1
|
Jutla A, Filippelli GM, McMahon KD, Tringe SG, Colwell RR, Nguyen H, Imperiale MJ. One Health, climate change, and infectious microbes: a joint effort between AGU and ASM to understand impacts of changing climate and microbes on human well-being across scales. mSphere 2024; 9:e0003524. [PMID: 38294223 PMCID: PMC10900903 DOI: 10.1128/msphere.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Affiliation(s)
- Antarpreet Jutla
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Gabriel M. Filippelli
- Department of Earth Sciences, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - Katherine D. McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Susannah G. Tringe
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Rita R. Colwell
- Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Helen Nguyen
- Helen Nguyen, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Jutla A, Usmani M, Brumfield KD, Singh K, McBean F, Potter A, Gutierrez A, Gama S, Huq A, Colwell RR. Anticipatory decision-making for cholera in Malawi. mBio 2023; 14:e0052923. [PMID: 37962395 PMCID: PMC10746182 DOI: 10.1128/mbio.00529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Climate change raises an old disease to a new level of public health threat. The causative agent, Vibrio cholerae, native to aquatic ecosystems, is influenced by climate and weather processes. The risk of cholera is elevated in vulnerable populations lacking access to safe water and sanitation infrastructure. Predictive intelligence, employing mathematical algorithms that integrate earth observations and heuristics derived from microbiological, sociological, and weather data, can provide anticipatory decision-making capabilities to reduce the burden of cholera and save human lives. An example offered here is the recent outbreak of cholera in Malawi, predicted in advance by such algorithms.
Collapse
Affiliation(s)
- Antarpreet Jutla
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Moiz Usmani
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Komalpreet Singh
- Department of Environmental Engineering Sciences, GeoHealth and Hydrology Laboratory, University of Florida, Gainesville, Florida, USA
| | - Fergus McBean
- Foreign, Commonwealth & Development Office, London, United Kingdom
| | - Amy Potter
- Foreign, Commonwealth & Development Office, London, United Kingdom
| | - Angelica Gutierrez
- Office of Water Prediction, National Oceanic and Atmospheric Administration (NOAA), Silver Spring, Maryland, USA
| | - Samuel Gama
- Department of Disaster Management Affairs, Office of the President and Cabinet, Lilongwe, Malawi
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Abdulaziz A, Vikraman HK, Raj D, Menon N, George G, Soman R, Mony DP, Mary A, Krishna K, Raju GKT, Kuttan SP, Tharakan B, Chekidhenkuzhiyil J, Platt T, Sathyendranath S. Distribution and antibiotic resistance of vibrio population in an urbanized tropical lake-the Vembanad-in the southwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116066-116077. [PMID: 37906329 DOI: 10.1007/s11356-023-30565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
Collapse
Affiliation(s)
- Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India.
| | | | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Nandini Menon
- Nansen Environmental Research Centre India, KUFOS Amenity Centre, Kochi, 682506, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Grinson George
- ICAR-Central Marine Fisheries Research Institute, Kochi, 682018, India
| | - Reshma Soman
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Kiran Krishna
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, PL1 3DH, Devon, UK
| | | |
Collapse
|
4
|
Walton MG, Cubillejo I, Nag D, Withey JH. Advances in cholera research: from molecular biology to public health initiatives. Front Microbiol 2023; 14:1178538. [PMID: 37283925 PMCID: PMC10239892 DOI: 10.3389/fmicb.2023.1178538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
The aquatic bacterium Vibrio cholerae is the etiological agent of the diarrheal disease cholera, which has plagued the world for centuries. This pathogen has been the subject of studies in a vast array of fields, from molecular biology to animal models for virulence activity to epidemiological disease transmission modeling. V. cholerae genetics and the activity of virulence genes determine the pathogenic potential of different strains, as well as provide a model for genomic evolution in the natural environment. While animal models for V. cholerae infection have been used for decades, recent advances in this area provide a well-rounded picture of nearly all aspects of V. cholerae interaction with both mammalian and non-mammalian hosts, encompassing colonization dynamics, pathogenesis, immunological responses, and transmission to naïve populations. Microbiome studies have become increasingly common as access and affordability of sequencing has improved, and these studies have revealed key factors in V. cholerae communication and competition with members of the gut microbiota. Despite a wealth of knowledge surrounding V. cholerae, the pathogen remains endemic in numerous countries and causes sporadic outbreaks elsewhere. Public health initiatives aim to prevent cholera outbreaks and provide prompt, effective relief in cases where prevention is not feasible. In this review, we describe recent advancements in cholera research in these areas to provide a more complete illustration of V. cholerae evolution as a microbe and significant global health threat, as well as how researchers are working to improve understanding and minimize impact of this pathogen on vulnerable populations.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H. Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Combating cholera by building predictive capabilities for pathogenic Vibrio cholerae in Yemen. Sci Rep 2023; 13:2255. [PMID: 36755108 PMCID: PMC9908932 DOI: 10.1038/s41598-022-22946-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/21/2022] [Indexed: 02/10/2023] Open
Abstract
Cholera remains a global public health threat in regions where social vulnerabilities intersect with climate and weather processes that impact infectious Vibrio cholerae. While access to safe drinking water and sanitation facilities limit cholera outbreaks, sheer cost of building such infrastructure limits the ability to safeguard the population. Here, using Yemen as an example where cholera outbreak was reported in 2016, we show how predictive abilities for forecasting risk, employing sociodemographical, microbiological, and climate information of cholera, can aid in combating disease outbreak. An epidemiological analysis using Bradford Hill Criteria was employed in near-real-time to understand a predictive model's outputs and cholera cases in Yemen. We note that the model predicted cholera risk at least four weeks in advance for all governorates of Yemen with overall 72% accuracy (varies with the year). We argue the development of anticipatory decision-making frameworks for climate modulated diseases to design intervention activities and limit exposure of pathogens preemptively.
Collapse
|
6
|
Fuhrmann G. Drug delivery as a sustainable avenue to future therapies. J Control Release 2023; 354:746-754. [PMID: 36690037 DOI: 10.1016/j.jconrel.2023.01.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Climate change and the need for sustainable, technological developments are the greatest challenges facing humanity in the coming decades. To address these issues, in 2015 the United Nations have established 17 Sustainable Development Goals. Anthropogenic climate change will not only affect everyone personally in the coming years, it will also reinforce the need to become more sustainable within drug delivery research. In 2021, I was appointed professor for pharmaceutical biology at the Friedrich-Alexander-University Erlangen-Nürnberg. Our research is at the interface between developing biogenic therapies and understanding of bacterial infections. In this contribution to the Orations - New Horizons of the Journal of Controlled Release, I would like to underline the need for future sustainable approaches in our research area, by highlighting selected examples from the fields of infection research, natural product characterisation and extracellular vesicles. My aim is to put into perspective current issues for these research topics, but also encourage our current student-training framework to contribute to education for sustainable development. This contribution is a personal statement to increase the overall awareness for sustainability challenges in drug delivery and beyond.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
7
|
Heterogeneous Growth Enhancement of Vibrio cholerae in the Presence of Different Phytoplankton Species. Appl Environ Microbiol 2022; 88:e0115822. [PMID: 36000870 PMCID: PMC9469713 DOI: 10.1128/aem.01158-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a ubiquitously distributed human pathogen that naturally inhabits marine and estuarine ecosystems. Two serogroups are responsible for causing cholera epidemics, O1 and O139, but several non-O1 and non-O139 V. cholerae (NOVC) strains can induce cholera-like infections. Outbreaks of V. cholerae have previously been correlated with phytoplankton blooms; however, links to specific phytoplankton species have not been resolved. Here, the growth of a NOVC strain (S24) was measured in the presence of different phytoplankton species, alongside phytoplankton abundance and concentrations of dissolved organic carbon (DOC). During 14-day experiments, V. cholerae S24 was cocultured with strains of the axenic phytoplankton species Actinocyclus curvatulus, Cylindrotheca closterium, a Pseudoscourfieldia sp., and a Picochlorum sp. V. cholerae abundances significantly increased in the presence of A. curvatulus, C. closterium, and the Pseudoscourfieldia sp., whereas abundances significantly decreased in the Picochlorum sp. coculture. V. cholerae growth was significantly enhanced throughout the cogrowth experiment with A. curvatulus, whereas when grown with C. closterium and the Pseudoscourfieldia sp., growth only occurred during the late stationary phase of the phytoplankton growth cycle, potentially coinciding with a release of DOC from senescent phytoplankton cells. In each of these cases, significant correlations between phytoplankton-derived DOC and V. cholerae cell abundances occurred. Notably, the presence of V. cholerae also promoted the growth of A. curvatulus and Picochlorum spp., highlighting potential ecological interactions. Variations in abundances of NOVC identified here highlight the potential diversity in V. cholerae-phytoplankton ecological interactions, which may inform efforts to predict outbreaks of NOVC in coastal environments. IMPORTANCE Many environmental strains of V. cholerae do not cause cholera epidemics but remain a public health concern due to their roles in milder gastrointestinal illnesses. With emerging evidence that these infections are increasing due to climate change, determining the ecological drivers that enable outbreaks of V. cholerae in coastal environments is becoming critical. Links have been established between V. cholerae abundance and chlorophyll a levels, but the ecological relationships between V. cholerae and specific phytoplankton species are unclear. Our research demonstrated that an environmental strain of V. cholerae (serogroup 24) displays highly heterogenous interactions in the presence of different phytoplankton species with a relationship to the dissolved organic carbon released by the phytoplankton species. This research points toward the complexity of the interactions of environmental strains of V. cholerae with phytoplankton communities, which we argue should be considered in predicting outbreaks of this pathogen.
Collapse
|
8
|
Usmani M, Brumfield KD, Magers BM, Huq A, Barciela R, Nguyen TH, Colwell RR, Jutla A. Predictive Intelligence for Cholera in Ukraine? GEOHEALTH 2022; 6:e2022GH000681. [PMID: 36185317 PMCID: PMC9514009 DOI: 10.1029/2022gh000681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 06/16/2023]
Abstract
Cholera, an ancient waterborne diarrheal disease, remains a threat to public health, especially when climate/weather processes, microbiological parameters, and sociological determinants intersect with population vulnerabilities of loss of access to safe drinking water and sanitation infrastructure. The ongoing war in Ukraine has either damaged or severely crippled civil infrastructure, following which the human population is at risk of health disasters. This editorial highlights a perspective on using predictive intelligence to combat potential (and perhaps impending) cholera outbreaks in various regions of Ukraine. Reliable and judicious use of existing earth observations inspired mathematical algorithms integrating heuristic understanding of microbiological, sociological, and weather parameters have the potential to save or reduce the disease burden.
Collapse
Affiliation(s)
- Moiz Usmani
- GeoHealth and Hydrology LaboratoryDepartment of Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| | - Kyle D. Brumfield
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | - Bailey M. Magers
- GeoHealth and Hydrology LaboratoryDepartment of Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| | - Anwar Huq
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | | | - Thanh H. Nguyen
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Rita R. Colwell
- Maryland Pathogen Research InstituteUniversity of MarylandCollege ParkMDUSA
- University of Maryland Institute for Advanced Computer StudiesUniversity of MarylandCollege ParkMDUSA
| | - Antarpreet Jutla
- GeoHealth and Hydrology LaboratoryDepartment of Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
9
|
Córdoba Meza T, Espinosa Díaz LF, Vivas Aguas LJ. OCURRENCIA Y DISTRIBUCIÓN DE Vibrio cholerae CULTIVABLE EN LA CIÉNAGA GRANDE DE SANTA MARTA, CARIBE COLOMBIANO. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n2.92057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vibrio cholerae es un potencial patógeno humano que habita ambientes acuáticos, aunque su presencia y abundancia se ha asociado al aumento de la temperatura del agua, poco se ha investigado sobre su ecología en ambientes estuarinos tropicales, donde los cambios de salinidad suelen ser más importantes. El presente estudio evaluó la distribución de V. cholerae en la Ciénaga Grande de Santa Marta, Colombia y su relación con la temperatura y la salinidad. Para ello, entre 2016 y 2018 se cuantificó bimestralmente esta especie en muestras de agua superficial, usando agar TCBS y pruebas bioquímicas. V. cholerae se detectó en 57 de 198 muestras (28,8 %), variando en densidad entre 5 y 54.800 UFC por 100 mL. Entre enero y septiembre de 2016 se presentó una alta salinidad promedio mensual (≥ 28,7) y una baja detección de la bacteria (0,01 %). La salinidad promedio se redujo drásticamente en noviembre de 2016 (9,6), coincidiendo con una proliferación de V. cholerae (promedio geométrico 36,4 UFC/100 mL). Durante 2017 y 2018 la salinidad promedio se mantuvo por debajo de 15,2 y la detección de V. cholerae fue mayor (39,4 %) que, en 2016, presentándose mayores densidades en los meses con menor salinidad. En las estaciones denominadas BVA y NVE, donde se ubican poblaciones palafíticas, se registraron las densidades promedio (geométrico) más altas, 25,3 UFC/100 mL y 15,4 UFC/ 100 mL, respectivamente. Los resultados de este estudio demuestran que la salinidad juega un papel determinante en la ocurrencia y abundancia de V. cholerae en esta laguna tropical.
Collapse
|
10
|
Zohra T, Ikram A, Salman M, Amir A, Saeed A, Ashraf Z, Ahad A. Wastewater based environmental surveillance of toxigenic Vibrio cholerae in Pakistan. PLoS One 2021; 16:e0257414. [PMID: 34591885 PMCID: PMC8483414 DOI: 10.1371/journal.pone.0257414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34±2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Asim Saeed
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Zurva Ashraf
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Abdul Ahad
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
11
|
Usmani M, Brumfield KD, Jamal Y, Huq A, Colwell RR, Jutla A. A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera. Trop Med Infect Dis 2021; 6:tropicalmed6030147. [PMID: 34449728 PMCID: PMC8396309 DOI: 10.3390/tropicalmed6030147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022] Open
Abstract
Climate variables influence the occurrence, growth, and distribution of Vibrio cholerae in the aquatic environment. Together with socio-economic factors, these variables affect the incidence and intensity of cholera outbreaks. The current pandemic of cholera began in the 1960s, and millions of cholera cases are reported each year globally. Hence, cholera remains a significant health challenge, notably where human vulnerability intersects with changes in hydrological and environmental processes. Cholera outbreaks may be epidemic or endemic, the mode of which is governed by trigger and transmission components that control the outbreak and spread of the disease, respectively. Traditional cholera risk assessment models, namely compartmental susceptible-exposed-infected-recovered (SEIR) type models, have been used to determine the predictive spread of cholera through the fecal–oral route in human populations. However, these models often fail to capture modes of infection via indirect routes, such as pathogen movement in the environment and heterogeneities relevant to disease transmission. Conversely, other models that rely solely on variability of selected environmental factors (i.e., examine only triggers) have accomplished real-time outbreak prediction but fail to capture the transmission of cholera within impacted populations. Since the mode of cholera outbreaks can transition from epidemic to endemic, a comprehensive transmission model is needed to achieve timely and reliable prediction with respect to quantitative environmental risk. Here, we discuss progression of the trigger module associated with both epidemic and endemic cholera, in the context of the autochthonous aquatic nature of the causative agent of cholera, V. cholerae, as well as disease prediction.
Collapse
Affiliation(s)
- Moiz Usmani
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32603, USA; (M.U.); (Y.J.); (A.J.)
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (K.D.B.); (A.H.)
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
| | - Yusuf Jamal
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32603, USA; (M.U.); (Y.J.); (A.J.)
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (K.D.B.); (A.H.)
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (K.D.B.); (A.H.)
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
- Correspondence:
| | - Antarpreet Jutla
- Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32603, USA; (M.U.); (Y.J.); (A.J.)
| |
Collapse
|
12
|
Dynamics of Vibrio cholerae in a Typical Tropical Lake and Estuarine System: Potential of Remote Sensing for Risk Mapping. REMOTE SENSING 2021. [DOI: 10.3390/rs13051034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Vibrio cholerae, the bacterium responsible for the disease cholera, is a naturally-occurring bacterium, commonly found in many natural tropical water bodies. In the context of the U.N. Sustainable Development Goals (SDG) targets on health (Goal 3), water quality (Goal 6), life under water (Goal 14), and clean water and sanitation (Goal 6), which aim to “ensure availability and sustainable management of water and sanitation for all”, we investigated the environmental reservoirs of V. cholerae in Vembanad Lake, the largest lake in Kerala (India), where cholera is endemic. The response of environmental reservoirs of V. cholerae to variability in essential climate variables may play a pivotal role in determining the quality of natural water resources, and whether they might be safe for human consumption or not. The hydrodynamics of Vembanad Lake, and the man-made barrier that divides the lake, resulted in spatial and temporal variability in salinity (1–32 psu) and temperature (23 to 36 °C). The higher ends of this salinity and temperature ranges fall outside the preferred growth conditions for V. cholerae reported in the literature. The bacteria were associated with filtered water as well as with phyto- and zooplankton in the lake. Their association with benthic organisms and sediments was poor to nil. The prevalence of high laminarinase and chitinase enzyme expression (more than 50 µgmL−1 min−1) among V. cholerae could underlie their high association with phyto- and zooplankton. Furthermore, the diversity in the phytoplankton community in the lake, with dominance of genera such as Skeletonema sp., Microcystis sp., Aulacoseira sp., and Anabaena sp., which changed with location and season, and associated changes in the zooplankton community, could also have affected the dynamics of the bacteria in the lake. The probability of presence or absence of V. cholerae could be expressed as a function of chlorophyll concentration in the water, which suggests that risk maps for the entire lake can be generated using satellite-derived chlorophyll data. In situ observations and satellite-based extrapolations suggest that the risks from environmental V. cholerae in the lake can be quite high (with probability in the range of 0.5 to 1) everywhere in the lake, but higher values are encountered more frequently in the southern part of the lake. Remote sensing has an important role to play in meeting SDG goals related to health, water quality and life under water, as demonstrated in this example related to cholera.
Collapse
|
13
|
Aziz S, Pakhtigian EL, Akanda AS, Jutla A, Huq A, Alam M, Ashan GU, Colwell RR. Does improved risk information increase the value of cholera prevention? An analysis of stated vaccine demand in slum areas of urban Bangladesh. Soc Sci Med 2021; 272:113716. [PMID: 33571944 DOI: 10.1016/j.socscimed.2021.113716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 11/24/2022]
Abstract
As the world's longest running pandemic, cholera poses a substantial public health burden in Bangladesh, where human vulnerability intersects with climatic variability. Barriers to safe water and sanitation place the health of millions of Bangladeshis in jeopardy - especially those who have highly constrained choices in preventing and responding to cholera. In this paper we investigate demand for cholera prevention among residents in the Mirpur and Karail slum areas of urban Dhaka. Using survey data from 2023 households in two slum areas, we analyze responses from a contingent valuation questionnaire that elicited willingness to pay (WTP) for cholera vaccines across household members and under varying disease risk scenarios, finding higher valuation for cholera prevention for children and under scenarios of greater epidemic risk. We estimate the average WTP for a cholera vaccine for a child ranges from TK 134-167 (US$ 1.58-1.96). Consistently, respondents with prior knowledge of the cholera vaccine reported lower WTP valuations, providing suggestive evidence of concerns about vaccine effectiveness and preferences for cholera treatment over prevention. We supplement the contingent valuation analysis with cost of illness estimates from both our household sample as well as from administrative hospital records of over 34,000 cholera patients. We estimate that a household incurs costs of TK 801-922 (US$ 9.43-10.50) per episode of cholera that requires medical treatment. Taken together, these findings indicate higher WTP for cholera treatment compared to prevention, but increased interest in prevention under early warning system scenarios of high disease risk.
Collapse
Affiliation(s)
- Sonia Aziz
- Moravian College, 1200 Main Street, Bethlehem, PA, 18018, USA.
| | - Emily L Pakhtigian
- School of Public Policy, Penn State University, Pond Lab, University Park, PA, 16802, USA.
| | - Ali S Akanda
- University of Rhode Island, 1 Lippit Road, Kingston, RI, 02881, USA.
| | | | - Anwar Huq
- University of Maryland, 3132 Bioscience Research Building, College Park, MD, 20742, USA.
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research, Shaheed Tajiddin Ahmed Avenue, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Gias U Ashan
- School of Health and Life Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
| | - Rita R Colwell
- Institute of Advanced Computer Studies, University of Maryland, 3103 Center of Bioinformatics and Computational Biology, College Park, MD, 20742, USA.
| |
Collapse
|
14
|
Maestre-Reyna M, Huang WC, Wu WJ, Singh PK, Hartmann R, Wang PH, Lee CC, Hikima T, Yamamoto M, Bessho Y, Drescher K, Tsai MD, Wang AHJ. Vibrio cholerae biofilm scaffolding protein RbmA shows an intrinsic, phosphate-dependent autoproteolysis activity. IUBMB Life 2020; 73:418-431. [PMID: 33372380 PMCID: PMC7898620 DOI: 10.1002/iub.2439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Vibrio cholerae is the causative agent of the diarrheal disease cholera, for which biofilm communities are considered to be environmental reservoirs. In endemic regions, and after algal blooms, which may result from phosphate enrichment following agricultural runoff, the bacterium is released from biofilms resulting in seasonal disease outbreaks. However, the molecular mechanism by which V. cholerae senses its environment and switches lifestyles from the biofilm‐bound state to the planktonic state is largely unknown. Here, we report that the major biofilm scaffolding protein RbmA undergoes autocatalytic proteolysis via a phosphate‐dependent induced proximity activation mechanism. Furthermore, we show that RbmA mutants that are defective in autoproteolysis cause V. cholerae biofilms to grow larger and mechanically stronger, correlating well with the observation that RbmA stability directly affects microbial community homeostasis and rheological properties. In conclusion, our biophysical study characterizes a novel phosphate‐dependent breakdown pathway of RbmA, while microbiological data suggest a new, sensory role of this biofilm scaffolding element.
Collapse
Affiliation(s)
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Praveen K Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Po-Hsun Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Physics, Philipps University Marburg, Marburg, Germany
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Campbell AM, Racault MF, Goult S, Laurenson A. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249378. [PMID: 33333823 PMCID: PMC7765326 DOI: 10.3390/ijerph17249378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Oceanic and coastal ecosystems have undergone complex environmental changes in recent years, amid a context of climate change. These changes are also reflected in the dynamics of water-borne diseases as some of the causative agents of these illnesses are ubiquitous in the aquatic environment and their survival rates are impacted by changes in climatic conditions. Previous studies have established strong relationships between essential climate variables and the coastal distribution and seasonal dynamics of the bacteria Vibrio cholerae, pathogenic types of which are responsible for human cholera disease. In this study we provide a novel exploration of the potential of a machine learning approach to forecast environmental cholera risk in coastal India, home to more than 200 million inhabitants, utilising atmospheric, terrestrial and oceanic satellite-derived essential climate variables. A Random Forest classifier model is developed, trained and tested on a cholera outbreak dataset over the period 2010–2018 for districts along coastal India. The random forest classifier model has an Accuracy of 0.99, an F1 Score of 0.942 and a Sensitivity score of 0.895, meaning that 89.5% of outbreaks are correctly identified. Spatio-temporal patterns emerged in terms of the model’s performance based on seasons and coastal locations. Further analysis of the specific contribution of each Essential Climate Variable to the model outputs shows that chlorophyll-a concentration, sea surface salinity and land surface temperature are the strongest predictors of the cholera outbreaks in the dataset used. The study reveals promising potential of the use of random forest classifiers and remotely-sensed essential climate variables for the development of environmental cholera-risk applications. Further exploration of the present random forest model and associated essential climate variables is encouraged on cholera surveillance datasets in other coastal areas affected by the disease to determine the model’s transferability potential and applicative value for cholera forecasting systems.
Collapse
Affiliation(s)
| | - Marie-Fanny Racault
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; (S.G.); (A.L.)
- National Centre For Earth Observation, PML, Plymouth PL1 3DH, UK
- Correspondence:
| | - Stephen Goult
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; (S.G.); (A.L.)
- National Centre For Earth Observation, PML, Plymouth PL1 3DH, UK
| | - Angus Laurenson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK; (S.G.); (A.L.)
| |
Collapse
|
16
|
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JAJM, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health 2020; 86:151. [PMID: 33354517 PMCID: PMC7731724 DOI: 10.5334/aogh.2831] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Collapse
Affiliation(s)
| | - John J Stegeman
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - Lora E Fleming
- European Centre for Environment and Human Health, GB
- University of Exeter Medical School, GB
| | | | - Donald M Anderson
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | | | - Nicolas Chevalier
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | - Lilian Corra
- International Society of Doctors for the Environment (ISDE), CH
- Health and Environment of the Global Alliance on Health and Pollution (GAHP), AR
| | | | - Marie-Yasmine Dechraoui Bottein
- Intergovernmental Oceanographic Commission of UNESCO, FR
- IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, DK
- Ecotoxicologie et développement durable expertise ECODD, Valbonne, FR
| | - Barbara Demeneix
- Centre National de la Recherche Scientifique, FR
- Muséum National d'Histoire Naturelle, Paris, FR
| | | | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, US
| | | | - Patrick Fénichel
- Université Côte d'Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | | | | | | | | | | | | | - Mark E Hahn
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | - Philipp Hess
- Institut Français de Recherche pour l'Exploitation des Mers, FR
| | | | | | - Jacqueline McGlade
- Institute for Global Prosperity, University College London, GB
- Strathmore University Business School, Nairobi, KE
| | | | - Adetoun Mustapha
- Nigerian Institute for Medical Research, Lagos, NG
- Imperial College London, GB
| | | | | | | | - Christopher Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, SE
| | | | | | | | | | | | - Pál Weihe
- University of the Faroe Islands and Department of Occupational Medicine and Public Health, FO
| | | | - Hervé Raps
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| | - Patrick Rampal
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| |
Collapse
|
17
|
Taubenböck H, Schmich P, Erbertseder T, Müller I, Tenikl J, Weigand M, Staab J, Wurm M. [Satellite data for recording health-relevant environmental conditions: examples and interdisciplinary potential]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:936-944. [PMID: 32617643 DOI: 10.1007/s00103-020-03177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Environmental conditions influence human health and interact with other factors such as DNA, lifestyle, or the social environment. Earth observations from space provide data on the most diverse manifestations of these environmental conditions and make it possible to quantify them spatially. Using two examples - the availability of open and recreational space and the spatial distribution of air pollution - this article presents the potential of Earth observations for health studies. In addition, possible applications for health-related issues are discussed. To this end, we try to outline key points for an interdisciplinary approach that meets the conceptual, data technology, and ethical challenges.
Collapse
Affiliation(s)
- Hannes Taubenböck
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland.
- Institut für Geographie und Geologie, Julius-Maximilians-Universität Würzburg, Würzburg, Deutschland.
| | | | - Thilo Erbertseder
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland
| | - Inken Müller
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland
| | - Julia Tenikl
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland
| | - Matthias Weigand
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland
| | - Jeroen Staab
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland
| | - Michael Wurm
- Earth Observation Center (EOC) Weßling, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Münchener Str. 20, 82234, Weßling, Deutschland
| |
Collapse
|
18
|
Cantrell DL, Groner ML, Ben-Horin T, Grant J, Revie CW. Modeling Pathogen Dispersal in Marine Fish and Shellfish. Trends Parasitol 2020; 36:239-249. [PMID: 32037136 DOI: 10.1016/j.pt.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
In marine ecosystems, oceanographic processes often govern host contacts with infectious agents. Consequently, many approaches developed to quantify pathogen dispersal in terrestrial ecosystems have limited use in the marine context. Recent applications in marine disease modeling demonstrate that physical oceanographic models coupled with biological models of infectious agents can characterize dispersal networks of pathogens in marine ecosystems. Biophysical modeling has been used over the past two decades to model larval dispersion but has only recently been utilized in marine epidemiology. In this review, we describe how biophysical models function and how they can be used to measure connectivity of infectious agents between sites, test hypotheses regarding pathogen dispersal, and quantify patterns of pathogen spread, focusing on fish and shellfish pathogens.
Collapse
Affiliation(s)
- Danielle L Cantrell
- Health Management Department, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada.
| | - Maya L Groner
- Prince William Sound Science Center, Cordova, AK, USA; Affiliate, US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Tal Ben-Horin
- Department of Fisheries, Animal and Veterinary Science, College of the Environment and Life Science, University of Rhode Island, Kingston, RI, USA; Center for Marine Science and Technology, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, USA
| | - Jon Grant
- Oceanography Department, Dalhousie University, Halifax, NS, Canada
| | - Crawford W Revie
- Health Management Department, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada; Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
19
|
Environmental Reservoirs of Vibrio cholerae: Challenges and Opportunities for Ocean-Color Remote Sensing. REMOTE SENSING 2019. [DOI: 10.3390/rs11232763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The World Health Organization has estimated the burden of the on-going pandemic of cholera at 1.3 to 4 million cases per year worldwide in 2016, and a doubling of case-fatality-rate to 1.8% in 2016 from 0.8% in 2015. The disease cholera is caused by the bacterium Vibrio cholerae that can be found in environmental reservoirs, living either in free planktonic form or in association with host organisms, non-living particulate matter or in the sediment, and participating in various biogeochemical cycles. An increasing number of epidemiological studies are using land- and water-based remote-sensing observations for monitoring, surveillance, or risk mapping of Vibrio pathogens and cholera outbreaks. Although the Vibrio pathogens cannot be sensed directly by satellite sensors, remotely-sensed data can be used to infer their presence. Here, we review the use of ocean-color remote-sensing data, in conjunction with information on the ecology of the pathogen, to map its distribution and forecast risk of disease occurrence. Finally, we assess how satellite-based information on cholera may help support the Sustainable Development Goals and targets on Health (Goal 3), Water Quality (Goal 6), Climate (Goal 13), and Life Below Water (Goal 14).
Collapse
|
20
|
Dietrich D, Dekova R, Davy S, Fahrni G, Geissbühler A. Applications of Space Technologies to Global Health: Scoping Review. J Med Internet Res 2018; 20:e230. [PMID: 29950289 PMCID: PMC6041558 DOI: 10.2196/jmir.9458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/21/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Space technology has an impact on many domains of activity on earth, including in the field of global health. With the recent adoption of the United Nations' Sustainable Development Goals that highlight the need for strengthening partnerships in different domains, it is useful to better characterize the relationship between space technology and global health. OBJECTIVE The aim of this study was to identify the applications of space technologies to global health, the key stakeholders in the field, as well as gaps and challenges. METHODS We used a scoping review methodology, including a literature review and the involvement of stakeholders, via a brief self-administered, open-response questionnaire. A distinct search on several search engines was conducted for each of the four key technological domains that were previously identified by the UN Office for Outer Space Affairs' Expert Group on Space and Global Health (Domain A: remote sensing; Domain B: global navigation satellite systems; Domain C: satellite communication; and Domain D: human space flight). Themes in which space technologies are of benefit to global health were extracted. Key stakeholders, as well as gaps, challenges, and perspectives were identified. RESULTS A total of 222 sources were included for Domain A, 82 sources for Domain B, 144 sources for Domain C, and 31 sources for Domain D. A total of 3 questionnaires out of 16 sent were answered. Global navigation satellite systems and geographic information systems are used for the study and forecasting of communicable and noncommunicable diseases; satellite communication and global navigation satellite systems for disaster response; satellite communication for telemedicine and tele-education; and global navigation satellite systems for autonomy improvement, access to health care, as well as for safe and efficient transportation. Various health research and technologies developed for inhabited space flights have been adapted for terrestrial use. CONCLUSIONS Although numerous examples of space technology applications to global health exist, improved awareness, training, and collaboration of the research community is needed.
Collapse
Affiliation(s)
- Damien Dietrich
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Ralitza Dekova
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Stephan Davy
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Guillaume Fahrni
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| | - Antoine Geissbühler
- Hopitaux Universitaires de Genève, eHealth and Telemedicine Division, Geneva, Switzerland
| |
Collapse
|
21
|
Ryan SJ, Stewart-Ibarra AM, Ordóñez-Enireb E, Chu W, Finkelstein JL, King CA, Escobar LE, Lupone C, Heras F, Tauzer E, Waggoner E, James TG, Cárdenas WB, Polhemus M. Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E486. [PMID: 29534431 PMCID: PMC5877031 DOI: 10.3390/ijerph15030486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
Cholera emergence is strongly linked to local environmental and ecological context. The 1991-2004 pandemic emerged in Perú and spread north into Ecuador's El Oro province, making this a key site for potential re-emergence. Machala, El Oro, is a port city of 250,000 inhabitants, near the Peruvian border. Many livelihoods depend on the estuarine system, from fishing for subsistence and trade, to domestic water use. In 2014, we conducted biweekly sampling for 10 months in five estuarine locations, across a gradient of human use, and ranging from inland to ocean. We measured water-specific environmental variables implicated in cholera growth and persistence: pH, temperature, salinity, and algal concentration, and evaluated samples in five months for pathogenic and non-pathogenic Vibrio cholerae, by polymerase chain reaction (PCR). We found environmental persistence of pandemic strains O1 and O139, but no evidence for toxigenic strains. Vibrio cholerae presence was coupled to algal and salinity concentration, and sites exhibited considerable seasonal and spatial heterogeneity. This study indicates that environmental conditions in Machala are optimal for cholera re-emergence, with risk peaking during September, and higher risk near urban periphery low-income communities. This highlights a need for surveillance of this coupled cholera-estuarine system to anticipate potential future cholera outbreaks.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32610 USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Anna M. Stewart-Ibarra
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
| | - Eunice Ordóñez-Enireb
- Laboratorio para Investigaciones Biomédicas, FCV, Escuela Superior Politécnica del Litoral, Guayaquil 090101, Ecuador; (E.O.-E.); (W.B.C.)
| | - Winnie Chu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (W.C); (J.L.F.)
| | - Julia L. Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; (W.C); (J.L.F.)
| | - Christine A. King
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
| | - Luis E. Escobar
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christina Lupone
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
| | - Froilan Heras
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
| | - Erica Tauzer
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
| | - Egan Waggoner
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
| | - Tyler G. James
- Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32610 USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Washington B. Cárdenas
- Laboratorio para Investigaciones Biomédicas, FCV, Escuela Superior Politécnica del Litoral, Guayaquil 090101, Ecuador; (E.O.-E.); (W.B.C.)
| | - Mark Polhemus
- Center for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (A.M.S.-I.); (L.E.E.); (C.L.); (F.H.); (E.T.); (E.W.); (M.P.)
| |
Collapse
|
22
|
Jutla A, Khan R, Colwell R. Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook. Curr Environ Health Rep 2018; 4:99-107. [PMID: 28130661 DOI: 10.1007/s40572-017-0132-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed. RECENT FINDINGS Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s). We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.
Collapse
Affiliation(s)
- Antarpreet Jutla
- Human Health and Hydro-environmental Sustainability Simulation Laboratory, Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26505, USA.
| | - Rakibul Khan
- Human Health and Hydro-environmental Sustainability Simulation Laboratory, Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita Colwell
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 20742, USA
| |
Collapse
|
23
|
Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PKM. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish ( Tenualosa ilisha) for Human Consumption in Bangladesh. Front Microbiol 2018. [PMID: 29515532 PMCID: PMC5826273 DOI: 10.3389/fmicb.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish have been considered natural reservoirs of Vibrio cholerae, the deadly diarrheal pathogen. However, little is known about the role of fish in the transmission of V. cholerae from the Bay of Bengal to the households of rural and urban Bangladesh. This study analyzes the incidence and pathogenic potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48 fish were analyzed. The fish were collected both at local markets in the capital city Dhaka and directly from fishermen at the river. PCR analysis by targeting V. cholerae species-specific ompW gene revealed that 39 of 48 (81%) fish were positive in at least one of the sample types. Real-time PCR analysis demonstrated that the cholera-causing ctxA gene was detected in 20% (8 of 39) of V. cholerae-positive fish. A total of 158 V. cholerae isolates were obtained which were categorized into 35 genotypic groups. Altogether, 25 O1 and 133 non-O1/O139 strains were isolated, which were negative for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance to sulfamethoxazole-trimethoprim and kanamycin. Both O1 and non-O1/O139 strains were able to accumulate fluid in rabbit ileal loops and caused distinctive cell death in HeLa cell. Multilocus sequence typing (MLST) showed clonal diversity among fish isolates with pandemic clones. Our data suggest a high prevalence of V. cholerae in Hilsha fish, which indicates that this fish could serve as a potential vehicle for V. cholerae transmission. Moreover, the indigenous V. cholerae strains isolated from Hilsha fish possess considerable virulence potential despite being quite diverse from current epidemic strains. This represents the first study of the population structure of V. cholerae associated with fish in Bangladesh.
Collapse
Affiliation(s)
- Zenat Z Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Israt Farhana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Suhella M Tulsiani
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Rinaldo A, Bertuzzo E, Blokesch M, Mari L, Gatto M. Modeling Key Drivers of Cholera Transmission Dynamics Provides New Perspectives for Parasitology. Trends Parasitol 2017; 33:587-599. [PMID: 28483382 DOI: 10.1016/j.pt.2017.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 11/15/2022]
Abstract
Hydroclimatological and anthropogenic factors are key drivers of waterborne disease transmission. Information on human settlements and host mobility on waterways along which pathogens and hosts disperse, and relevant hydroclimatological processes, can be acquired remotely and included in spatially explicit mathematical models of disease transmission. In the case of epidemic cholera, such models allowed the description of complex disease patterns and provided insight into the course of ongoing epidemics. The inclusion of spatial information in models of disease transmission can aid in emergency management and the assessment of alternative interventions. Here, we review the study of drivers of transmission via spatially explicit approaches and argue that, because many parasitic waterborne diseases share the same drivers as cholera, similar principles may apply.
Collapse
Affiliation(s)
- Andrea Rinaldo
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Dipartimento ICEA, Università di Padova, Padova, Italy.
| | - Enrico Bertuzzo
- Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Environmental Sciences, Informatics and Statistics, University Cà Foscari Venice, Venezia Mestre, Italy
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| |
Collapse
|
25
|
Rashed SM, Hasan NA, Alam M, Sadique A, Sultana M, Hoq MM, Sack RB, Colwell RR, Huq A. Vibrio cholerae O1 with Reduced Susceptibility to Ciprofloxacin and Azithromycin Isolated from a Rural Coastal Area of Bangladesh. Front Microbiol 2017; 8:252. [PMID: 28270803 PMCID: PMC5318396 DOI: 10.3389/fmicb.2017.00252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Cholera outbreaks occur each year in the remote coastal areas of Bangladesh and epidemiological surveillance and routine monitoring of cholera in these areas is challenging. In this study, a total of 97 Vibrio cholerae O1 isolates from Mathbaria, Bangladesh, collected during 2010 and 2014 were analyzed for phenotypic and genotypic traits, including antimicrobial susceptibility. Of the 97 isolates, 95 possessed CTX-phage mediated genes, ctxA, ace, and zot, and two lacked the cholera toxin gene, ctxA. Also both CTX+ and CTX−V. cholerae O1 isolated in this study carried rtxC, tcpAET, and hlyA. The classical cholera toxin gene, ctxB1, was detected in 87 isolates, while eight had ctxB7. Of 95 CTX+V. cholerae O1, 90 contained rstRET and 5 had rstRCL. All isolates, except two, contained SXT related integrase intSXT. Resistance to penicillin, streptomycin, nalidixic acid, sulfamethoxazole-trimethoprim, erythromycin, and tetracycline varied between the years of study period. Most importantly, 93% of the V. cholerae O1 were multidrug resistant. Six different resistance profiles were observed, with resistance to streptomycin, nalidixic acid, tetracycline, and sulfamethoxazole-trimethoprim predominant every year. Ciprofloxacin and azithromycin MIC were 0.003–0.75 and 0.19–2.00 μg/ml, respectively, indicating reduced susceptibility to these antibiotics. Sixteen of the V. cholerae O1 isolates showed higher MIC for azithromycin (≥0.5 μg/ml) and were further examined for 10 macrolide resistance genes, erm(A), erm(B), erm(C), ere(A), ere(B), mph(A), mph(B), mph(D), mef(A), and msr(A) with none testing positive for the macrolide resistance genes.
Collapse
Affiliation(s)
- Shah M Rashed
- Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | - Nur A Hasan
- CosmosID, Inc.Rockville, MD, USA; Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of MarylandCollege Park, MD, USA
| | - Munirul Alam
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Abdus Sadique
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Marzia Sultana
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Md Mozammel Hoq
- Department of Microbiology, University of Dhaka Dhaka, Bangladesh
| | - R Bradley Sack
- Johns Hopkins Bloomberg School of Public Health Baltimore, MD, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of MarylandCollege Park, MD, USA; CosmosID, Inc.Rockville, MD, USA; Center of Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of MarylandCollege Park, MD, USA; Johns Hopkins Bloomberg School of Public HealthBaltimore, MD, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of MarylandCollege Park, MD, USA; Maryland Institute of Applied Environmental Health, University of MarylandCollege Park, MD, USA
| |
Collapse
|
26
|
Abstract
Global climate change can alter the distribution of microbial pathogens and vectors that transmit infectious diseases, exposing humans to newly emerging or reemerging diseases. Early detection of potential pathogens and vectors in the environment can facilitate upstream interventions that limit the spread of infectious disease. Metagenomics is the analysis of DNA sequences from a population of microorganisms in a particular environment, followed by the computational reconstruction of the data to determine what organisms are present and predict their role in the environment. Defining the microbial populations associated with humans, animals, and their environment provides insight into the structure of microbial communities in any particular niche, including the abundance, diversity, and composition of the microbes and viruses present. It can also reveal the distribution of virulence genes within that niche. These data can be used to identify reservoirs of pathogens in an environment and predict environments with a high probability for evolution of new pathogens or outbreaks caused by known pathogens, thereby facilitating approaches to prevent infections of animals or humans before serious outbreaks of infectious disease.
Collapse
|
27
|
Jutla A, Akanda A, Unnikrishnan A, Huq A, Colwell R. Predictive Time Series Analysis Linking Bengal Cholera with Terrestrial Water Storage Measured from Gravity Recovery and Climate Experiment Sensors. Am J Trop Med Hyg 2015; 93:1179-86. [PMID: 26526921 DOI: 10.4269/ajtmh.14-0648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 09/08/2015] [Indexed: 11/07/2022] Open
Abstract
Outbreaks of diarrheal diseases, including cholera, are related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. However, availability of data on water scarcity and abundance in transnational basins, are a prerequisite for developing cholera forecasting systems. With more than a decade of terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment, conditions favorable for predicting cholera occurrence may now be determined. We explored lead-lag relationships between TWS in the Ganges-Brahmaputra-Meghna basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during spring and autumn seasons, two separate logistical models between TWS and disease time series (2002-2010) were developed. TWS representing water availability showed an asymmetrical, strong association with cholera prevalence in the spring (τ = -0.53; P < 0.001) and autumn (τ = 0.45; P < 0.001) up to 6 months in advance. One unit (centimeter of water) decrease in water availability in the basin increased odds of above normal cholera by 24% (confidence interval [CI] = 20-31%; P < 0.05) in the spring, while an increase in regional water by 1 unit, through floods, increased odds of above average cholera in the autumn by 29% (CI = 22-33%; P < 0.05).
Collapse
Affiliation(s)
- Antarpreet Jutla
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island; Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon; Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ali Akanda
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island; Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon; Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Avinash Unnikrishnan
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island; Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon; Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Anwar Huq
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island; Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon; Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Rita Colwell
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia; Department of Civil and Environmental Engineering, University of Rhode Island, Kingston, Rhode Island; Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon; Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
28
|
Satellite Based Assessment of Hydroclimatic Conditions Related to Cholera in Zimbabwe. PLoS One 2015; 10:e0137828. [PMID: 26417994 PMCID: PMC4587952 DOI: 10.1371/journal.pone.0137828] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/22/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cholera, an infectious diarrheal disease, has been shown to be associated with large scale hydroclimatic processes. The sudden and sporadic occurrence of epidemic cholera is linked with high mortality rates, in part, due to uncertainty in timing and location of outbreaks. Improved understanding of the relationship between pathogenic abundance and climatic processes allows prediction of disease outbreak to be an achievable goal. In this study, we show association of large scale hydroclimatic processes with the cholera epidemic in Zimbabwe reported to have begun in Chitungwiza, a city in Mashonaland East province, in August, 2008. PRINCIPAL FINDINGS Climatic factors in the region were found to be associated with triggering cholera outbreak and are shown to be related to anomalies of temperature and precipitation, validating the hypothesis that poor conditions of sanitation, coupled with elevated temperatures, and followed by heavy rainfall can initiate outbreaks of cholera. Spatial estimation by satellite of precipitation and global gridded air temperature captured sensitivities in hydroclimatic conditions that permitted identification of the location in the region where the disease outbreak began. DISCUSSION Satellite derived hydroclimatic processes can be used to capture environmental conditions related to epidemic cholera, as occurred in Zimbabwe, thereby providing an early warning system. Since cholera cannot be eradicated because the causative agent, Vibrio cholerae, is autochthonous to the aquatic environment, prediction of conditions favorable for its growth and estimation of risks of triggering the disease in a given population can be used to alert responders, potentially decreasing infection and saving lives.
Collapse
|
29
|
Escobar LE, Ryan SJ, Stewart-Ibarra AM, Finkelstein JL, King CA, Qiao H, Polhemus ME. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Trop 2015; 149:202-11. [PMID: 26048558 DOI: 10.1016/j.actatropica.2015.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/26/2022]
Abstract
Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control.
Collapse
|
30
|
|
31
|
Grimes DJ, Ford TE, Colwell RR, Baker-Austin C, Martinez-Urtaza J, Subramaniam A, Capone DG. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria. MICROBIAL ECOLOGY 2014; 67:489-500. [PMID: 24477922 PMCID: PMC4058845 DOI: 10.1007/s00248-013-0363-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 12/26/2013] [Indexed: 05/24/2023]
Abstract
Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.
Collapse
Affiliation(s)
- D. Jay Grimes
- Gulf Coast Research Laboratory, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA
| | - Tim E. Ford
- University of New England, 716 Stevens Avenue, Portland, ME 04103, USA,
| | - Rita R. Colwell
- Center for Bioinformatics and Computational Biology, UMIACS, University of Maryland, 3103 Biomolecular Sciences Building #296, College Park, MD 20742, USA,
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, UK,
| | - Jaime Martinez-Urtaza
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK,
| | - Ajit Subramaniam
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA,
| | - Douglas G. Capone
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA 90089-0371, USA,
| |
Collapse
|
32
|
Mackenzie JS, Jeggo M, Daszak P, Richt JA. The human environment interface: applying ecosystem concepts to health. Curr Top Microbiol Immunol 2013; 365:83-100. [PMID: 23633105 PMCID: PMC7121839 DOI: 10.1007/82_2013_317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One Health approaches have tended to focus on closer collaboration among veterinarians and medical professionals, but remain unclear about how ecological approaches could be applied or how they might benefit public health and disease control. In this chapter, we review ecological concepts, and discuss their relevance to health, with an emphasis on emerging infectious diseases (EIDs). Despite the fact that most EIDs originate in wildlife, few studies account for the population, community, or ecosystem ecology of the host, reservoir, or vector. The dimensions of ecological approaches to public health that we propose in this chapter are, in essence, networks of population dynamics, community structure, and ecosystem matrices incorporating concepts of complexity, resilience, and biogeochemical processes.
Collapse
Affiliation(s)
- John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Perth, West Australia Australia
| | - Martyn Jeggo
- Livestock Industries, CSIRO Australian Animal Health Laborator, East Geelong, Victoria Australia
| | | | - Juergen A. Richt
- Diagnostic Medicine/Pathobiology Departm, Kansas State University College of Veterinary Medicine, Manhattan, Kansas USA
| |
Collapse
|
33
|
The Human Environment Interface: Applying Ecosystem Concepts to Health. Curr Top Microbiol Immunol 2013. [DOI: 10.1007/978-3-662-45792-4_317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Jutla A, Akanda AS, Huq A, Faruque ASG, Colwell R, Islam S. A water marker monitored by satellites to predict seasonal endemic cholera. REMOTE SENSING LETTERS (PRINT) 2013; 4:822-831. [PMID: 23878762 PMCID: PMC3714106 DOI: 10.1080/2150704x.2013.802097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The ability to predict an occurrence of cholera, a water-related disease, offers a significant public health advantage. Satellite based estimates of chlorophyll, a surrogate for plankton abundance, have been linked to cholera incidence. However, cholera bacteria can survive under a variety of coastal ecological conditions, thus constraining the predictive ability of the chlorophyll, since it provides only an estimate of greenness of seawater. Here, a new remote sensing based index is proposed: Satellite Water Marker (SWM), which estimates condition of coastal water, based on observed variability in the difference between blue (412 nm) and green (555 nm) wavelengths that can be related to seasonal cholera incidence. The index is bounded between physically separable wavelengths for relatively clear (blue) and turbid (green) water. Using SWM, prediction of cholera with reasonable accuracy, with at least two month in advance, can potentially be achieved in the endemic coastal regions.
Collapse
Affiliation(s)
- Antarpreet Jutla
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jutla AS, Akanda AS, Islam S. Satellite Remote Sensing of Space-Time Plankton Variability in the Bay of Bengal: Connections to Cholera Outbreaks. REMOTE SENSING OF ENVIRONMENT 2012; 123:196-206. [PMID: 22544976 PMCID: PMC3336744 DOI: 10.1016/j.rse.2012.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cholera bacteria exhibit strong association with coastal plankton. Characterization of space-time variability of chlorophyll, a surrogate for plankton abundance, in Northern Bay of Bengal is an essential first step to develop any methodology for predicting cholera outbreaks in the Bengal Delta region using remote sensing. This study quantifies the space-time distribution of chlorophyll, using data from SeaWiFS, in the Bay of Bengal region using ten years of satellite data. Variability of chlorophyll at daily scale, irrespective of spatial averaging, resembles white noise. At a monthly scale, chlorophyll shows distinct seasonality and chlorophyll values are significantly higher close to the coast than in the offshore regions. At pixel level (9 km) on monthly scale, on the other hand, chlorophyll does not exhibit much persistence in time. With increased spatial averaging, temporal persistence of chlorophyll increases and lag one autocorrelation stabilizes around 0.60 for 1296 km(2) or larger areal averages. In contrast to the offshore regions, spatial analyses of chlorophyll suggest that only coastal region has a stable correlation length of 100 km. Presence (absence) of correlation length in the coastal (offshore) regions, indicate that the two regions may have two separate processes controlling the production a phytoplankton This study puts a lower limit on space-time averaging of satellite measured plankton at 1296 km(2)-monthly scale to establish relationships with cholera incidence in Bengal Delta.
Collapse
Affiliation(s)
- Antarpreet S. Jutla
- Oceans and Human Health Initiative, National Oceanic and Atmospheric Administration, Silver Spring, MD, 20910, USA
| | - Ali S. Akanda
- WeReason (Water and Environmental Research, Education, and Actionable Solutions Network), Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
| | - Shafiqul Islam
- WeReason (Water and Environmental Research, Education, and Actionable Solutions Network), Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155
- Water Diplomacy, The Fletcher School of Law and Diplomacy, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
36
|
Jutla AS, Akanda AS, Griffiths JK, Colwell R, Islam S. Warming oceans, phytoplankton, and river discharge: implications for cholera outbreaks. Am J Trop Med Hyg 2011; 85:303-8. [PMID: 21813852 DOI: 10.4269/ajtmh.2011.11-0181] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Phytoplankton abundance is inversely related to sea surface temperature (SST). However, a positive relationship is observed between SST and phytoplankton abundance in coastal waters of Bay of Bengal. This has led to an assertion that in a warming climate, rise in SST may increase phytoplankton blooms and, therefore, cholera outbreaks. Here, we explain why a positive SST-phytoplankton relationship exists in the Bay of Bengal and the implications of such a relationship on cholera dynamics. We found clear evidence of two independent physical drivers for phytoplankton abundance. The first one is the widely accepted phytoplankton blooming produced by the upwelling of cold, nutrient-rich deep ocean waters. The second, which explains the Bay of Bengal findings, is coastal phytoplankton blooming during high river discharges with terrestrial nutrients. Causal mechanisms should be understood when associating SST with phytoplankton and subsequent cholera outbreaks in regions where freshwater discharge are a predominant mechanism for phytoplankton production.
Collapse
Affiliation(s)
- Antarpreet S Jutla
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | | | | | | | | |
Collapse
|
37
|
Alam M, Islam A, Bhuiyan NA, Rahim N, Hossain A, Khan GY, Ahmed D, Watanabe H, Izumiya H, Faruque ASG, Akanda AS, Islam S, Sack RB, Huq A, Colwell RR, Cravioto A. Clonal transmission, dual peak, and off-season cholera in Bangladesh. Infect Ecol Epidemiol 2011; 1:IEE-1-7273. [PMID: 22957115 PMCID: PMC3426334 DOI: 10.3402/iee.v1i0.7273] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/22/2011] [Accepted: 07/04/2011] [Indexed: 12/04/2022] Open
Abstract
Vibrio cholerae is an estuarine bacterium associated with a single peak of cholera (March–May) in coastal villages of Bangladesh. For an unknown reason, however, cholera occurs in a unique dual peak (March–May and September–November) pattern in the city of Dhaka that is bordered by a heavily polluted freshwater river system and flood embankment. In August 2007, extreme flooding was accompanied by an unusually severe diarrhea outbreak in Dhaka that resulted in a record high illness. This study was aimed to understand the unusual outbreak and if it was related to the circulation of a new V. cholerae clone. Nineteen V. cholerae isolated during the peak of the 2007 outbreak were subjected to extensive phenotypic and molecular analyses, including multi-locus genetic screening by polymerase chain reaction (PCR), sequence-typing of the ctxB gene, and pulsed-field gel electrophoresis (PFGE). Factors associated with the unusual incidence of cholera were determined and analysis of the disease severity was done. Overall, microbiological and molecular data confirmed that the hypervirulent V. cholerae was O1 biotype El Tor (ET) that possessed cholera toxin (CT) of the classical biotype. The PFGE (NotI) and dendrogram clustering confirmed that the strains were clonal and related to the pre-2007 variant ET from Dhaka and Matlab and resembled one of two distinct clones of the variant ET confirmed to be present in the estuarine ecosystem of Bangladesh. Results of the analyses of both diarrheal case data for three consecutive years (2006–2008) and regional hydroclimatology over three decades (1980–2009) clearly indicate that the pattern of cholera occurring in Dhaka, and not seen at other endemic sites, was associated with flood waters transmitting the infectious clone circulating via the fecal-oral route during and between the dual seasonal cholera peaks in Dhaka. Circular river systems and flood embankment likely facilitate transmission of infectious V. cholerae throughout the year that leads to both sudden and off-season outbreaks in the densely populated urban ecosystem of Dhaka. Clonal recycling of hybrid El Tor with increasing virulence in a changing climate and in a region with a growing urban population represents a serious public health concern for Bangladesh.
Collapse
Affiliation(s)
- Munirul Alam
- Centre for Food and Waterborne Disease, International Center for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|