1
|
Mishra R, Upadhyay A. An update on mammalian and non-mammalian animal models for biomarker development in neurodegenerative disorders. Cell Mol Life Sci 2025; 82:147. [PMID: 40192808 PMCID: PMC11977071 DOI: 10.1007/s00018-025-05668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025]
Abstract
Neurodegeneration is one of the leading factor for death globally, affecting millions of people. Developing animal models are critical to understand biological processes and comprehend pathological hallmarks of neurodegenerative diseases. For decades, many animal models have served as excellent tools to determine the disease progression, develop diagnostic methods and design novel therapies against distinct pathologies. Here, we provide a comprehensive overview of both, mammalian and non-mammalian animal models, with a focus on three most common and aggressive neurodegenerative disorders: Alzheimer's disease, Parkinson's disease and Spinocerebellar ataxia-1. We highlight various approaches including transgene, gene transfer, and chemically-induced methods used to develop disease models. In particular, we discuss applications of both non-mammalian and mammalian contributions in research on neurodegeneration. It is exciting to learn the roles of animal models in disease pathomechanisms, identifying biomarkers and hence devising novel interventions to treat neuropathological conditions.
Collapse
Affiliation(s)
- Ribhav Mishra
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Chhattisgarh, 491002, India
| |
Collapse
|
2
|
Schmit KJ, Garcia P, Sciortino A, Aho VTE, Pardo Rodriguez B, Thomas MH, Gérardy JJ, Bastero Acha I, Halder R, Cialini C, Heurtaux T, Ostahi I, Busi SB, Grandmougin L, Lowndes T, Singh Y, Martens EC, Mittelbronn M, Buttini M, Wilmes P. Fiber deprivation and microbiome-borne curli shift gut bacterial populations and accelerate disease in a mouse model of Parkinson's disease. Cell Rep 2023; 42:113071. [PMID: 37676767 PMCID: PMC10548091 DOI: 10.1016/j.celrep.2023.113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by motor dysfunction, dopaminergic neuron loss, and alpha-synuclein (αSyn) inclusions. Many PD risk factors are known, but those affecting disease progression are not. Lifestyle and microbial dysbiosis are candidates in this context. Diet-driven gut dysbiosis and reduced barrier function may increase exposure of enteric neurons to toxins. Here, we study whether fiber deprivation and exposure to bacterial curli, a protein cross-seeding with αSyn, individually or together, exacerbate disease in the enteric and central nervous systems of a transgenic PD mouse model. We analyze the gut microbiome, motor behavior, and gastrointestinal and brain pathologies. We find that diet and bacterial curli alter the microbiome and exacerbate motor performance, as well as intestinal and brain pathologies, but to different extents. Our results shed important insights on how diet and microbiome-borne insults modulate PD progression via the gut-brain axis and have implications for lifestyle management of PD.
Collapse
Affiliation(s)
- Kristopher J Schmit
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Institute for Medical Genetics and Applied Genomics, Hospital University Tubingen, 72076 Tubingen, Germany; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg.
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Alessia Sciortino
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Velma T E Aho
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Beatriz Pardo Rodriguez
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Mélanie H Thomas
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Irati Bastero Acha
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Camille Cialini
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Tony Heurtaux
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Irina Ostahi
- National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Susheel B Busi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Tuesday Lowndes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Yogesh Singh
- Institute for Medical Genetics and Applied Genomics, Hospital University Tubingen, 72076 Tubingen, Germany
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé, 3555 Dudelange, Luxembourg; Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
4
|
Negrini M, Tomasello G, Davidsson M, Fenyi A, Adant C, Hauser S, Espa E, Gubinelli F, Manfredsson FP, Melki R, Heuer A. Sequential or Simultaneous Injection of Preformed Fibrils and AAV Overexpression of Alpha-Synuclein Are Equipotent in Producing Relevant Pathology and Behavioral Deficits. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1133-1153. [PMID: 35213388 PMCID: PMC9198765 DOI: 10.3233/jpd-212555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preclinical rodent models for Parkinson's disease (PD) based on viral human alpha-synuclein (h-αSyn) overexpression recapitulate some of the pathological hallmarks as it presents in humans, such as progressive cell loss and additional synucleinopathy in cortical and subcortical structures. Recent studies have combined viral vector-based overexpression of human wild-type αSyn with the sequential or simultaneous inoculation of preformed fibrils (PFFs) derived from human αSyn. OBJECTIVE The goal of the study was to investigate whether sequential or combined delivery of the AAV vector and the PFFs are equipotent in inducing stable neurodegeneration and behavioral deficits. METHODS Here we compare between four experimental paradigms (PFFs only, AAV-h-αSyn only, AAV-h-αSyn with simultaneous PFFs, and AAV-h-αSyn with sequential PFFs) and their respective GFP control groups. RESULTS We observed reduction of TH expression and loss of neurons in the midbrain in all AAV (h-αSyn or GFP) injected groups, with or without additional PFFs inoculation. The overexpression of either h-αSyn or GFP alone induced motor deficits and dysfunctional dopamine release/reuptake in electrochemical recordings in the ipsilateral striatum. However, we observed a substantial formation of insoluble h-αSyn aggregates and inflammatory response only when h-αSyn and PFFs were combined. Moreover, the presence of h-αSyn induced higher axonal pathology compared to control groups. CONCLUSION Simultaneous AAV and PFFs injections are equipotent in the presented experimental setup in inducing histopathological and behavioral changes. This model provides new and interesting possibilities for characterizing PD pathology in preclinical models and means to assess future therapeutic interventions.
Collapse
Affiliation(s)
- Matilde Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Giuseppe Tomasello
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
- Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Cécile Adant
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Swantje Hauser
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Kelly R, Cairns AG, Ådén J, Almqvist F, Bemelmans AP, Brouillet E, Patton T, McKernan DP, Dowd E. The Small Molecule Alpha-Synuclein Aggregator, FN075, Enhances Alpha-Synuclein Pathology in Subclinical AAV Rat Models. Biomolecules 2021; 11:1685. [PMID: 34827685 PMCID: PMC8615715 DOI: 10.3390/biom11111685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Animal models of Parkinson's disease, in which the human α-synuclein transgene is overexpressed in the nigrostriatal pathway using viral vectors, are widely considered to be the most relevant models of the human condition. However, although highly valid, these models have major limitations related to reliability and variability, with many animals exhibiting pronounced α-synuclein expression failing to demonstrate nigrostriatal neurodegeneration or motor dysfunction. Therefore, the aim of this study was to determine if sequential intra-nigral administration of AAV-α-synuclein followed by the small α-synuclein aggregating molecule, FN075, would enhance or precipitate the associated α-synucleinopathy, nigrostriatal pathology and motor dysfunction in subclinical models. Rats were given unilateral intra-nigral injections of AAV-α-synuclein (either wild-type or A53T mutant) followed four weeks later by a unilateral intra-nigral injection of FN075, after which they underwent behavioral testing for lateralized motor functionality until they were sacrificed for immunohistological assessment at 20 weeks after AAV administration. In line with expectations, both of the AAV vectors induced widespread overexpression of human α-synuclein in the substantia nigra and striatum. Sequential administration of FN075 significantly enhanced the α-synuclein pathology with increased density and accumulation of the pathological form of the protein phosphorylated at serine 129 (pS129-α-synuclein). However, despite this enhanced α-synuclein pathology, FN075 did not precipitate nigrostriatal degeneration or motor dysfunction in these subclinical AAV models. In conclusion, FN075 holds significant promise as an approach to enhancing the α-synuclein pathology in viral overexpression models, but further studies are required to determine if alternative administration regimes for this molecule could improve the reliability and variability in these models.
Collapse
Affiliation(s)
- Rachel Kelly
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (T.P.); (D.P.M.)
| | - Andrew G. Cairns
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden; (A.G.C.); (J.Å.); (F.A.)
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden; (A.G.C.); (J.Å.); (F.A.)
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden; (A.G.C.); (J.Å.); (F.A.)
| | - Alexis-Pierre Bemelmans
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (E.B.)
| | - Emmanuel Brouillet
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives, MIRCen, F-92265 Fontenay-aux-Roses, France; (A.-P.B.); (E.B.)
| | - Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (T.P.); (D.P.M.)
| | - Declan P. McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (T.P.); (D.P.M.)
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, H91 W5P7 Galway, Ireland; (R.K.); (T.P.); (D.P.M.)
| |
Collapse
|
6
|
Huntington TE, Srinivasan R. Adeno-Associated Virus Expression of α-Synuclein as a Tool to Model Parkinson's Disease: Current Understanding and Knowledge Gaps. Aging Dis 2021; 12:1120-1137. [PMID: 34221553 PMCID: PMC8219504 DOI: 10.14336/ad.2021.0517] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the aging population and is characterized by a constellation of motor and non-motor symptoms. The abnormal aggregation and spread of alpha-synuclein (α-syn) is thought to underlie the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc), leading to the development of PD. It is in this context that the use of adeno-associated viruses (AAVs) to express a-syn in the rodent midbrain has become a popular tool to model SNc DA neuron loss during PD. In this review, we summarize results from two decades of experiments using AAV-mediated a-syn expression in rodents to model PD. Specifically, we outline aspects of AAV vectors that are particularly relevant to modeling a-syn dysfunction in rodent models of PD such as changes in striatal neurochemistry, a-syn biochemistry, and PD-related behaviors resulting from AAV-mediated a-syn expression in the midbrain. Finally, we discuss the emerging role of astrocytes in propagating a-syn pathology, and point to future directions for employing AAVs as a tool to better understand how astrocytes contribute to a-syn pathology during the development of PD. We envision that lessons learned from two decades of utilizing AAVs to express a-syn in the rodent brain will enable us to develop an optimized set of parameters for gaining a better understanding of how a-syn leads to the development of PD.
Collapse
Affiliation(s)
- Taylor E Huntington
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| |
Collapse
|
7
|
MacDougall G, Brown LY, Kantor B, Chiba-Falek O. The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Mol Ther 2021; 29:949-972. [PMID: 33429080 PMCID: PMC7934639 DOI: 10.1016/j.ymthe.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most prevalent age-related neurodegenerative diseases, and currently no effective clinical treatments exist for either, despite decades of clinical trials. The failure to translate preclinical findings into effective treatments is indicative of a problem in the current evaluation pipeline for potential therapeutics. At present, there are no useful animal models for AD and PD research that reflect the entire biology of the diseases, specifically, the more common non-Mendelian forms. Whereas the field continues to seek suitable rodent models for investigating potential therapeutics for these diseases, rodent models have still been used primarily for preclinical studies. Here, we advocate for a paradigm shift toward the application of human-induced pluripotent stem cell (hiPSC)-derived systems for PD and AD modeling and the development of improved human-based models in a dish for drug discovery and preclinical assessment of therapeutic targets.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Logan Y Brown
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC 27710, USA; Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Reverse engineering Lewy bodies: how far have we come and how far can we go? Nat Rev Neurosci 2021; 22:111-131. [PMID: 33432241 DOI: 10.1038/s41583-020-00416-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/19/2022]
Abstract
Lewy bodies (LBs) are α-synuclein (α-syn)-rich intracellular inclusions that are an important pathological hallmark of Parkinson disease and several other neurodegenerative diseases. Increasing evidence suggests that the aggregation of α-syn has a central role in LB formation and is one of the key processes that drive neurodegeneration and pathology progression in Parkinson disease. However, little is known about the mechanisms underlying the formation of LBs, their biochemical composition and ultrastructural properties, how they evolve and spread with disease progression, and their role in neurodegeneration. In this Review, we discuss current knowledge of α-syn pathology, including the biochemical, structural and morphological features of LBs observed in different brain regions. We also review the most used cellular and animal models of α-syn aggregation and pathology spreading in relation to the extent to which they reproduce key features of authentic LBs. Finally, we provide important insights into molecular and cellular determinants of LB formation and spreading, and highlight the critical need for more detailed and systematic characterization of α-syn pathology, at both the biochemical and structural levels. This would advance our understanding of Parkinson disease and other neurodegenerative diseases and allow the development of more-reliable disease models and novel effective therapeutic strategies.
Collapse
|
9
|
Cenci MA, Björklund A. Animal models for preclinical Parkinson's research: An update and critical appraisal. PROGRESS IN BRAIN RESEARCH 2020; 252:27-59. [PMID: 32247366 DOI: 10.1016/bs.pbr.2020.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models of Parkinson's disease (PD) are essential to investigate pathogenic pathways at the whole-organism level. Moreover, they are necessary for a preclinical investigation of potential new therapies. Different pathological features of PD can be induced in a variety of invertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has a particular utility and range of applicability. Invertebrate PD models are particularly useful for high throughput-screening applications, whereas mammalian models are needed to explore complex motor and non-motor features of the human disease. Here, we provide a comprehensive review and critical appraisal of the most commonly used mammalian models of PD, which are produced in rats and mice. A substantial loss of nigrostriatal dopamine neurons is necessary for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents, thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively, nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using viral vectors or transgenic techniques. In addition, protein aggregation pathology can be triggered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum. Thanks to the conceptual and technical progress made in the past few years a vast repertoire of well-characterized animal models are currently available to address different aspects of PD in the laboratory.
Collapse
Affiliation(s)
- M Angela Cenci
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.
| | - Anders Björklund
- Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Kreiner G. What have we learned recently from transgenic mouse models about neurodegeneration? The most promising discoveries of this millennium. Pharmacol Rep 2018; 70:1105-1115. [DOI: 10.1016/j.pharep.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
|
11
|
Bao F, Shi H, Gao M, Yang L, Zhou L, Zhao Q, Wu Y, Chen K, Xiang G, Long Q, Guo J, Zhang J, Liu X. Polybrene induces neural degeneration by bidirectional Ca 2+ influx-dependent mitochondrial and ER-mitochondrial dynamics. Cell Death Dis 2018; 9:966. [PMID: 30237514 PMCID: PMC6148003 DOI: 10.1038/s41419-018-1009-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Hexadimethrine bromide (Polybrene) was once used clinically as a heparin neutralizer and has recently found use as a promoter in virus-mediated gene therapy trials and gene transfer in research. However, the potential for tissue-specific toxicity of polybrene at low doses has been ignored so far. Here, we found that after intracerebroventricular (ICV) polybrene injection, mice showed disability of movement accompanied neural death and gliosis in brain, and in human neurons, polybrene induces concentration-dependent neuritic beading and fragmentation. Mechanistically, polybrene induces a rapid voltage-dependent calcium channel (VDCC)-mediated influx of extracellular Ca2+. The elevated cytoplasmic Ca2+ activates DRP1, which leads to mitochondrial fragmentation and metabolic dysfunction. At the same time, Ca2+ influx induces endoplasmic reticulum (ER) fragmentation and tightened associations between ER and mitochondria, which makes mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected neuronal toxicity of polybrene, wherein Ca2+ influx serves as a regulator for both mitochondrial dynamics and ER–mitochondrial remodeling.
Collapse
Affiliation(s)
- Feixiang Bao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Hongyan Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Mi Gao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Lingyan Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Qiuge Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.,The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Ge Xiang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Long
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Jian Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Hefei Institue of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
12
|
Novello S, Arcuri L, Dovero S, Dutheil N, Shimshek DR, Bezard E, Morari M. G2019S LRRK2 mutation facilitates α-synuclein neuropathology in aged mice. Neurobiol Dis 2018; 120:21-33. [PMID: 30172844 DOI: 10.1016/j.nbd.2018.08.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Fibrillization of α-synuclein is instrumental for the development of Parkinson's disease (PD), thus modulating this process can have profound impact on disease initiation/progression. Here, the impact of the p.G2019S mutation of leucine-rich repeat kinase 2 (LRRK2), which is most frequently associated with familial and sporadic PD, on α-synuclein pathology was investigated. G2019S knock-in mice and wild-type controls were injected with a recombinant adeno-associated viral vector serotype 2/9 (AAV2/9) overexpressing human mutant p.A53T α-synuclein (AAV2/9-hα-syn). Control animals were injected with AAV2/9 carrying green fluorescent protein. Motor behavior, transgene expression, α-syn and pSer129 α-syn load, number of nigral dopamine neurons and density of striatal dopaminergic terminals were evaluated. To investigate the effect of aging, experiments were performed in 3- and 12-month-old mice, evaluated 20 and 12 weeks after virus injection, respectively. hα-syn overexpression induced progressive motor deficits, loss of nigral dopaminergic neurons and striatal terminals, and appearance of proteinase K-resistant aggregates of pSer129 α-syn in both young and old mice. Although no genotype difference was observed in 3-month-old mice, degeneration of nigral dopaminergic neurons was higher in 12-month-old G2019S knock-in mice compared with age-matched wild-type controls (-55% vs -39%, respectively). Consistently, a two-fold higher load of pSer129 α-syn aggregates was found in 12-month-old G2019S knock-in mice. We conclude that G2019S LRRK2 facilitates α-synucleinopathy and degeneration of nigral dopaminergic neurons, and that aging is a major determinant of this effect.
Collapse
Affiliation(s)
- Salvatore Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Ludovico Arcuri
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy
| | - Sandra Dovero
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Dutheil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Derya R Shimshek
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4002 Basel, Switzerland
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, National Institute of Neuroscience, Ferrara, Italy.
| |
Collapse
|
13
|
Liu Y, Lu Z. Long non-coding RNA NEAT1 mediates the toxic of Parkinson's disease induced by MPTP/MPP+ via regulation of gene expression. Clin Exp Pharmacol Physiol 2018; 45:841-848. [PMID: 29575151 DOI: 10.1111/1440-1681.12932] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Ying Liu
- Department of Neurology; Renmin Hospital of Wuhan University; Wuhan China
- Department of Neurology; Inner Mongolia People's Hospital; Hohhot China
| | - Zuneng Lu
- Department of Neurology; Renmin Hospital of Wuhan University; Wuhan China
| |
Collapse
|
14
|
Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 2018; 373:161-173. [PMID: 29480459 DOI: 10.1007/s00441-018-2814-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is characterized by the loss of nigrostriatal dopaminergic signaling and the presence of alpha-synuclein aggregates (also called Lewy bodies and neurites) throughout the brain. In 2003, Braak and colleagues created a staging system for Parkinson's disease describing the connection between the alpha-synuclein pathology and disease severity. Later, they suggested that the pathology might initially be triggered by exogenous insults targeting the gut and olfactory system. In 2008, we and other groups documented Lewy pathology in grafted neurons in people with Parkinson's disease who had been transplanted over a decade prior to autopsy. We proposed that the Lewy pathology in the grafted neurons was the result of permissive templating or prion-like spread of alpha-synuclein pathology from neurons in the host to those in the grafts. During the following ten years, several studies described the transmission of alpha-synuclein pathology between neurons, both in cell culture and in experimental animals. Recent research has also begun to identify underlying molecular mechanisms. Collectively, these experimental studies tentatively support the idea that the progression from one Braak stage to the next is the consequence of prion-like propagation of Lewy pathology. However, definitive proof that intercellular propagation of alpha-synuclein pathology occurs in Parkinson's disease cases has proven difficult to secure. In this review, we highlight several open questions that currently prevent us from concluding with certainty that prion-like transfer of alpha-synuclein contributes to the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| | - Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| |
Collapse
|
15
|
Ko WKD, Bezard E. Experimental animal models of Parkinson's disease: A transition from assessing symptomatology to α-synuclein targeted disease modification. Exp Neurol 2017; 298:172-179. [PMID: 28764902 DOI: 10.1016/j.expneurol.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
Abstract
With the understanding that α-synuclein plays a major role in the pathogenesis of Parkinson's disease (PD), novel animal models have been developed for conducting preclinical research in screening novel disease modifying therapies. Advancements in research techniques in α-synuclein targeted disease modification have utilised methods such as viral mediated expression of human α-synuclein, as well as the inoculation of pathogenic α-synuclein species from Lewy Bodies of PD patients, for accurately modelling progressive self-propagating neurodegeneration. In applying these cutting-edge research tools with sophisticated trial designs in preclinical drug trials, a useful platform has emerged for developing candidate agents with disease modifying actions, promising a greater chance of success for clinical translation. In this article, we describe the transition of well-established animal models of PD symptomatology to newly developed models of PD pathogenesis, with specific focus on methods of viral-mediated and inoculation of pathogenic α-synuclein, that aim to aid scientific translation of neuroprotective strategies.
Collapse
Affiliation(s)
- Wai Kin D Ko
- Motac Neuroscience Ltd, Manchester, United Kingdom.
| | - Erwan Bezard
- Motac Neuroscience Ltd, Manchester, United Kingdom; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
16
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
17
|
Fischer DL, Gombash SE, Kemp CJ, Manfredsson FP, Polinski NK, Duffy MF, Sortwell CE. Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson's Disease. Methods Mol Biol 2016; 1382:367-82. [PMID: 26611600 DOI: 10.1007/978-1-4939-3271-9_26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gene therapy methods are increasingly used to model Parkinson's disease (PD) in animals in an effort to test experimental therapeutics within a more relevant context to disease pathophysiology and neuropathology. We have detailed several criteria that are critical or advantageous to accurately modeling PD in a murine model or in a nonhuman primate. Using these criteria, we then evaluate approaches made to model PD using viral vectors to date, including both adeno-associated viruses and lentiviruses. Lastly, we comment on the consideration of aging as a critical factor for modeling PD.
Collapse
Affiliation(s)
- D Luke Fischer
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- MD/PhD Program, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
| | - Sara E Gombash
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Christopher J Kemp
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
| | - Fredric P Manfredsson
- Translational Science and Molecular Medicine, Michigan State University, College of Human Science, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
| | - Nicole K Polinski
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
| | - Megan F Duffy
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
| | - Caryl E Sortwell
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA.
| |
Collapse
|
18
|
Alves S, Marais T, Biferi MG, Furling D, Marinello M, El Hachimi K, Cartier N, Ruberg M, Stevanin G, Brice A, Barkats M, Sittler A. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener 2016; 11:58. [PMID: 27465358 PMCID: PMC4964261 DOI: 10.1186/s13024-016-0123-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background We used lentiviral vectors (LVs) to generate a new SCA7 animal model overexpressing a truncated mutant ataxin-7 (MUT ATXN7) fragment in the mouse cerebellum, in order to characterize the specific neuropathological and behavioral consequences of the genetic defect in this brain structure. Results LV-mediated overexpression of MUT ATXN7 into the cerebellum of C57/BL6 adult mice induced neuropathological features similar to that observed in patients, such as intranuclear aggregates in Purkinje cells (PC), loss of synaptic markers, neuroinflammation, and neuronal death. No neuropathological changes were observed when truncated wild-type ataxin-7 (WT ATXN7) was injected. Interestingly, the local delivery of LV-expressing mutant ataxin-7 (LV-MUT-ATXN7) into the cerebellum of wild-type mice also mediated the development of an ataxic phenotype at 8 to 12 weeks post-injection. Importantly, our data revealed abnormal levels of the FUS/TLS, MBNL1, and TDP-43 RNA-binding proteins in the cerebellum of the LV-MUT-ATXN7 injected mice. MUT ATXN7 overexpression induced an increase in the levels of the pathological phosphorylated TDP-43, and a decrease in the levels of soluble FUS/TLS, with both proteins accumulating within ATXN7-positive intranuclear inclusions. MBNL1 also co-aggregated with MUT ATXN7 in most PC nuclear inclusions. Interestingly, no MBNL2 aggregation was observed in cerebellar MUT ATXN7 aggregates. Immunohistochemical studies in postmortem tissue from SCA7 patients and SCA7 knock-in mice confirmed SCA7-induced nuclear accumulation of FUS/TLS and MBNL1, strongly suggesting that these proteins play a physiopathological role in SCA7. Conclusions This study validates a novel SCA7 mouse model based on lentiviral vectors, in which strong and sustained expression of MUT ATXN7 in the cerebellum was found sufficient to generate motor defects. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.
| | - Thibaut Marais
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Maria-Grazia Biferi
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Denis Furling
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Martina Marinello
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France
| | - Khalid El Hachimi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France
| | | | - Merle Ruberg
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France.,Département de Génétique et Cytogénétique, AP-HP, G-H Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,Département de Génétique et Cytogénétique, AP-HP, G-H Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Martine Barkats
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Annie Sittler
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.
| |
Collapse
|
19
|
Alpha-synuclein-based models of Parkinson's disease. Rev Neurol (Paris) 2016; 172:371-8. [PMID: 27158042 DOI: 10.1016/j.neurol.2016.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 01/20/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder mainly characterized by the loss of dopaminergic neurons from the substantia nigra pars compacta and the presence, in the affected brain regions, of protein inclusions called 'Lewy bodies'. Most cases are sporadic, but mutations in several genes, including SNCA, which encodes α-synuclein, are associated with disease development. A myriad of α-synuclein-based models for studying Parkinson's disease have been generated over the last two decades through different methodologies. Collectively, these models offer new opportunities to elucidate the mechanisms underlying the relentless progression of protein aggregation and neurodegeneration in Parkinson's. The present, non-exhaustive review focuses on mammalian models and the main strategies that are currently available, including transgenesis, viral vector gene delivery and the recently developed 'prion-like' models.
Collapse
|
20
|
Benskey MJ, Perez RG, Manfredsson FP. The contribution of alpha synuclein to neuronal survival and function - Implications for Parkinson's disease. J Neurochem 2016; 137:331-59. [PMID: 26852372 PMCID: PMC5021132 DOI: 10.1111/jnc.13570] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 02/06/2023]
Abstract
The aggregation of alpha synuclein (α-syn) is a neuropathological feature that defines a spectrum of disorders collectively termed synucleinopathies, and of these, Parkinson's disease (PD) is arguably the best characterized. Aggregated α-syn is the primary component of Lewy bodies, the defining pathological feature of PD, while mutations or multiplications in the α-syn gene result in familial PD. The high correlation between α-syn burden and PD has led to the hypothesis that α-syn aggregation produces toxicity through a gain-of-function mechanism. However, α-syn has been implicated to function in a diverse range of essential cellular processes such as the regulation of neurotransmission and response to cellular stress. As such, an alternative hypothesis with equal explanatory power is that the aggregation of α-syn results in toxicity because of a toxic loss of necessary α-syn function, following sequestration of functional forms α-syn into insoluble protein aggregates. Within this review, we will provide an overview of the literature linking α-syn to PD and the knowledge gained from current α-syn-based animal models of PD. We will then interpret these data from the viewpoint of the α-syn loss-of-function hypothesis and provide a potential mechanistic model by which loss of α-syn function could result in at least some of the neurodegeneration observed in PD. By providing an alternative perspective on the etiopathogenesis of PD and synucleinopathies, this may reveal alternative avenues of research in order to identify potential novel therapeutic targets for disease modifying strategies. The correlation between α-synuclein burden and Parkinson's disease pathology has led to the hypothesis that α-synuclein aggregation produces toxicity through a gain-of-function mechanism. However, in this review, we discuss data supporting the alternative hypothesis that the aggregation of α-synuclein results in toxicity because of loss of necessary α-synuclein function at the presynaptic terminal, following sequestration of functional forms of α-synuclein into aggregates.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Ruth G Perez
- Department of Biomedical Sciences, Center of Emphasis in Neuroscience, Paul L. Foster School of Medicine, Texas Tech University of the Health Sciences El Paso, El Paso, Texas, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, Michigan, USA
| |
Collapse
|
21
|
Van der Perren A, Casteels C, Van Laere K, Gijsbers R, Van den Haute C, Baekelandt V. Development of an Alpha-synuclein Based Rat Model for Parkinson's Disease via Stereotactic Injection of a Recombinant Adeno-associated Viral Vector. J Vis Exp 2016:53670. [PMID: 26967677 PMCID: PMC4828209 DOI: 10.3791/53670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In order to study the molecular pathways of Parkinson's disease (PD) and to develop novel therapeutic strategies, scientific investigators rely on animal models. The identification of PD-associated genes has led to the development of genetic PD models. Most transgenic α-SYN mouse models develop gradual α-SYN pathology but fail to display clear dopaminergic cell loss and dopamine-dependent behavioral deficits. This hurdle was overcome by direct targeting of the substantia nigra with viral vectors overexpressing PD-associated genes. Local gene delivery using viral vectors provides an attractive way to express transgenes in the central nervous system. Specific brain regions can be targeted (e.g. the substantia nigra), expression can be induced in the adult setting and high expression levels can be achieved. Further, different vector systems based on various viruses can be used. The protocol outlines all crucial steps to perform a viral vector injection in the substantia nigra of the rat to develop a viral vector-based alpha-synuclein animal model for Parkinson's disease.
Collapse
Affiliation(s)
- Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven
| | - Cindy Casteels
- Division of Nuclear Medicine, Leuven University Hospital - KU Leuven
| | - Koen Van Laere
- Division of Nuclear Medicine, Leuven University Hospital - KU Leuven
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven; Leuven Viral Vector Core, KU Leuven
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven; Leuven Viral Vector Core, KU Leuven
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven;
| |
Collapse
|
22
|
Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. Evaluation of Models of Parkinson's Disease. Front Neurosci 2016; 9:503. [PMID: 26834536 PMCID: PMC4718050 DOI: 10.3389/fnins.2015.00503] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases. Animal models have contributed a large part to our understanding and therapeutics developed for treatment of PD. There are several more exhaustive reviews of literature that provide the initiated insights into the specific models; however a novel synthesis of the basic advantages and disadvantages of different models is much needed. Here we compare both neurotoxin based and genetic models while suggesting some novel avenues in PD modeling. We also highlight the problems faced and promises of all the mammalian models with the hope of providing a framework for comparison of various systems.
Collapse
Affiliation(s)
- Shail A Jagmag
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Naveen Tripathi
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sunil D Shukla
- Department of Zoology, Government Meera Girl's College Udaipur, India
| | - Sankar Maiti
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| | - Sukant Khurana
- Department of Biology, Indian Institute of Science Education and Research Kolkata, India
| |
Collapse
|
23
|
Macchi F, Deleersnijder A, Van den Haute C, Munck S, Pottel H, Michiels A, Debyser Z, Gerard M, Baekelandt V. High-content analysis of α-synuclein aggregation and cell death in a cellular model of Parkinson's disease. J Neurosci Methods 2015; 261:117-27. [PMID: 26620202 DOI: 10.1016/j.jneumeth.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SYN) aggregates represent a key feature of Parkinson's disease, but the exact relationship between α-SYN aggregation and neurodegeneration remains incompletely understood. Therefore, the availability of a cellular assay that allows medium-throughput analysis of α-SYN-linked pathology will be of great value for studying the aggregation process and for advancing α-SYN-based therapies. NEW METHOD Here we describe a high-content neuronal cell assay that simultaneously measures oxidative stress-induced α-SYN aggregation and apoptosis. RESULTS We optimized an automated and reproducible assay to quantify both α-SYN aggregation and cell death in human SH-SY5Y neuroblastoma cells. COMPARISON WITH EXISTING METHODS Quantification of α-SYN aggregates in cells has typically relied on manual imaging and counting or cell-free assays, which are time consuming and do not allow a concurrent analysis of cell viability. Our high-content analysis method for quantification of α-SYN aggregation allows simultaneous measurements of multiple cell parameters at a single-cell level in a fast, objective and automated manner. CONCLUSIONS The presented analysis approach offers a rapid, objective and multiparametric approach for the screening of compounds and genes that might alter α-SYN aggregation and/or toxicity.
Collapse
Affiliation(s)
- Francesca Macchi
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Angélique Deleersnijder
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Sebastian Munck
- KU Leuven, Department of Human Genetics, Flanders Interuniversity Institute of Biotechnology, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Hans Pottel
- KU Leuven Campus Kulak Kortrijk, Public Health and Primary Care, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Annelies Michiels
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Melanie Gerard
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; KU Leuven campus Kulak Kortrijk, Laboratory of Biochemistry, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium.
| |
Collapse
|
24
|
Caudal D, Alvarsson A, Björklund A, Svenningsson P. Depressive-like phenotype induced by AAV-mediated overexpression of human α-synuclein in midbrain dopaminergic neurons. Exp Neurol 2015; 273:243-52. [DOI: 10.1016/j.expneurol.2015.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 01/10/2023]
|
25
|
Song LK, Ma KL, Yuan YH, Mu Z, Song XY, Niu F, Han N, Chen NH. Targeted Overexpression of α-Synuclein by rAAV2/1 Vectors Induces Progressive Nigrostriatal Degeneration and Increases Vulnerability to MPTP in Mouse. PLoS One 2015; 10:e0131281. [PMID: 26114655 PMCID: PMC4483255 DOI: 10.1371/journal.pone.0131281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/01/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations, duplication and triplication of α-synuclein genes are linked to familial Parkinson's disease (PD), and aggregation of α-synuclein (α-syn) in Lewy bodies (LB) is involved in the pathogenesis of the disease. The targeted overexpression of α-syn in the substantia nigra (SN) mediated by viral vectors may provide a better alternative to recapitulate the neurodegenerative features of PD. Therefore, we overexpressed human wild-type α-syn using rAAV2/1 vectors in the bilateral SN of mouse and examined the effects for up to 12 weeks. Delivery of rAAV-2/1-α-syn caused significant nigrostriatal degeneration including appearance of dystrophic striatal neurites, loss of nigral dopaminergic (DA) neurons and dissolving nigral neuron bodies in a time-dependent manner. In addition, the α-syn overexpressed mice also developed significant deficits in motor function at 12 weeks when the loss of DA neurons exceeded a threshold of 50%. To investigate the sensitivity to neurotoxins in mice overexpressing α-syn, we performed an MPTP treatment with the subacute regimen 8 weeks after rAAV injection. The impact of the combined genetic and environmental insults on DA neuronal loss, striatal dopamine depletion, dopamine turnover and motor dysfunction was markedly greater than that of either alone. Moreover, we observed increased phosphorylation (S129), accumulation and nuclear distribution of α-syn after the combined insults. In summary, these results reveal that the overexpressed α-syn induces progressive nigrostriatal degeneration and increases the susceptibility of DA neurons to MPTP. Therefore, the targeted overexpression of α-syn and the combination with environmental toxins may provide valuable models for understanding PD pathogenesis and developing related therapies.
Collapse
Affiliation(s)
- Lian-Kun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kai-Li Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zheng Mu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiu-Yun Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fei Niu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ning Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
26
|
Burré J, Sharma M, Südhof TC. Definition of a molecular pathway mediating α-synuclein neurotoxicity. J Neurosci 2015; 35:5221-32. [PMID: 25834048 PMCID: PMC4380997 DOI: 10.1523/jneurosci.4650-14.2015] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/06/2023] Open
Abstract
α-Synuclein physiologically chaperones SNARE-complex assembly at the synapse but pathologically misfolds into neurotoxic aggregates that are characteristic for neurodegenerative disorders, such as Parkinson's disease, and that may spread from one neuron to the next throughout the brain during Parkinson's disease pathogenesis. In normal nerve terminals, α-synuclein is present in an equilibrium between a cytosolic form that is natively unfolded and monomeric and a membrane-bound form that is composed of an α-helical multimeric species that chaperones SNARE-complex assembly. Although the neurotoxicity of α-synuclein is well established, the relationship between the native conformations of α-synuclein and its pathological aggregation remain incompletely understood; most importantly, it is unclear whether α-synuclein aggregation originates from its monomeric cytosolic or oligomeric membrane-bound form. Here, we address this question by introducing into α-synuclein point mutations that block membrane binding and by then assessing the effect of blocking membrane binding on α-synuclein aggregation and neurotoxicity. We show that membrane binding inhibits α-synuclein aggregation; conversely, blocking membrane binding enhances α-synuclein aggregation. Stereotactic viral expression of wild-type and mutant α-synuclein in the substantia nigra of mice demonstrated that blocking α-synuclein membrane binding significantly enhanced its neurotoxicity in vivo. Our data delineate a folding pathway for α-synuclein that ranges from a physiological multimeric, α-helical, and membrane-bound species that acts as a SNARE-complex chaperone over a monomeric, natively unfolded form to an amyloid-like aggregate that is neurotoxic in vivo.
Collapse
Affiliation(s)
- Jacqueline Burré
- Departments of Molecular and Cellular Physiology and Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10021
| | - Manu Sharma
- Departments of Molecular and Cellular Physiology and Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York 10021
| | - Thomas C Südhof
- Departments of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305, and
| |
Collapse
|
27
|
Moussaud S, Malany S, Mehta A, Vasile S, Smith LH, McLean PJ. Targeting α-synuclein oligomers by protein-fragment complementation for drug discovery in synucleinopathies. Expert Opin Ther Targets 2015; 19:589-603. [PMID: 25785645 DOI: 10.1517/14728222.2015.1009448] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. RESEARCH DESIGN AND METHODS Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. MAIN OUTCOME MEASURES A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. CONCLUSIONS The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.
Collapse
Affiliation(s)
- Simon Moussaud
- Mayo Clinic Florida, Neuroscience , 4500 San Pablo road, Jacksonville, 32224, FL , USA
| | | | | | | | | | | |
Collapse
|
28
|
Van der Perren A, Toelen J, Casteels C, Macchi F, Van Rompuy AS, Sarre S, Casadei N, Nuber S, Himmelreich U, Osorio Garcia MI, Michotte Y, D'Hooge R, Bormans G, Van Laere K, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V. Longitudinal follow-up and characterization of a robust rat model for Parkinson's disease based on overexpression of alpha-synuclein with adeno-associated viral vectors. Neurobiol Aging 2015; 36:1543-58. [DOI: 10.1016/j.neurobiolaging.2014.11.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022]
|
29
|
Blesa J, Przedborski S. Parkinson's disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 2014; 8:155. [PMID: 25565980 PMCID: PMC4266040 DOI: 10.3389/fnana.2014.00155] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects about 1.5% of the global population over 65 years of age. A hallmark feature of PD is the degeneration of the dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the consequent striatal DA deficiency. Yet, the pathogenesis of PD remains unclear. Despite tremendous growth in recent years in our knowledge of the molecular basis of PD and the molecular pathways of cell death, important questions remain, such as: (1) why are SNc cells especially vulnerable; (2) which mechanisms underlie progressive SNc cell loss; and (3) what do Lewy bodies or α-synuclein reveal about disease progression. Understanding the variable vulnerability of the dopaminergic neurons from the midbrain and the mechanisms whereby pathology becomes widespread are some of the primary objectives of research in PD. Animal models are the best tools to study the pathogenesis of PD. The identification of PD-related genes has led to the development of genetic PD models as an alternative to the classical toxin-based ones, but does the dopaminergic neuronal loss in actual animal models adequately recapitulate that of the human disease? The selection of a particular animal model is very important for the specific goals of the different experiments. In this review, we provide a summary of our current knowledge about the different in vivo models of PD that are used in relation to the vulnerability of the dopaminergic neurons in the midbrain in the pathogenesis of PD.
Collapse
Affiliation(s)
- Javier Blesa
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | | |
Collapse
|
30
|
Sui YT, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 2014; 62:197-202. [PMID: 25278492 PMCID: PMC4378645 DOI: 10.1016/j.peptides.2014.09.018] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn), a small protein with multiple physiological and pathological functions, is one of the dominant proteins found in Lewy Bodies, a pathological hallmark of Lewy body disorders, including Parkinson's disease (PD). More recently, α-Syn has been found in body fluids, including blood and cerebrospinal fluid, and is likely produced by both peripheral tissues and the central nervous system. Exchange of α-Syn between the brain and peripheral tissues could have important pathophysiologic and therapeutic implications. However, little is known about the ability of α-Syn to cross the blood-brain barrier (BBB). Here, we found that radioactively labeled α-Syn crossed the BBB in both the brain-to-blood and the blood-to-brain directions at rates consistent with saturable mechanisms. Low-density lipoprotein receptor-related protein-1 (LRP-1), but not p-glycoprotein, may be involved in α-Syn efflux and lipopolysaccharide (LPS)-induced inflammation could increase α-Syn uptake by the brain by disrupting the BBB.
Collapse
Affiliation(s)
- Yu-Ting Sui
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, United States
| | - Kristin M Bullock
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Room 810 Bldg 1, 1660 S. Columbian Way, Seattle, WA 98108, United States
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Room 810 Bldg 1, 1660 S. Columbian Way, Seattle, WA 98108, United States
| | - Jing Zhang
- Department of Pathology, University of Washington School of Medicine, 325 9th Ave, HMC Box 359635, Seattle, WA 98104, United States
| | - W A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Room 810 Bldg 1, 1660 S. Columbian Way, Seattle, WA 98108, United States; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, United States.
| |
Collapse
|
31
|
Parkinson's disease as a member of Prion-like disorders. Virus Res 2014; 207:38-46. [PMID: 25456401 DOI: 10.1016/j.virusres.2014.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is one of several neurodegenerative diseases associated with a misfolded, aggregated and pathological protein. In Parkinson's disease this protein is alpha-synuclein and its neuronal deposits in the form of Lewy bodies are considered a hallmark of the disease. In this review we describe the clinical and experimental data that have led to think of alpha-synuclein as a prion-like protein and we summarize data from in vitro, cellular and animal models supporting this view.
Collapse
|
32
|
Bobela W, Zheng L, Schneider BL. Overview of Mouse Models of Parkinson's Disease. ACTA ACUST UNITED AC 2014; 4:121-39. [DOI: 10.1002/9780470942390.mo140092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wojciech Bobela
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- These authors contributed equally to this work
| | - Lu Zheng
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- These authors contributed equally to this work
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| |
Collapse
|
33
|
Overexpression of mutant ataxin-3 in mouse cerebellum induces ataxia and cerebellar neuropathology. THE CEREBELLUM 2014; 12:441-55. [PMID: 23242710 DOI: 10.1007/s12311-012-0432-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder--the cerebellum--and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame--6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Collapse
|
34
|
Jain A, Migdalska- A, Jain A. Endothelin-1-Induced Endoplasmic Reticulum Stress in Parkinson's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.84.90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Abstract
In order to study the molecular pathways of Parkinson's disease (PD) and to develop novel therapeutic strategies, scientific investigators rely on animal models. The identification of PD-associated genes has led to the development of genetic PD models as an alternative to toxin-based models. Viral vector-mediated loco-regional gene delivery provides an attractive way to express transgenes in the central nervous system. Several vector systems based on various viruses have been developed. In this chapter, we give an overview of the different viral vector systems used for targeting the CNS. Further, we describe the different viral vector-based PD models currently available based on overexpression strategies for autosomal dominant genes such as α-synuclein and LRRK2, and knockout or knockdown strategies for autosomal recessive genes, such as parkin, DJ-1, and PINK1. Models based on overexpression of α-synuclein are the most prevalent and extensively studied, and therefore the main focus of this chapter. Many efforts have been made to increase the expression levels of α-synuclein in the dopaminergic neurons. The best α-synuclein models currently available have been developed from a combined approach using newer AAV serotypes and optimized vector constructs, production, and purification methods. These third-generation α-synuclein models show improved face and predictive validity, and therefore offer the possibility to reliably test novel therapeutics.
Collapse
|
36
|
Gombash SE, Manfredsson FP, Kemp CJ, Kuhn NC, Fleming SM, Egan AE, Grant LM, Ciucci MR, MacKeigan JP, Sortwell CE. Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PLoS One 2013; 8:e81426. [PMID: 24312298 PMCID: PMC3842242 DOI: 10.1371/journal.pone.0081426] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/12/2013] [Indexed: 01/06/2023] Open
Abstract
The discovery of the involvement of alpha-synuclein (α-syn) in Parkinson’s disease (PD) pathogenesis has resulted in the development and use of viral vector-mediated α-syn overexpression rodent models. The goal of these series of experiments was to characterize the neurodegeneration and functional deficits resulting from injection of recombinant adeno-associated virus (rAAV) serotype 2/5-expressing human wildtype α-syn in the rat substantia nigra (SN). Rats were unilaterally injected into two sites in the SN with either rAAV2/5-expressing green fluorescent protein (GFP, 1.2 x 1013) or varying titers (2.2 x 1012, 1.0 x 1013, 5.9 x 1013, or 1.0 x 1014) of rAAV2/5-α-syn. Cohorts of rats were euthanized 4, 8, or 12 weeks following vector injection. The severity of tyrosine hydroxylase immunoreactive (THir) neuron death in the SN pars compacta (SNpc) was dependent on vector titer. An identical magnitude of nigrostriatal degeneration (60-70% SNpc THir neuron degeneration and 40-50% loss of striatal TH expression) was observed four weeks following 1.0 x 1014 titer rAAV2/5-α-syn injection and 8 weeks following 1.0 x 1013 titer rAAV2/5-α-syn injection. THir neuron degeneration was relatively uniform throughout the rostral-caudal axis of the SNpc. Despite equivalent nigrostriatal degeneration between the 1.0 x 1013 and 1.0 x 1014 rAAV2/5-α-syn groups, functional impairment in the cylinder test and the adjusting steps task was only observed in rats with the longer 8 week duration of α-syn expression. Motor impairment in the cylinder task was highly correlated to striatal TH loss. Further, 8 weeks following 5.9 x 1013 rAAV2/5-α-syn injection deficits in ultrasonic vocalizations were observed. In conclusion, our rAAV2/5-α-syn overexpression model demonstrates robust nigrostriatal α-syn overexpression, induces significant nigrostriatal degeneration that is both vector and duration dependent and under specific parameters can result in motor impairment that directly relates to the level of striatal TH denervation.
Collapse
Affiliation(s)
- Sara E. Gombash
- Graduate Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Fredric P. Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Christopher J. Kemp
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Nathan C. Kuhn
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
| | - Sheila M. Fleming
- Departments of Psychology and Neurology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ann E. Egan
- Graduate Program in Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Laura M. Grant
- Departments of Surgery and Communications Sciences and Disorders, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michelle R. Ciucci
- Departments of Surgery and Communications Sciences and Disorders, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeffrey P. MacKeigan
- Laboratory of Systems Biology, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Caryl E. Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
37
|
Oliveras-Salvá M, Van der Perren A, Casadei N, Stroobants S, Nuber S, D'Hooge R, Van den Haute C, Baekelandt V. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Mol Neurodegener 2013; 8:44. [PMID: 24267638 PMCID: PMC4222878 DOI: 10.1186/1750-1326-8-44] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022] Open
Abstract
Background Alpha-synuclein is a key protein implicated in the pathogenesis of Parkinson's disease (PD). It is the main component of the Lewy bodies, a cardinal neuropathological feature in the disease. In addition, whole locus multiplications and point mutations in the gene coding for alpha-synuclein lead to autosomal dominant monogenic PD. Over the past decade, research on PD has impelled the development of new animal models based on alpha-synuclein. In this context, transgenic mouse lines have failed to reproduce several hallmarks of PD, especially the strong and progressive dopaminergic neurodegeneration over time that occurs in the patients. In contrast, viral vector-based models in rats and non-human primates display prominent, although highly variable, nigral dopaminergic neuron loss. However, the few studies available on viral vector-mediated overexpression of alpha-synuclein in mice report a weak neurodegenerative process and no clear Lewy body-like pathology. To address this issue, we performed a comprehensive comparative study of alpha-synuclein overexpression by means of recombinant adeno-associated viral vectors serotype 2/7 (rAAV2/7) at different doses in adult mouse substantia nigra. Results We noted a significant and dose-dependent alpha-synucleinopathy over time upon nigral viral vector-mediated alpha-synuclein overexpression. We obtained a strong, progressive and dose-dependent loss of dopaminergic neurons in the substantia nigra, reaching a maximum of 82% after 8 weeks. This effect correlated with a reduction in tyrosine hydroxylase immunoreactivity in the striatum. Moreover, behavioural analysis revealed significant motor impairments from 12 weeks after injection on. In addition, we detected the presence of alpha-synuclein-positive aggregates in the remaining surviving neurons. When comparing wild-type to mutant A53T alpha-synuclein at the same vector dose, both induced a similar degree of cell death. These data were supported by a biochemical analysis that showed a net increase in soluble and insoluble alpha-synuclein expression over time to the same extent for both alpha-synuclein variants. Conclusions In conclusion, our in vivo data provide evidence that strong and significant alpha-synuclein-induced neuropathology and progressive dopaminergic neurodegeneration can be achieved in mouse brain by means of rAAV2/7.
Collapse
Affiliation(s)
- Marusela Oliveras-Salvá
- Department of Neurosciences and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, box 7001, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Eschbach J, Danzer KM. α-Synuclein in Parkinson's disease: pathogenic function and translation into animal models. NEURODEGENER DIS 2013; 14:1-17. [PMID: 24080741 DOI: 10.1159/000354615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of α-synuclein aggregates found in Lewy bodies throughout the brain. Several α-synuclein transgenic mouse models have been generated, as well as viral-mediated overexpression of wild-type and mutated α-synuclein to mimic the disease and to delineate the pathogenic pathway of α-synuclein-mediated toxicity and neurodegeneration. In this review, we will recapitulate what we have learned about the function of α-synuclein and α-synuclein-mediated toxicity through studies of transgenic animal models, inducible animal models and viral-based models.
Collapse
|
39
|
Danzer KM, McLean PJ. Drug targets from genetics: α-synuclein. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 10:712-23. [PMID: 21838671 DOI: 10.2174/187152711797247867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/22/2011] [Accepted: 07/24/2011] [Indexed: 02/08/2023]
Abstract
One of the critical issues in Parkinson disease (PD) research is the identity of the specific toxic, pathogenic moiety. In PD, mutations in α-synuclein (αsyn) or multiplication of the SNCA gene encoding αsyn, result in a phenotype of cellular inclusions, cell death, and brain dysfunction. While the historical point of view has been that the macroscopic aggregates containing αsyn are the toxic species, in the last several years evidence has emerged that suggests instead that smaller soluble species--likely oligomers containing misfolded αsyn--are actually the toxic moiety and that the fibrillar inclusions may even be a cellular detoxification pathway and less harmful. If soluble misfolded species of αsyn are the toxic moieties, then cellular mechanisms that degrade misfolded αsyn would be neuroprotective and a rational target for drug development. In this review we will discuss the fundamental mechanisms underlying αsyn toxicity including oligomer formation, oxidative stress, and degradation pathways and consider rational therapeutic strategies that may have the potential to prevent or halt αsyn induced pathogenesis in PD.
Collapse
Affiliation(s)
- Karin M Danzer
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, USA
| | | |
Collapse
|
40
|
Deleersnijder A, Gerard M, Debyser Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 2013; 19:368-77. [DOI: 10.1016/j.molmed.2013.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/21/2022]
|
41
|
Löw K, Aebischer P. Use of viral vectors to create animal models for Parkinson's disease. Neurobiol Dis 2012; 48:189-201. [DOI: 10.1016/j.nbd.2011.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/20/2011] [Indexed: 12/15/2022] Open
|
42
|
Lindgren HS, Lelos MJ, Dunnett SB. Do α-synuclein vector injections provide a better model of Parkinson's disease than the classic 6-hydroxydopamine model? Exp Neurol 2012; 237:36-42. [PMID: 22727767 DOI: 10.1016/j.expneurol.2012.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
Improvements in modelling Parkinson's disease in rodents contribute to the advancement of scientific knowledge and open innumerable pathways for the development of new therapeutic interventions. In a recent article in this journal, Decressac and co-workers present an interesting comparison between two classic 6-hydroxydopamine (6-OHDA) models and the more recently established rodent model of Parkinson's disease induced by over-expression of α-synuclein using adeno-associated viral vectors. As expected, injections of 6-OHDA result in extensive loss of dopamine associated with pronounced motor deficits. Interestingly, over-expression of α-synuclein in the substantia nigra pars compacta also results in a considerable loss of dopamine as well as motor impairments. Both the level of dopamine loss and the motor deficits seen after α-synuclein over-expression were similar in extent to that seen after intrastriatal injections of 6-OHDA, but the temporal profile of degeneration and the development of motor deficits were progressive, more closely mimicking the clinical condition. This commentary offers further insights into the differences between these two rodent models, and asks how well they each replicate idiopathic PD. In addition, the translational relevance, reliability, and predictive value of this more recently developed AAV α-synuclein model are considered.
Collapse
Affiliation(s)
- Hanna S Lindgren
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| | | | | |
Collapse
|
43
|
Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. Mov Disord 2012; 28:61-70. [PMID: 22753348 DOI: 10.1002/mds.25108] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/26/2012] [Accepted: 06/11/2012] [Indexed: 12/11/2022] Open
Abstract
Over the last two decades, significant strides has been made toward acquiring a better knowledge of both the etiology and pathogenesis of Parkinson's disease (PD). Experimental models are of paramount importance to obtain greater insights into the pathogenesis of the disease. Thus far, neurotoxin-based animal models have been the most popular tools employed to produce selective neuronal death in both in vitro and in vivo systems. These models have been commonly referred to as the pathogenic models. The current trend in modeling PD revolves around what can be called the disease gene-based models or etiologic models. The value of utilizing multiple models with a different mechanism of insult rests on the premise that dopamine-producing neurons die by stereotyped cascades that can be activated by a range of insults, from neurotoxins to downregulation and overexpression of disease-related genes. In this position article, we present the relevance of both pathogenic and etiologic models as well as the concept of clinically relevant designs that, we argue, should be utilized in the preclinical development phase of new neuroprotective therapies before embarking into clinical trials.
Collapse
Affiliation(s)
- Erwan Bezard
- University de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | | | | | | |
Collapse
|
44
|
Taschenberger G, Garrido M, Tereshchenko Y, Bähr M, Zweckstetter M, Kügler S. Aggregation of αSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathol 2012; 123:671-83. [PMID: 22167382 PMCID: PMC3316935 DOI: 10.1007/s00401-011-0926-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 11/30/2022]
Abstract
Fibrillar αSynuclein is the major constituent of Lewy bodies and Lewy neurites, the protein deposits characteristic for Parkinson’s disease (PD). Multiplications of the αSynuclein gene, as well as point mutations cause familial PD. However, the exact role of αSynuclein in neurodegeneration remains uncertain. Recent research in invertebrates has suggested that oligomeric rather than fibrillizing αSynuclein mediates neurotoxicity. To investigate the impact of αSynuclein aggregation on the progression of neurodegeneration, we expressed variants with different fibrillation propensities in the rat substantia nigra (SN) by means of recombinant adeno-associated viral (AAV) vectors. The formation of proteinase K-resistant αSynuclein aggregates was correlated to the loss of nigral dopaminergic (DA) neurons and striatal fibers. Expression of two prefibrillar, structure-based design mutants of αSynuclein (i.e., A56P and A30P/A56P/A76P) resulted in less aggregate formation in nigral DA neurons as compared to human wild-type (WT) or the inherited A30P mutation. However, only the αSynuclein variants capable of forming fibrils (WT/A30P), but not the oligomeric αSynuclein species induced a sustained progressive loss of adult nigral DA neurons. These results demonstrate that divergent modes of αSynuclein neurotoxicity exist in invertebrate and mammalian DA neurons in vivo and suggest that fibrillation of αSynuclein promotes the progressive degeneration of nigral DA neurons as found in PD patients.
Collapse
Affiliation(s)
- Grit Taschenberger
- Center of Molecular Physiology of the Brain, Department of Neurology, University Medicine Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Deleersnijder A, Van Rompuy AS, Desender L, Pottel H, Buée L, Debyser Z, Baekelandt V, Gerard M. Comparative analysis of different peptidyl-prolyl isomerases reveals FK506-binding protein 12 as the most potent enhancer of alpha-synuclein aggregation. J Biol Chem 2011; 286:26687-701. [PMID: 21652707 PMCID: PMC3143632 DOI: 10.1074/jbc.m110.182303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 05/28/2011] [Indexed: 11/06/2022] Open
Abstract
FK506-binding proteins (FKBPs) are members of the immunophilins, enzymes that assist protein folding with their peptidyl-prolyl isomerase (PPIase) activity. Some non-immunosuppressive inhibitors of these enzymes have neuroregenerative and neuroprotective properties with an unknown mechanism of action. We have previously shown that FKBPs accelerate the aggregation of α-synuclein (α-SYN) in vitro and in a neuronal cell culture model for synucleinopathy. In this study we investigated whether acceleration of α-SYN aggregation is specific for the FKBP or even the PPIase family. Therefore, we studied the effect of several physiologically relevant PPIases, namely FKBP12, FKBP38, FKBP52, FKBP65, Pin1, and cyclophilin A, on α-SYN aggregation in vitro and in neuronal cell culture. Among all PPIases tested in vitro, FKBP12 accelerated α-SYN aggregation the most. Furthermore, only FKBP12 accelerated α-SYN fibril formation at subnanomolar concentrations, pointing toward an enzymatic effect. Although stable overexpression of various FKBPs enhanced the aggregation of α-SYN and cell death in cell culture, they were less potent than FKBP12. When FKBP38, FKBP52, and FKBP65 were overexpressed in a stable FKBP12 knockdown cell line, they could not fully restore the number of α-SYN inclusion-positive cells. Both in vitro and cell culture data provide strong evidence that FKBP12 is the most important PPIase modulating α-SYN aggregation and validate the protein as an interesting drug target for Parkinson disease.
Collapse
Affiliation(s)
- Angélique Deleersnijder
- From the Laboratory of Biochemistry and
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Anne-Sophie Van Rompuy
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | | | - Hans Pottel
- the Laboratory of Biophysics, K. U. Leuven-Kortrijk, Etienne Sabbelaan 53, B-8500 Kortrijk, Flanders, Belgium
| | - Luc Buée
- INSERM, U837, rue Polonovski, F-59000 Lille, France
- Université Lille-Nord de France, UDSL, Faculté de Médecine, Institut de Médecine Prédictive et Recherche Thérapeutique, Université Lille 2, Place de Verdun, F-59045 Lille, France, and
- CHRU, F-59037 Lille Cedex, France
| | - Zeger Debyser
- From the Laboratory of Biochemistry and
- the Laboratory for Molecular Virology and Gene Therapy and
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Melanie Gerard
- From the Laboratory of Biochemistry and
- Laboratory for Neurobiology and Gene Therapy, K. U. Leuven, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| |
Collapse
|
46
|
Knaryan VH, Samantaray S, Le Gal C, Ray SK, Banik NL. Tracking extranigral degeneration in animal models of Parkinson's disease: quest for effective therapeutic strategies. J Neurochem 2011; 118:326-38. [PMID: 21615738 DOI: 10.1111/j.1471-4159.2011.07320.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sporadic Parkinson's disease (PD) is now interpreted as a complex nervous system disorder in which the projection neurons are predominantly damaged. Such an interpretation is based on mapping of Lewy body and Lewy neurite pathology. Symptoms of the human disease are much widespread, which span from pre-clinical non-motor symptoms and clinical motor symptoms to cognitive discrepancies often seen in advanced stages. Existing symptomatic treatments further complicate with overt drug-irresponsive symptoms. PD is better understood by assimilation of extranigral degenerative pathways with nigrostriatal degenerative mechanisms. The term 'extranigral' appeared first in the 1990s to more rigorously define the nigral pathology by process of elimination. However, as clinicians progressively identified PD symptoms unresponsive to the gold standard drug l-DOPA, definitions of PD symptoms were redefined. Non-motor symptoms prodromal to motor symptoms just as pre-clinical to clinical, and conjointly emerged the concept of nigral versus extranigral degeneration in PD. While nigrostriatal degeneration is responsible for the neurobiological substrates of extrapyramydal motor features, extranigral degeneration corroborates a vast majority of other changes in discrete central, peripheral, and enteric nervous system nuclei, which together account for global symptoms of the human disease. As an extranigral site, spinal cord degeneration has also been implicated in PD progression. Interconnected to the upper CNS structures with descending and ascending pathways, spinal neurons participate in movement and sensory circuits, controlling movement and reflexes. Several clinical and in vivo studies have demonstrated signs of parkinsonism-related degenerative processes in spinal cord, which led to recent consideration of spinal cord as an area of potential therapeutic target. In a nutshell, this review explores how the existing animal models can actually reflect the human disease in order to facilitate PD research. Evolution of extranigral degeneration studies has been succinctly revisited, followed by a survey on animal models in light of recent findings in clinical PD. Together, it may help to develop effective therapeutic strategies for PD.
Collapse
Affiliation(s)
- Varduhi H Knaryan
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
47
|
Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:193-222. [PMID: 21034221 DOI: 10.1146/annurev-pathol-011110-130242] [Citation(s) in RCA: 574] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent investigation into the mechanisms of Parkinson's disease (PD) has generated remarkable insight while simultaneously challenging traditional conceptual frameworks. Although the disease remains defined clinically by its cardinal motor manifestations and pathologically by midbrain dopaminergic cell loss in association with Lewy bodies, it is now recognized that PD has substantially more widespread impact, causing a host of nonmotor symptoms and associated pathology in multiple regions throughout the nervous system. Further, the discovery and validation of PD-susceptibility genes contradict the historical view that environmental factors predominate, and blur distinctions between familial and sporadic disease. Genetic advances have also promoted the development of improved animal models, highlighted responsible molecular pathways, and revealed mechanistic overlap with other neurodegenerative disorders. In this review, we synthesize emerging lessons on PD pathogenesis from clinical, pathological, and genetic studies toward a unified concept of the disorder that may accelerate the design and testing of the next generation of PD therapies.
Collapse
Affiliation(s)
- Joshua M Shulman
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
48
|
Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9. Gene Ther 2011; 18:517-27. [PMID: 21326331 DOI: 10.1038/gt.2010.179] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dysfunction of the nigrostriatal system is the major cause of Parkinson's disease (PD). This brain region is therefore an important target for gene delivery aiming at disease modeling and gene therapy. Recombinant adeno-associated viral (rAAV) vectors have been developed as efficient vehicles for gene transfer into the central nervous system. Recently, several serotypes have been described, with varying tropism for brain transduction. In light of the further development of a viral vector-mediated rat model for PD, we performed a comprehensive comparison of the transduction and tropism for dopaminergic neurons (DNs) in the adult Wistar rat substantia nigra (SN) of seven rAAV vector serotypes (rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9). All vectors were normalized by titer and volume, and stereotactically injected into the SN. Gene expression was assessed non-invasively and quantitatively in vivo by bioluminescence imaging at 2 and 5 weeks after injection, and was found to be stable over time. Immunohistochemistry at 6 weeks following injection revealed the most widespread enhanced green fluorescence protein expression and the highest number of positive nigral cells using rAAV 2/7, 2/9 and 2/1. The area transduced by rAAV 2/8 was smaller, but nevertheless almost equal numbers of nigral cells were targeted. Detailed confocal analysis revealed that serotype 2/7, 2/9, 2/1 and 2/8 transduced at least 70% of the DNs. In conclusion, these results show that various rAAV serotypes efficiently transduce nigral DNs, but significant differences in transgene expression pattern and level were observed.
Collapse
|
49
|
Hisahara S, Shimohama S. Toxin-induced and genetic animal models of Parkinson's disease. PARKINSONS DISEASE 2010; 2011:951709. [PMID: 21234368 PMCID: PMC3014721 DOI: 10.4061/2011/951709] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/31/2010] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs), but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models.
Collapse
Affiliation(s)
- Shin Hisahara
- Department of Neurology, Sapporo Medical University, South1, West17, chuo-ku, Sapporo 060-8556, Japan
| | | |
Collapse
|
50
|
Taymans JM, Cookson MR. Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, alpha-synuclein, and tau. Bioessays 2010; 32:227-235. [PMID: 20127702 DOI: 10.1002/bies.200900163] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is generally sporadic but a number of genetic diseases have parkinsonism as a clinical feature. Two dominant genes, alpha-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2), are important for understanding inherited and sporadic PD. SNCA is a major component of pathologic inclusions termed Lewy bodies found in PD. LRRK2 is found in a significant proportion of PD cases. These two proteins may be linked as most LRRK2 PD cases have SNCA-positive Lewy bodies. Mutations in both proteins are associated with toxic effects in model systems although mechanisms are unclear. LRRK2 is an intracellular signaling protein possessing both GTPase and kinase activities that may contribute to pathogenicity. A third protein, tau, is implicated as a risk factor for PD. We discuss the potential relationship between these genes and suggest a model for PD pathogenesis where LRRK2 is upstream of pathogenic effects through SNCA, tau, or both proteins.
Collapse
Affiliation(s)
- Jean-Marc Taymans
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, MD, USA.,Laboratory for Neurobiology and Gene Therapy, Division of Molecular Medicine, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mark R Cookson
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, NIA, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|