1
|
Zhang X, Othman SN, Kohler DB, Wu Z, Wang Z, Borzée A. Combined climate change and dispersal capacity positively affect Hoplobatrachus chinensis occupancy of agricultural wetlands. iScience 2024; 27:110732. [PMID: 39310775 PMCID: PMC11414709 DOI: 10.1016/j.isci.2024.110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Global warming significantly impacts amphibian populations globally, and modeling helps understand these effects. Here, we used MaxEnt and MigClim models to predict the impact of climate change on habitat suitability for Hoplobatrachus chinensis. Our results indicate that temperature is a key factor affecting H. chinensis distribution. Increasing temperatures positively correlated with habitat suitability, with suitable habitat expanding northward by 2060 while maintaining suitability in the southern parts of the range. We found a 25.18% overlap between the current potential suitable habitat of H. chinensis and agricultural wetlands. Our model indicated that H. chinensis might be able to track shifts in suitable habitats under climate change given a 15 km dispersal ability per generation. Climate change will likely expand suitable habitat for H. chinensis. Our predictions offer important guidance for the conservation of the species, especially for the integrated role of natural and agricultural wetlands such as rice paddies.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Animal Behaviour and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Siti N. Othman
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Dallin B. Kohler
- Laboratory of Animal Behaviour and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Zhichao Wu
- Security Office, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Zhenqi Wang
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
| | - Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, P.R. China
- IUCN SSC Amphibian Specialist Group, Toronto, ON, Canada
- Jiangsu Agricultural Biodiversity Cultivation and Utilization Research Center, Nanjing, Jiangsu 210014, P.R. China
| |
Collapse
|
2
|
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Camacho Vallejo ME, Navas González FJ. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals (Basel) 2024; 14:659. [PMID: 38473046 DOI: 10.3390/ani14050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals' genetic diversity may help to anticipate challenging situations. However, animal populations' short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds' gene pool is the base for their improved resilience and plasticity in response to climate change's extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change's shaping effects on the genetic diversity of the Hispano-Arabian horse breed's historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds' climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability.
Collapse
Affiliation(s)
- Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
| | | | - Amy Katherine McLean
- Department of Animal Science, University of California Davis, Davis, CA 95617, USA
| | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
3
|
Layton-Matthews K, Vriend SJG, Grøtan V, Loonen MJJE, Sæther BE, Fuglei E, Hansen BB. Extreme events, trophic chain reactions, and shifts in phenotypic selection. Sci Rep 2023; 13:15181. [PMID: 37704641 PMCID: PMC10499831 DOI: 10.1038/s41598-023-41940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Demographic consequences of rapid environmental change and extreme climatic events (ECEs) can cascade across trophic levels with evolutionary implications that have rarely been explored. Here, we show how an ECE in high Arctic Svalbard triggered a trophic chain reaction, directly or indirectly affecting the demography of both overwintering and migratory vertebrates, ultimately inducing a shift in density-dependent phenotypic selection in migratory geese. A record-breaking rain-on-snow event and ice-locked pastures led to reindeer mass starvation and a population crash, followed by a period of low mortality and population recovery. This caused lagged, long-lasting reductions in reindeer carrion numbers and resultant low abundances of Arctic foxes, a scavenger on reindeer and predator of migratory birds. The associated decrease in Arctic fox predation of goose offspring allowed for a rapid increase in barnacle goose densities. As expected according to r- and K-selection theory, the goose body condition (affecting reproduction and post-fledging survival) maximising Malthusian fitness increased with this shift in population density. Thus, the winter ECE acting on reindeer and their scavenger, the Arctic fox, indirectly selected for higher body condition in migratory geese. This high Arctic study provides rare empirical evidence of links between ECEs, community dynamics and evolution, with implications for our understanding of indirect eco-evolutionary impacts of global change.
Collapse
Affiliation(s)
- Kate Layton-Matthews
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway.
- Norwegian Institute for Nature Research, NINA, Tromsø, Norway.
| | - Stefan J G Vriend
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Vidar Grøtan
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| | | | - Bernt-Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| | - Eva Fuglei
- Norwegian Polar Institute, Tromsø, Norway
| | - Brage Bremset Hansen
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, NINA, Trondheim, Norway
| |
Collapse
|
4
|
Souza KS, Fortunato DS, Jardim L, Terribile LC, Lima-Ribeiro MS, Mariano CÁ, Pinto-Ledezma JN, Loyola R, Dobrovolski R, Rangel TF, Machado IF, Rocha T, Batista MG, Lorini ML, Vale MM, Navas CA, Maciel NM, Villalobos F, Olalla-Tarraga MÂ, Rodrigues JFM, Gouveia SF, Diniz-Filho JAF. Evolutionary rescue and geographic range shifts under climate change for global amphibians. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1038018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
By the end of this century, human-induced climate change and habitat loss may drastically reduce biodiversity, with expected effects on many amphibian lineages. One of these effects is the shift in the geographic distributions of species when tracking suitable climates. Here, we employ a macroecological approach to dynamically model geographic range shifts by coupling ecological niche models and eco-evolutionary mechanisms, aiming to assess the probability of evolutionary rescue (i.e., rapid adaptation) and dispersal under climate change. Evolutionary models estimated the probability of population persistence by adapting to changes in the temperature influenced by precipitation in the following decades, while compensating the fitness reduction and maintaining viable populations in the new climates. In addition, we evaluated emerging patterns of species richness and turnover at the assemblage level. Our approach was able to identify which amphibian populations among 7,193 species at the global scale could adapt to temperature changes or disperse into suitable regions in the future. Without evolutionary adaptation and dispersal, 47.7% of the species could go extinct until the year 2,100, whereas adding both processes will slightly decrease this extinction rate to 36.5%. Although adaptation to climate is possible for populations in about 25.7% of species, evolutionary rescue is the only possibility to avoid extinction in 4.2% of them. Dispersal will allow geographic range shifts for 49.7% of species, but only 6.5% may avoid extinction by reaching climatically suitable environments. This reconfiguration of species distributions and their persistence creates new assemblage-level patterns at the local scale. Temporal beta-diversity across the globe showed relatively low levels of species turnover, mainly due to the loss of species. Despite limitations with obtaining data, our approach provides more realistic assessments of species responses to ongoing climate changes. It shows that, although dispersal and evolutionary rescue may attenuate species losses, they are not enough to avoid a significant reduction of species’ geographic ranges in the future. Actions that guarantee a higher potential of adaptation (e.g., genetic diversity through larger population sizes) and increased connectivity for species dispersion to track suitable climates become essential, increasing the resilience of biodiversity to climate change.
Collapse
|
5
|
Cosmo LG, Sales LP, Guimarães PR, Pires MM. Mutualistic coevolution and community diversity favour persistence in metacommunities under environmental changes. Proc Biol Sci 2023; 290:20221909. [PMID: 36629106 PMCID: PMC9832548 DOI: 10.1098/rspb.2022.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Linking local to regional ecological and evolutionary processes is key to understand the response of Earth's biodiversity to environmental changes. Here we integrate evolution and mutualistic coevolution in a model of metacommunity dynamics and use numerical simulations to understand how coevolution can shape species distribution and persistence in landscapes varying in space and time. Our simulations show that coevolution and species richness can synergistically shape distribution patterns by increasing colonization and reducing extinction of populations in metacommunities. Although conflicting selective pressures emerging from mutualisms may increase mismatches with the local environment and the rate of local extinctions, coevolution increases trait matching among mutualists at the landscape scale, counteracting local maladaptation and favouring colonization and range expansions. Our results show that by facilitating colonization, coevolution can also buffer the effects of environmental changes, preventing species extinctions and the collapse of metacommunities. Our findings reveal the mechanisms whereby coevolution can favour persistence under environmental changes and highlight that these positive effects are greater in more diverse systems that retain landscape connectivity.
Collapse
Affiliation(s)
- Leandro G. Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Lilian P. Sales
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
- Biology Department, Faculty of Arts and Science, Concordia University, Montreal, Canada
| | - Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
6
|
Nadeau CP, Giacomazzo A, Urban MC. Cool microrefugia accumulate and conserve biodiversity under climate change. GLOBAL CHANGE BIOLOGY 2022; 28:3222-3235. [PMID: 35226784 DOI: 10.1111/gcb.16143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
A major challenge in climate change biology is to explain why the impacts of climate change vary around the globe. Microclimates could explain some of this variation, but climate change biologists often overlook microclimates because they are difficult to map. Here, we map microclimates in a freshwater rock pool ecosystem and evaluate how accounting for microclimates alters predictions of climate change impacts on aquatic invertebrates. We demonstrate that average maximum temperature during the growing season can differ by 9.9-11.6°C among microclimates less than a meter apart and this microclimate variation might increase by 21% in the future if deeper pools warm less than shallower pools. Accounting for this microclimate variation significantly alters predictions of climate change impacts on aquatic invertebrates. Predictions that exclude microclimates predict low future occupancy (0.08-0.32) and persistence probabilities (2%-73%) for cold-adapted taxa, and therefore predict decreases in gamma richness and a substantial shift toward warm-adapted taxa in local communities (i.e., thermophilization). However, predictions incorporating microclimates suggest cool locations will remain suitable for cold-adapted taxa in the future, no change in gamma richness, and 825% less thermophilization. Our models also suggest that cool locations will become suitable for warm-adapted taxa and will therefore accumulate biodiversity in the future, which makes cool locations essential for biodiversity conservation. Simulated protection of the 10 coolest microclimates (9% of locations on the landscape) results in a 100% chance of conserving all focal taxa in the future. In contrast, protecting the 10 currently most biodiverse locations, a commonly employed conservation strategy, results in a 3% chance of conserving all focal taxa in the future. Our study suggests that we must account for microclimates if we hope to understand the future impacts of climate change and design effective conservation strategies to limit biodiversity loss.
Collapse
Affiliation(s)
- Christopher P Nadeau
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Anjelica Giacomazzo
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Mark C Urban
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, Connecticut, USA
- Center for Biological Risk, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Alexander JM, Atwater DZ, Colautti RI, Hargreaves AL. Effects of species interactions on the potential for evolution at species' range limits. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210020. [PMID: 35184598 PMCID: PMC8859514 DOI: 10.1098/rstb.2021.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/14/2022] [Indexed: 01/13/2023] Open
Abstract
Species' ranges are limited by both ecological and evolutionary constraints. While there is a growing appreciation that ecological constraints include interactions among species, like competition, we know relatively little about how interactions contribute to evolutionary constraints at species' niche and range limits. Building on concepts from community ecology and evolutionary biology, we review how biotic interactions can influence adaptation at range limits by impeding the demographic conditions that facilitate evolution (which we term a 'demographic pathway to adaptation'), and/or by imposing evolutionary trade-offs with the abiotic environment (a 'trade-offs pathway'). While theory for the former is well-developed, theory for the trade-offs pathway is not, and empirical evidence is scarce for both. Therefore, we develop a model to illustrate how fitness trade-offs along biotic and abiotic gradients could affect the potential for range expansion and niche evolution following ecological release. The model shows that which genotypes are favoured at species' range edges can depend strongly on the biotic context and the nature of fitness trade-offs. Experiments that characterize trade-offs and properly account for biotic context are needed to predict which species will expand their niche or range in response to environmental change. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Jake M. Alexander
- Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Daniel Z. Atwater
- Biology Department, Earlham College, 801 National Rd. W, Richmond, IN 47374, USA
| | - Robert I. Colautti
- Biology Department, Queen's University, 116 Barrie, St. Kingston, ON, Canada, K7 L 3N6
| | - Anna L. Hargreaves
- Department of Biology, McGill University, 1205 Dr Penfield Av, Montreal, QC, Canada H3A 1B1
| |
Collapse
|
8
|
Cherabier P, Ferrière R. Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production. THE ISME JOURNAL 2022; 16:1130-1139. [PMID: 34864820 PMCID: PMC8940968 DOI: 10.1038/s41396-021-01166-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Predicting the response of ocean primary production to climate warming is a major challenge. One key control of primary production is the microbial loop driven by heterotrophic bacteria, yet how warming alters the microbial loop and its function is poorly understood. Here we develop an eco-evolutionary model to predict the physiological response and adaptation through selection of bacterial populations in the microbial loop and how this will impact ecosystem function such as primary production. We find that the ecophysiological response of primary production to warming is driven by a decrease in regenerated production which depends on nutrient availability. In nutrient-poor environments, the loss of regenerated production to warming is due to decreasing microbial loop activity. However, this ecophysiological response can be opposed or even reversed by bacterial adaptation through selection, especially in cold environments: heterotrophic bacteria with lower bacterial growth efficiency are selected, which strengthens the "link" behavior of the microbial loop, increasing both new and regenerated production. In cold and rich environments such as the Arctic Ocean, the effect of bacterial adaptation on primary production exceeds the ecophysiological response. Accounting for bacterial adaptation through selection is thus critically needed to improve models and projections of the ocean primary production in a warming world.
Collapse
Affiliation(s)
- Philippe Cherabier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005, France.
| | - Régis Ferrière
- grid.462036.5Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Université Paris Sciences et Lettres, CNRS, INSERM, Paris, 75005 France ,grid.134563.60000 0001 2168 186XDepartment of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XInternational Research Laboratory for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, ENS-PSL University, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
9
|
Bruijning M, Fossen EIF, Jongejans E, Vanvelk H, Raeymaekers JAM, Govaert L, Brans KI, Einum S, De Meester L. Host–parasite dynamics shaped by temperature and genotype: Quantifying the role of underlying vital rates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marjolein Bruijning
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
- Department of Animal Ecology and Physiology Radboud University Nijmegen The Netherlands
| | - Erlend I. F. Fossen
- Centre for Biodiversity Dynamics Department of Biology NTNUNorwegian University of Science and Technology Trondheim Norway
- Animal Ecology Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Eelke Jongejans
- Department of Animal Ecology and Physiology Radboud University Nijmegen The Netherlands
- Animal Ecology NIOO‐KNAW Wageningen The Netherlands
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | | | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Department of Aquatic Ecology Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Sigurd Einum
- Centre for Biodiversity Dynamics Department of Biology NTNUNorwegian University of Science and Technology Trondheim Norway
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Leibniz Institüt für Gewasserökologie und Binnenfischerei (IGB) Berlin Germany
- Institute of Biology Freie Universität Berlin Berlin Germany
| |
Collapse
|
10
|
Chaparro Pedraza PC, Matthews B, de Meester L, Dakos V. Adaptive Evolution Can Both Prevent Ecosystem Collapse and Delay Ecosystem Recovery. Am Nat 2021; 198:E185-E197. [PMID: 34762570 DOI: 10.1086/716929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThere is growing concern about the dire socioecological consequences of abrupt transitions between alternative ecosystem states in response to environmental changes. At the same time, environmental change can trigger evolutionary responses that could stabilize or destabilize ecosystem dynamics. However, we know little about how coupled ecological and evolutionary processes affect the risk of transition between alternative ecosystem states. Using shallow lakes as a model ecosystem, we investigate how trait evolution of a key species affects ecosystem resilience under environmental stress. We find that adaptive evolution of macrophytes can increase ecosystem resilience by shifting the critical threshold, which marks the transition from a clear-water state to a turbid-water state to a higher level of environmental stress. However, following the transition, adaptation to the turbid-water state can delay the ecosystem recovery back to the clear-water state. This implies that restoration could be more effective when implemented early enough after a transition occurs and before organisms adapt to the alternative state. Our findings provide new insights into how to prevent and mitigate the occurrence of regime shifts in ecosystems and highlight the need to understand ecosystem responses to environmental change in the context of coupled ecological and evolutionary processes.
Collapse
|
11
|
Pontarp M. Ecological opportunity and adaptive radiations reveal eco-evolutionary perspectives on community structure in competitive communities. Sci Rep 2021; 11:19560. [PMID: 34599238 PMCID: PMC8486866 DOI: 10.1038/s41598-021-98842-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022] Open
Abstract
It is well known that ecological and evolutionary processes act in concert while shaping biological communities. Diversification can, for example, arise through ecological opportunity and adaptive radiations and competition play an essential role in such diversification. Eco-evolutionary components of competition are thus important for our understanding of community assembly. Such understanding in turn facilitates interpretation of trait- and phylogenetic community patterns in the light of the processes that shape them. Here, I investigate the link between competition, diversification, and trait- and phylogenetic- community patterns using a trait-based model of adaptive radiations. I evaluate the paradigm that competition is an ecological process that drives large trait- and phylogenetic community distances through limiting similarity. Contrary to the common view, I identify low or in some cases counterintuitive relationships between competition and mean phylogenetic distances due to diversification late in evolutionary time and peripheral parts of niche space when competition is weak. Community patterns as a function of competition also change as diversification progresses as the relationship between competition and trait similarity among species can flip from positive to negative with time. The results thus provide novel perspectives on community assembly and emphasize the importance of acknowledging eco-evolutionary processes when interpreting community data.
Collapse
Affiliation(s)
- Mikael Pontarp
- Department of Biology, Lund University Biology Building, Sölvegatan 35, 223 62, Lund, Sweden.
| |
Collapse
|
12
|
Bonnaffé W, Danet A, Legendre S, Edeline E. Comparison of size‐structured and species‐level trophic networks reveals antagonistic effects of temperature on vertical trophic diversity at the population and species level. OIKOS 2021. [DOI: 10.1111/oik.08173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Willem Bonnaffé
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris (iEES‐Paris) Paris France
- Ecological and Evolutionary Dynamics Lab, Dept of Zoology, Univ. of Oxford Oxford UK
- Inst. de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research Univ. Paris France
| | - Alain Danet
- Centre d'Ecologie et des Sciences de la Conservation, UMR 7204 MNHN‐CNRS‐Sorbonne Université, Muséum National d'Histoire Naturelle de Paris Paris France
| | - Stéphane Legendre
- Inst. de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research Univ. Paris France
| | - Eric Edeline
- Sorbonne Université, Université Paris Diderot, UPEC, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris (iEES‐Paris) Paris France
- ESE Ecology and Ecosystem Health, INRA, Agrocampus Ouest Rennes France
| |
Collapse
|
13
|
Abreu‐Jardim TPF, Jardim L, Ballesteros‐Mejia L, Maciel NM, Collevatti RG. Predicting impacts of global climatic change on genetic and phylogeographical diversity of a Neotropical treefrog. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Tatianne P. F. Abreu‐Jardim
- Laboratório de Genética & Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás (UFG) Goiânia Brazil
- Laboratório de Herpetologia e Comportamento Animal Departamento de Ecologia Instituto de Ciências Biológicas Universidade Federal de Goiás Goiânia Brazil
| | - Lucas Jardim
- Instituto Nacional de Ciência e Tecnologia (INCT) em Evolução e Conservação da Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás (UFG) Goiânia Brazil
| | - Liliana Ballesteros‐Mejia
- Institut de Systématique, Evolution, Biodiversité (ISYEB) UMR 7205 – CNRS MNHN UMPC EPHE Muséum National d'Histoire NaturelleSorbonne Université Paris France
| | - Natan M. Maciel
- Laboratório de Herpetologia e Comportamento Animal Departamento de Ecologia Instituto de Ciências Biológicas Universidade Federal de Goiás Goiânia Brazil
| | - Rosane G. Collevatti
- Laboratório de Genética & Biodiversidade Instituto de Ciências Biológicas Universidade Federal de Goiás (UFG) Goiânia Brazil
| |
Collapse
|
14
|
What do you mean by “niche”? Modern ecological theories are not coherent on rhetoric about the niche concept. ACTA OECOLOGICA 2021. [DOI: 10.1016/j.actao.2020.103701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Limberger R, Fussmann GF. Adaptation and competition in deteriorating environments. Proc Biol Sci 2021; 288:20202967. [PMID: 33715427 PMCID: PMC7944114 DOI: 10.1098/rspb.2020.2967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022] Open
Abstract
Evolution might rescue populations from extinction in changing environments. Using experimental evolution with microalgae, we investigated if competition influences adaptation to an abiotic stressor, and vice versa, if adaptation to abiotic change influences competition. In a first set of experiments, we propagated monocultures of five species with and without increasing salt stress for approximately 180 generations. When assayed in monoculture, two of the five species showed signatures of adaptation, that is, lines with a history of salt stress had higher population growth rates at high salt than lines without prior exposure to salt. When assayed in mixtures of species, however, only one of these two species had increased population size at high salt, indicating that competition can alter how adaptation to abiotic change influences population dynamics. In a second experiment, we cultivated two species in monocultures and in pairs, with and without increasing salt. While we found no effect of competition on adaptation to salt, our experiment revealed that evolutionary responses to salt can influence competition. Specifically, one of the two species had reduced competitive ability in the no-salt environment after long-term exposure to salt stress. Collectively, our results highlight the complex interplay of adaptation to abiotic change and competitive interactions.
Collapse
Affiliation(s)
- Romana Limberger
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
16
|
Nadeau CP, Farkas TE, Makkay AM, Papke RT, Urban MC. Adaptation reduces competitive dominance and alters community assembly. Proc Biol Sci 2021; 288:20203133. [PMID: 33593186 DOI: 10.1098/rspb.2020.3133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of theory predicts that evolution of an early-arriving species in a new environment can produce a competitive advantage against later arriving species, therefore altering community assembly (i.e. the community monopolization hypothesis). Applications of the community monopolization hypothesis are increasing. However, experimental tests of the hypothesis are rare. Here, we provide a rare experimental demonstration of the community monopolization hypothesis using two archaeal species. We first expose one species to low- and high-temperature environments for 135 days. Populations in the high-temperature treatment evolved a 20% higher median performance when grown at high temperature. We then demonstrate that early arrival and adaptation reduce the abundance of a late-arriving species in the high-temperature environment by 63% relative to when both species arrive simultaneously and neither species is adapted to high temperature. These results are consistent with the community monopolization hypothesis and suggest that adaptation can reduce competitive dominance to alter community assembly. Hence, community monopolization might be much more common in nature than previously assumed. Our results strongly support the idea that patterns of biodiversity might often stem from a race between local adaptation and colonization of pre-adapted species.
Collapse
Affiliation(s)
- Christopher P Nadeau
- Ecology and Evolutionary Biology Department, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Timothy E Farkas
- Ecology and Evolutionary Biology Department, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Andrea M Makkay
- Molecular and Cellular Biology Department, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - R Thane Papke
- Molecular and Cellular Biology Department, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Mark C Urban
- Ecology and Evolutionary Biology Department, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA.,Center of Biological Risk, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
17
|
Grainger TN, Rudman SM, Schmidt P, Levine JM. Competitive history shapes rapid evolution in a seasonal climate. Proc Natl Acad Sci U S A 2021; 118:e2015772118. [PMID: 33536336 PMCID: PMC8017725 DOI: 10.1073/pnas.2015772118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544;
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- School of Biological Sciences, Washington State University, Vancouver, WA 98686
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan M Levine
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544
| |
Collapse
|
18
|
Holyoak M, Caspi T, Redosh LW. Integrating Disturbance, Seasonality, Multi-Year Temporal Dynamics, and Dormancy Into the Dynamics and Conservation of Metacommunities. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.571130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Alberti M, Palkovacs E, Roches S, Meester L, Brans K, Govaert L, Grimm NB, Harris NC, Hendry AP, Schell CJ, Szulkin M, Munshi-South J, Urban MC, Verrelli BC. The Complexity of Urban Eco-evolutionary Dynamics. Bioscience 2020. [DOI: 10.1093/biosci/biaa079] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human–natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change—habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions—and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities—landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags—that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology,University of California, Santa Cruz, California
| | | | - Luc De Meester
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei, Berlin, Germany, and with the Institute of Biology at Freie Universität Berlin, also in Berlin, Germany
| | - Kristien I Brans
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; with the Department of Aquatic Ecology, in the Swiss Federal Institute of Aquatic Science and Technology, in Dübendorf, Switzerland; and with the University Research Priority Programme on Global Change and Biodiversity at the University of Zurich, in Zurich, Switzerland
| | | | - Nyeema C Harris
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Christopher J Schell
- Department of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington
| | | | - Jason Munshi-South
- Louis Calder Center Biological Field Station, Fordham University, Armonk, New York
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Evans P, Crofts AL, Brown CD. Biotic filtering of northern temperate tree seedling emergence in beyond‐range field experiments. Ecosphere 2020. [DOI: 10.1002/ecs2.3108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Piers Evans
- Department of Geography Memorial University 230 Elizabeth Avenue St. John’s Newfoundland and LabradorA1B 3X9Canada
| | - Anna L. Crofts
- Department of Geography Memorial University 230 Elizabeth Avenue St. John’s Newfoundland and LabradorA1B 3X9Canada
| | - Carissa D. Brown
- Department of Geography Memorial University 230 Elizabeth Avenue St. John’s Newfoundland and LabradorA1B 3X9Canada
| |
Collapse
|
21
|
Thompson PL, Fronhofer EA. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proc Natl Acad Sci U S A 2019; 116:21061-21067. [PMID: 31570612 PMCID: PMC6800316 DOI: 10.1073/pnas.1911796116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dispersal and adaptation both allow species to persist in changing environments. Yet, we have limited understanding of how these processes interact to affect species persistence, especially in diverse communities where biotic interactions greatly complicate responses to environmental change. Here we use a stochastic metacommunity model to demonstrate how dispersal and adaptation to environmental change independently and interactively contribute to biodiversity maintenance. Dispersal provides spatial insurance, whereby species persist on the landscape by shifting their distributions to track favorable conditions. In contrast, adaptation allows species to persist by allowing for evolutionary rescue. But, when species both adapt and disperse, dispersal and adaptation do not combine positively to affect biodiversity maintenance, even if they do increase the persistence of individual species. This occurs because faster adapting species evolve to hold onto their initial ranges (i.e., monopolization effects), thus impeding slower adapting species from shifting their ranges and thereby causing extinctions. Importantly, these differences in adaptation speed emerge as the result of competition, which alters population sizes and colonization success. By demonstrating how dispersal and adaptation each independently and interactively contribute to the maintenance of biodiversity, we provide a framework that links the theories of spatial insurance, evolutionary rescue, and monopolization. This highlights the expectation that the maintenance of biodiversity in changing environments depends jointly on rates of dispersal and adaptation, and, critically, the interaction between these processes.
Collapse
Affiliation(s)
- Patrick L Thompson
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada;
| | | |
Collapse
|
22
|
Verheyen J, Tüzün N, Stoks R. Using natural laboratories to study evolution to global warming: contrasting altitudinal, latitudinal, and urbanization gradients. CURRENT OPINION IN INSECT SCIENCE 2019; 35:10-19. [PMID: 31301449 DOI: 10.1016/j.cois.2019.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Demonstrating the likelihood of evolution in response to global warming is important, yet challenging. We discuss how three spatial thermal gradients (latitudinal, altitudinal, and urbanization) can be used as natural laboratories to inform about the gradual thermal evolution of populations by applying a space-for-time substitution (SFTS) approach. We compare thermal variables and confounding non-thermal abiotic variables, methodological approaches and evolutionary aspects associated with each type of gradient. On the basis of an overview of recent insect studies, we show that a key assumption of SFTS, local thermal adaptation along these gradients, is often but not always met, requiring explicit validation. To increase realism when applying SFTS, we highlight the importance of integrating daily temperature fluctuations, multiple stressors and multiple interacting species. Finally, comparative studies, especially across gradient types, are important to provide more robust inferences of evolution under gradual global warming. Integrating these research directions will further strengthen the still underused, yet powerful SFTS approach to infer gradual evolution under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Colossi Brustolin M, Nagelkerken I, Moitinho Ferreira C, Urs Goldenberg S, Ullah H, Fonseca G. Future ocean climate homogenizes communities across habitats through diversity loss and rise of generalist species. GLOBAL CHANGE BIOLOGY 2019; 25:3539-3548. [PMID: 31273894 DOI: 10.1111/gcb.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e., metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow-water habitats: sandy soft-bottoms, marine vegetation, and rocky reef substrates. Primary producers and detritus-key food sources for meiofauna-increased in biomass under the combined effect of temperature and acidification. The enhanced bottom-up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present-day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast-growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.
Collapse
Affiliation(s)
- Marco Colossi Brustolin
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Brazil
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Camilo Moitinho Ferreira
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Silvan Urs Goldenberg
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Hadayet Ullah
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Gustavo Fonseca
- Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
24
|
Urban MC, Scarpa A, Travis JMJ, Bocedi G. Maladapted Prey Subsidize Predators and Facilitate Range Expansion. Am Nat 2019; 194:590-612. [PMID: 31490731 DOI: 10.1086/704780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dispersal of prey from predator-free patches frequently supplies a trophic subsidy to predators by providing more prey than are produced locally. Prey arriving from predator-free patches might also have evolved weaker defenses against predators and thus enhance trophic subsidies by providing easily captured prey. Using local models assuming a linear or accelerating trade-off between defense and population growth rate, we demonstrate that immigration of undefended prey increased predator abundances and decreased defended prey through eco-evolutionary apparent competition. In individual-based models with spatial structure, explicit genetics, and gene flow along an environmental gradient, prey became maladapted to predators at the predator's range edge, and greater gene flow enhanced this maladaptation. The predator gained a subsidy from these easily captured prey, which enhanced its abundance, facilitated its persistence in marginal habitats, extended its range extent, and enhanced range shifts during environmental changes, such as climate change. Once the predator expanded, prey adapted to it and the advantage disappeared, resulting in an elastic predator range margin driven by eco-evolutionary dynamics. Overall, the results indicate a need to consider gene flow-induced maladaptation and species interactions as mutual forces that frequently determine ecological and evolutionary dynamics and patterns in nature.
Collapse
|
25
|
LaSharr TN, Long RA, Heffelfinger JR, Bleich VC, Krausman PR, Bowyer RT, Shannon JM, Rominger EM, Lehman CP, Cox M, Monteith KL. Biological relevance of antler, horn, and pronghorn size in records programs. J Mammal 2019. [DOI: 10.1093/jmammal/gyz123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractLong-term datasets are becoming increasingly important for assessing population- and species-level responses to a changing environment. Programs that record morphological measurements of horns, antlers, and pronghorns were established in the early- to mid-20th century to collect biological information about animals that possess large horns, antlers, or pronghorns, which could be used to assess the effectiveness of conservation efforts for large mammals in North America. The general relevance of record books has been questioned because of the minimum size requirements for inclusion in a record book, which may mask trends when changes in the population occur. We compared trends in size of antlers, horns, and pronghorns through time using records from three records programs with different minimum size requirements to evaluate the influence of entry requirements on temporal trends. We also investigated whether horn, antler, or pronghorn size affected the probability of specimens being submitted to a records program. Only two of 17 categories exhibited less-pronounced trends in the record book with the highest size requirements for entry, and in two categories trends were more pronounced. Although societal interest in submitting eligible specimens increased slightly over time in one of six categories, the probability of voluntary entry was largely random and not affected by year of harvest or size of specimen. In contrast to previous criticisms, trends in record books should not be expected to represent the size of all males within a population. Instead, our evaluation indicates that the records programs we examined can provide a useful resource for assessing long-term changes in phenotypic characteristics of ungulates, but importantly, they represent the respective range of sizes within which each program collects data.
Collapse
Affiliation(s)
- Tayler N LaSharr
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | | | - Vernon C Bleich
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, USA
| | - Paul R Krausman
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - R Terry Bowyer
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | | | | | | | - Mike Cox
- Nevada Department of Wildlife, Reno, NV
| | - Kevin L Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
26
|
Lasky JR. Eco-evolutionary community turnover following environmental change. Evol Appl 2019; 12:1434-1448. [PMID: 31417625 PMCID: PMC6691227 DOI: 10.1111/eva.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022] Open
Abstract
Co-occurring species often differ in intraspecific genetic diversity, which in turn can affect adaptation in response to environmental change. Specifically, the simultaneous evolutionary responses of co-occurring species to temporal environmental change may influence community dynamics. Local adaptation along environmental gradients combined with gene flow can enhance genetic diversity of traits within populations. Quantitative genetic theory shows that having greater gene flow results in (a) lower equilibrium population size due to maladaptive immigrant genotypes (migration load), but (b) faster adaptation to changing environments. Here, I build off this theory to study community dynamics of locally adapted species in response to temporal environmental changes akin to warming temperatures. Although an abrupt environmental change leaves all species initially maladapted, high gene flow species subsequently adapt faster due to greater genetic diversity. As a result, species can transiently reverse their relative abundances, but sometimes only after long lag periods. If constant temporal environmental change is applied, the community exhibits a shift toward stable dominance by species with intermediate gene flow. Notably, fast-adapting high gene flow species can increase in absolute abundance under environmental change (although often only for a transient period) because the change suppresses superior competitors with lower gene flow. This eco-evolutionary competitive release stabilizes ecosystem function. The eco-evolutionary community turnover studied here parallels the purely ecological successional dynamics following disturbances. My results demonstrate how interspecific variation in life history can have far-reaching impacts on eco-evolutionary community response to environmental change.
Collapse
Affiliation(s)
- Jesse R. Lasky
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania
| |
Collapse
|
27
|
Cocciardi JM, Hoskin CJ, Morris W, Warburton R, Edwards L, Higgie M. Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Conrad J. Hoskin
- College of Science and Engineering James Cook University Douglas Qld Australia
| | - Wayne Morris
- Innovation Centre James Cook University Douglas Qld Australia
| | | | - Lexie Edwards
- College of Science and Engineering James Cook University Douglas Qld Australia
| | - Megan Higgie
- College of Science and Engineering James Cook University Douglas Qld Australia
| |
Collapse
|
28
|
Cortez MH, Yamamichi M. How (co)evolution alters predator responses to increased mortality: extinction thresholds and hydra effects. Ecology 2019; 100:e02789. [PMID: 31298734 DOI: 10.1002/ecy.2789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/12/2019] [Accepted: 05/28/2019] [Indexed: 11/07/2022]
Abstract
Population responses to environmental change depend on both the ecological interactions between species and the evolutionary responses of all species. In this study, we explore how evolution in prey, predators, or both species affect the responses of predator populations to a sustained increase in mortality. We use an eco-evolutionary predator-prey model to explore how evolution alters the predator extinction threshold (defined as the minimum mortality rate that prevents population growth at low predator densities) and predator hydra effects (increased predator abundance in response to increased mortality). Our analysis identifies how evolutionary responses of prey and predators individually affect the predator extinction threshold and hydra effects, and how those effects are altered by interactions between the evolutionary responses. Based on our theoretical results, we predict that it is common in natural systems for evolutionary responses in one or both species to allow predators to persist at higher mortality rates than would be possible in the absence of evolution (i.e., evolution increases the predator mortality extinction threshold). We also predict that evolution-driven hydra effects occur in a minority of natural systems, but are not rare. We revisited published eco-evolutionary models and found that evolution causes hydra effects and increases the predator extinction threshold in many studies, but those effects have been overlooked. We discuss the implications of these results for species conservation, predicting population responses to environmental change, and the possibility of evolutionary rescue.
Collapse
Affiliation(s)
- Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306-4295, USA
| | - Masato Yamamichi
- Department of General Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
29
|
De Meester L, Brans KI, Govaert L, Souffreau C, Mukherjee S, Vanvelk H, Korzeniowski K, Kilsdonk L, Decaestecker E, Stoks R, Urban MC. Analysing eco‐evolutionary dynamics—The challenging complexity of the real world. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13261] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Héléne Vanvelk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Konrad Korzeniowski
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Laurens Kilsdonk
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, IRF Life Sciences, KULAK KU Leuven Kortrijk Belgium
| | - Robby Stoks
- Laboratory or Evolutionary Stress Ecology and Ecotoxicology KU Leuven Leuven Belgium
| | - Mark C. Urban
- Department of Ecology and Evolutionary Biology, Center for Biodiversity and Ecological Risk University of Connecticut Storrs Connecticut
| |
Collapse
|
30
|
McPeek MA. Limiting Similarity? The Ecological Dynamics of Natural Selection among Resources and Consumers Caused by Both Apparent and Resource Competition. Am Nat 2019; 193:E92-E115. [PMID: 30912964 DOI: 10.1086/701629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Much of ecological theory presumes that natural selection should foster species coexistence by phenotypically differentiating competitors so that the stability of the community is increased, but whether this will actually occur is a question of the ecological dynamics of natural selection. I develop an evolutionary model of consumer-resource interactions based on MacArthur's and Tilman's classic works, including both resource and apparent competition, to explore what fosters or retards the differentiation of resources and their consumers. Analyses of this model predict that consumers will differentiate only on specific ranges of environmental gradients (e.g., greater productivity, weaker stressors, lower structural complexity), and where it occurs, the magnitude of differentiation also depends on gradient position. In contrast to "limiting similarity" expectations, greater intraspecific phenotypic variance results in less differentiation among the consumers because of how phenotypic variation alters the fitness landscapes driving natural selection. In addition, the final structure of the community that results from the coevolution of these interacting species may be highly contingent on the initial properties of the species as the community is being assembled. These results highlight the fact that evolutionary conclusions about community structure cannot be based on ecological arguments of community stability or coexistence but rather must be explicitly based on the ecological dynamics of natural selection.
Collapse
|
31
|
Pontarp M, Brännström Å, Petchey OL. Inferring community assembly processes from macroscopic patterns using dynamic eco‐evolutionary models and Approximate Bayesian Computation (ABC). Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikael Pontarp
- Department of BiologyLund University Lund Sweden
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
- Department of Ecology and Environmental ScienceUmeå University Umeå Sweden
| | - Åke Brännström
- Department of Mathematics and Mathematical StatisticsUmeå University Umeå Sweden
- Evolution and Ecology ProgramInternational Institute for Applied Systems Analysis (IIASA) Laxenburg Austria
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| |
Collapse
|
32
|
Microbiomes as Metacommunities: Understanding Host-Associated Microbes through Metacommunity Ecology. Trends Ecol Evol 2018; 33:926-935. [DOI: 10.1016/j.tree.2018.09.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023]
|
33
|
Brans KI, De Meester L. City life on fast lanes: Urbanization induces an evolutionary shift towards a faster lifestyle in the water flea
Daphnia. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13184] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and ConservationKU Leuven Leuven Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and ConservationKU Leuven Leuven Belgium
| |
Collapse
|
34
|
McDonald TK, Yeaman S. Effect of migration and environmental heterogeneity on the maintenance of quantitative genetic variation: a simulation study. J Evol Biol 2018; 31:1386-1399. [PMID: 29938863 DOI: 10.1111/jeb.13341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/15/2023]
Abstract
The paradox of high genetic variation observed in traits under stabilizing selection is a long-standing problem in evolutionary theory, as mutation rates appear too low to explain observed levels of standing genetic variation under classic models of mutation-selection balance. Spatially or temporally heterogeneous environments can maintain more standing genetic variation within populations than homogeneous environments, but it is unclear whether such conditions can resolve the above discrepancy between theory and observation. Here, we use individual-based simulations to explore the effect of various types of environmental heterogeneity on the maintenance of genetic variation (VA ) for a quantitative trait under stabilizing selection. We find that VA is maximized at intermediate migration rates in spatially heterogeneous environments and that the observed patterns are robust to changes in population size. Spatial environmental heterogeneity increased variation by as much as 10-fold over mutation-selection balance alone, whereas pure temporal environmental heterogeneity increased variance by only 45% at max. Our results show that some combinations of spatial heterogeneity and migration can maintain considerably more variation than mutation-selection balance, potentially reconciling the discrepancy between theoretical predictions and empirical observations. However, given the narrow regions of parameter space required for this effect, this is unlikely to provide a general explanation for the maintenance of variation. Nonetheless, our results suggest that habitat fragmentation may affect the maintenance of VA and thereby reduce the adaptive capacity of populations.
Collapse
Affiliation(s)
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
35
|
MEESTER LD, STOKS R, BRANS KI. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr Zool 2018; 13:372-391. [PMID: 29168625 PMCID: PMC6221008 DOI: 10.1111/1749-4877.12298] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, food web alterations, changed intensities of host-parasite interactions, and extinctions. An increasing number of studies have documented evolutionary changes in traits such as phenology and thermal tolerance. In this opinion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strongly among taxa and populations. Second, there can be costs associated with genetic adaptation, such as a reduced evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to tradeoffs. Third, the differential capacity of taxa to genetically respond to climate change results in novel interactions because different organism groups respond to a different degree with local compared to regional (dispersal and range shift) responses. These complexities result in additional changes in the selection pressures on populations. We conclude that evolution can provide an initial buffer against climate change for some taxa and populations but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how biota will respond to climate change and will impact which taxa will be the winners or losers at the local, metacommunity and regional scales.
Collapse
Affiliation(s)
- Luc De MEESTER
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| | - Robby STOKS
- Evolutionary Stress Ecology and EcotoxicologyLeuvenBelgium
| | - Kristien I. BRANS
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| |
Collapse
|
36
|
Waterhouse MD, Erb LP, Beever EA, Russello MA. Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol 2018; 27:2512-2528. [DOI: 10.1111/mec.14701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Matthew D. Waterhouse
- Department of Biology; University of British Columbia; Kelowna British Columbia Canada
| | - Liesl P. Erb
- Departments of Biology and Environmental Studies; Warren Wilson College; Asheville North Carolina
| | - Erik A. Beever
- U.S. Geological Survey; Northern Rocky Mountain Science Center; Bozeman Montana
- Department of Ecology; Montana State University; Bozeman Montana
| | - Michael A. Russello
- Department of Biology; University of British Columbia; Kelowna British Columbia Canada
| |
Collapse
|
37
|
Nadeau CP, Urban MC, Bridle JR. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities. Trends Ecol Evol 2017; 32:786-800. [DOI: 10.1016/j.tree.2017.07.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/29/2022]
|
38
|
Urban MC, Richardson JL, Freidenfelds NA, Drake DL, Fischer JF, Saunders PP. Microgeographic Adaptation of Wood Frog Tadpoles to an Apex Predator. COPEIA 2017. [DOI: 10.1643/cg-16-534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Alzate A, Bisschop K, Etienne RS, Bonte D. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host. J Evol Biol 2017; 30:1966-1977. [DOI: 10.1111/jeb.13123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/04/2023]
Affiliation(s)
- A. Alzate
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Groningen The Netherlands
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| | - K. Bisschop
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Groningen The Netherlands
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| | - R. S. Etienne
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Groningen The Netherlands
| | - D. Bonte
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| |
Collapse
|
40
|
Bolchoun L, Drossel B, Allhoff KT. Spatial topologies affect local food web structure and diversity in evolutionary metacommunities. Sci Rep 2017; 7:1818. [PMID: 28500328 PMCID: PMC5431821 DOI: 10.1038/s41598-017-01921-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
An important challenge in theoretical ecology is to better predict ecological responses to environmental change, and in particular to spatial changes such as habitat fragmentation. Classical food-web models have focused on purely ecological predictions, without taking adaptation or evolution of species traits into account. We address this issue using an eco-evolutionary model, which is based on body masses and diets as the key traits that determine metabolic rates and trophic interactions. The model implements evolution by the introduction of new morphs that are related to the existing ones, so that the network structure itself evolves in a self-organized manner. We consider the coupling and decoupling of habitats in multi-trophic metacommunities consisting of 2 or 4 habitats. Our model thus integrates metacommunity models, which describe ecosystems as networks of networks, with large community evolution models. We find that rescue effects and source-sink effects occur within coupled habitats, which have the potential to change local selection pressures so that the local food web structure shows a fingerprint of its spatial conditions. Within our model system, we observe that habitat coupling increases the lifetimes of top predators and promotes local biodiversity.
Collapse
Affiliation(s)
- Lev Bolchoun
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Barbara Drossel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Korinna Theresa Allhoff
- Institute of Ecology and Environmental Sciences, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
41
|
Thompson PL, Gonzalez A. Dispersal governs the reorganization of ecological networks under environmental change. Nat Ecol Evol 2017; 1:162. [PMID: 28812626 DOI: 10.1038/s41559-017-0162] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 04/10/2017] [Indexed: 11/10/2022]
Abstract
Ecological networks, such as food webs, mutualist webs and host-parasite webs, are reorganizing as species abundances and spatial distributions shift in response to environmental change. Current theoretical expectations for how this reorganization will occur are available for competition or for parts of interaction networks, but these may not extend to more complex networks. Here we use metacommunity theory to develop new expectations for how complex networks will reorganize under environmental change, and show that dispersal is crucial for determining the degree to which networks will retain their composition and structure. When dispersal between habitat patches is low, all types of species interactions act as a strong determinant for whether species can colonize suitable habitats. This colonization resistance drives species turnover, which breaks apart current networks and leads to the formation of new networks. However, when dispersal rates are increased, colonists arrive in high abundance in habitats where they are well adapted, so interactions with resident species contribute less to colonization success. Dispersal ensures that species associations are maintained as they shift in space, so networks retain similar composition and structure. The crucial role of dispersal reinforces the need to manage habitat connectivity to sustain species and interaction diversity into the future.
Collapse
Affiliation(s)
- Patrick L Thompson
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| |
Collapse
|
42
|
Abstract
Metacommunity theory has provided many insights into the general problem of local versus regional control of species diversity and relative abundance. The metacommunity framework has been extended from competitive interactions to whole food webs that can be described as spatial networks of interaction networks. Trophic metacommunity theory greatly contributed to resolving the community complexity-stability debate by predicting its dependence on the regional spatial context. The meta-ecosystem framework has since been suggested as a useful simplification of complex ecosystems to apply this spatial context to spatial flows of both individuals and matter. Reviewing the recent literature on metacommunity and meta-ecosystem theories suggests the importance of unifying theories of interaction strength into a meta-ecosystem framework that captures how the strength of spatial, species, and ecosystem fluxes are distributed across location and trophic levels. Such integration predicts important feedback between local and regional processes that drive the assembly of species, the stability of community, and the emergence of ecosystem functions, from limited spatial fluxes of individuals and (in)organic matter. These predictions are often mediated by the maintenance of environmental or endogenous fluctuations from local to regional scales that create important challenges and opportunities for the validation of metacommunity and meta-ecosystem theories and their application to conservation.
Collapse
|
43
|
Colautti RI, Alexander JM, Dlugosch KM, Keller SR, Sultan SE. Invasions and extinctions through the looking glass of evolutionary ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160031. [PMID: 27920376 PMCID: PMC5182427 DOI: 10.1098/rstb.2016.0031] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/12/2022] Open
Abstract
Invasive and endangered species reflect opposite ends of a spectrum of ecological success, yet they experience many similar eco-evolutionary challenges including demographic bottlenecks, hybridization and novel environments. Despite these similarities, important differences exist. Demographic bottlenecks are more transient in invasive species, which (i) maintains ecologically relevant genetic variation, (ii) reduces mutation load, and (iii) increases the efficiency of natural selection relative to genetic drift. Endangered species are less likely to benefit from admixture, which offsets mutation load but also reduces fitness when populations are locally adapted. Invading species generally experience more benign environments with fewer natural enemies, which increases fitness directly and also indirectly by masking inbreeding depression. Adaptive phenotypic plasticity can maintain fitness in novel environments but is more likely to evolve in invasive species encountering variable habitats and to be compromised by demographic factors in endangered species. Placed in an eco-evolutionary context, these differences affect the breadth of the ecological niche, which arises as an emergent property of antagonistic selection and genetic constraints. Comparative studies of invasions and extinctions that apply an eco-evolutionary perspective could provide new insights into the environmental and genetic basis of ecological success in novel environments and improve efforts to preserve global biodiversity.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Robert I Colautti
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| | - Jake M Alexander
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, Burlington, VT 05405, USA
| | - Sonia E Sultan
- Department of Biology, Wesleyan University, 237 Church Street, Middletown, CT 06459, USA
| |
Collapse
|
44
|
To What Extent Can Existing Research Help Project Climate Change Impacts on Biodiversity in Aquatic Environments? A Review of Methodological Approaches. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4040075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
The impact of geographical origin of two strains of the herbivore, Eccritotarsus catarinensis, on several fitness traits in response to temperature. J Therm Biol 2016; 60:222-30. [DOI: 10.1016/j.jtherbio.2016.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/23/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
|
46
|
Holmes CJ, Figary S, Schulz KL, Cáceres CE. Effects of diversity on community assembly in newly formed pond communities. Ecosphere 2016. [DOI: 10.1002/ecs2.1377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Christopher J. Holmes
- Department of Animal Biology School of Integrative Biology University of Illinois at Urbana‐Champaign 515 Morrill Hall 505 S. Goodwin Avenue Urbana Illinois 61801 USA
| | - Stephanie Figary
- Department of Environmental and Forest Biology College of Environmental Science and Forestry State University of New York 1 Forestry Drive Syracuse New York 13210 USA
| | - Kimberly L. Schulz
- Department of Environmental and Forest Biology College of Environmental Science and Forestry State University of New York 1 Forestry Drive Syracuse New York 13210 USA
| | - Carla E. Cáceres
- Department of Animal Biology School of Integrative Biology University of Illinois at Urbana‐Champaign 515 Morrill Hall 505 S. Goodwin Avenue Urbana Illinois 61801 USA
| |
Collapse
|
47
|
Govaert L, Pantel JH, De Meester L. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol Lett 2016; 19:839-53. [DOI: 10.1111/ele.12632] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/28/2016] [Accepted: 05/15/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation; KU Leuven, Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Jelena H. Pantel
- Laboratory of Aquatic Ecology, Evolution and Conservation; KU Leuven, Ch. Deberiotstraat 32 B-3000 Leuven Belgium
- Centre d'Ecologie fonctionelle et Evolutive; UMR 5175 CNRS Université de Montpellier EPHE; Campus CNRS; 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation; KU Leuven, Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| |
Collapse
|
48
|
Haileselasie TH, Mergeay J, Weider LJ, Jeppesen E, De Meester L. Colonization history and clonal richness of asexual Daphnia in periglacial habitats of contrasting age in West Greenland. J Anim Ecol 2016; 85:1108-17. [PMID: 27279332 DOI: 10.1111/1365-2656.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/25/2016] [Indexed: 12/01/2022]
Abstract
Due to climate change, Arctic ice sheets are retreating. This leads to the formation of numerous new periglacial ponds and lakes, which are being colonized by planktonic organisms such as the water flea Daphnia. This system provides unique opportunities to test genotype colonization dynamics and the genetic assemblage of populations. Here, we studied clonal richness of the Daphnia pulex species complex in novel periglacial habitats created by glacial retreat in the Jakobshavn Isbrae area of western Greenland. Along a 10 km transect, we surveyed 73 periglacial habitats out of which 61 were colonized by Daphnia pulex. Hence, for our analysis, we used 21 ponds and 40 lakes in two clusters of habitats differing in age (estimated <50 years vs. >150 years). We tested the expectation that genetic diversity would be low in recently formed (i.e. young), small habitats, but would increase with increasing age and size. We identified a total of 42 genetically distinct clones belonging to two obligately asexual species of the D. pulex species complex: D. middendorffiana and the much more abundant D. pulicaria. While regional clonal richness was high, most clones were rare: 16 clones were restricted to a single habitat and the five most widespread clones accounted for 68% of all individuals sampled. On average, 3·2 clones (range: 1-12) coexisted in a given pond or lake. There was no relationship between clonal richness and habitat size when we controlled for habitat age. Whereas clonal richness was statistically higher in the cluster of older habitats when compared with the cluster of younger ponds and lakes, most young habitats were colonized by multiple genotypes. Our data suggest that newly formed (periglacial) ponds and lakes are colonized within decades by multiple genotypes via multiple colonization events, even in the smallest of our study systems (4 m(2) ).
Collapse
Affiliation(s)
| | - Joachim Mergeay
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium.,Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium
| | - Lawrence J Weider
- Department of Biology, Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK, 73071, USA
| | - Erik Jeppesen
- Department of Bioscience and Arctic Research Centre, Aarhus University, Silkeborg, Denmark.,Sino-Danish Centre for Education and Research (SDC), UCAS, Beijing, China
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| |
Collapse
|
49
|
De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC. Evolving Perspectives on Monopolization and Priority Effects. Trends Ecol Evol 2016; 31:136-146. [DOI: 10.1016/j.tree.2015.12.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
50
|
Kremp A, Oja J, LeTortorec AH, Hakanen P, Tahvanainen P, Tuimala J, Suikkanen S. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environ Microbiol 2015; 18:679-91. [PMID: 26913820 DOI: 10.1111/1462-2920.13070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/25/2015] [Indexed: 02/02/2023]
Abstract
Selection of suitable genotypes from diverse seed banks may help phytoplankton populations to cope with environmental changes. This study examines whether the high genotypic diversity found in the Baltic cyst pool of the toxic dinoflagellate Alexandrium ostenfeldii is coupled to phenotypic variability that could aid short-term adaptation. Growth rates, cellular toxicities and bioluminescence of 34 genetically different clones isolated from cyst beds of four Baltic bloom sites were determined in batch culture experiments along temperature and salinity gradients covering present and future conditions in the Baltic Sea. For all parameters a significant effect of genotype on the response to temperature and salinity changes was identified. General or site-specific effects of the two factors remained minor. Clones thriving at future conditions were different from the best performing at present conditions, suggesting that genotypic shifts may be expected in the future. Increased proportions of highly potent saxitoxin were observed as a plastic response to temperature increase, indicating a potential for higher toxicity of future blooms. The observed standing variation in Baltic seed banks of A. ostenfeldii suggests that the population is likely to persist under environmental change.
Collapse
Affiliation(s)
- Anke Kremp
- Marine Research Centre, Finnish Environment Institute, 00251, Helsinki, Finland
| | - Johanna Oja
- Marine Research Centre, Finnish Environment Institute, 00251, Helsinki, Finland
| | - Anniina H LeTortorec
- Marine Research Centre, Finnish Environment Institute, 00251, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, 10900, Hanko, Finland
| | - Päivi Hakanen
- Marine Research Centre, Finnish Environment Institute, 00251, Helsinki, Finland
| | - Pia Tahvanainen
- Marine Research Centre, Finnish Environment Institute, 00251, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, 10900, Hanko, Finland
| | - Jarno Tuimala
- Finnish Tax Administration, Haapaniemenkatu 4, 00052, Vero, Finland
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute, 00251, Helsinki, Finland
| |
Collapse
|