tau's ability to stabilize microtubules. Recent studies have shown co-localization of acetylated and phosphorylated tau in AD and some 4R tauopathies. We developed a novel monoclonal antibody against acetylated tau at lysine residue 274, which recognizes both 3R and 4R tau, and used immunohistochemistry and immunofluorescence to probe 22 cases, including AD and another eight familial or sporadic tauopathies. Acetylated tau was identified in all tauopathies except argyrophilic grain disease (AGD). AGD is an age-associated, common but atypical 4R tauopathy, not always associated with clinical progression. Pathologically, AGD is characterized by neuropil grains, pre-neurofibrillary tangles, and oligodendroglial coiled bodies, all recognized by phospho-tau antibodies. The lack of acetylated tau in these inclusions suggests that AGD represents a distinctive tauopathy. Our data converge with previous findings to raise the hypothesis that AGD could play a protective role against the spread of AD-related tau pathology. Tau acetylation as a key modification for the propagation tau toxicity deserves further investigation.
Collapse
|
20
|
López‐González I, Carmona M, Blanco R, Luna‐Muñoz J, Martínez‐Mandonado A, Mena R, Ferrer I. Characterization of thorn-shaped astrocytes in white matter of temporal lobe in Alzheimer's disease brains. Brain Pathol 2013; 23:144-53. [PMID: 22882361 PMCID: PMC8028879 DOI: 10.1111/j.1750-3639.2012.00627.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022] Open
Abstract
Thorn-shaped astrocytes (TsA) are mainly localized in the periventricular white matter of the temporal lobe in a subgroup of aged individuals usually in the context of Alzheimer's disease (AD). Immunohistochemistry of TsA shows 4Rtau deposition, tau phosphorylation at different sites recognized with phosphospecific anti-tau antibodies Thr181, Ser202, Ser214, Thr231, Ser396, Ser422, and clones AT8 and PHF-1, and conformational changes revealed with Alz50 and MC-1 antibodies; TsA are also immunostained with antibodies to active tau kinases MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3β. These findings are common to neurofibrillary tangles in AD. However, TsA are not stained with 3Rtau antibodies, and they are seldom stained or not at all with phosphospecific tauSer262 and with Tau-C3 antibody, which recognizes the latter tau truncation at aspartic acid 421. Previous studies have shown that tau phosphorylation at Ser262 reduces tau binding to microtubules and increases caspase-3 activity, whereas tau truncation at aspartic acid 421 is associated with tau ubiquitination, and toxic effects of tau. In this line, ubiquitin is not accumulated in TsA, and in situ end-labeling of nuclear DNA fragmentation shows absence of degeneration in TsA. These observations support the concept that tau lesions in neurons differ from those seen in TsA in AD.
Collapse
Affiliation(s)
- Irene López‐González
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| | - Margarita Carmona
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| | - Rosa Blanco
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| | - José Luna‐Muñoz
- Department of Physiology, Biophysics and NeurosciencesCINVESTAV‐IPNMexicoMexico
| | | | - Raúl Mena
- Department of Physiology, Biophysics and NeurosciencesCINVESTAV‐IPNMexicoMexico
| | - Isidre Ferrer
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| |
Collapse
|
21
|
The functional interaction between CDK11p58 and β-1,4-galactosyltransferase I involved in astrocyte activation caused by lipopolysaccharide. Inflammation 2013; 35:1365-77. [PMID: 22527143 DOI: 10.1007/s10753-012-9450-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glial cells are mediating the main activation of the central nervous system (CNS), being astrocytes the mayor glial cells in the brain. Glial activation may result beneficial since it could promote tissue repair and pathogen elimination. However, excessive glial activation mechanism can also have do harm to the tissue. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a key inflammatory mediator that participates in the initiation and maintenance of inflammatory reaction in some diseases. Moreover, CDK11(p58) has been reported to be associated with β-1,4-GalT-I. We have found that CDK11(p58) and β-1,4-GalT-I are induced in lipopolysaccharide (LPS)-challenged rat primary astrocytes in a affinis dose- and time-dependent manner. CDK11(p58) regulates the expression of β-1,4-GalT-I by interacting with it. After the knockdown of CDK11(p58) expression, the expression of β-1,4-GalT-I decreases, and astrocyte activation downregulates. Inversely, the expression of β-1,4-GalT-I increases, and astrocyte activation enhances due to the overexpression of CDK11(p58). Knockdown of β-1,4-GalT-I reduces the activation potentiation caused by the overexpression of CDK11(p58), illustrating the function of CDK11(p58) to promote astrocyte activation depends on β-1,4-GalT-I. The interaction between CDK11(p58) and β-1,4-GalT-I to upregulate astrocyte activation is related to activating p38 and JNK pathways. These findings indicated that the functional interaction between CDK11(p58) and β-1,4-GalT-I may play an important role during astrocyte activation after LPS administration.
Collapse
|
22
|
Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegener 2012; 7:48. [PMID: 22998728 PMCID: PMC3544596 DOI: 10.1186/1750-1326-7-48] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/05/2012] [Indexed: 11/10/2022] Open
Abstract
Background Macroautophagy is an evolutionarily conserved mechanism for bulk intracellular degradation of proteins and organelles. Pathological studies have implicated macroautophagy defects in human neurodegenerative disorders of aging including Alzheimer’s disease and tauopathies. Neuronal deficiency of macroautophagy throughout mouse embryonic development results in neurodevelopmental defects and early postnatal mortality. However, the role of macroautophagy in mature CNS neurons, and the relationship with human disease neuropathology, remains unclear. Here we describe mice deficient in an essential macroautophagy component, Atg7, specifically within postnatal CNS neurons. Results Postnatal forebrain-specific Atg7 conditional knockout (cKO) mice displayed age-dependent neurodegeneration and ubiquitin- and p62-positive inclusions. Phosphorylated tau was significantly accumulated in Atg7 cKO brains, but neurofibrillary tangles that typify end-stage human tauopathy were not apparent. A major tau kinase, glycogen synthase kinase 3β (GSK3β), was also accumulated in Atg7 cKO brains. Chronic pharmacological inhibition of tau phosphorylation, or genetic deletion of tau, significantly rescued Atg7-deficiency-mediated neurodegeneration, but did not suppress inclusion formation. Conclusions These data elucidate a role for macroautophagy in the long-term survival and physiological function of adult CNS neurons. Neurodegeneration in the context of macroautophagy deficiency is mediated through a phospho-tau pathway.
Collapse
|
23
|
Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011; 20:4947-77. [PMID: 21949350 PMCID: PMC3221533 DOI: 10.1093/hmg/ddr432] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation.
Collapse
Affiliation(s)
- Surendra S Ambegaokar
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd., MRB 10.138, Galveston, TX 77555, USA
| | | |
Collapse
|
24
|
Mitochondrial dysfunction and oxidative and endoplasmic reticulum stress in argyrophilic grain disease. J Neuropathol Exp Neurol 2011; 70:253-63. [PMID: 21412174 DOI: 10.1097/nen.0b013e31820f8765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Argyrophilic grain disease (AGD) is characterized by the accumulation of hyperphosphorylated 4R tau in dendritic varicosities (i.e."grains") in neurons and pretangles in certain areas of the cerebral cortex and other brain regions. We investigated oxidative and endoplasmic reticulum (ER) stress and dysregulation of mitochondrialbiogenesis as potential mechanisms involved in the AGD pathogenesis. Samples from AGD patients (n = 8) and nonpathologic, age-matched controls (n = 5) were compared using biochemical and immunohistochemical techniques with a panel of antibodies to markers of ER stress responses, stress chaperones, oxidative stress and associated cellular responses, respiratory chain complexes, mitochondrial regulators, and modulators of mitochondrial biogenesis. Because AGD is often associated with other tauopathies, mainly Alzheimer disease (AD), results were also compared with those of a group of similar Braak AD stage cases without grains (n = 5). In both AD and AGD cases, we found activation of key molecules that are involved in the unfolded protein response and lead to elevated ER chaperone levels, increased oxidative stress damage, mainly related to lipoxidation and targeting glycolytic enzymes. Altered expression of components of the respiratory chain markers modulating mitochondrial biogenesis were selectively affected in AGD. The findings suggest that, despite the common pathogenic trends in AD and AGD, there is molecular specificity for AGD.
Collapse
|
25
|
Hampl R, Bicíková M. Neuroimmunomodulatory steroids in Alzheimer dementia. J Steroid Biochem Mol Biol 2010; 119:97-104. [PMID: 20153425 DOI: 10.1016/j.jsbmb.2010.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/09/2023]
Abstract
Though pathobiochemical and neurochemical changes and accompanied morphological alterations in Alzheimer dementia are well known, the triggering mechanisms, if any, remain obscure. Important factors influencing the development and progression of Alzheimer disease include hormonal steroids and their metabolites, some of which may serve as therapeutic agents. This review focusses on major biochemical alterations in the brain of Alzheimer patients with respect to the involvement of steroids. It includes their role in impairment of fuel supply and in brain glycoregulation, with especial emphasis on glucocorticoids and their counter-regulatory steroids as dehydroepiandrosterone and its metabolites. Further, the role of steroids in beta-amyloid pathology is reviewed including alterations in tau-protein(s) phosphorylation. The (auto)immune theory of Alzheimer dementia is briefly outlined, pointing to the possible involvement of steroids in brain ageing, immunosenescence and neuronal apoptosis. Some effects of steroids are briefly mentioned on the formation and removal of reactive oxygen species and their effect on calcium flux and cytotoxicity. The recent biochemical research of Alzheimer disease focusses on molecular signalling at which steroids also take part. New findings may be anticipated when the mosaic describing the molecular mechanisms behind these events becomes more complete.
Collapse
|
26
|
Lomoio S, Scherini E, Necchi D. Beta-amyloid overload does not directly correlate with SAPK/JNK activation and tau protein phosphorylation in the cerebellar cortex of Ts65Dn mice. Brain Res 2009; 1297:198-206. [PMID: 19703431 DOI: 10.1016/j.brainres.2009.08.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022]
Abstract
It is known that in the nervous tissue beta-amyloid overproduction and its extracellular or intracellular deposition can activate mitogen-activated protein kinases involved in tau protein phosphorylation. Hyperphosphorylated tau is not more able to bind neuron microtubules, leading to their disassembly and axon degeneration. We have previously described that at 10 months of age in the cerebellum of Ts65Dn mice, which are partially trisomic for the chromosome 16 and are considered a valuable model for Down syndrome, Purkinje cells undergo axon degeneration. Taking into consideration that Ts65Dn mice carry three copies of the gene encoding for the amyloid precursor protein, to characterize potential signaling events triggering the degenerative phenomenon, specific antibodies were used to examine the role of beta-amyloid overload in the activation of the stress activated kinase/c-jun N-terminal kinase (SAPK/JNK) and tau protein phosphorylation in the cerebellar cortex of 12-month-old Ts65Dn mice. We found small extracellular deposits of beta-amyloid at the borderline between the granule cell layer and the white matter, i.e., in the vicinity of the area where calbindin immunostaining of Purkinje cell axons revealed clusters of newly formed terminals of injured axons. Moreover, intracellular deposits were present in the somata of Purkinje cells. The level of activation of SAPK/JNK was greatly increased. The activation occurred in the "pinceaux" made by basket interneuron axons at the axon hillock of Purkinje cells. Antibody directed against tau protein phosphorylated at Ser-396/Ser-404 revealed positive NG2 cells and Bergman fibers in the molecular layer and oligodendrocytes in the white matter. Data indicate that beta-amyloid extracellular deposits could have exerted a local cytotoxic effect, leading to Purkinje cell axon degeneration. The activation of SAPK/JNK in basket cell "pinceaux" may be a consequence of altered functionality of Purkinje cells and may represent an attempt of basket cells of synaptic remodeling. Moreover, the findings for tau protein phosphorylation suggest that Ts65Dn mice are affected by a cerebellar glial tauopathy.
Collapse
Affiliation(s)
- Selene Lomoio
- Dipartimento di Biologia Animale, Laboratorio di Biologia Cellulare e Neurobiologia, Università di Pavia, piazza Botta 10, 27100 Pavia, Italy
| | | | | |
Collapse
|
27
|
Santpere G, Ferrer I. Delineation of early changes in cases with progressive supranuclear palsy-like pathology. Astrocytes in striatum are primary targets of tau phosphorylation and GFAP oxidation. Brain Pathol 2009; 19:177-87. [PMID: 18462470 PMCID: PMC8094872 DOI: 10.1111/j.1750-3639.2008.00173.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Accepted: 02/19/2008] [Indexed: 11/30/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a complex tauopathy usually confirmed at post-mortem in advanced stages of the disease. Early PSP-like changes that may outline the course of the disease are not known. Since PSP is not rarely associated with argyrophilic grain disease (AGD) of varible intensity, the present study was focused on AGD cases with associated PSP-like changes in an attempt to delineate early PSP-like pathology in this category of cases. Three were typical clinical and pathological PSP. Another case presented with cognitive impairment, abnormal behavior and two falls in the last three months. One case suffered from mild cognitive impairment, and two had no evidence of neurological abnormality. Neuropathological study revealed, in addition to AGD, increased intensity and extent of lesion in three groups of regions, striatum, pallidus/subthalamus and selected nuclei of the brain stem, correlating with neurological impairment. Biochemical studies disclosed oxidative damage in the striatum and amygdala. Together the present observations suggest (i) early PSP-like lesions in the striatum, followed by the globus pallidus/subthalamus and selected nuclei of the brain stem; (ii) early involvement of neurons and astrocytes, but late appearance of tufted astrocytes; and (iii) oxidative damage of glial acidic protein in the striatum.
Collapse
Affiliation(s)
- Gabriel Santpere
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, carrer Feixa Llarga s/n, Hospitalet de Llobregat, Spain.
| | | |
Collapse
|
28
|
Abstract
Argyrophilic grain disease (AGD) is a sporadic, very late-onset tauopathy,
accounting for approximately 4–13% of neurodegenerative dementias. AGD may
manifest with a range of symptoms such as cognitive decline and behavioral
abnormalities. To date, no study has been able to demonstrate a distinct
clinical syndrome associated with AGD. The diagnosis is exclusively based on
postmortem findings, the significance of which remains controversial because up
to 30% of AGD cases are diagnosed in subjects without any cognitive impairment,
while AGD findings often overlap with those of other neurodegenerative
processes. Nevertheless, the presence of AGD is likely to have a significant
effect on cognitive decline. The neuropathological hallmarks of AGD are
argyrophilic grains, pre-neurofibrillary tangles in neurons and coiled bodies in
oligodendrocytes found mainly in the entorhinal cortex and hippocampus. This
review aims to provide an up-to-date overview of AGD, emphasizing pathological
aspects. Additionally, the findings of a Brazilian case series are
described.
Collapse
Affiliation(s)
- Lea T Grinberg
- MD, PhD, Department of Pathology, University of São Paulo Medical School, São Paulo, SP, Brazil.,MD Labor fuer Morphologische Hirnforschung der Klinik und Poliklinik fuer Psychiatrie und Psychotherapie, University Of Wuerzburg, Wuerzburg, Germany
| | - Helmut Heinsen
- MD Labor fuer Morphologische Hirnforschung der Klinik und Poliklinik fuer Psychiatrie und Psychotherapie, University Of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
29
|
Yi KD, Simpkins JW. Protein phosphatase 1, protein phosphatase 2A, and calcineurin play a role in estrogen-mediated neuroprotection. Endocrinology 2008; 149:5235-43. [PMID: 18566123 PMCID: PMC2582922 DOI: 10.1210/en.2008-0610] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly clear that protein phosphatases are important modulators of cellular function and that disruption of these proteins are involved in neurodegenerative disease processes. Serine/threonine protein phosphatases (PP) such as protein phosphatase PP1, PP2A, and calcineurin are involved in hyperphosphorylation of tau- as well as beta-amyloid-induced cell death. We have previously shown serine/threonine protein phosphatases to be involved in estrogen-mediated neuroprotection. The purpose of this study was to delineate the role of PP1, PP2A, and calcineurin in the mechanism of estrogen mediated neuroprotection against oxidative stress and excitotoxicity. Treatment with protein phosphatases inhibitor II, endothall, or cyclosporin A, which are specific inhibitors of PP1, PP2A, and calcineurin, respectively, did not have an effect on cell viability. However, in combination, these inhibitors adversely affected cell survival, which suggests the importance of serine/threonine protein phosphatases in maintenance of cellular function. Inhibitors of PP1, PP2A, and calcineurin attenuated the protective effects of estrogen against glutamate-induced -neurotoxicity but did not completely abrogate the estrogen-mediated protection. The attenuation of estrogen-induced neuroprotection was achieved through decrease in the activity of theses serine/threonine phosphatases without the concomitant decrease in protein expression. In an animal model, transient middle cerebral artery occlusion caused a 50% decrease in levels of PP1, PP2A, and PP2B ipsilateral to the lesion in a manner that was prevented by estradiol pretreatment. Therefore, we conclude that in the face of cytotoxic challenges in vitro and in vivo, estrogens maintain the function of PP1, PP2A, and calcineurin.
Collapse
Affiliation(s)
- Kun Don Yi
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | |
Collapse
|
30
|
Zhang M, Hallows JL, Wang X, Bu B, Wang W, Vincent I. Mitogen-activated protein kinase activity may not be necessary for the neuropathology of Niemann-Pick type C mice. J Neurochem 2008; 107:814-22. [PMID: 18778306 DOI: 10.1111/j.1471-4159.2008.05657.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hyperphosphorylation of neurofilament and tau, and formation of cytoskeletal lesions, are notable features of several human neurodegenerative diseases, including Niemann-Pick Disease Type C (NPC). Previous studies suggested that the MAPKs, extracellular signal regulated kinase 1 and 2 (ERK1/2) may play a significant role in this aspect of NPC. To test this idea, we treated npc mice with PD98059, a specific and potent inhibitor of MAPK activation. Although activity of ERK1/2 was inhibited by 40%, a 2-week intracerebroventricular infusion of PD98059 just prior to onset of cytoskeletal pathology and symptoms in npc mice did not delay or inhibit prominent hallmarks of NPC. Unexpectedly, ERK1/2 inhibition led to aggravation of tau hyperphosphorylation, particularly in oligodendroctyes, in a manner similar to that of certain human tauopathies. Our results suggest that ERK1/2 does not play a major role in NPC neuropathology, and therefore, that MAPK inhibition is unlikely to be a useful strategy for managing the disease.
Collapse
Affiliation(s)
- Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Filipovic R, Zecevic N. Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. Exp Neurol 2008; 211:41-51. [PMID: 18359018 DOI: 10.1016/j.expneurol.2007.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/20/2007] [Accepted: 12/16/2007] [Indexed: 02/07/2023]
Abstract
Bacterial infections during pregnancy often result in premature birth and neonatal white matter damage. During these infections, microglia, the resident immune cells of the CNS, undergo activation and contribute to further neuronal damage of the CNS. Minocycline, a second-generation tetracycline antibiotic, inhibits microglial activation and protects neurons in rodents but data about its effects on human cells are limited. We studied the mechanism of the neuroprotective effect of minocycline in either purified cell cultures or co-cultures of microglia and neurons from human fetal brain during inflammation induced by lipopolysaccharide (LPS). In neuron/microglial co-cultures, minocycline treatment prevented activation and proliferation of microglia and protected neurons as demonstrated by decreased neuronal cell death and a shift of Bcl-2 family proteins toward anti-apoptotic ratio. Notably, neither minocycline nor LPS had an effect on neurons in purified neuronal cultures. The ability of minocycline to regulate activation of human fetal microglia might be relevant in therapies used towards treating neonatal CNS infections.
Collapse
Affiliation(s)
- Radmila Filipovic
- University of Connecticut Health Center, Department of Neuroscience, 263 Farmington Avenue, Farmington, CT 06030-3401, USA.
| | | |
Collapse
|
33
|
|
34
|
Perez-Buira S, Barrachina M, Rodriguez A, Albasanz JL, Martín M, Ferrer I. Expression levels of adenosine receptors in hippocampus and frontal cortex in argyrophilic grain disease. Neurosci Lett 2007; 423:194-9. [PMID: 17707587 DOI: 10.1016/j.neulet.2007.06.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 06/24/2007] [Accepted: 06/25/2007] [Indexed: 12/24/2022]
Abstract
Expression of adenosine receptors of the A1, A2A and A2B type has been examined in the post-mortem frontal cortex and hippocampus in argyrophilic grain disease (AGD), a tauopathy affecting the hippocampus but usually not the frontal cortex, in an attempt to learn about the modulation of the adenosine pathway in this disorder. Significant increased levels of A1, but not of A2A and A2B, have been observed in AGD in the hippocampus but not in the frontal cortex, when compared with age-matched controls. This is accompanied by increased levels of adenylyl cyclase (AC), an effector of A1, and by increased (although not significant) percentage of inhibition of forskolin-stimulated AC by the A1 agonist cyclohexyladenosine in the hippocampus in AGD. These findings indicate sensitization of A1/AC in the hippocampus in AGD, and support a putative activation of the A1/AC pathway that may facilitate protection of this preferentially involved region in AGD.
Collapse
Affiliation(s)
- S Perez-Buira
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Facultad de Medicina, Universitat de Barcelona, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Cole-Edwards KK, Musto AE, Bazan NG. c-Jun N-terminal kinase activation responses induced by hippocampal kindling are mediated by reactive astrocytes. J Neurosci 2006; 26:8295-304. [PMID: 16899724 PMCID: PMC6673801 DOI: 10.1523/jneurosci.1986-05.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal kindling, a model of mesial temporal lobe epilepsy, is developed through repetitive stimulation of the hippocampus and leads to increased after-discharges as measured by EEG and an enduring seizure-prone state. Synthesis of new proteins is thought to form the basis for sustained seizure-induced physiological and/or pathological changes in synaptic reorganization and apoptotic/necrotic neuronal death. Here we examined the effect of kindling on stimulus-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation, events postulated to lie upstream of seizure-induced changes in gene transcription. We found that stimulus-induced phosphorylation of JNK, but not of p38, is significantly enhanced in kindled animals compared with their naive counterparts in the CA1 subregion of the hippocampus. Immunofluorescent staining confirmed this region-specific pattern of JNK activation and revealed that reactive astrocytes mediate this effect. Astrocyte proliferation and hypertrophy, as well as upregulation of vimentin protein levels, common markers of astrogliosis, were present after 4 d of kindling. Moreover, this reactive astrogliosis was associated with neuronal death as visualized with Fluoro-jade B and anti-active caspase-3 staining. Stimulus-induced phosphorylation of the JNK substrate paxillin was enhanced in kindled animals, but not that of c-Jun. Moreover, a pan-antibody against MAPK/CDK (mitogen-activated protein kinases/cyclin-dependent kinase) substrates indicated the presence of phosphorylated proteins in cytosolic, membrane, and nuclear fractions. The consequence of these phosphorylation events is not completely understood, but these findings suggest a selective astrocytic signaling response to aberrant synaptic activity, signaling that may modulate kindling progression and/or neuronal death.
Collapse
|
36
|
Ferrer I, Barrachina M, Puig B, Martínez de Lagrán M, Martí E, Avila J, Dierssen M. Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis 2005; 20:392-400. [PMID: 16242644 DOI: 10.1016/j.nbd.2005.03.020] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 02/19/2005] [Accepted: 03/13/2005] [Indexed: 11/23/2022] Open
Abstract
DYRK1A, dual-specificity tyrosine-regulated kinase 1A, maps to human chromosome 21 within the Down syndrome (DS) critical region. Dyrk1 phosphorylates the human microtubule-associated protein tau at Thr212 in vitro, a residue that is phosphorylated in fetal tau and hyper-phosphorylated in Alzheimer disease (AD) and tauopathies, including Pick disease (PiD). Furthermore, phosphorylation of Thr212 primes tau for phosphorylation by glycogen synthase kinase 3 (GSK-3). The present study examines Dyrk1A in the cerebral cortex of sporadic AD, adult DS with associated AD, and PiD. Increased Dyrk1A immunoreactivity has been found in the cytoplasm and nuclei of scattered neurons of the neocortex, entorhinal cortex, and hippocampus in AD, DS, and PiD. Dyrk1A is found in sarkosyl-insoluble fractions which are enriched in phosphorylated tau in AD brains, thus suggesting a possible association of Dyrk1A with neurofibrillary tangle pathology. Yet, no clear relationship has been observed between tau phosphorylation at Thr212, and GSK-3 and Dyrk1A expression in diseased brains. Transgenic mice bearing a triple tau mutation (G272V, P301L, and R406W) and expressing hyper-phosphoyrylated tau in neurons of the entorhinal cortex, hippocampus, and cerebral neocortex show increased expression of Dyrk1A in individual neurons in the same regions. However, transgenic mice over-expressing Dyrk1A do not show increased phosphorylation of tau at Thr212, thus suggesting that Dyrk1A over-expression does not trigger per se hyper-phosphorylation of tau at Thr212 in vivo. The present observations indicate modifications in the expression of constitutive Dyrk1A in the cytoplasm and nuclei of neurons in various neurodegenerative diseases associated with tau phosphorylation.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital Universitari de Bellvitge, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chung YH, Joo KM, Lim HC, Cho MH, Kim D, Lee WB, Cha CI. Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice. Brain Res 2005; 1050:203-9. [PMID: 15978558 DOI: 10.1016/j.brainres.2005.05.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 11/25/2022]
Abstract
In the present study, we performed immunohistochemical studies to investigate the changes of phosphorylated extracellular signal-regulated kinases (pERK) in the central nervous system of SOD1(G93A) transgenic mice. In symptomatic transgenic mice, pERK-immunoreactive astrocytes were detected in the spinal cord, brainstem, central gray and cerebellar nuclei. In contrast to symptomatic mice, no pERK-immunoreactive astrocytes were observed in any brain region of wtSOD1 and presymptomatic mice, and the number and intensity of stained neurons were not different at the age of 8 weeks and 13 weeks. Interestingly, region-specific alterations in pERK immunoreactivity were observed in the hippocampal region and cerebellum. These results provide the first evidence that pERK-immunoreactive astrocytes were found in the CNS of SOD1(G93A) transgenic mice after clinical symptoms, showing a possible consequence of the pathological process of ALS. This study has also demonstrated that pERK increases in the hippocampus and cerebellum, suggesting a role of pERK in an abnormality of cognitive and/or motor function in ALS, respectively. However, the mechanisms underlying the increased immunoreactivity for pERK and the functional implications require elucidation.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Leonardi-Essmann F, Emig M, Kitamura Y, Spanagel R, Gebicke-Haerter PJ. Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia. J Neuroimmunol 2005; 160:92-101. [PMID: 15710462 DOI: 10.1016/j.jneuroim.2004.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 11/09/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Fractalkine is the only known member of the CX(3)C-chemokine family, and so is its receptor CX(3)CR1. Fractalkine, typically is expressed by neurons where it is inserted in the plasma membrane ("chemokine on a stalk"). It can, however, be clipped off by a specific enzyme and diffuse into the extracellular space. CX(3)CR1 is primarily expressed by microglia, the phagocytes of the brain. This study was aimed at studying gene expression changes in cultured rat microglia upon fractalkine stimulation using gene chip technology. Six genes turned out to be upregulated, amongst which milk-fat globule EGF factor-8 protein (MFG-E8) was the most surprising, but also the most revealing one. We hypothesize that it serves as a bridging molecule between apoptotic cells (neurons) and microglia. Since the docking to microglia is, in part, mediated by members of the integrin family, six of these molecules have been-post hoc-included in real-time PCR confirmations of chip results. Two of them-integrin alpha(2) and integrin beta(5)-were upregulated as well. These data provide a much closer look into molecular mechanisms involved in apoptosis of neurons and their removal by microglia.
Collapse
|
39
|
Tolnay M, Clavaguera F. Argyrophilic grain disease: A late-onset dementia with distinctive features among tauopathies. Neuropathology 2004; 24:269-83. [PMID: 15641585 DOI: 10.1111/j.1440-1789.2004.00591.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Argyrophilic grain disease (AgD) is a late-onset dementia morphologically characterized by the presence of abundant spindle-shaped argyrophilic grains (ArG) in neuronal processes and coiled bodies in oligodendrocytes. AgD changes consist of the microtubule-associated protein tau in an abnormally and hyperphosphorylated state and are mainly found in limbic regions, for example, in the hippocampus, the entorhinal and transentorhinal cortices and the amygdala. AgD shows a significant correlation with advancing age, and it became apparent from recent clinicopathological studies that it might account for approximately 5% of all dementia cases. Further immunohistochemical and biochemical studies revealed that AgD is a four-repeat (4R) tauopathy similar to PSP and corticobasal degeneration (CBD), but distinct from Alzheimer's disease (AD) and Pick's disease. Moreover, a common genetic background regarding the tau gene haplotype has been suggested for AgD, PSP and CBD. However, although there are currently only limited data available, AgD seems to be clinically distinct from PSP and CBD and shares rather features of (mild) AD or other forms of 'limbic' dementias, among them senile dementia with tangles and the localized form of AD.
Collapse
Affiliation(s)
- Markus Tolnay
- Institute of Pathology, Department of Neuropathology, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
40
|
Chu CT, Levinthal DJ, Kulich SM, Chalovich EM, DeFranco DB. Oxidative neuronal injury. The dark side of ERK1/2. ACTA ACUST UNITED AC 2004; 271:2060-6. [PMID: 15153095 PMCID: PMC1899467 DOI: 10.1111/j.1432-1033.2004.04132.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The extracellular signal regulated protein kinases (ERK1/2) are essential for normal development and functional plasticity of the central nervous system. However, a growing number of recent studies in models of cerebral ischemia, brain trauma and neurodegenerative diseases implicate a detrimental role for ERK1/2 signaling during oxidative neuronal injury. Neurons undergoing oxidative stress-related injuries typically display a biphasic or sustained pattern of ERK1/2 activation. A variety of potential targets of reactive oxygen species and reactive nitrogen species could contribute to ERK1/2 activation. These include cell surface receptors, G proteins, upstream kinases, protein phosphatases and proteasome components, each of which could be direct or indirect targets of reactive oxygen or nitrogen species, thereby modulating the duration and magnitude of ERK1/2 activation. Neuronal oxidative stress also appears to influence the subcellular trafficking and/or localization of activated ERK1/2. Differences in compartmentalization of phosphorylated ERK1/2 have been observed in diseased or injured human neurons and in their respective animal and cell culture model systems. We propose that differential accessibility of ERK1/2 to downstream targets, which is dictated by the persistent activation of ERK1/2 within distinct subcellular compartments, underlies the neurotoxic responses that are driven by this kinase.
Collapse
Affiliation(s)
- Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, Room A-516 UPMC Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
41
|
Palomo T, Archer T, Beninger RJ, Kostrzewa RM. Gene-environment interplay in neurogenesis and neurodegeneration. Neurotox Res 2004; 6:415-34. [PMID: 15639777 DOI: 10.1007/bf03033279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Factors associated with predisposition and vulnerability to neurodegenerative disorders may be described usefully within the context of gene-environment interplay. There are many identified genetic determinants for so-called genetic disorders, and it is possible to duplicate many elements of recognized human neurodegenerative disorders in either knock-in or knock-out mice. However, there are similarly, many identifiable environmental influences on outcomes of the genetic defects; and the course of a progressive neurodegenerative disorder can be greatly modified by environmental elements. Constituent cellular defense mechanisms responsive to the challenge of increased reactive oxygen species represent only one crossroad whereby environment can influence genetic predisposition. In this paper we highlight some of the major neurodegenerative disorders and discuss possible links of gene-environment interplay. The process of adult neurogenesis in brain is also presented as an additional element that influences gene-environment interplay. And the so-called priming processes (i.e., production of receptor supersensitization by repeated drug dosing), is introduced as yet another process that influences how genes and environment ultimately and co-dependently govern behavioral ontogeny and outcome. In studies attributing the influence of genetic alteration on behavioral phenotypy, it is essential to carefully control environmental influences.
Collapse
Affiliation(s)
- Tomás Palomo
- Servicio Psiquiátrico, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
Ferrer I. Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice. Neurotox Res 2004; 6:469-75. [PMID: 15658002 DOI: 10.1007/bf03033283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperphosphorylation and accumulation of tau in neurons (and glial cells) is one of the main pathologic hallmarks in Alzheimer's disease (AD) and other tauopathies, including Pick's disease (PiD), progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17 due to mutations in the tau gene (FTDP-17-tau). Recent studies have shown increased expression of select active kinases, including stress-activated kinase, c-Jun N-terminal kinase (SAPK/JNK) and kinase p38 in brain homogenates in all the tauopathies. Strong active SAPK/JNK and p38 immunoreactivity has been observed restricted to neurons and glial cells containing hyperphosphorylated tau, as well as in dystrophic neurites of senile plaques in AD. Moreover, SAPK/JNK- and p38-immunoprecipitated sub-cellular fractions enriched in abnormal hyperphosphorylated tau have the capacity to phosphorylate recombinat tau and c-Jun and ATF-2 which are specific substrates of SAPK/JNK and p38 in AD and PiD. Interestingly, increased expression of phosphorylated SAPK/JNK and p38 in association with hyperphosphorylated tau containing neurites have been observed around betaA4 amyloid deposits in the brain of transgenic mice (Tg2576)carrying the double APP Swedish mutation. These findings suggest that betaA4 amyloid has the capacity to trigger the activation of stress kinases which, in turn, phosphorylate tau in neurites surrounding amyloid deposits. Reduction in the amyloid burden and decreased numbers of amyloid plaques but not of neurofibrillary degeneration has been observed in the brain of two AD patients who participated in an amyloid-beta immunization trial. Activation of stress kinases SAPK/JNK and p38 were reduced together with decreased tau hyperphosphorylation of aberrant neurites in association with decreased amyloid plaques. These findings support the amyloid cascade hypothesis of tau phosphorylation mediated by stress kinases in dystrophic neurites of senile plaques but not that of neurofibrillary tangles and neuropil threads in AD.
Collapse
Affiliation(s)
- I Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
| |
Collapse
|
43
|
Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci 2003. [PMID: 14534250 DOI: 10.1523/jneurosci.23-27-09162.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection of the nervous system can result in neuroinflammatory events leading first to neuronal dysfunction then to cognitive and behavioral impairments in infected people. The multifaceted nature of the disease process, commonly called HIV-1-associated dementia (HAD), provides a number of adjunctive therapeutic opportunities. One proposed adjunctive therapy is sodium valproate (VPA), an anticonvulsant known to promote neurite outgrowth and increase beta-catenin through inhibiting glycogen synthase kinase 3beta activity and tau phosphorylation. We now show that VPA treatment of rat cortical neurons exposed to HIV-1 gp120 prevents resultant neurotoxic activities. This includes the induction of significant neurite outgrowth and microtubule-associated protein 2 (MAP-2) and neuron-specific nuclear protein (NeuN) antigens in affected neuronal cell bodies and processes. Similarly, VPA protects severe combined immunodeficient (SCID) mice against the neurodegeneration of HIV-1ADA infected monocyte-derived macrophages (MDMs). In SCID mice with HIV-1 MDM-induced encephalitis, VPA treatment significantly reduced neuronal phosphorylatedbeta-catenin and tau without affecting HIV-1 replication or glial activation. We conclude that VPA protects neurons against HIV-1 infected MDM neurotoxicity, possibly through its effects on the phosphorylation of tau and beta-catenin. The use of VPA as an adjuvant in treatment of human HAD is being pursued.
Collapse
|
44
|
Dou H, Birusingh K, Faraci J, Gorantla S, Poluektova LY, Maggirwar SB, Dewhurst S, Gelbard HA, Gendelman HE. Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. J Neurosci 2003; 23:9162-70. [PMID: 14534250 PMCID: PMC6740824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection of the nervous system can result in neuroinflammatory events leading first to neuronal dysfunction then to cognitive and behavioral impairments in infected people. The multifaceted nature of the disease process, commonly called HIV-1-associated dementia (HAD), provides a number of adjunctive therapeutic opportunities. One proposed adjunctive therapy is sodium valproate (VPA), an anticonvulsant known to promote neurite outgrowth and increase beta-catenin through inhibiting glycogen synthase kinase 3beta activity and tau phosphorylation. We now show that VPA treatment of rat cortical neurons exposed to HIV-1 gp120 prevents resultant neurotoxic activities. This includes the induction of significant neurite outgrowth and microtubule-associated protein 2 (MAP-2) and neuron-specific nuclear protein (NeuN) antigens in affected neuronal cell bodies and processes. Similarly, VPA protects severe combined immunodeficient (SCID) mice against the neurodegeneration of HIV-1ADA infected monocyte-derived macrophages (MDMs). In SCID mice with HIV-1 MDM-induced encephalitis, VPA treatment significantly reduced neuronal phosphorylatedbeta-catenin and tau without affecting HIV-1 replication or glial activation. We conclude that VPA protects neurons against HIV-1 infected MDM neurotoxicity, possibly through its effects on the phosphorylation of tau and beta-catenin. The use of VPA as an adjuvant in treatment of human HAD is being pursued.
Collapse
Affiliation(s)
- Huanyu Dou
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|