1
|
Zhang T, Shi C, Ye Z, Deng J, Gu M, Chen Z, Huang L, Su X, Chang Z. Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine. Biochem Biophys Res Commun 2024; 735:150481. [PMID: 39111121 DOI: 10.1016/j.bbrc.2024.150481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024]
Abstract
As the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhaoyang Ye
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Deng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyue Gu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lixin Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
2
|
Izgilov R, Kislev N, Omari E, Benayahu D. Advanced glycation end-products accelerate amyloid deposits in adipocyte's lipid droplets. Cell Death Dis 2024; 15:846. [PMID: 39562539 DOI: 10.1038/s41419-024-07211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
Adipose tissue dysfunction is central to insulin resistance, and the emergence of type 2 diabetes (T2D) is associated with elevated levels of carbonyl metabolites from glucose metabolism. In this study, using methylglyoxal (MGO) and glycolaldehyde (GAD) carbonyl metabolites induced protein glycation, leading to misfolding and β-sheet formation and generation of advanced glycation end products (AGEs). The formed AGEs compromise adipocytes activity. Microscopic and spectroscopic assays were used to examine the impact of MGO and GAD on lipid droplet-associated proteins. The results provide information about how these conditions lead to the appearance of glycated and amyloidogenic proteins formation that hinders metabolism and autophagy in adipocytes. We measured the beneficial effects of metformin (MET), an anti-diabetic drug, on misfolded protein as assessed by thioflavin (ThT) spectroscopy and improved autophagy, determined by LC3 staining. In vitro findings were complemented by in vivo analysis of white adipose tissue (WAT), where lipid droplet-associated β-amyloid deposits were predominantly linked to adipose triglyceride lipase (ATGL), a lipid droplet protein. Bioinformatics, imaging, biochemical and MS/MS methods affirm ATGL's glycation and its role in β-sheet secondary structure formation. Our results highlighted the pronounced presence of amyloidogenic proteins in adipocytes treated with carbonyl compounds, potentially reshaping our understanding of adipocyte altered activity in the context of T2D. This in-depth exploration offers novel perspectives on related pathophysiology and underscores the potential of adipocytes as pivotal therapeutic targets, bridging T2D, amyloidosis, protein glycation, and adipocyte malfunction.
Collapse
Affiliation(s)
- Roza Izgilov
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nadav Kislev
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eman Omari
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Ma T, Jin L, Bai S, Liu Z, Wang S, Shen B, Cho Y, Cao S, Sun MJS, Fazli L, Zhang D, Wedderburn C, Zhang DY, Mugon G, Ungerleider N, Baddoo M, Zhang K, Schiavone LH, Burkhardt BR, Fan J, You Z, Flemington EK, Dong X, Dong Y. Loss of feedback regulation between FAM3B and androgen receptor driving prostate cancer progression. J Natl Cancer Inst 2024; 116:421-433. [PMID: 37847647 PMCID: PMC10919334 DOI: 10.1093/jnci/djad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Although the fusion of the transmembrane serine protease 2 gene (TMPRSS2) with the erythroblast transformation-specific-related gene (ERG), or TMPRSS2-ERG, occurs frequently in prostate cancer, its impact on clinical outcomes remains controversial. Roughly half of TMPRSS2-ERG fusions occur through intrachromosomal deletion of interstitial genes and the remainder via insertional chromosomal rearrangements. Because prostate cancers with deletion-derived TMPRSS2-ERG fusions are more aggressive than those with insertional fusions, we investigated the impact of interstitial gene loss on prostate cancer progression. METHODS We conducted an unbiased analysis of transcriptome data from large collections of prostate cancer samples and employed diverse in vitro and in vivo models combined with genetic approaches to characterize the interstitial gene loss that imposes the most important impact on clinical outcome. RESULTS This analysis identified FAM3B as the top-ranked interstitial gene whose loss is associated with a poor prognosis. The association between FAM3B loss and poor clinical outcome extended to fusion-negative prostate cancers where FAM3B downregulation occurred through epigenetic imprinting. Importantly, FAM3B loss drives disease progression in prostate cancer. FAM3B acts as an intermediator of a self-governing androgen receptor feedback loop. Specifically, androgen receptor upregulates FAM3B expression by binding to an intronic enhancer to induce an enhancer RNA and facilitate enhancer-promoter looping. FAM3B, in turn, attenuates androgen receptor signaling. CONCLUSION Loss of FAM3B in prostate cancer, whether through the TMPRSS2-ERG translocation or epigenetic imprinting, causes an exit from this autoregulatory loop to unleash androgen receptor activity and prostate cancer progression. These findings establish FAM3B loss as a new driver of prostate cancer progression and support the utility of FAM3B loss as a biomarker to better define aggressive prostate cancer.
Collapse
Affiliation(s)
- Tianfang Ma
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Lianjin Jin
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Shanshan Bai
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Zhan Liu
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Shuo Wang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Urological Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beibei Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yeyoung Cho
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - David Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Duke University, Durham, NC, USA
| | - Chiyaro Wedderburn
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Derek Y Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Gavisha Mugon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, LA, USA
| | | | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - Erik K Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
4
|
Abdel-Moneim A, Mahmoud R, Allam G, Mahmoud B. Relationship between Cytokines and Metabolic Syndrome Components: Role of Pancreatic-Derived Factor, Interleukin-37, and Tumor Necrosis Factor-α in Metabolic Syndrome Patients. Indian J Clin Biochem 2024; 39:37-46. [PMID: 38223016 PMCID: PMC10784435 DOI: 10.1007/s12291-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
The metabolic syndrome (MetS) is a serious public health issue that affects people all over the world. Notably, insulin resistance, prothrombotic activity, and inflammatory state are associated with MetS. This study aims to explore the relationship between cytokines and tumor necrosis factor-α (TNF-α), pancreatic-derived factor (PANDER), and interleukin (IL-)-37 and the accumulation of MetS components. Eligible participants were divided into four groups as follows: group 1, patients with dyslipidemia; group 2, patients with dyslipidemia and obesity; group 3, patients with dyslipidemia, obesity, and hypertension; and group 4, patients with dyslipidemia, obesity, hypertension, and hyperglycemia. This study exhibited that serum levels of TNF-α and PANDER were significantly elevated (P < 0.001) in the MetS groups, while IL-37 level and IL-37 mRNA expression were significantly decreased (P < 0.001) relative to healthy controls. Moreover, this study has revealed significant correlations (P < 0.001) between MetS components and TNF-α, PANDER, and IL-37 levels in MetS patients. The aforementioned results suggested the association between the proinflammatory cytokine (TNF-α and PANDER) and anti-inflammatory cytokine (IL-37) with the accumulation of MetS components. Hence, the overall outcome indicated that PANDER and IL-37 may be considered novel biomarkers associated with increased risk of MetS and can be used as a promising therapeutic target in preventing, ameliorating, and treating metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01079-z.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt. Salah Salem St, 62511 Beni-Suef, Egypt
| | - Rania Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Basant Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Pei L, Lai F, Chen W, Zeng R, Chen N, Li Y, Xiao H, Cao X. Pancreatic-derived factor predicts remission of impaired glucose tolerance women with history of gestational diabetes. Diabetes Res Clin Pract 2023; 204:110892. [PMID: 37657647 DOI: 10.1016/j.diabres.2023.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
AIM To clarify whether pancreatic derived factor (PANDER) predicts the remission of impaired glucose tolerance (IGT) due to lifestyle intervention among women with history of gestational diabetes mellitus (GDM). METHODS IGT women with GDM history in a prospective cohort study were enrolled at 4-12 weeks postpartum and grouped based on PANDER level at recruitment. After lifestyle intervention, glucose metabolism examined was performed at one year postpartum. The relation between PANDER level and glycemic outcome was analyzed with logistic regression and receiver operating characteristic (ROC) curves. RESULTS In total, 48.7% (55/113) of subjects returned to normal glucose tolerance at one year postpartum. Compared to those with low PANDER group, women among high PANDER group and very high PANDER group were associated with a lower remission of IGT. These associations remained in multivariable logistic regression. The area under the ROC curve (AUC) of PANDER level for the remission of IGT was 0.702 (95% CI 0.595-0.809). When PANDER level was combined with clinical information, the AUC reached 0.812 (95% CI 0.725-0.899; P < 0.001). CONCLUSION Circulating PANDER concentration is inversely associated with the remission of IGT in women with GMD history at one year postpartum.
Collapse
Affiliation(s)
- Ling Pei
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fenghua Lai
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenzhan Chen
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Zeng
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nan Chen
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopei Cao
- Department of Endocrinology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Ma Y, Shi J, Liu Y, Cui W, Pan R, Qiu H, Han F, Hou N, Sun X. Identification of Potential Indicators for Survival in Patients with Thyroid Cancer Based on Expression of FAM3 Members. Crit Rev Eukaryot Gene Expr 2023; 33:39-52. [PMID: 37183945 DOI: 10.1615/critreveukaryotgeneexpr.2022044417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid cancer (THCA) is a common head and neck malignancy. The family with sequence similarity 3 (FAM3) is a cytokine-like gene family with four members, which is presumed to participate in the development of many cancer types. However, the expression patterns of FAM3s in THCA and their prognostic values, have not yet been established. We investigated differential expressions of FAM3 mRNA and protein in THCA, then validated the findings for FAM3B by immunohistochemistry. We also investigated survival data with respect to FAM3 expression patterns in patients with THCA. FAM3s information regarding their relationships with clinical pathological parameters were obtained and FAM3 mutations were assessed. KEGG and GO pathway regarding FAM3C were obtained using online databases. To investigate potential correlations between FAM3s and immune cell infiltration, we investigated the roles of FAM3s in immune cells of patients with THCA. The mRNA expression of FAM3C were significantly elevated in THCA tissues; high expression levels of FAM3C protein were also observed in THCA tissues. A significant association between the pathological stage and the expression of FAM3C was found in patients with THCA. Patients with THCA who had high mRNA expression levels of FAM3C exhibited significantly more favorable prognosis, compared with patients who had low mRNA expression levels of FAM3C. Overall, FAM3C may play vital roles in the pathogenesis and development of THCA, and these findings constitute novel insights for biomarkers of immunotherapeutic targeted agents and may aid in the identification of prognostic biomarkers for THCA.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Weiming Cui
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- Department of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang Weifang, China
| |
Collapse
|
7
|
Xiao Q, Zhong Y, Kang Z, Huang J, Fang W, Wei S, Long J, Li S, Zhao H, Liu D. Curcumin regulates the homeostasis of Th17/Treg and improves the composition of gut microbiota in type 2 diabetic mice with colitis. Phytother Res 2022; 36:1708-1723. [PMID: 35234309 PMCID: PMC9310646 DOI: 10.1002/ptr.7404] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is one of the most common complications in patients with ulcerative colitis (UC). Curcumin has a wide range of bioactive and pharmacological properties and is commonly used as an adjunct to the treatment of UC and DM. However, the role of curcumin in UC complicated by DM has not been elucidated. Therefore, this study was conducted to construct a model of UC complicating diabetes by inducing UC in DB mice (spontaneously diabetic) with dextran sodium sulfate. In this study, curcumin (100 mg/kg/day) significantly improved the symptoms of diabetes complicated by UC, with a lower insulin level, heavier weight, longer and lighter colons, fewer mucosal ulcers and less inflammatory cell infiltration. Moreover, compared to untreated DB mice with colitis, curcumin-treated mice showed weaker Th17 responses and stronger Treg responses. In addition, curcumin regulated the diversity and relative abundance of intestinal microbiota in mice with UC complicated by DM at the phylum, class, order, family and genus levels. Collectively, curcumin effectively alleviated colitis in mice with type 2 diabetes mellitus by restoring the homeostasis of Th17/Treg and improving the composition of the intestinal microbiota.
Collapse
Affiliation(s)
- Qiu‐Ping Xiao
- Laboratory Animal Research Center for Science and TechnologyJiangxi University of Traditional Chinese MedicineNanchangChina
- Research and Development DepartmentJiangzhong Pharmaceutical Co., LtdNanchangChina
| | - You‐Bao Zhong
- Laboratory Animal Research Center for Science and TechnologyJiangxi University of Traditional Chinese MedicineNanchangChina
- Key Laboratory of Animal Model of TCM Syndromes of DepressionJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Zeng‐Ping Kang
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Jia‐Qi Huang
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Wei‐Yan Fang
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Si‐Yi Wei
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Jian Long
- College of Traditional Chinese MedicineJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Shan‐Shan Li
- Laboratory Animal Research Center for Science and TechnologyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Hai‐Mei Zhao
- Department of PostgraduateJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Duan‐Yong Liu
- Formula‐Pattern Research CenterJiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
8
|
López-Bermudo L, Luque-Sierra A, Maya-Miles D, Gallego-Durán R, Ampuero J, Romero-Gómez M, Berná G, Martín F. Contribution of Liver and Pancreatic Islet Crosstalk to β-Cell Function/Dysfunction in the Presence of Fatty Liver. Front Endocrinol (Lausanne) 2022; 13:892672. [PMID: 35651973 PMCID: PMC9148952 DOI: 10.3389/fendo.2022.892672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-to-tissue crosstalk regulates organ function, according to growing data. This phenomenon is relevant for pancreatic β-cells and the liver, as both tissues are involved in glucose homeostasis and lipid metabolism. The ability to fine-tune regulation and adaptive responses is enabled through communication between pancreatic β-cells and the liver. However, the crosstalk between both tissues changes when metabolic dysregulation is present. Factors and cargo from extracellular vesicles (EVs) released by liver and pancreatic β-cells that reach the circulation form the words of this interaction. The molecules released by the liver are called hepatokines and are usually secreted in response to the metabolic state. When hepatokines reach the pancreatic islets several mechanisms are initiated for their protection or damage. In the case of the crosstalk between pancreatic β-cells and the liver, only one factor has been found to date. This protein, pancreatic derived factor (PANDER) has been proposed as a novel linker between insulin resistance (IR) and type 2 diabetes mellitus (T2D) and could be considered a biomarker for non-alcoholic fatty liver disease (NAFLD) and T2D. Furthermore, the cargo released by EVs, mainly miRNAs, plays a significant role in this crosstalk. A better knowledge of the crosstalk between liver and pancreatic β-cells is essential to understand both diseases and it could lead to better prevention and new therapeutic options.
Collapse
Affiliation(s)
- Lucía López-Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Amparo Luque-Sierra
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
| | - Douglas Maya-Miles
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Gallego-Durán
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ampuero
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocío de Sevilla, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
- Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Genoveva Berná
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Franz Martín, ; Genoveva Berná,
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Franz Martín, ; Genoveva Berná,
| |
Collapse
|
9
|
Song C, Duan C. Upregulation of FAM3B Promotes Cisplatin Resistance in Gastric Cancer by Inducing Epithelial-Mesenchymal Transition. Med Sci Monit 2020; 26:e921002. [PMID: 32442162 PMCID: PMC7261000 DOI: 10.12659/msm.921002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Cisplatin (CDDP) remains one of the primary chemotherapeutic agents for gastric cancer patients. However, relapse and metastasis are common because of innate and acquired chemo-resistance. Family with sequence similarity 3 (FAM3) is a novel cytokine-like protein that has an important role in tumor progression, but little is known about the role of FAM3B in human gastric cancer CDDP resistance. In this study, we investigated the role of FAM3B in gastric cancer CDDP resistance and reveal the possible underlying mechanism. Material/Methods We firstly developed a CDDP-resistant gastric cell line AGS/CDDP by treating AGS cells to a continuous exposure of CDDP. The FAM3B levels were compared in these 2 cell lines by quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. Cell viability, apoptosis and epithelial-mesenchymal transition (EMT) related changes were detected after ectopic expression or interfering of FAM3B. Results We found increased FAM3B expression in AGS/CDDP cells. FAM3B overexpression induced CDDP resistance in AGS cells. Conversely, FAM3B knockdown enhanced CDDP sensitivity of AGS/CDDP cells. Moreover, FAM3B induced EMT in gastric cancer cells by upregulating snail. Inhibition of snail reversed FAM3B-triggered EMT and CDDP resistance. Conclusions Upregulation of FAM3B triggered CDDP resistance in gastric cancer cells by inducing EMT in a snail-dependent manner, making FAM3B a promising therapeutic target to reverse gastric cancer chemo-resistance.
Collapse
Affiliation(s)
- Chun Song
- Department of Surgery, Qingyang People's Hospital, Qingyang, Gansu, China (mainland)
| | - Chunning Duan
- Department of Surgery, Qingyang People's Hospital, Qingyang, Gansu, China (mainland)
| |
Collapse
|
10
|
Lanka G, Bathula R, Dasari M, Nakkala S, Bhargavi M, Somadi G, Potlapally SR. Structure-based identification of potential novel inhibitors targeting FAM3B (PANDER) causing type 2 diabetes mellitus through virtual screening. J Recept Signal Transduct Res 2019; 39:253-263. [PMID: 31517548 DOI: 10.1080/10799893.2019.1660897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes mellitus is a metabolic disorder that requires potent therapeutic approaches. The FAM3B is a cytokine-like protein also referred to as PANcreatic-DERrived factor (PANDER) which mainly exists in pancreatic islets. In the process of identifying potential inhibitors with the aid of structure-based method PANDER protein is identified as a novel therapeutic target against type 2 diabetes mellitus as it involved in the development of type 2 diabetes by negatively regulating the pancreatic β-cell function and insulin sensitivity in the liver. In the present study, the 3d model of target protein FAM3B was generated by homology modeling technique using the MODELLER9.9 program. The assessment of the structural stability of the 3d model was established by energy minimization technique. The structural quality was evaluated with standard validating protocols. Binding regions of the target protein has been determined by literature and SiteMap tool. In the current study of research, the FAM3B model was subjected to molecular screening with the Asinex-elite database of 14849 output molecules using the Glide virtual screening module in the Schrodinger suite. The final XP descriptor output of 14 molecules was analyzed and prioritized based on molecular interactions at the FAM3B active site. The docking score, binding free energies (Prime MM/GBSA) and bioavailability were undertaken into the consideration to identify lead inhibitors. The identified lead compounds were checked for ADME properties all falling within the permeable ranges. The analysis of results gave the insight to develop the novel therapeutic strategies against type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Revanth Bathula
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Mahendar Dasari
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Sravanthi Nakkala
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Manan Bhargavi
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Gururaj Somadi
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| | - Sarita Rajender Potlapally
- Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University , Basheerbagh , Hyderabad , India
| |
Collapse
|
11
|
Xu W, Liang M, Zhang Y, Huang K, Wang C. Endothelial FAM3A positively regulates post-ischaemic angiogenesis. EBioMedicine 2019; 43:32-42. [PMID: 31000420 PMCID: PMC6562148 DOI: 10.1016/j.ebiom.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Angiogenesis improves reperfusion to the ischaemic tissue after vascular obstruction. The underlying molecular mechanisms of post-ischaemic angiogenesis are not clear. FAM3A belongs to the family with sequence similarity 3 (FAM3) genes, but its biological function in endothelial cells in regards to vascular diseases is not well understood. Methods Gain- and loss-of-function methods by adenovirus or associated-adenovirus (AAV) in different models were applied to investigate the effects of FAM3A on endothelial angiogenesis. Endothelial angiogenesis was analysed by tube formation, migration and proliferation in vitro, and the blood flow and capillary density in a hind limb ischaemic model in vivo. Findings Endothelial FAM3A expression is downregulated under hypoxic conditions. Overexpression of FAM3A promotes, but depletion of FAM3A suppresses, endothelial tube formation, proliferation and migration. Utilizing the mouse hind limb ischaemia model, we also observe that FAM3A overexpression can improve blood perfusion and increase capillary density, whereas FAM3A knockdown has the opposite effects. Mechanistically, mitochondrial FAM3A increases adenosine triphosphate (ATP) production and secretion; ATP binds to P2 receptors and then upregulates cytosolic free Ca2+ levels. Increased intracellular Ca2+ levels enhance phosphorylation of the transcriptional factor cAMP response element binding protein (CREB) and its recruitment to the VEGFA promoter, thus activating VEGFA transcription and the final endothelial angiogenesis. Interpretation In summary, our data demonstrate that FAM3A positively regulates angiogenesis through activation of VEGFA transcription, suggesting that FAM3A may constitute a novel molecular therapeutic target for ischaemic vascular disease.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes. Metabolism 2018; 81:71-82. [PMID: 29221790 DOI: 10.1016/j.metabol.2017.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes are severe public health issues worldwide. The Family with sequence similarity 3 (FAM3) gene family consists of four members designated as FAM3A, FAM3B, FAM3C and FAM3D, respectively. Recently, there had been increasing evidence that FAM3A, FAM3B and FAM3C are important regulators of glucose and lipid metabolism. FAM3A expression is reduced in the livers of diabetic rodents and NAFLD patients. Hepatic FAM3A restoration activates ATP-P2 receptor-Akt and AMPK pathways to attenuate steatosis and hyperglycemia in obese diabetic mice. FAM3C expression is also reduced in the liver under diabetic condition. FAM3C is a new hepatokine that activates HSF1-CaM-Akt pathway and represses mTOR-SREBP1-FAS pathway to suppress hepatic gluconeogenesis and lipogenesis. In contrast, hepatic expression of FAM3B, also called PANDER, is increased under obese state. FAM3B promotes hepatic lipogenesis and gluconeogenesis by repressing Akt and AMPK activities, and activating lipogenic pathway. Under obese state, the imbalance among hepatic FAM3A, FAM3B and FAM3C signaling networks plays important roles in the pathogenesis of NAFLD and type 2 diabetes. This review briefly discussed the latest research progress on the roles and mechanisms of FAM3A, FAM3B and FAM3C in the regulation of hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
13
|
MarElia CB, Kuehl MN, Shemwell TA, Alman AC, Burkhardt BR. Circulating PANDER concentration is associated with increased HbA1c and fasting blood glucose in Type 2 diabetic subjects. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 11:26-30. [PMID: 29686968 PMCID: PMC5910510 DOI: 10.1016/j.jcte.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
PANcreatic-DERived factor (PANDER) is a novel hormone regulating glucose levels. Fasting PANDER levels were measured in T2D and non-T2D matched subjects from U.S. Associations between PANDER and other hormones or metabolic parameters were examined. PANDER was associated with increased HbA1c and fasting blood glucose in T2D subjects. PANDER was not associated with adiponectin, HOMA-β and HOMA-IR.
Aim PANcreatic-DERived factor (PANDER, FAM3B) is a novel hormone that regulates glucose levels via interaction with both the endocrine pancreas and liver. Prior studies examining PANDER were primarily conducted in murine models or in vitro but little is known regarding the circulating concentration of PANDER in humans, especially with regard to the association of type 2 diabetes (T2D) or overall glycemic regulation. To address this limitation, we performed a cross-sectional analysis of circulating serum PANDER concentration in association with other hormones that serve as either markers of insulin resistance (insulin and adiponectin) or to metabolic parameters of glycemic control such as fasting HbA1c and blood glucose (FBG). Methods Fasting serum was obtained from a commercial biorepository from 300 de-identified adult subjects with 150 T2D and non-T2D adult subjects collected from a population within the United States, respectively, matched on gender, age group and race/ethnicity. Concentration of PANDER, insulin and adiponectin were measured for all samples as determined by commercial ELISA. Metadata was provided for each subject including demography, anthropometry, and cigarette and alcohol use. In addition, fasting blood glucose (FBG) and HbA1c were available on T2D subjects. Results Multiple linear regression analyses were performed to examine the relationships between circulating log PANDER concentration on HbA1c, fasting glucose, log insulin, log HOMA-β and log HOMA-IR among T2D subjects and for insulin and adiponectin in non-T2D subjects. A significant linear association was identified between PANDER with fasting HbA1c (β 0.832 ± SE 0.22, p = 0.0003) and FBG (β 20.66 ± SE 7.43, p = 0.006) within T2D subjects. However, insulin, HOMA-β, HOMA-IR and adiponectin (p > 0.05) were not found to be linearly associated with PANDER concentration. Conclusion Within T2D subjects, PANDER is modestly linearly associated with increased HbA1c and FBG in a US population. In addition, highest circulating PANDER levels were measured in T2D subjects with HbA1c above 9.9. No association was identified with PANDER and insulin resistance or pancreatic β-cell function in T2D subjects.
Collapse
Affiliation(s)
- Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Tiffany A Shemwell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Amy C Alman
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, United States
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| |
Collapse
|
14
|
FAM3B/PANDER inhibits cell death and increases prostate tumor growth by modulating the expression of Bcl-2 and Bcl-X L cell survival genes. BMC Cancer 2018; 18:90. [PMID: 29357840 PMCID: PMC5778767 DOI: 10.1186/s12885-017-3950-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Background FAM3B/PANDER is a novel cytokine-like protein that induces apoptosis in insulin-secreting beta-cells. Since in silico data revealed that FAM3B can be expressed in prostate tumors, we evaluated the putative role of this cytokine in prostate tumor progression. Methods FAM3B expression was analyzed by quantitative PCR in tumor tissue clinical samples and prostate tumor cell lines. Culture growth and viability of DU145 cell line were evaluated after treatment with either exogenous FAM3B protein obtained from conditioned media (CM) of 293 T cells overexpressing FAM3B or a recombinant FAM3B protein produced in a bacterial host. DU145 cells overexpressing FAM3B protein were produced by lentiviral-mediated transduction of full-length FAM3B cDNA. Cell viability and apoptosis were analyzed in DU145/FAM3B cells after treatment with several cell death inducers, such as TNF-alpha, staurosporine, etoposide, camptothecin, and serum starvation conditions. Anchorage-independent growth in soft agarose assay was used to evaluate in vitro tumorigenicity. In vivo tumorigenicity and invasiveness were evaluated by tumor xenograft growth in nude mice. Results We observed an increase in FAM3B expression in prostate tumor samples when compared to normal tissues. DU145 cell viability and survival increased after exogenous treatment with recombinant FAM3B protein or FAM3B-secreted protein. Overexpression of FAM3B in DU145 cells promoted inhibition of DNA fragmentation and phosphatidylserine externalization in a time and dose-dependent fashion, upon apoptosis triggered by TNF-alpha. These events were accompanied by increased gene expression of anti-apoptotic Bcl-2 and Bcl-XL, decreased expression of pro-apoptotic Bax and diminished caspase-3, −8 and −9 proteolytic activities. Furthermore, inhibition of Bcl-2 anti-apoptotic family proteins with small molecules antagonists decreases protective effects of FAM3B in DU145 cells. When compared to the respective controls, cells overexpressing FAM3B displayed a decreased anchorage- independent growth in vitro and increased tumor growth in xenografted nude mice. The immunohistochemistry analysis of tumor xenografts revealed a similar anti-apoptotic phenotype displayed by FAM3B-overexpressing tumor cells. Conclusions Taken together, by activating pro-survival mechanisms FAM3B overexpression contributes to increased resistance to cell death and tumor growth in nude mice, highlighting a putative role for this cytokine in prostate cancer progression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3950-9) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Shehata MM, Kamal MM, El-Hefnawy MH, El-Mesallamy HO. Association of serum pancreatic derived factor (PANDER) with beta-cell dysfunction in type 2 diabetes mellitus. J Diabetes Complications 2017; 31:748-752. [PMID: 28161382 DOI: 10.1016/j.jdiacomp.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
Abstract
AIM Beta-cell dysfunction is the critical determinant for type 2 diabetes. The novel PANcreatic DERived factor (PANDER) has been identified as interesting islet-secreted cytokine that might be involved in beta-cell dysfunction, a role that has n"ot been clinically elucidated yet. Therefore, this study was designed to study the potential clinical association of this cytokine with beta-cell dysfunction in type 2 diabetes. METHODS Anthropometric parameters, routine biochemical markers and serum levels of PANDER were measured in 63 diabetic subjects including; recently diagnosed type 2 diabetic patients with duration of diabetes ≤6months and long-standing type 2 diabetic patients with duration of diabetes ≥5years then compared to 16 healthy control volunteers. Proinsulin, C-peptide, insulin and PANDER were measured by ELISA. Beta-cell dysfunction was assessed by HOMA2-%β, proinsulin, proinsulin-to-insulin (PI/I) ratio and proinsulin-to-C-peptide (PI/C-pep) ratio. Relations among various parameters were studied using simple and multiple linear regressions. RESULTS Serum PANDER levels were found to be significantly elevated in long-standing diabetics as compared to recently diagnosed diabetics and controls. In addition, PANDER was found to be significantly correlated negatively to HOMA2-%β, as well as positively to proinsulin, PI/I and PI/C-pep ratios. CONCLUSION PANDER is associated with beta-cell dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Miral M Shehata
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
16
|
Athanason MG, Ratliff WA, Chaput D, MarElia CB, Kuehl MN, Stevens SM, Burkhardt BR. Quantitative proteomic profiling reveals hepatic lipogenesis and liver X receptor activation in the PANDER transgenic model. Mol Cell Endocrinol 2016; 436:41-9. [PMID: 27394190 PMCID: PMC5789791 DOI: 10.1016/j.mce.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
PANcreatic-DERived factor (PANDER) is a member of a superfamily of FAM3 proteins modulating glycemic levels by metabolic regulation of the liver and pancreas. The precise PANDER-induced hepatic signaling mechanism is still being elucidated and has been very complex due to the pleiotropic nature of this novel hormone. Our PANDER transgenic (PANTG) mouse displays a selective hepatic insulin resistant (SHIR) phenotype whereby insulin signaling is blunted yet lipogenesis is increased, a phenomena observed in type 2 diabetes. To examine the complex PANDER-induced mechanism of SHIR, we utilized quantitative mass spectrometry-based proteomic analysis using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) to reveal the global hepatic proteome differences within the PANTG under the metabolic states of fasting, fed and insulin-stimulated conditions. Proteomic analysis identified lipid metabolism as one of the top cellular functions differentially altered in all metabolic states. Differentially expressed proteins within the PANTG having a lipid metabolic role included ACC, ACLY, CD36, CYP7A1, FASN and SCD1. Central to the differentially expressed proteins involved in lipid metabolism was the predicted activation of the liver X receptor (LXR) pathway. Western analysis validated the increased hepatic expression of LXRα along with LXR-directed targets such as FASN and CYP7A1 within the PANTG liver. Furthermore, recombinant PANDER was capable of inducing LXR promoter activity in-vitro as determined by luciferase reporter assays. Taken together, PANDER strongly impacts hepatic lipid metabolism across metabolic states and may induce a SHIR phenotype via the LXR pathway.
Collapse
Affiliation(s)
- Mark G Athanason
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Whitney A Ratliff
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA.
| |
Collapse
|
17
|
FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int 2016; 94:82-9. [DOI: 10.1016/j.neuint.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
|
18
|
Ratliff WA, Athanason MG, Chechele AC, Kuehl MN, Fernandez AM, MarElia CB, Burkhardt BR. Hepatic nutrient and hormonal regulation of the PANcreatic-DERived factor (PANDER) promoter. Mol Cell Endocrinol 2015; 413:101-12. [PMID: 26123584 DOI: 10.1016/j.mce.2015.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/29/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. Therefore, our investigation elucidated the nutrient and hormonal regulation of the hepatic PANDER promoter. Initial RNA-ligated rapid amplification of cDNA ends identified a novel transcription start site (TSS) approximately 26 bp upstream of the PANDER translational start codon not previously revealed in pancreatic β-cell lines. Western evaluation of various murine tissues demonstrated robust expression in the liver and brain. Promoter analysis identified strong tissue-specific activity of the PANDER promoter in both human and murine liver-derived cell lines. The minimal element responsible for maximal promoter activity within hepatic cell lines was located between -293 and -3 of the identified TSS. PANDER promoter activity was inhibited by both insulin and palmitate, whereas glucose strongly increased expression. The minimal element was responsible for maximal glucose-responsive and basal activity. Co-transfection reporter assays, chromatin-immunoprecipitation (ChIP) and site-directed mutagenesis revealed that the carbohydrate-responsive element binding protein (ChREBP) increased PANDER promoter activity and interacted with the PANDER promoter. E-box 3 was shown to be critical for basal and glucose responsive expression. In summary, in-vitro and in-vivo glucose is a potent stimulator of the PANDER promoter within the liver and this response may be facilitated by ChREBP.
Collapse
Affiliation(s)
- Whitney A Ratliff
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Mark G Athanason
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Alicia C Chechele
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Amanda M Fernandez
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
19
|
Wu H, Jin M, Han D, Zhou M, Mei X, Guan Y, Liu C. Protective effects of aerobic swimming training on high-fat diet induced nonalcoholic fatty liver disease: regulation of lipid metabolism via PANDER-AKT pathway. Biochem Biophys Res Commun 2015; 458:862-8. [PMID: 25701781 DOI: 10.1016/j.bbrc.2015.02.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 01/27/2023]
Abstract
This study aimed to investigate the mechanism by which aerobic swimming training prevents high-fat-diet-induced nonalcoholic fatty liver disease (NAFLD). Forty-two male C57BL/6 mice were randomized into normal-diet sedentary (ND; n = 8), ND exercised (n = 8), high-fat diet sedentary (HFD; n = 13), and HFD exercised groups (n = 13). After 2 weeks of training adaptation, the mice were subjected to an aerobic swimming protocol (60 min/day) 5 days/week for 10 weeks. The HFD group exhibited significantly higher mRNA levels of fatty acid transport-, lipogenesis-, and β-oxidation-associated gene expressions than the ND group. PANDER and FOXO1 expressions increased, whereas AKT expression decreased in the HFD group. The aerobic swimming program with the HFD reversed the effects of the HFD on the expressions of thrombospondin-1 receptor, liver fatty acid-binding protein, long-chain fatty-acid elongase-6, Fas cell surface death receptor, and stearoyl-coenzyme A desaturase-1, as well as PANDER, FOXO1, and AKT. In the HFD exercised group, PPARα and AOX expressions were much higher. Our findings suggest that aerobic swimming training can prevent NAFLD via the regulation of fatty acid transport-, lipogenesis-, and β-oxidation-associated genes. In addition, the benefits from aerobic swimming training were achieved partly through the PANDER-AKT-FOXO1 pathway.
Collapse
Affiliation(s)
- Hao Wu
- Department of Endocrinology, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Meihua Jin
- Department of Immunology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Donghe Han
- Department of Neurobiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Mingsheng Zhou
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Peking University Health Science Center, Beijing, China; Shenzhen University Diabetes Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
20
|
Moak SL, Dougan GC, MarElia CB, Danse WA, Fernandez AM, Kuehl MN, Athanason MG, Burkhardt BR. Enhanced glucose tolerance in pancreatic-derived factor (PANDER) knockout C57BL/6 mice. Dis Model Mech 2014; 7:1307-15. [PMID: 25217499 PMCID: PMC4213734 DOI: 10.1242/dmm.016402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pancreatic-derived factor (PANDER; also known as FAM3B) is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D). Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57) model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.
Collapse
Affiliation(s)
- Shari L Moak
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Grace C Dougan
- Department of Pediatrics, University of South Florida, 12901 Bruce B. Downs Boulevard MDC 62, Tampa, FL 33612, USA
| | - Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Whitney A Danse
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Amanda M Fernandez
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Mark G Athanason
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
21
|
Jia S, Chen Z, Li J, Chi Y, Wang J, Li S, Luo Y, Geng B, Wang C, Cui Q, Guan Y, Yang J. FAM3A promotes vascular smooth muscle cell proliferation and migration and exacerbates neointima formation in rat artery after balloon injury. J Mol Cell Cardiol 2014; 74:173-82. [PMID: 24857820 DOI: 10.1016/j.yjmcc.2014.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 11/17/2022]
Abstract
The biological function of FAM3A, the first member of family with sequence similarity 3 (FAM3) gene family, remains largely unknown. This study aimed to determine its role in the proliferation and migration of vascular smooth muscle cells (VSMCs). Immunohistochemical staining revealed that FAM3A protein is expressed in the tunica media of rodent arteries, and its expression is reduced with an increase in prostaglandin E receptor 2 (EP2) expression after injury. In vitro, FAM3A overexpression promotes proliferation and migration of VSMCs, whereas FAM3A silencing inhibits these processes. In vivo, FAM3A overexpression results in exaggerated neointima formation of rat carotid artery after balloon injury. FAM3A activates Akt in a PI3K-dependent manner. In contrast, FAM3A induces ERK1/2 activation independent of PI3K. FAM3A protein is subcellularly located in mitochondria, where it affects ATP production and release. Activation of EP2 represses FAM3A expression, leading to impaired ATP production and release in VSMCs. FAM3A-induced activation of Akt and ERK1/2 pathways, proliferation and migration of VSMCs are inhibited by P2 receptor antagonist suramin. Furthermore, inhibition or knockdown of P2Y1 receptor inihibits FAM3A-induced proliferation and migration of VSMCs. In conclusion, FAM3A promotes proliferation and migration of VSMCs via P2Y1 receptor-mediated activation of Akt and ERK1/2 pathways. In injured vessels, FAM3A was repressed by upregulated EP2 expression, leading to the attenuation of ATP-P2Y1 receptor signaling, which is beneficial for preventing excessive proliferation and migration of VSMCs.
Collapse
MESH Headings
- Animals
- Balloon Occlusion
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation
- Male
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/genetics
- Neointima/metabolism
- Neointima/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Purinergic P2Y1/genetics
- Receptors, Purinergic P2Y1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Jinyu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Sha Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yanjin Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
22
|
Lai FH, Tang GH, Yang CJ, Wang HL, Hu KZ, Cao XP. In vivo biodistribution of pancreatic-derived factor using 18F-labeled PANDER PET imaging. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3181-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Wang C, Chi Y, Li J, Miao Y, Li S, Su W, Jia S, Chen Z, Du S, Zhang X, Zhou Y, Wu W, Zhu M, Wang Z, Yang H, Xu G, Wang S, Yang J, Guan Y. FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology 2014; 59:1779-90. [PMID: 24806753 DOI: 10.1002/hep.26945] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/18/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED FAM3A belongs to a novel cytokine-like gene family, and its physiological role remains largely unknown. In our study, we found a marked reduction of FAM3A expression in the livers of db/db and high-fat diet (HFD)-induced diabetic mice. Hepatic overexpression of FAM3A markedly attenuated hyperglycemia, insulin resistance, and fatty liver with increased Akt (pAkt) signaling and repressed gluconeogenesis and lipogenesis in the livers of those mice. In contrast, small interfering RNA (siRNA)-mediated knockdown of hepatic FAM3A resulted in hyperglycemia with reduced pAkt levels and increased gluconeogenesis and lipogenesis in the livers of C57BL/6 mice. In vitro study revealed that FAM3A was mainly localized in the mitochondria, where it increases adenosine triphosphate (ATP) production and secretion in cultured hepatocytes. FAM3A activated Akt through the p110α catalytic subunit of PI3K in an insulin-independent manner. Blockade of P2 ATP receptors or downstream phospholipase C (PLC) and IP3R and removal of medium calcium all significantly reduced FAM3A-induced increase in cytosolic free Ca(2+) levels and attenuated FAM3A-mediated PI3K/Akt activation. Moreover, FAM3A-induced Akt activation was completely abolished by the inhibition of calmodulin (CaM). CONCLUSION FAM3A plays crucial roles in the regulation of glucose and lipid metabolism in the liver, where it activates the PI3K-Akt signaling pathway by way of a Ca(2+) /CaM-dependent mechanism. Up-regulating hepatic FAM3A expression may represent an attractive means for the treatment of insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Chunjiong Wang
- Department of Physiology and Pathophysiology, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Robert-Cooperman CE, Dougan GC, Moak SL, Athanason MG, Kuehl MN, Bell-Temin H, Stevens SM, Burkhardt BR. PANDER transgenic mice display fasting hyperglycemia and hepatic insulin resistance. J Endocrinol 2014; 220:219-31. [PMID: 24468680 DOI: 10.1530/joe-13-0338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PANcreatic-DERived factor (PANDER, FAM3B) is a novel protein that is highly expressed within the endocrine pancreas and to a lesser degree in other tissues. Under glucose stimulation, PANDER is co-secreted with insulin from the β-cell. Despite prior creation and characterization of acute hepatic PANDER animal models, the physiologic function remains to be elucidated from pancreas-secreted PANDER. To determine this, in this study, a transgenic mouse exclusively overexpressing PANDER from the endocrine pancreas was generated. PANDER was selectively expressed by the pancreatic-duodenal homeobox-1 (PDX1) promoter. The PANDER transgenic (PANTG) mice were metabolically and proteomically characterized to evaluate effects on glucose homeostasis, insulin sensitivity, and lipid metabolism. Fasting glucose, insulin and C-peptide levels were elevated in the PANTG compared with matched WT mice. Younger PANTG mice also displayed glucose intolerance in the absence of peripheral insulin sensitivity. Hyperinsulinemic-euglycemic clamp studies revealed that hepatic glucose production and insulin resistance were significantly increased in the PANTG with no difference in either glucose infusion rate or rate of disappearance. Fasting glucagon, corticosterones, resistin and leptin levels were also similar between PANTG and WT. Stable isotope labeling of amino acids in cell culture revealed increased gluconeogenic and lipogenic proteomic profiles within the liver of the PANTG with phosphoenol-pyruvate carboxykinase demonstrating a 3.5-fold increase in expression. This was matched with increased hepatic triglyceride content and decreased p-AMPK and p-acetyl coenzyme A carboxylase-1 signaling in the PANTG. Overall, our findings support a role of pancreatic β-cell-secreted PANDER in the regulation of hepatic insulin and lipogenenic signaling with subsequent impact on overall glycemia.
Collapse
Affiliation(s)
- Claudia E Robert-Cooperman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, Florida 33620, USA Department of Pediatrics, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 62, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang J, Guan Y. Family with sequence similarity 3 gene family and nonalcoholic fatty liver disease. J Gastroenterol Hepatol 2013; 28 Suppl 1:105-11. [PMID: 23855304 DOI: 10.1111/jgh.12033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2013] [Indexed: 01/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a disease spectrum ranging from simple steatosis (fatty liver) and nonalcoholic steatohepatitis to fibrosis and cirrhosis. NAFLD has become the leading cause of chronic liver diseases as well as liver-related morbidity and mortality worldwide. NAFLD is also associated with increased risk of cardiovascular diseases, hyperlipidemia, and type 2 diabetes. Insulin resistance in adipose tissues and the liver plays crucial roles in the progression of NAFLD. The family with sequence similarity 3 (FAM3) gene family is a cytokine-like gene family with four members designated FAM3A, FAM3B, FAM3C, and FAM3D, respectively. Increasing evidence suggests that the FAM3 gene family members are involved in the pathogenesis of NAFLD. In particular, FAM3B, also called pancreatic-derived factor, is an important regulator of glucose and lipid metabolism. In obesity status, increased expression and secretion of FAM3B in pancreatic islets and liver may induce lipid accumulation in the liver via the induction of hepatic insulin resistance and lipogenesis. FAM3A and FAM3D may also participate in the regulation of lipid and energy metabolism. In this brief review, we discussed the latest findings regarding the role of FAM3 gene family members, in particular FAM3B, in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, Peking University Diabetes Center, Beijing, China
| | | |
Collapse
|
26
|
FAM3A is a target gene of peroxisome proliferator-activated receptor gamma. Biochim Biophys Acta Gen Subj 2013; 1830:4160-70. [PMID: 23562554 DOI: 10.1016/j.bbagen.2013.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/05/2013] [Accepted: 03/27/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND To date, the biological function of FAM3A, the first member of FAM3 gene family, remains unknown. We aimed to investigate whether the expression of FAM3A in liver cells is regulated by peroxisome proliferator-activated receptors (PPARs). METHODS AND RESULTS The transcriptional activity of human and mouse FAM3A gene promoters was determined by luciferase reporter assay system. PPARγ agonist rosiglitazone induced FAM3A expression in primary cultured mouse hepatocytes and human HepG2 cells. PPARγ antagonism blocked rosiglitazone-induced FAM3A expression, whereas PPARγ overexpression stimulated FAM3A expression in HepG2 cells. In contrast, PPARα agonist fenofibrate or PPARβ agonist GW0742 failed to affect FAM3A expression in HepG2 cells. The transcriptional activities of human and mouse FAM3A promoters were markedly stimulated by PPARγ activation, but not by PPARα and PPARβ activation. Chromatin immunoprecipitation (ChIP) assay revealed a direct binding of PPARγ to the putative peroxisome proliferator response element (PPRE) located at -1258/-1246 in the human FAM3A promoter. Site-directed mutagenesis of this PPRE-like motif abolished PPARγ's stimulatory effect on the transcriptional activity of human FAM3A promoter. In vivo, oral rosiglitazone treatment upregulated FAM3A expression in the livers of C57BL/6 mice and db/db mice. Moreover, upregulation of FAM3A by PPARγ activation was correlated with increased level of phosphorylated Akt (pAkt) in liver cells. CONCLUSIONS FAM3A as a novel target gene of PPARγ. Upregulation of FAM3A by PPARγ activation is correlated with increased pAkt level in liver cells. GENERAL SIGNIFICANCE Upregulation of FAM3A might contribute to PPARγ's metabolic effects in the liver.
Collapse
|
27
|
Mou H, Li Z, Yao P, Zhuo S, Luan W, Deng B, Qian L, Yang M, Mei H, Le Y. Knockdown of FAM3B triggers cell apoptosis through p53-dependent pathway. Int J Biochem Cell Biol 2013; 45:684-91. [DOI: 10.1016/j.biocel.2012.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023]
|
28
|
Johansson P, Bernström J, Gorman T, Oster L, Bäckström S, Schweikart F, Xu B, Xue Y, Schiavone LH. FAM3B PANDER and FAM3C ILEI represent a distinct class of signaling molecules with a non-cytokine-like fold. Structure 2013; 21:306-13. [PMID: 23333428 DOI: 10.1016/j.str.2012.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/06/2023]
Abstract
The FAM3 superfamily is predicted to contain classical four-helix bundle cytokines, featuring a typical up-up-down-down fold. Two members of FAM3 have been extensively studied. FAM3B PANDER has been shown to regulate glucose homeostasis and β cell function, whereas the homologous FAM3C ILEI has been shown to be involved in epithelial-mesenchymal transition and cancer. Here, we present a three-dimensional structure of a FAM3 protein, murine PANDER. Contrary to previous suggestions, PANDER exhibits a globular β-β-α fold. The structure is composed of two antiparallel β sheets lined by three short helices packing to form a highly conserved water-filled cavity. The fold shares no relation to the predicted four-helix cytokines but is conserved throughout the FAM3 superfamily. The available biological data and the unexpected new fold indicate that FAM3 PANDER and ILEI could represent a new structural class of signaling molecules, with a different mode of action compared to the traditional four-helix bundle cytokines.
Collapse
Affiliation(s)
- Patrik Johansson
- Structure and Biophysics, Discovery Sciences, AstraZeneca, Mölndal 431-83, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Haneishi A, Takagi K, Asano K, Nakamura S, Yamada K. Analysis of induction mechanisms of an insulin-inducible transcription factor SHARP-2 gene by (-)-epigallocatechin-3-gallate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9850-9855. [PMID: 22967044 DOI: 10.1021/jf302607j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor. In this study, we examined the mechanism(s) involved in the regulation of the rat SHARP-2 gene expression by (-)-epigallocatechin-3-gallate (EGCG). The induction of SHARP-2 mRNA by EGCG was repressed by pretreatments with inhibitors for either phosphoinositide 3-kinase (PI3K) or RNA polymerase II. Then, we examined a biological relationship between EGCG and transcription factor NF-κB interfering with the insulin action. The protein levels of the NF-κB were rapidly decreased by an EGCG treatment. Finally, the mechanism(s) of transcriptional activation of the rat SHARP-2 gene by both NF-κB and EGCG was analyzed. While overexpression of the NF-κB p65 protein decreased the promoter activity of the SHARP-2 gene, EGCG did not affect it. Thus, we conclude that EGCG induces the expression of the rat SHARP-2 gene via both the PI3K pathway and degradation of the NF-κB p65 protein.
Collapse
Affiliation(s)
- Ayumi Haneishi
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University , 2095-1 Niimura, Matsumoto, Nagano 390-1295, Japan
| | | | | | | | | |
Collapse
|
30
|
Haneishi A, Takagi K, Asano K, Yamamoto T, Tanaka T, Nakamura S, Noguchi T, Yamada K. Analysis of regulatory mechanisms of an insulin-inducible SHARP-2 gene by (S)-Equol. Arch Biochem Biophys 2012; 525:32-9. [PMID: 22683650 DOI: 10.1016/j.abb.2012.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/24/2012] [Accepted: 05/30/2012] [Indexed: 01/01/2023]
Abstract
Small compounds that activate the insulin-dependent signaling pathway have potential therapeutic applications in controlling type 2 diabetes mellitus. The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor that decreases expression of the phosphoenolpyruvate carboxykinase gene, a gluconeogenic enzyme gene. In this study, we screened for soybean isoflavones that can induce the rat SHARP-2 gene expression and analyzed their mechanism(s). Genistein and (S)-Equol, a metabolite of daidzein, induced rat SHARP-2 gene expression in H4IIE rat hepatoma cells. The (S)-Equol induction was mediated by both the phosphoinositide 3-kinase- and protein kinase C (PKC)-pathways. When a dominant negative form of atypical PKC lambda (aPKCλ) was expressed, the induction of SHARP-2 mRNA level by (S)-Equol was inhibited. In addition, Western blot analyses showed that (S)-Equol rapidly activated both aPKCλ and classical PKC alpha. Furthermore, the (S)-Equol induction was inhibited by treatment with a RNA polymerase inhibitor or a protein synthesis inhibitor. Finally, a reporter gene assay revealed that the transcriptional stimulation by (S)-Equol was mediated by nucleotide sequences located between -4687 and -4133 of the rat SHARP-2 gene. Thus, we conclude that (S)-Equol is an useful dietary supplement to control type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ayumi Haneishi
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano 390-1295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tzanetakou IP, Doulamis IP, Korou LM, Agrogiannis G, Vlachos IS, Pantopoulou A, Mikhailidis DP, Patsouris E, Vlachos I, Perrea DN. Water Soluble Vitamin E Administration in Wistar Rats with Non-alcoholic Fatty Liver Disease. Open Cardiovasc Med J 2012; 6:88-97. [PMID: 22930662 PMCID: PMC3428633 DOI: 10.2174/1874192401206010088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/15/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE A diet rich in fat is associated with hepatic fat deposition [steatosis; non-alcoholic fatty liver disease (NAFLD)]. The exact cause of NAFLD however, is still unknown. The aim of this study was to assess the effect of a water-soluble formulation of vitamin E on a dietary-induced-NAFLD animal model. METHODS Adult male Wistar rats (n=20) were allocated to 2 groups: Controls (Group A, n=6), which received a standard chow diet for 24 weeks and a High Cholesterol group (HC: n=14), which received a standard chow diet enriched with cholesterol for the first 14 weeks of the experiment (t(1)). At t(1), the HC group was divided into: Group HC(B), which received a high-saturated-fat/high-cholesterol (HSF/HCH) diet and Group HC(C), which followed the same HSF/HCH diet but was also administered water soluble vitamin E (10 IU/kg body weight/day), for 10 more weeks. RESULTS At the end of the study, group HC(C) exhibited significantly lower mean total cholesterol (T-CHOL) than group HC(B) (p<0.001). No significant differences were observed between HC(C) and Control groups in blood glucose and serum lipid concentrations. Liver Function Tests did not vary between all groups at the end of the study. Animals in group HC(B) exhibited higher SGOT at the end of the study compared with the beginning of the study (p<0.05). Group HC(B) exhibited the highest scores in steatosis, and grading (according to the NAFLD scoring system) in the histopathological analysis (p≤0.001 in all cases). CONCLUSIONS Vitamin E seems to exert a hypolipidemic and hepatoprotective role in the presence of a HSF/HCH atherogenic diet in a rat model.
Collapse
Affiliation(s)
- Irene P Tzanetakou
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Ilias P Doulamis
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Laskarina-Maria Korou
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - George Agrogiannis
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis S Vlachos
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Alkisti Pantopoulou
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | - Efstratios Patsouris
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Vlachos
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| | - Despina N Perrea
- Laboratory for Experimental Surgery and Surgical Research “N. S. Christeas”, University of Athens Medical School, Athens, Greece
| |
Collapse
|