1
|
Chávez-Delgado EL, Gastélum-Estrada A, Pérez-Carrillo E, Ramos-Parra PA, Estarrón-Espinosa M, Reza-Zaldívar EE, Hernández-Brenes C, Mora-Godínez S, de Los Santos BE, Guerrero-Analco JA, Monribot-Villanueva JL, Orozco-Sánchez NE, Jacobo-Velázquez DA. Bioactive properties of spearmint, orange peel, and baby sage oleoresins obtained by supercritical CO 2 extraction and their integration into dark chocolate. Food Chem 2025; 463:141306. [PMID: 39303416 DOI: 10.1016/j.foodchem.2024.141306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study investigated the potential health benefits of spearmint, orange peel, and baby sage oleoresins extracted using supercritical CO2 and subsequently emulsified. The oleoresins were incorporated into dark chocolate, and their impact on physicochemical properties was evaluated. Characterization revealed rich sources of phenolic compounds, carotenoids, and volatile compounds in these oleoresins. In vitro studies demonstrated anti-obesogenic, antioxidant, anti-inflammatory, and neuroprotective properties of the emulsified oleoresins. However, only physicochemical properties were determined for the formulations of dark chocolate with these emulsified oleoresins. Chocolate formulations fortified with these emulsions displayed a softer texture, lower water activity, and solid-like behavior. The findings suggest that these oleoresins could serve as nutraceutical agents for mitigating metabolic syndrome and associated pathologies. Incorporating them into chocolate matrices offers a practical approach to formulating functional foods. Further research is warranted to explore the preventive and therapeutic efficacy in an in vivo model.
Collapse
Affiliation(s)
- Emily Lorena Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Alejandro Gastélum-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Esther Pérez-Carrillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Perla Azucena Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Mirna Estarrón-Espinosa
- Food Techology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Zapopan, Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Shirley Mora-Godínez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Beatriz Estefanía de Los Santos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - José Antonio Guerrero-Analco
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Juan Luis Monribot-Villanueva
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | | | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico.
| |
Collapse
|
2
|
Zhang Y, Amin K, Zhang Q, Yu Z, Jing W, Wang Z, Lyu B, Yu H. The application of dietary fibre as microcapsule wall material in food processing. Food Chem 2025; 463:141195. [PMID: 39276558 DOI: 10.1016/j.foodchem.2024.141195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the food industry, functional ingredients derived from active substances of natural sources and microbiological resources are gaining acceptance and demand due to their beneficial health properties. However, the inherent instability of these constituents poses a challenge in utilizing their functional properties. Microencapsulation with dietary fibre as wall material technology offers a promising solution, providing convenient manipulability and effective safeguarding of encapsulated substances. This paper presents a comprehensive overview of the current state of research on dietary fibre-based microcapsules in food processing. It examines their functional attributes, the preparation technology, and their applications within the food industry. Furthermore, the constraints associated with industrial production are discussed, as well as potential future developments. This article offers researchers a reference point and a theoretical basis for the selection of innovative food ingredients, the high-value utilisation of dietary fibre, and the design of conservation strategies for functional substances in food production.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Khalid Amin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Qiang Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Ziyue Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Zhaohui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China.
| |
Collapse
|
3
|
Loos C, Castelein A, Vanzant E, Adam E, McLeod KR. Nutraceutical Supplement Mitigates Insulin Resistance in Horses with a History of Insulin Dysregulation During a Challenge with a High-Starch Diet. Animals (Basel) 2024; 14:3385. [PMID: 39682351 DOI: 10.3390/ani14233385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Insulin dysregulation (ID) is associated with an increased risk of laminitis which often necessitates the need for clinical intervention. To test the contention that the prophylactic supplementation of nutraceuticals could mitigate ID in susceptible horses, 16 mature horses with a history of ID were supplemented with either the placebo (n = 8) or nutraceutical (n = 8) once daily. Horses were housed in dry lots with ad libitum access to grass hay and fed a concentrate twice daily to provide 0.5 g starch/kg BW/meal. A combined glucose-insulin tolerance test was performed on all horses before and after 4 weeks of treatment. Nutraceutical-supplemented horses had 61% greater (p = 0.05) glucose clearance rates compared to the placebo group. This resulted in a shorter time in the positive phase of glucose clearance (p = 0.03) for the nutraceutical group compared to the placebo group. Horses receiving the nutraceutical had lower (p = 0.003) insulin concentrations at 75 min and lower (p = 0.04) glucose concentrations at 45 min compared to the placebo. Prophylactic supplementation with nutraceuticals resulted in greater glucose clearance rates during a starch challenge, indicating that nutraceuticals can mitigate ID in susceptible horses consuming an excess of non-structural carbohydrate.
Collapse
Affiliation(s)
- Caroline Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Annette Castelein
- Nutrition Department, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Eric Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Emma Adam
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA
| | - Kyle R McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
4
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15:1366946. [PMID: 38746011 PMCID: PMC11091304 DOI: 10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Metabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome. Methods This scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility. Results We identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study's outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels. Conclusion The current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
5
|
Abdulghani MF, Al-Fayyadh S. Natural products for managing metabolic syndrome: a scoping review. Front Pharmacol 2024; 15. [DOI: https:/doi.org/10.3389/fphar.2024.1366946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
IntroductionMetabolic syndrome comprises a collection of metabolic disorders stemming from factors like genetic predisposition, inadequate nutrition, stress, decreased physical activity, aging, and ethnicity. Although traditional pharmaceutical treatments exist for metabolic syndrome, their limited popularity is attributed to high costs and adverse effects. Consequently, natural products with fewer side effects have been explored for managing this condition. This literature review aims to explore the role of natural products including herbs, botanicals, vitamins, minerals, probiotics, and dietary supplements in managing metabolic syndrome.MethodsThis scoping review was conducted in five steps, involving the formulation of a research question, the retrieval and extraction of relevant studies, the selection of pertinent studies, the organization of information into tables, and the reporting of results. Data was collected from various databases including Embase, Science Direct, PubMed, Google Scholar, Scopus, and Web of Science, with a focus on studies published from 2010 to the present, available in English and with full-text accessibility.ResultsWe identified 1,259 articles, screened their titles, abstracts, and full texts, ultimately incorporating 169 pertinent articles into this review (comprising 90 review articles, 32 trial articles, 6 in vitro articles, 38 in vivo articles, 1 experimental article and 2 observational articles). The study’s outcomes revealed that natural products, encompassing plants and their derivatives, vitamins and supplements, as well as probiotics, can exert a beneficial influence on metabolic syndrome by regulating blood sugar, blood pressure, lipid profiles, obesity, and abnormal cholesterol and triglyceride levels.ConclusionThe current study underscores the significance of natural products in addressing metabolic syndrome. Consequently, it is advisable to conduct further extensive research to assess the efficacy of these products, potentially integrating them into treatment regimens for individuals with metabolic syndrome.
Collapse
|
6
|
Jain GK, Raina V, Grover R, Sharma J, Warsi MH, Aggarwal G, Kesharwani P. Revisiting the significance of nano-vitamin D for food fortification and therapeutic application. Drug Dev Ind Pharm 2024; 50:89-101. [PMID: 38175566 DOI: 10.1080/03639045.2023.2301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Vitamin D (a prohormone) is an important micronutrient required by the body for skeletal homeostasis and a range of non-skeletal actions. Calcitriol, the active form of vitamin D, regulates a variety of cellular and metabolic processes through both genomic and nongenomic pathways. Often prescribed for treating rickets and osteoporosis, vitamin D deficiency can exacerbate various other medical conditions. SIGNIFICANCE, METHODS, AND RESULTS Despite its multifunctional uses, the sensitivity of vitamin D makes formulating an efficient drug delivery system a challenging task, which is further complicated by its poor aqueous solubility. Enhancing the oral absorption of vitamin D is vital in utilizing its full efficacy. Recent developments in encapsulation and nanotechnology have shown promising results in overcoming these constraints. CONCLUSION This review thus offers an insight to adequately comprehend the mechanistic pharmacology of vitamin D, its pathophysiological role, and justification of its medical indications, along with the benefits of utilizing nanotechnology for vitamin D delivery.
Collapse
Affiliation(s)
- Gaurav K Jain
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Vidya Raina
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Rakshita Grover
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Jagriti Sharma
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Geeta Aggarwal
- Center for Advanced Formulation Technology (CAFT), Delhi Pharmaceutical Science and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Ullah A, Sajid S, Qureshi M, Kamran M, Anwaar MA, Naseem MA, Zaman MU, Mahmood F, Rehman A, Shehryar A, Nadeem MA. Novel Biomarkers and the Multiple-Marker Approach in Early Detection, Prognosis, and Risk Stratification of Cardiac Diseases: A Narrative Review. Cureus 2023; 15:e42081. [PMID: 37602073 PMCID: PMC10434821 DOI: 10.7759/cureus.42081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Cardiac diseases are a primary cause of mortality worldwide, underscoring the importance of early identification and risk stratification to enhance patient outcomes. Biomarkers have become important tools for the risk assessment of cardiovascular disease and monitoring disease progression. This narrative review focuses on the multiple-marker approach, which involves simultaneously evaluating several biomarkers for the early detection and risk stratification of heart diseases. The review covers the clinical applications of novel biomarkers, such as high-sensitivity troponin, galectin-3, source of tumorigenicity 2, B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide, growth differentiation factor 15, myeloperoxidase, fatty acid-binding protein, C-reactive protein, lipoprotein-associated phospholipase A2, microRNAs, circulating endothelial cells, and ischemia-modified albumin. These biomarkers have demonstrated potential in identifying people who are at high risk for developing heart disease and in providing prognostic data. Given the complexity of cardiac illnesses, the multiple-marker approach to risk assessment is extremely beneficial. Implementing the multiple-marker strategy can improve risk stratification, diagnostic accuracy, and patient care in heart disease patients.
Collapse
Affiliation(s)
| | - Samar Sajid
- Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Maria Qureshi
- Family Medicine, Ayub Medical College, Abbottabad, PAK
| | | | - Mohammad Ahsan Anwaar
- Internal Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | | | - Fizza Mahmood
- Cardiology/Cardiac Surgery, Shifa International Hospital Islamabad, Islamabad, PAK
| | | | | | - Muhammad A Nadeem
- Medicine and Surgery, Shifa International Hospital Islamabad, Islamabad, PAK
| |
Collapse
|
8
|
Chavda VP, Chaudhari AZ, Teli D, Balar P, Vora L. Propolis and Their Active Constituents for Chronic Diseases. Biomedicines 2023; 11:biomedicines11020259. [PMID: 36830794 PMCID: PMC9953602 DOI: 10.3390/biomedicines11020259] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Propolis is a mass of chemically diverse phytoconstituents with gummy textures that are naturally produced by honeybees upon collection of plant resins for utilization in various life processes in beehives. Since ancient times, propolis has been a unique traditional remedy globally utilized for several purposes, and it has secured value in pharmaceutical and nutraceutical areas in recent years. The chemical composition of propolis comprises diverse constituents and deviations in the precise composition of the honeybee species, plant source used for propolis production by bees, climate conditions and harvesting season. Over 300 molecular structures have been discovered from propolis, and important classes include phenolic acids, flavonoids, terpenoids, benzofurans, benzopyrene and chalcones. Propolis has also been reported to have diverse pharmacological activities, such as antidiabetic, anti-inflammatory, antioxidant, anticancer, immunomodulatory, antibacterial, antiviral, antifungal, and anticaries. As chronic diseases have risen as a global health threat, abundant research has been conducted to track propolis and its constituents as alternative therapies for chronic diseases. Several clinical trials have also revealed the potency of propolis and its constituents for preventing and curing some chronic diseases. This review explores the beneficial effect of propolis and its active constituents with credible mechanisms and computational studies on chronic diseases.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, India
- Correspondence: (V.P.C.); (L.V.)
| | - Amit Z. Chaudhari
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Pankti Balar
- Pharmacy Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (V.P.C.); (L.V.)
| |
Collapse
|
9
|
Prakash SE, Manjunatha VC, Nagella P, Veerappa Lakshmaiah V. Nutraceuticals to prevent and manage cardiovascular diseases. NUTRACEUTICALS 2023:269-291. [DOI: 10.1016/b978-0-443-19193-0.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Kim Y, Oh YK, Lee J, Kim E. Could nutrient supplements provide additional glycemic control in diabetes management? A systematic review and meta-analysis of randomized controlled trials of as an add-on nutritional supplementation therapy. Arch Pharm Res 2022; 45:185-204. [PMID: 35304727 DOI: 10.1007/s12272-022-01374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
This systematic review and meta-analysis assessed the antidiabetic effect of pharmaconutrients as an add-on in type 2 diabetes mellitus patients by pooling data from currently available randomized controlled trials (RCTs). Data sources included the PubMed and EMBASE, Cochrane Central Register of Controlled Trials. RCTs reporting changes in glycosylated hemoglobin (HbA1c), fasting blood glucose (FBG), or homeostasis model assessment of insulin resistance (HOMA-IR) levels following add-on pharmaconutritional therapies for T2DM patients consuming antidiabetic drugs were targeted. Using random-effects meta-analyses, we identified pharmaconutrients with effects on glycemic outcomes. Heterogeneity among studies was presented using I2 values. Among 9537 articles, 119 RCTs with nine pharmaconutrients (chromium; coenzyme Q10; omega-3 fatty acids; vitamins C, D, and E; alpha-lipoic acid; selenium; and zinc) were included. Chromium (HbA1c, FBG, and HOMA-IR), coenzyme Q10 (HbA1c and FBG), vitamin C (HbA1c and FBG), and vitamin E (HbA1c and HOMA-IR) significantly improved glycemic control. Baseline HbA1c level and study duration influenced the effects of chromium and vitamin E on HbA1c level. Sensitivity analyses did not modify the pooled effects of pharmaconutrients on glycemic control. Administration of chromium, coenzyme Q10, and vitamins C and E for T2DM significantly improved glycemic control. This study has been registered in PROSPERO (CRD42018115229).
Collapse
Affiliation(s)
- Yoonhye Kim
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Yun Kyoung Oh
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Junhee Lee
- The Graduate School for Pharmaceutical Industry Management, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eunyoung Kim
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea. .,The Graduate School for Pharmaceutical Industry Management, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
11
|
Calderón-Oliver M, Ponce-Alquicira E. The Role of Microencapsulation in Food Application. Molecules 2022; 27:1499. [PMID: 35268603 PMCID: PMC8912024 DOI: 10.3390/molecules27051499] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Modern microencapsulation techniques are employed to protect active molecules or substances such as vitamins, pigments, antimicrobials, and flavorings, among others, from the environment. Microencapsulation offers advantages such as facilitating handling and control of the release and solubilization of active substances, thus offering a great area for food science and processing development. For instance, the development of functional food products, fat reduction, sensory improvement, preservation, and other areas may involve the use of microcapsules in various food matrices such as meat products, dairy products, cereals, and fruits, as well as in their derivatives, with good results. The versatility of applications arises from the diversity of techniques and materials used in the process of microencapsulation. The objective of this review is to report the state of the art in the application and evaluation of microcapsules in various food matrices, as a one-microcapsule-core system may offer different results according to the medium in which it is used. The inclusion of microcapsules produces functional products that include probiotics and prebiotics, as well as antioxidants, fatty acids, and minerals. Our main finding was that the microencapsulation of polyphenolic extracts, bacteriocins, and other natural antimicrobials from various sources that inhibit microbial growth could be used for food preservation. Finally, in terms of sensory aspects, microcapsules that mimic fat can function as fat replacers, reducing the textural changes in the product as well as ensuring flavor stability.
Collapse
Affiliation(s)
- Mariel Calderón-Oliver
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca 50110, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Avenida San Rafael Atlixco 186, Col. Vicentina, Mexico City 09340, Mexico;
| |
Collapse
|
12
|
Seguido MÁ, Tarradas RM, González-Rámila S, García-Cordero J, Sarriá B, Bravo-Clemente L, Mateos R. Influence of 8-week daily consumption of a new product combining green coffee hydroxycinnamates and beta-glucans on polyphenol bioavailability in subjects with overweight and obesity. Food Funct 2022; 13:1133-1152. [PMID: 35018954 DOI: 10.1039/d1fo03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nutraceuticals based on plant extracts rich in polyphenols, as well as dietary fibres, are new means to fight overweight/obesity and associated diseases. However, to understand the potential effects of polyphenols on health it is critical to study their bioavailability and metabolic fate. Consumption of a green coffee phenolic extract (GCPE) in combination with oat beta-glucan (BG) could affect the pharmacokinetic profile of the main polyphenols present in coffee (hydroxycinnamates). Moreover, the regular intake of the combination could also induce changes. Nine overweight men and women consumed a novel nutraceutical product containing 300 mg of green coffee hydroxycinnamic acids and 2.5 g of BG twice a day for 8 weeks. A pharmacokinetic study was carried out in blood and urine samples taken before (baseline) and at week 8 after the nutraceutical intervention, collecting samples at different times in a 0-24 h interval. Faecal samples were also obtained at 0 and 24 h after the intake of the nutraceutical at baseline and week 8. Phenolic metabolites were analysed by LC-MS-QToF. Results showed that polyphenols were differentially absorbed and extensively metabolized throughout the gastrointestinal tract. An apparent reduction in the excretion of small intestinal metabolites was accompanied by a tendency to increase colonic metabolites after sustained intake (p = 0.052). In conclusion, continued consumption of the GCPE/BG nutraceutical appears to enhance the absorption of hydroxycinnamates by increasing the colonic bioavailability of their derived metabolites compared to baseline, although the regular intake of the nutraceutical did not modify the metabolite profile in any of the biological samples.
Collapse
Affiliation(s)
- Miguel Ángel Seguido
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Rosa María Tarradas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Susana González-Rámila
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Joaquín García-Cordero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Beatriz Sarriá
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Laura Bravo-Clemente
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| |
Collapse
|
13
|
The effects of phytochemicals and herbal bio-active compounds on tumour necrosis factor-α in overweight and obese individuals: a clinical review. Inflammopharmacology 2022; 30:91-110. [PMID: 34997431 DOI: 10.1007/s10787-021-00902-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Obesity is abnormal fat accumulation in the body which acts as a risk factor for various cardiometabolic states. Adipose tissue in excess can release inflammatory factors, including TNF-α and IL-6, and suppress adiponectin production. TNF-α increases the levels of IL-6 and acute phase reactants such as C-reactive protein. Inflammation has a crucial role in developing and progressing various cardiometabolic diseases and a wide range of obesity-related complications. It has been shown that TNF-α has a significant role in the development of insulin resistance. Recently, a growing body of evidence has focused on herbal medicine, phytochemicals and natural bioactive compounds as inexpensive, relatively easy accessible agents with low adverse effects to reduce inflammatory markers such as TNF-α and simultaneously decrease insulin resistance, glucose intolerance, and dyslipidemia in obesity. The main focus of the current review is to summarize the results of the studies, which assessed the effects of phytochemicals and herbal bio-active compounds on serum TNF-α in subjects with overweight or obesity. This review suggests that herbal medicine have favorable effects on the reduction of TNF-α concentration; however, the results were not uniform for different products. Among the reviewed plants, ginger, ginseng, resveratrol, and flaxseed had more promising effects.
Collapse
|
14
|
The Effect of Herbal Medicine and Natural Bioactive Compounds on Plasma Adiponectin: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:37-57. [PMID: 34981470 DOI: 10.1007/978-3-030-73234-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Noncommunicable diseases (NCDs) are one of the major public health concerns globally. Most of the NCDs including insulin resistance, metabolic syndrome, type 2 diabetes mellitus, fatty liver disease, and coronary heart disease are related to obesity and are called obesity-related NCDs (OR-NCDs). However, adipocytes can reduce OR-NCDs by secreting adiponectin. Adiponectin has an inverse relationship with body fat. Obese people have impairment in differentiating pre-adipocytes to adipocytes, the process facilitated by adiponectin. Adiponectin directly increases insulin sensitivity and reduces obesity-related insulin resistance by down-regulating hepatic glucose production and increasing fatty acid (FA) oxidation in skeletal muscle. Considering the various beneficial effects of adiponectin on health, increasing adiponectin might be a promising approach to prevent and treat OR-NCDs. Recent studies have shown that nutraceuticals and medicinal compounds isolated from plants could prevent and treat various diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and non-alcoholic fatty liver disease. However, to our knowledge, the effect of these natural products, including herbal supplements and functional foods on adiponectin, has not yet been fully reviewed. The main aim of this review is to summarize the effects of nutraceuticals and herbal bioactive compounds on plasma adiponectin concentrations based on clinical studies. It can be concluded that medicinal plants, and herbal bioactive compounds, particularly curcumin, anthocyanins, resveratrol, soy, walnut, and dihydromyricetin can be used as adjunct or complementary therapeutic agents to increase plasma adiponectin, which could potentially prevent and treat NCDs.
Collapse
|
15
|
The Effects of Nutraceuticals and Bioactive Natural Compounds on Chronic Periodontitis: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:59-80. [PMID: 34981471 DOI: 10.1007/978-3-030-73234-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The paper aims to review the current clinical evidence of various herbal agents as an adjunct treatment in the management of chronic periodontitis patients. Gingivitis and periodontitis are two common infectious inflammatory diseases of the supporting tissues of the teeth and have a multifactorial etiology. An important concern about chronic periodontitis is its association with certain systemic disease. New treatment strategies for controlling the adverse effects of chronic periodontitis have been extensively assessed and practiced in sub-clinical and clinical studies. It has been shown that the phytochemical agents have various therapeutic properties such as anti-inflammatory and antibacterial effects which can be beneficial for the treatment of periodontitis. The findings of this review support the adjunctive use of herbal agents in the management of chronic periodontitis. Heterogeneity and limited data may reduce the impact of these conclusions. Future long-term randomized controlled trials evaluating the clinical efficacy of adjunctive herbal therapy to scaling and root planing are needed.
Collapse
|
16
|
Henaux L, Pereira KD, Thibodeau J, Pilon G, Gill T, Marette A, Bazinet L. Glucoregulatory and Anti-Inflammatory Activities of Peptide Fractions Separated by Electrodialysis with Ultrafiltration Membranes from Salmon Protein Hydrolysate and Identification of Four Novel Glucoregulatory Peptides. MEMBRANES 2021; 11:membranes11070528. [PMID: 34357178 PMCID: PMC8305187 DOI: 10.3390/membranes11070528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Natural bioactive peptides are suitable candidates for preventing the development of Type 2 diabetes (T2D), by reducing the various risk factors. The aim of this study was to concentrate glucoregulatory and anti-inflammatory peptides, from salmon by-products, by electrodialysis with ultrafiltration membrane (EDUF), and to identify peptides responsible for these bioactivities. Two EDUF configurations (1 and 2) were used to concentrate anionic and cationic peptides, respectively. After EDUF separation, two fractions demonstrated interesting properties: the initial fraction of the EDUF configuration 1 and the final fraction of the EDUF configuration 2 both showed biological activities to (1) increase glucose uptake in L6 muscle cells in insulin condition at 1 ng/mL (by 12% and 21%, respectively), (2) decrease hepatic glucose production in hepatic cells at 1 ng/mL in basal (17% and 16%, respectively), and insulin (25% and 34%, respectively) conditions, and (3) decrease LPS-induced inflammation in macrophages at 1 g/mL (45% and 30%, respectively). More impressive, the initial fraction of the EDUF configuration 1 (45% reduction) showed the same effect as the phenformin at 10 μM (40%), a drug used to treat T2D. Thirteen peptides were identified, chemically synthesized, and tested in-vitro for these three bioactivities. Thus, four new bioactive peptides were identified: IPVE increased glucose uptake by muscle cells, IVDI and IEGTL decreased hepatic glucose production (HGP) of insulin, whereas VAPEEHPTL decreased HGP under both basal condition and in the presence of insulin. To the best of our knowledge, this is the first time that (1) bioactive peptide fractions generated after separation by EDUF were demonstrated to be bioactive on three different criteria; all involved in the T2D, and (2) potential sequences involved in the improvement of glucose uptake and/or in the regulation of HGP were identified from a salmon protein hydrolysate.
Collapse
Affiliation(s)
- Loïc Henaux
- Department of Food Sciences and Laboratory of Food Processing and Electromembrane Processes (LTAPEM), Université Laval, Quebec City, QC G1V 0A6, Canada; (L.H.); (J.T.)
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
| | - Karina Danielle Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira 13484-350, SP, Brazil;
- Institute of Biosciences, State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Jacinthe Thibodeau
- Department of Food Sciences and Laboratory of Food Processing and Electromembrane Processes (LTAPEM), Université Laval, Quebec City, QC G1V 0A6, Canada; (L.H.); (J.T.)
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
- Department of Medicine, Faculty of Medicine, Quebec Heart and Lung Institute Cardiology Group, Université Laval, 2725 Chemin Ste-Foy, Quebec City, QC G1V 4G5, Canada
| | - Tom Gill
- Department of Process Engineering and Applied Science, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
- Department of Medicine, Faculty of Medicine, Quebec Heart and Lung Institute Cardiology Group, Université Laval, 2725 Chemin Ste-Foy, Quebec City, QC G1V 4G5, Canada
| | - Laurent Bazinet
- Department of Food Sciences and Laboratory of Food Processing and Electromembrane Processes (LTAPEM), Université Laval, Quebec City, QC G1V 0A6, Canada; (L.H.); (J.T.)
- Institute of Nutrition and Functional Foods (INAF), University Laval, Quebec City, QC G1V 0A6, Canada; (G.P.); (A.M.)
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 407445)
| |
Collapse
|
17
|
Atazadegan MA, Bagherniya M, Askari G, Tasbandi A, Sahebkar A. The Effects of Medicinal Plants and Bioactive Natural Compounds on Homocysteine. Molecules 2021; 26:3081. [PMID: 34064073 PMCID: PMC8196702 DOI: 10.3390/molecules26113081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Among non-communicable diseases, cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity in global communities. By 2030, CVD-related deaths are projected to reach a global rise of 25 million. Obesity, smoking, alcohol, hyperlipidemia, hypertension, and hyperhomocysteinemia are several known risk factors for CVDs. Elevated homocysteine is tightly related to CVDs through multiple mechanisms, including inflammation of the vascular endothelium. The strategies for appropriate management of CVDs are constantly evolving; medicinal plants have received remarkable attention in recent researches, since these natural products have promising effects on the prevention and treatment of various chronic diseases. The effects of nutraceuticals and herbal products on CVD/dyslipidemia have been previously studied. However, to our knowledge, the association between herbal bioactive compounds and homocysteine has not been reviewed in details. Thus, the main objective of this study is to review the efficacy of bioactive natural compounds on homocysteine levels according to clinical trials and animal studies. RESULTS Based on animal studies, black and green tea, cinnamon, resveratrol, curcumin, garlic extract, ginger, and soy significantly reduced the homocysteine levels. According to the clinical trials, curcumin and resveratrol showed favorable effects on serum homocysteine. In conclusion, this review highlighted the beneficial effects of medicinal plants as natural, inexpensive, and accessible agents on homocysteine levels based on animal studies. Nevertheless, the results of the clinical trials were not uniform, suggesting that more well-designed trials are warranted.
Collapse
Affiliation(s)
- Mohammad Amin Atazadegan
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
18
|
Bagherniya M, Johnston TP, Sahebkar A. Regulation of Apolipoprotein B by Natural Products and Nutraceuticals: A Comprehensive Review. Curr Med Chem 2021; 28:1363-1406. [PMID: 32338202 DOI: 10.2174/0929867327666200427092114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular Disease (CVD) is the most important and the number one cause of mortality in both developing and industrialized nations. The co-morbidities associated with CVD are observed from infancy to old age. Apolipoprotein B100 (Apo B) is the primary apolipoprotein and structural protein of all major atherogenic particles derived from the liver including Very-Low- Density Lipoproteins (VLDL), Intermediate-density Lipoprotein (IDL), and Low-density Lipoprotein (LDL) particles. It has been suggested that measurement of the Apo B concentration is a superior and more reliable index for the prediction of CVD risk than is the measurement of LDL-C. Nutraceuticals and medicinal plants have attracted significant attention as it pertains to the treatment of non-communicable diseases, particularly CVD, diabetes mellitus, hypertension, and Nonalcoholic Fatty Liver Disease (NAFLD). The effect of nutraceuticals and herbal products on CVD, as well as some of its risk factors such as dyslipidemia, have been investigated previously. However, to the best of our knowledge, the effect of these natural products, including herbal supplements and functional foods (e.g. fruits and vegetables as either dry materials, or their extracts) on Apo B has not yet been investigated. Therefore, the primary objective of this paper was to review the effect of bioactive natural compounds on plasma Apo B concentrations. It is concluded that, in general, medicinal plants and nutraceuticals can be used as complementary medicine to reduce plasma Apo B levels in a safe, accessible, and inexpensive manner in an attempt to prevent and treat CVD.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
19
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
20
|
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res 2021; 35:4804-4833. [PMID: 33856730 DOI: 10.1002/ptr.7118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase-1 activation and the downstream substrates involved with the processing and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and tumor necrosis factor-α (TNF- α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb-based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb-based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Khedmatgozar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Propolis in Metabolic Syndrome and Its Associated Chronic Diseases: A Narrative Review. Antioxidants (Basel) 2021; 10:antiox10030348. [PMID: 33652692 PMCID: PMC7996839 DOI: 10.3390/antiox10030348] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Propolis is a resinous product collected by bees from plants to protect and maintain the homeostasis of their hives. Propolis has been used therapeutically by humans for centuries. This review article attempts to analyze the potential use of propolis in metabolic syndrome (MetS) and its associated chronic diseases. MetS and its chronic diseases were shown to be involved in at least seven out of the top 10 causes of death in 2019. Patients with MetS are also at a heightened risk of severe morbidity and mortality in the present COVID-19 pandemic. Propolis with its antioxidant and anti-inflammatory properties is potentially useful in ameliorating the symptoms of MetS and its associated chronic diseases. The aim of this article is to provide a comprehensive review on propolis and its therapeutic benefit in MetS and its chronic diseases, with an emphasis on in vitro and in vivo studies, as well as human clinical trials. Moreover, the molecular and biochemical mechanisms of action of propolis are also discussed. Propolis inhibits the development and manifestation of MetS and its chronic diseases by inhibiting of the expression and interaction of advanced glycation end products (AGEs) and their receptors (RAGEs), inhibiting pro-inflammatory signaling cascades, and promoting the cellular antioxidant systems.
Collapse
|
22
|
Mahdavi A, Bagherniya M, Mirenayat MS, Atkin SL, Sahebkar A. Medicinal Plants and Phytochemicals Regulating Insulin Resistance and Glucose Homeostasis in Type 2 Diabetic Patients: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:161-183. [PMID: 33861444 DOI: 10.1007/978-3-030-64872-5_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes is a major health problem affecting more than four hundred million adults worldwide. The transition from normal glucose tolerance to type 2 diabetes (T2D) is preceded by increased Insulin resistance (IR), an independent predictor of the development of T2D in high risk (e.g. obese populations, pre-diabetes) individuals. Insulin deficiency resulting from increased IR results in progressive glucose homeostasis dysfunction. Data has shown that IR is affected by many different factors such as genetics, age, exercise, dietary nutrients, obesity, and body fat distribution. One of the most important factors is diet, which plays an essential role in addressing T2D and metabolic syndrome. Nutraceuticals and medicinal plants have been shown to have efficacy in preventing chronic diseases like cancer, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, diabetes mellitus and metabolic syndrome, likely through the anti-inflammatory properties found in nutraceuticals. However, the effect of these compounds, including traditional plant medicines, herbal formulations or their extracts on IR have not been systematically investigated. The objective of this review was to assess the reported effects of medicinal plants and bioactive natural compounds on IR. The findings confirm that most of the herbal bioactive compounds including resveratrol, garlic, curcumin, cinnamon, ginger, nuts, berberine, anthocyanin, soybean, flaxseed, vegetable oils, and soluble fibers have benefit in their efficacy for decreasing IR, fasting blood sugar (FBS), fasting insulin and HbA1c.
Collapse
Affiliation(s)
- Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Sadegh Mirenayat
- Students' Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
23
|
Mahdavi A, Bagherniya M, Fakheran O, Reiner Ž, Xu S, Sahebkar A. Medicinal plants and bioactive natural compounds as inhibitors of HMG-CoA reductase: A literature review. Biofactors 2020; 46:906-926. [PMID: 33053603 DOI: 10.1002/biof.1684] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are one of the most important causes for mortality worldwide. Elevated levels of total cholesterol, and particularly LDL-cholesterol (LDL-C) are the main risk factor for acute myocardial infarction (AMI) and ischemic heart disease. The risk of CVDs could be reduced by decreasing the elevated cholesterol levels. β-hydroxy β-methylglutaryl-CoA reductase (HMGCoAR) is the primary and rate-limiting enzyme in the cholesterol biosynthesis pathway. Recently, the crucial role of nutraceuticals in maintaining normal physiological function was established. Nutraceuticals play an important role in preventing several non-communicable diseases such as obesity, CVDs, cancer, diabetes, and reducing hyperlipidemia. Although the effect of nutraceuticals and herbal medicine on CVDs and dyslipidemia was previously investigated thoroughly, the effect of these natural products on HMGCoAR as one of the important enzymes involved in CVDs etiopathogenesis has not yet been investigated. Therefore, the major aim of this paper was to review the effects of nutraceuticals and medicinal plants on HMGCoAR. Results indicate that different types of natural foods, isolated nutrients, herbal products, and dietary supplements as nutraceuticals decrease the expression and activity of HMGCoAR. This review shows that medicinal plants and nutraceuticals could be used to decrease HMGCoAR activity as accessible and convenient and economical natural compounds to prevent dyslipidemia and CVDs.
Collapse
Affiliation(s)
- Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Fakheran
- Dental research center, Department of Periodontics, Dental research institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
24
|
Roxo M, Peixoto H, Wetterauer P, Lima E, Wink M. Piquiá Shells ( Caryocar villosum): A Fruit by-Product with Antioxidant and Antiaging Properties in Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7590707. [PMID: 32908638 PMCID: PMC7468659 DOI: 10.1155/2020/7590707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022]
Abstract
In a context of rising demand for sustainable antiaging interventions, fruit processing by-products are a promising source of bioactive compounds for the production of antiaging dietary supplements. Piquiá (Caryocar villosum) is a native Amazonian fruit consisting of 65% nonedible shells. In the present study, the phytochemical profile of a hydroalcoholic extract of piquiá shells (CV) was characterized by LC-MS/MS analysis. Its antioxidant and antiaging activities were investigated using the nematode Caenorhabditis elegans as an in vivo model. CV is mainly composed by hydrolysable tannins and triterpenoid saponins. The extract enhanced stress resistance of wild-type and mutant worms by reducing the intracellular levels of reactive oxygen species (ROS) and by increasing their survival against a lethal dose of the prooxidant juglone. These effects involved the upregulation of sod-3 and downregulation of gst-4 and hsp-16.2, studied through the GFP fluorescent reporter intensity and at the transcriptional level by qRT-PCR analysis. CV extended the lifespan of wild-type worms in a DAF-16/FoxO- and SKN-1/Nrf-dependent manner. Taken together, our findings indicate piquiá shells as potential candidates for nutraceutical applications. Further studies are needed to validate the relevance of our findings to antiaging interventions in humans.
Collapse
Affiliation(s)
- Mariana Roxo
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Herbenya Peixoto
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Pille Wetterauer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Emerson Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas (UFAM), General Rodrigo 6200, 69077-000 Manaus, Brazil
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
De Filippis A, Ullah H, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment. Int J Mol Sci 2020; 21:4929. [PMID: 32668581 PMCID: PMC7404341 DOI: 10.3390/ijms21144929] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) diseases, which include gastrointestinal reflux disease, gastric ulceration, inflammatory bowel disease, and other functional GI disorders, have become prevalent in a large part of the world population. Metabolic syndrome (MS) is cluster of disorders including obesity, hyperglycemia, hyperlipidemia, and hypertension, and is associated with high rate of morbidity and mortality. Gut dysbiosis is one of the contributing factors to the pathogenesis of both GI disorder and MS, and restoration of normal flora can provide a potential protective approach in both these conditions. Bioactive dietary components are known to play a significant role in the maintenance of health and wellness, as they have the potential to modify risk factors for a large number of serious disorders. Different classes of functional dietary components, such as dietary fibers, probiotics, prebiotics, polyunsaturated fatty acids, polyphenols, and spices, possess positive impacts on human health and can be useful as alternative treatments for GI disorders and metabolic dysregulation, as they can modify the risk factors associated with these pathologies. Their regular intake in sufficient amounts also aids in the restoration of normal intestinal flora, resulting in positive regulation of insulin signaling, metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. This review is designed to focus on the health benefits of bioactive dietary components, with the aim of preventing the development or halting the progression of GI disorders and MS through an improvement of the most important risk factors including gut dysbiosis.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Alessandra Baldi
- TefarcoInnova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
26
|
Bergamin A, Mantzioris E, Cross G, Deo P, Garg S, Hill AM. Nutraceuticals: Reviewing their Role in Chronic Disease Prevention and Management. Pharmaceut Med 2020; 33:291-309. [PMID: 31933188 DOI: 10.1007/s40290-019-00289-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over half the adult population in many Western countries consume nutraceuticals because of their purported therapeutic benefits, accessibility and convenience. Several studies have demonstrated that they may also serve as a useful adjunct to pharmaceuticals to better manage chronic conditions or offset negative side effects. Individuals are advised to consult their physician before using nutraceuticals, but this advice is often overlooked. Thus, the community pharmacist plays an increasingly important role in assisting consumers with selecting a nutraceutical that is safe and for which there is evidence of therapeutic efficacy. Therefore, the aim of this review is to summarise the clinical evidence, safety and purported mechanisms of action for selected nutraceuticals in the management of chronic diseases, including obesity, diabetes, hypertension, hypercholesterolemia and inflammatory-based diseases.
Collapse
Affiliation(s)
- Amanda Bergamin
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Evangeline Mantzioris
- School of Pharmacy and Medical Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Giordana Cross
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Alison M Hill
- School of Pharmacy and Medical Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia.
| |
Collapse
|
27
|
Talebi S, Bagherniya M, Atkin SL, Askari G, Orafai HM, Sahebkar A. The beneficial effects of nutraceuticals and natural products on small dense LDL levels, LDL particle number and LDL particle size: a clinical review. Lipids Health Dis 2020; 19:66. [PMID: 32276631 PMCID: PMC7149933 DOI: 10.1186/s12944-020-01250-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are globally the major causes of morbidity and mortality. Evidence shows that smaller and denser low-dense lipoprotein (sdLDL) particles are independent atherogenic risk factors for CVD due to their greater susceptibility to oxidation, and permeability in the endothelium of arterial walls. sdLDL levels are an independent risk factor and of more predictive value than total LDL-C for the assessment of coronary artery disease and metabolic syndrome. Functional food ingredients have attracted significant attention for the management of dyslipidemia and subsequently increase cardio-metabolic health. However, to date there is no study that has investigated the effect of these bioactive natural compounds on sdLDL levels. Therefore, the aim of the present review is to summarize the evidence accrued on the effect of special dietary ingredients such as omega-3 polyunsaturated fatty acids, nutraceuticals and herbal medicines on the levels of sdLDL, LDL particle number, and LDL particle size. Based on the results of the existing clinical trials this review suggests that natural products such as medicinal plants, nutraceuticals and omega-3 fatty acids can be used as adjunct or complementary therapeutic agents to reduce sdLDL levels, LDL particle numbers or increase LDL particle size and subsequently may prevent and treat CVD, with the advantage that theses natural agents are generally safe, accessible, and inexpensive.
Collapse
Affiliation(s)
- Sepide Talebi
- Students' Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverría J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front Pharmacol 2020; 11:41. [PMID: 32132921 PMCID: PMC7040237 DOI: 10.3389/fphar.2020.00041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
The incidences of diabetic mellitus and other metabolic diseases such as hypertension and hyperlipidemia are increasing worldwide; however, the current treatment is not able to control the rapidly increasing trend in diabetes mortality and morbidity. Studies related to the effectiveness of extracts and pure compounds obtained from plants have shown promising responses in preclinical and clinical studies related to these metabolic diseases. Plants belonging to the genus Berberis (Family: Berberidaceae) are widely distributed with nearly 550 species worldwide. Extracts and compounds obtained from Berberis species, especially Berberine alkaloid, showed effectiveness in the management of diabetes and other metabolic diseases. Various pharmacological experiments have been performed to evaluate the effects of Berberis extracts, berberine, and its natural and chemically synthesized derivatives against various cell and animal disease models with promising results. Various clinical trials conducted so far also showed preventive effects of Berberis extracts and berberine against metabolic diseases. The present review focuses on i) research updates on traditional uses, ii) phytopharmacology and clinical studies on Berberis species, and iii) active metabolites in the prevention and treatment of diabetes and other metabolic diseases with a detailed mechanism of action. Furthermore, the review critically analyzes current research gaps in the therapeutic use of Berberis species and berberine and provides future recommendations.
Collapse
Affiliation(s)
- Tarun Belwal
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Aarti Bisht
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Aseesh Pandey
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok, India
| | - Indra Dutt Bhatt
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
29
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
30
|
Kruse NT. Nutraceuticals as a potential adjunct therapy toward improving vascular health in CKD. Am J Physiol Regul Integr Comp Physiol 2019; 317:R719-R732. [PMID: 31577157 DOI: 10.1152/ajpregu.00152.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major public health epidemic and increases risk for developing cardiovascular disease (CVD). Vascular dysfunction is a major independent risk factor toward increased risk for CVD in CKD. Several mechanisms have been postulated to result in vascular dysfunction in CKD, including oxidative stress-mediated inflammation by redox imbalance and reduced nitric oxide (NO) bioavailability and synthesis. Therefore, strategies that decrease oxidative stress and/or increase NO bioactivity may have major clinical implications toward improving vascular health and reducing the burden of CVD in CKD. Nutraceutical therapy in the form of polyphenols, dietary nitrates, or selective mitochondria-targeting therapies has recently been shown to improve vascular function by reducing oxidative stress and/or increasing NO bioavailability and synthesis. This review, therefore, highlights these three emerging nutraceuticals recently implicated in pathophysiological improvement of vascular function in CKD. This review also describes those pathophysiological mechanisms thought to be responsible for the beneficial effects on the vasculature and possible experimental considerations that may exist within human CKD populations. It is clear throughout this review that human-based mechanistic preclinical and health-related clinical studies are lacking regarding whether nutraceuticals do indeed improve vascular function in patients with CKD. As such, a comprehensive, detailed, and fully integrated understanding of nutraceuticals and vasculature function is necessary in patients with CKD. Many opportunities exist for original mechanistic and therapeutic discoveries and investigations on select nutraceuticals and their impact on vascular outcomes in patients with CKD, and these will remain exciting avenues of research in the future.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
The Effect of Iranian Propolis on Glucose Metabolism, Lipid Profile, Insulin Resistance, Renal Function and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial. Sci Rep 2019; 9:7289. [PMID: 31086222 PMCID: PMC6514000 DOI: 10.1038/s41598-019-43838-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Propolis is a natural product with many biological properties including hypoglycemic activity and modulating lipid profile. The present study was designed to evaluate the effect of Iranian propolis extract on glucose metabolism, Lipid profile, Insulin resistance, renal and liver function as well as inflammatory biomarkers in patients with type 2 diabetes mellitus (T2DM). A double-blind, placebo-controlled clinical trial was conducted. The duration of the study lasted 90 days. Patients with T2DM were recruited and randomly divided into an Iranian propolis group (1000 mg/day) (n = 50) and a placebo group (n = 44). There was a significant decrease in the serum levels of glycosylated hemoglobin (HbA1c), 2-hour post prandial (2hpp), insulin, homeostasis model assessment-insulin resistance (HOMA-IR), homeostasis model assessment of β-cell function (HOMA-β), High sensitive C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α). However, there was a notable elevation in the serum HDL-C in the propolis group compared with the placebo group. In addition, a notable reduction in serum liver transaminase (ALT and AST) and blood urea nitrogen (BUN) concentrations in the propolis group was observed. Iranian propolis has beneficial effects on reducing post prandial blood glucose, serum insulin, insulin resistance, and inflammatory cytokines. It is also a useful treatment for preventing the liver and renal dysfunction, as well as, elevating HDL-C concentrations in patients with T2DM.
Collapse
|
32
|
Park JH, Kim YN, Kim JK, Park HY, Song BS. Viscothionin purified from mistletoe (Viscum album var. coloratum Ohwi) induces insulin secretion from pancreatic beta cells. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:172-179. [PMID: 30660712 DOI: 10.1016/j.jep.2019.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mistletoe (Viscum album), an evergreen parasitic plant, has been widely used as an oriental phytomedicine to treat diabetes mellitus. However, it is unknown which mistletoe constituent exerts the beneficial effect against the disease. In this study, we examined the hypoglycemic activity of mistletoe and investigated whether the polypeptide viscothionin, purified from mistletoe, was responsible for the activity. MATERIALS AND METHODS Mistletoe extracts were prepared by heating mistletoe powder made of leaves and twigs in water for 3, 6, 9, and 12 h. Rat insulinoma RINm5F cells were used to test the cytotoxicity of the extracts and their effects on the secretion of insulin and its precursor, C-peptide. The inhibitory effects of a mistletoe extract on glucose absorption were measured using an α-glucosidase inhibition assay. To determine the component of mistletoe responsible for the observed effects, the mistletoe extract was precipitated with ethanol or hydrolyzed with a protease for further testing. A potential active constituent of mistletoe was isolated by chromatography and molecular weight cut-off fractionation, and its ability to induce insulin secretion was investigated. RESULTS A 12-h heat-treated mistletoe extract, showing no cytotoxicity, significantly increased the secretion of insulin and C-peptide by RINm5F cells and enhanced the expression of glucose transporter type 4 (GLUT-4), insulin receptor substrate 1 (IRS-1), and protein kinase B (also known as AKT) in differentiated C2C12 cells. The extract also inhibited α-glucosidase activity. After ethanol precipitation, the extract showed much stronger effects on insulin- and C-peptide-secreting activities of cells, whereas the enzyme-hydrolyzed extract was less effective than the original extract, suggesting that the effect was mediated by a proteinaceous constituent of mistletoe. Subsequent analysis showed that viscothionin, a heat-stable 6-kDa polypeptide isolated from mistletoe, increased the level of insulin secretion by more than 20-fold compared to that induced by the extract. CONCLUSIONS Our study indicates that the hypoglycemic effect of mistletoe is mediated by its insulinotropic action and α-glucosidase inhibitory activity, and the effect is due to viscothionin, one of the major bioactive constituents of mistletoe.
Collapse
Affiliation(s)
- Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea.
| | - Yo Na Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| |
Collapse
|
33
|
|
34
|
Onaolapo AY, Onaolapo OJ. Nutraceuticals and Diet-based Phytochemicals in Type 2 Diabetes Mellitus: From Whole Food to Components with Defined Roles and Mechanisms. Curr Diabetes Rev 2019; 16:12-25. [PMID: 30378500 DOI: 10.2174/1573399814666181031103930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Over the past decades, the development and use of an array of prescription medications have considerably improved the clinical management of type 2 diabetes mellitus and the quality of life of patients. However, as our knowledge of the associated risk factors and approaches to its management increases, the increasing roles of diet and the composition of the diet in the etiology and successful management of diabetes mellitus are being illuminated. Presently, a lot of attention is being given to nutraceuticals and certain phytochemicals that are integral parts of the human diet. It is believed that a clearer understanding of their roles may be crucial to 'non-invasive' or minimallyintrusive management, with regards to daily living of patients. In this review, an overview of nutraceutical components and phytochemicals that may be of benefit, or had been known to be beneficial in diabetes mellitus is given. Also, how the roles of such dietary components are evolving in the management of this disorder is highlighted. Lastly, the obstacles that need to be overcome before nutraceuticals can be considered as options for the clinical management of diabetes mellitus areconsidered. CONCLUSION Despite studies that demonstrate their efficacy, no nutraceutical or food-derived compound has been formally adopted as a direct replacement for any class of antidiabetic drugs.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Behavioural Neuroscience/Neuropharmacology Unit, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
35
|
Perez A, Rojas P, Carrasco F, Basfi-Fer K, Perez-Bravo F, Codoceo J, Inostroza J, Galgani JE, Gilmore LA, Ruz M. Association between zinc nutritional status and glycemic control in individuals with well-controlled type-2 diabetes. J Trace Elem Med Biol 2018; 50:560-565. [PMID: 29631853 DOI: 10.1016/j.jtemb.2018.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE Interest in healthy properties of food and nutrients as co-adjuvant in type-2 diabetes therapy has increased in recent years. Zinc supplementation trials have shown improvements in glycemic control in these patients, although it seems dependent on zinc status of the individuals. The objective of this study was to evaluate the relationship between zinc nutritional status and glucose homeostasis in patients with type-2 diabetes. SUBJECTS/METHODS Eighty patients with well controlled type-2 diabetes were recruited and clinical, anthropometric and dietary evaluations were performed. One week after, insulin sensitivity and beta cell function were assessed by a modified Frequently Sampled Intravenous Glucose Tolerance Test. Zinc status was assessed by plasma zinc and the size of rapidly Exchangeable Zinc Pool (EZP); zinc intake was also determined. Glucagon concentration was evaluated in a subsample of 36 patients. RESULTS Patients presented a normal zinc status although zinc intake was lower than recommended. Overall, no associations were observed between zinc status and glycemic control markers. Nevertheless, positive correlations were observed between EZP and fasting insulin concentration (ρ = 0.393, p = 0.021) and HOMA-IR (ρ = 0.386, p = 0.024) in women, and between plasma zinc concentration and HbA1c (ρ = 0.342, p = 0.020) in men. CONCLUSIONS No significant associations were found between zinc status and glycemic control parameters in patients with well-controlled type 2 diabetes and normal zinc status, although low-degree gender-dependent associations were observed. Further research is required to assess the role of zinc status in zinc deficient patients.
Collapse
Affiliation(s)
- Alvaro Perez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pamela Rojas
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Carrasco
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karen Basfi-Fer
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Juana Codoceo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Inostroza
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jose E Galgani
- Department of Nutrition, Diabetes and Metabolism, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Health Sciences-Nutrition and Dietetics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Anne Gilmore
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
36
|
Zhang J, Zhao L, Cheng Q, Ji B, Yang M, Sanidad KZ, Wang C, Zhou F. Structurally Different Flavonoid Subclasses Attenuate High-Fat and High-Fructose Diet Induced Metabolic Syndrome in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12412-12420. [PMID: 30360615 DOI: 10.1021/acs.jafc.8b03574] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metabolic syndrome is a serious health problem worldwide. Increasing evidence indicates that flavonoid-rich foods exert beneficial effects. However, the function of flavonoids in metabolic syndrome is controversial. Here, we focus on the structural effects of flavonoids by comparing the effect of five purified subclasses of flavonoids on high-fat and high-fructose diet (HFFD) induced metabolic syndrome in vivo. Sprague-Dawley (SD) rats were fed with (i) basal diet (3.21 kcal/g) (ii) HFFD (25% lard and 25% fructose, 4.70 kcal/g), and (iii) HFFD with flavonoids representing different subclasses (2.6 mmol/kg diet): apigenin (flavones), quercetin (flavonols), genistein (isoflavones), naringenin (flavanones), and epigallocatechin gallate (flavanols) for 13 weeks. Our results showed that structurally different flavonoid subclasses prevented the HFFD-induced metabolic syndrome. Apigenin significantly decreased adipose fat and leptin levels and increased adiponectin levels. Epigallocatechin gallate and naringenin were both effective on dyslipidemia and hepatic lipid accumulations. The proinflammatory cytokines TNF-α and IL-6 were alleviated by quercetin, genistein, and naringenin. All the flavonoids exerted significant functions on improving insulin resistance and fasting glucose. In conclusion, flavonoid subclasses structurally exert antihyperlipidemic, antidiabetic, and anti-inflammatory functions by attenuating the lipid metabolism, glucose metabolism, and inflammation of metabolic syndrome.
Collapse
Affiliation(s)
- Jianan Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Qian Cheng
- Hubei Provincial Key Laboratory of Yeast Function , Angel Yeast Co. Ltd. , Yichang , Hubei Province 443003 , China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Mengyan Yang
- College of Information and Electrical Engineering , China Agricultural University , Beijing 100083 , China
| | - Katherine Z Sanidad
- Molecular and Cellular Biology Graduate Program , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| |
Collapse
|
37
|
Tastekin B, Pelit A, Polat S, Tuli A, Sencar L, Alparslan MM, Daglioglu YK. Therapeutic Potential of Pterostilbene and Resveratrol on Biomechanic, Biochemical, and Histological Parameters in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9012352. [PMID: 29887910 PMCID: PMC5977026 DOI: 10.1155/2018/9012352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/16/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
AIMS The aim of this study was to investigate the effects of pterostilbene (PTS) (trans-3,5-dimethoxy-4'-hydroxystilbene) and resveratrol (RSV) (trans-3,5,4' trihydroxystilbene) applied at different doses for the treatment of streptozotocin- (STZ-) induced diabetic rats. MATERIALS AND METHODS At the end of the 5-week experimental period, the right gastrocnemius muscles of the rats were examined biomechanically, while the left ones were examined histologically. In addition, blood glucose, serum insulin, and malondialdehyde (MDA) levels were analyzed in blood samples taken from the rats. RESULTS The skeletal muscle isometric contraction forces, which showed a decrease with diabetes, were observed to increase with antioxidant applications. Blood glucose, serum insulin, and MDA levels in diabetic rats approached normal levels after applying PTS. When the electron microscopic images of the rat skeletal muscle were examined, those in the combination treatment group were observed to show a better enhancement in the skeletal muscle morphological structure compared to the other diabetic and treatment groups. CONCLUSION According to the findings, we suggest that these antioxidant treatments might have good therapeutic nutraceutical potential for some muscle diseases that coexist with diabetes. These treatments should be comprehensively investigated in the future.
Collapse
Affiliation(s)
- Bora Tastekin
- Department of Biophysics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Aykut Pelit
- Department of Biophysics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Sait Polat
- Department of Histology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Abdullah Tuli
- Department of Biochemistry, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Leman Sencar
- Department of Histology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | | | - Yusuf Kenan Daglioglu
- Research and Practice Center of Experimental Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
38
|
Chen LH, Chien YW, Chang ML, Hou CC, Chan CH, Tang HW, Huang HY. Taiwanese Green Propolis Ethanol Extract Delays the Progression of Type 2 Diabetes Mellitus in Rats Treated with Streptozotocin/High-Fat Diet. Nutrients 2018; 10:nu10040503. [PMID: 29670038 PMCID: PMC5946288 DOI: 10.3390/nu10040503] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Taiwanese green propolis ethanol extract (TGPE) is produced only in Taiwan and has a different composition from other types of propolis. TGPE is known for its anti-inflammation, anti-oxidation, and anti-microbial properties, but the effects and mechanisms of TGPE in the modulation of diabetes are unclear. In this study, we investigated the effects of TGPE on type 2 diabetes mellitus (T2DM) in a streptozotocin/high-fat-diet (STZ/HFD)-induced T2DM rat model. The results revealed that TGPE delayed the development and progression of T2DM and reduced the severity of β-cell failure. TGPE also attenuated inflammation and reactive oxygen species ROS in the rats. Moreover, there were higher levels of oxidant cytokines, leptin, and adiponectin in the serum of the TGPE-treated group. Unlike Brazilian propolis, TGPE promoted hepatic genes PPAR-α and CYP7A1, which were related to lipid catabolism and removal. TGPE may thus delay the progression of T2DM through anti-inflammation effects, anti-oxidation effects, and balancing lipid metabolism. It is suggested that TGPE can be a potential alternative medicine for T2DM.
Collapse
Affiliation(s)
- Li-Han Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei City 10617, Taiwan.
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei City 11031, Taiwan.
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei City 11031, Taiwan.
| | - Mei-Ling Chang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 10462, Taiwan.
| | - Chia-Chung Hou
- Department of Research & Development, NatureWise Biotech & Medicals Corporation, Taipei City 10559, Taiwan.
| | - Ching-Hung Chan
- Department of Research & Development, NatureWise Biotech & Medicals Corporation, Taipei City 10559, Taiwan.
| | - Hung-Wei Tang
- Department of Research & Development, NatureWise Biotech & Medicals Corporation, Taipei City 10559, Taiwan.
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Science, Taipei Medical University, Taipei City 11031, Taiwan.
- Department of Research & Development, NatureWise Biotech & Medicals Corporation, Taipei City 10559, Taiwan.
| |
Collapse
|
39
|
Scicali R, Di Pino A, Ferrara V, Urbano F, Piro S, Rabuazzo AM, Purrello F. New treatment options for lipid-lowering therapy in subjects with type 2 diabetes. Acta Diabetol 2018; 55:209-218. [PMID: 29260404 DOI: 10.1007/s00592-017-1089-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Dyslipidemias represent a variety of quantitative and/or qualitative lipoprotein abnormalities. According to etiology, we distinguish primary dyslipidemias with strictly genetic background and secondary ones with their origin in other disease or pathological states. Diabetic dyslipidemia is a type of secondary dyslipidemia and plays an important role in determining the cardiovascular risk of subjects with type 2 diabetes. In these patients, insulin resistance is responsible for overproduction and secretion of atherogenic very low density lipoprotein. In addition, insulin resistance promotes the production of small dense low-density lipoprotein (LDL) and reduces high-density lipoprotein (HDL) production. Cardiovascular disease remains a leading cause of morbidity and mortality in diabetic patients. Previous results support the role for small, dense LDL particles in the etiology of atherosclerosis and their association with coronary artery disease. Moreover, lowering LDL cholesterol reduces the risk of cardiovascular death. Therefore, the European guidelines for the management of dyslipidemias recommend an LDL cholesterol goal < 100 mg/dL in diabetic subjects without cardiovascular events. Moreover, if triglycerides (TG) are elevated (> 400 mg/dL), they recommend a non-HDL cholesterol goal < 130 mg/dL in diabetic individuals without cardiovascular events. Statins are the first line of LDL-lowering therapy in diabetic patients and combined therapy with ezetimibe and statins could be useful in very high cardiovascular risk diabetic subjects. Furthermore, the effect of a fibrate as an add-on treatment to a statin could improve the lipid profile in diabetic individuals with high TG and low HDL cholesterol. Regarding new therapies, recent data from phase III trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors considerably decrease LDL cholesterol. Thus, they may be useful in diabetic patients with concomitant diseases such as familial dyslipidemia, recurrent cardiovascular events, and elevated LDL cholesterol after second drug administration in addition to maximal statin dose or statin intolerance.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi Hospital, University of Catania, Via Palermo, 636, 95122, Catania, Italy.
| |
Collapse
|
40
|
Ward N, Sahebkar A, Banach M, Watts G. Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents. Curr Opin Lipidol 2017; 28:495-501. [PMID: 28858885 DOI: 10.1097/mol.0000000000000455] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Reduction in circulating cholesterol is an important step in lowering cardiovascular risk. Although statins are the most frequently prescribed cholesterol-lowering medication, there remains a significant portion of patients who require alternative treatment options. Nutraceuticals are increasingly popular as cholesterol-lowering agents. Despite the lack of long-term trials evaluating their use on cardiovascular endpoints and mortality, several studies have demonstrated their potential cholesterol-lowering effects. The purpose of this review is to provide an update on the role of nutraceuticals as cholesterol-lowering agents. The present review will focus on individual nutraceutical compounds, which have shown modest cholesterol-lowering abilities, as well as combination nutraceuticals, which may offer potential additive and/or synergistic effects. RECENT FINDINGS Berberine, red yeast rice, and plant sterols have moderate potential as cholesterol-lowering agents. Combination nutraceuticals, including the proprietary formulation, Armolipid Plus, appear to confer additional benefit on plasma lipid profiles, even when taken with statins and other agents. SUMMARY Although robust, long-term clinical trials to examine the effects of nutraceuticals on clinical outcomes are still required, their cholesterol-lowering ability, together with their reported tolerance and safety, offer a pragmatic option for lowering plasma cholesterol levels.
Collapse
Affiliation(s)
- Natalie Ward
- aSchool of Biomedical Sciences & Curtin Health Innovation Research Institute, Curtin University bSchool of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia cBiotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran dDepartment of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz ePolish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland fLipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | | | | | | |
Collapse
|
41
|
Bruno A, Pandolfo G, Crucitti M, Cacciola M, Santoro V, Spina E, Zoccali RA, Muscatello MRA. Low-Dose of Bergamot-Derived Polyphenolic Fraction (BPF) Did Not Improve Metabolic Parameters in Second Generation Antipsychotics-Treated Patients: Results from a 60-days Open-Label Study. Front Pharmacol 2017; 8:197. [PMID: 28443024 PMCID: PMC5387046 DOI: 10.3389/fphar.2017.00197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: The nutraceutical approach to the management of metabolic syndrome (MetS) might be a promising strategy in the prevention of cardio-metabolic risk. Low-dose bergamot-derived polyphenolic fraction (BPF) has been proven effective in patients with MetS, as demonstrated by a concomitant improvement in lipemic and glycemic profiles. The present study was aimed to further explore, in a sample of subjects receiving second generation antipsychotics (SGAs), the effects on body weight and metabolic parameters of a low dose of BPF (500 mg/day) administered for 60 days. Methods: Twenty-eight outpatients treated with SGAs assumed BPF at single daily dose of 500 mg/day for 60 days. Body weight, BMI, fasting levels of glucose, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol and triglycerides were determined; moreover, Brief Psychiatric Rating Scale (BPRS) was administered. Results: Low-dose BPF administration did not change clinical and metabolic parameters, as well as clinical symptoms in the study sample. At the end of the trial, among completers (n = 24) only nine patients (37.5%) reached an LDL reduction >0 but <50%. Conclusions: Our results demonstrate that patients treated with SGAs may need higher BPF doses for obtaining the positive effects on body weight and metabolic parameters previously found in the general population at lower doses.
Collapse
Affiliation(s)
- Antonio Bruno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| | - Gianluca Pandolfo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| | - Manuela Crucitti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| | - Massimo Cacciola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| | - Vincenza Santoro
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Rocco A Zoccali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| | - Maria R A Muscatello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of MessinaMessina, Italy
| |
Collapse
|
42
|
Ghelani H, Razmovski-Naumovski V, Nammi S. Chronic treatment of (R)- α-lipoic acid reduces blood glucose and lipid levels in high-fat diet and low-dose streptozotocin-induced metabolic syndrome and type 2 diabetes in Sprague-Dawley rats. Pharmacol Res Perspect 2017; 5:e00306. [PMID: 28603627 PMCID: PMC5464337 DOI: 10.1002/prp2.306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/11/2017] [Indexed: 12/16/2022] Open
Abstract
(R)‐ α ‐lipoic acid (ALA), an essential cofactor in mitochondrial respiration and a potential antioxidant, possesses a wide array of metabolic benefits including anti‐obesity, glucose lowering, insulin‐sensitizing, and lipid‐lowering effects. In this study, the curative effects of ALA (100 mg/kg) on a spectrum of conditions related to metabolic syndrome and type 2 diabetes (T2D) were investigated in a high‐fat diet (HFD)‐fed and low‐dose streptozotocin (STZ)‐induced rat model of metabolic syndrome and T2D. The marked rise in the levels of glucose, triglycerides, total‐cholesterol, LDL‐cholesterol, and VLDL‐cholesterol in the blood of HFD‐fed and low‐dose STZ‐injected rats were significantly reduced by ALA treatment. Furthermore, ALA treatment significantly increased the serum HDL‐cholesterol levels and tended to inhibit diabetes‐induced weight reduction. Mathematical computational analysis revealed that ALA also significantly improved insulin sensitivity and reduced the risk of atherosclerotic lesions and coronary atherogenesis. This study provides scientific evidence to substantiate the use of ALA to mitigate the glucose and lipid abnormality in metabolic syndrome and T2D.
Collapse
Affiliation(s)
- Hardik Ghelani
- School of Science and Health Western Sydney University New South Wales 2751 Australia.,National Institute of Complementary Medicine (NICM) Western Sydney University New South Wales 2751 Australia
| | - Valentina Razmovski-Naumovski
- School of Science and Health Western Sydney University New South Wales 2751 Australia.,National Institute of Complementary Medicine (NICM) Western Sydney University New South Wales 2751 Australia.,South Western Sydney Clinical School School of Medicine University of New South Wales New South Wales 2052 Australia
| | - Srinivas Nammi
- School of Science and Health Western Sydney University New South Wales 2751 Australia.,National Institute of Complementary Medicine (NICM) Western Sydney University New South Wales 2751 Australia
| |
Collapse
|
43
|
An update on the assessment and management of metabolic syndrome, a growing medical emergency in paediatric populations. Pharmacol Res 2017; 119:99-117. [PMID: 28111263 DOI: 10.1016/j.phrs.2017.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/19/2023]
Abstract
In the last decades the increasing rate of obesity in children and adolescents worldwide has led to the onset in paediatric age of metabolic syndrome, a disease commonly associated to adulthood. Central obesity, dyslipidaemia, hyperglycaemia, and hypertension are typical features of metabolic syndrome that seem to hesitate often in type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and many other clinical conditions. Thus preventing and curing metabolic syndrome in paediatric patients is becoming an urgent need for public health. While diagnostic criteria and therapy of metabolic syndrome in adults are very well defined, there is no consensus on the definition of metabolic syndrome in children and adolescents as well as on healing approaches. The aim of this review is to describe the recent advances on the pathogenesis and clinical outcomes of paediatric metabolic syndrome. We then detail the therapeutic strategies (i.e. dietary regimens, physical exercise, nutraceuticals, and medications) employed to manage the disease. Finally, we analyse the safety profile of the drugs used in children and adolescents by performing a retrospective review of paediatric adverse reactions reported in the FDA's Adverse Event Reporting System database.
Collapse
|
44
|
Georgakopoulos CD, Makri OE, Pagoulatos D, Vasilakis P, Peristeropoulou P, Kouli V, Eliopoulou MI, Psachoulia C. Effect of Omega-3 Fatty Acids Dietary Supplementation on Ocular Surface and Tear Film in Diabetic Patients with Dry Eye. J Am Coll Nutr 2016; 36:38-43. [PMID: 27797641 DOI: 10.1080/07315724.2016.1170643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Olga E. Makri
- Department of Ophthalmology, Medical School, University of Patras, Patras, GREECE
| | - Dionisios Pagoulatos
- Department of Ophthalmology, Medical School, University of Patras, Patras, GREECE
| | - Panagiotis Vasilakis
- Department of Ophthalmology, Medical School, University of Patras, Patras, GREECE
| | | | - Vasiliki Kouli
- Department of Cytology, St Andrews Hospital, Patras, GREECE
| | | | - Caterina Psachoulia
- Department of Cytology, Medical School, University of Patras, Patras, GREECE
| |
Collapse
|
45
|
Bruno A, Pandolfo G, Crucitti M, Maisano A, Zoccali RA, Muscatello MRA. Metabolic outcomes of bergamot polyphenolic fraction administration in patients treated with second-generation antipsychotics: a pilot study. J Nutr Biochem 2016; 40:32-35. [PMID: 27846426 DOI: 10.1016/j.jnutbio.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022]
Abstract
Second-generation antipsychotics (SGAs) are notoriously associated with a marked increase in body weight and with a wide range of metabolic adverse effects, and their chronic use is related with an increased risk for the development of metabolic syndrome (MS). Different adjunctive treatments have been proposed to reduce SGAs-induced weight gain and/or metabolic abnormalities with inconsistent or too limited evidence to support their regular clinical use, thus suggesting the need to find new possible treatments. Bergamot polyphenolic fraction (BPF) has been proven effective in patients with MS, as demonstrated by a concomitant improvement in lipemic and glycemic profiles. The present study was aimed to explore the efficacy and safety of BPF treatment on metabolic parameters in a sample of subjects receiving atypical antipsychotics. Fifteen outpatients treated with SGAs assumed BPF at the oral daily dose of 1000 mg/day for 30 days. Fasting levels of glucose, glycated hemoglobin, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglycerides were determined. BPF administration resulted in a statistically significant reduction of body weight (P=.004) and in a trend for body mass index decrease (P=.005). No significant differences in other and metabolic parameters were observed. Our findings suggest that BPF, at the daily dose of 1000 mg for 30 days, could be an effective and safe agent to prevent weight gain associated with atypical antipsychotic use. However, further clinical trials with adequately powered and well-designed methodology are needed to better explore the BPF effectiveness on the SGAs-induced weight gain and metabolic side effects.
Collapse
Affiliation(s)
- Antonio Bruno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, Messina, Italy.
| | - Gianluca Pandolfo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Manuela Crucitti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Antonino Maisano
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Rocco A Zoccali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, Messina, Italy
| |
Collapse
|
46
|
Cicero AFG, Colletti A. Role of phytochemicals in the management of metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1134-44. [PMID: 26778479 DOI: 10.1016/j.phymed.2015.11.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND The World Health Organization (WHO) for some years has been focusing on what is now commonly referred to as an "epidemic of obesity and diabetes" ("diabesity"): behind this outbreak, there are several risk factors grouped in what is called "metabolic syndrome" (MetS). The basis of this "epidemic" is either a diet too often characterized by excessive consumption of saturated and trans-esterified fatty acids, simple sugars and salt, either a sedentary lifestyle. PURPOSE The aim of this review is to focus on the phytochemicals that have a more positive effect on the treatment and/or prevention of MetS. CHAPTERS Treatment strategies for MetS include pharmacologic and non-pharmacologic options, with varying degrees of success rate. The first is indicated for patients with high cardiovascular risk, while the second one is the most cost-effective preventive approach for subjects with borderline parameters and for patients intolerant to pharmacological therapy. MetS non-pharmacological treatments could involve the use of nutraceuticals, most of which has plant origins (phytochemicals), associated with lifestyle improvement. The chapter will discuss the available evidence on soluble fibres from psyllium and other sources, cinnamaldehyde, cinnamic acid and other cinnamon phytochemicals, berberine, corosolic acid from banaba, charantin from bitter gourd, catechins and flavonols from green tea and cocoa. Vegetable omega-3 polyunsaturated fatty acids, alliin from garlic, soy peptides, and curcumin from curcuma longa. CONCLUSION Some nutraceuticals, when adequately dosed, should improve a number of the MetS components.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Diseases Research Center, Medicine & Surgery Dept., Alma Mater Studiorum Atherosclerosis and Metabolic University of Bologna, Bologna, Italy.
| | - Alessandro Colletti
- Diseases Research Center, Medicine & Surgery Dept., Alma Mater Studiorum Atherosclerosis and Metabolic University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Janda E, Lascala A, Martino C, Ragusa S, Nucera S, Walker R, Gratteri S, Mollace V. Molecular mechanisms of lipid- and glucose-lowering activities of bergamot flavonoids. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Al-Saber F, Aldosari W, Alselaiti M, Khalfan H, Kaladari A, Khan G, Harb G, Rehani R, Kudo S, Koda A, Tanaka T, Nakajima M, Darwish A. The Safety and Tolerability of 5-Aminolevulinic Acid Phosphate with Sodium Ferrous Citrate in Patients with Type 2 Diabetes Mellitus in Bahrain. J Diabetes Res 2016; 2016:8294805. [PMID: 27738640 PMCID: PMC5055962 DOI: 10.1155/2016/8294805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus is prevalent especially in Gulf countries and poses serious long-term risks to patients. A multifaceted treatment approach can include nutritional supplements with antioxidant properties such as 5-aminolevulinic acid (5-ALA) with sodium ferrous citrate (SFC). This prospective, randomized, single-blind, placebo-controlled, dose escalating pilot clinical trial assessed the safety of 5-ALA with SFC at doses up to 200 mg 5-ALA/229.42 mg SFC per day in patients living in Bahrain with type 2 diabetes mellitus that was uncontrolled despite the use of one or more antidiabetic drugs. Fifty-three patients (n = 53) from 3 sites at one center were enrolled by Dr. Feryal (Site #01), Dr. Hesham (Site #02), and Dr. Waleed (Site #03) (n = 35, 5-ALA-SFC; n = 18, placebo). There was no significant difference in incidence of adverse events reported, and the most frequent events reported were gastrointestinal in nature, consistent with the known safety profile of 5-ALA in patients with diabetes. No significant changes in laboratory values and no difference in hypoglycemia between patients receiving 5-ALA and placebo were noted. Overall, the current results support that use of 5-ALA-SFC up to 200 mg per day taken as 2 divided doses is safe in patients taking concomitant oral antidiabetic medications and may offer benefits in the diabetic population. This trial is registered with ClinicalTrials.gov NCT02481141.
Collapse
Affiliation(s)
- Feryal Al-Saber
- Bahrain Defense Force Hospital/Royal Medical Services, Riffa, Bahrain
| | - Waleed Aldosari
- Bahrain Defense Force Hospital/Royal Medical Services, Riffa, Bahrain
| | - Mariam Alselaiti
- Bahrain Defense Force Hospital/Royal Medical Services, Riffa, Bahrain
| | - Hesham Khalfan
- Bahrain Defense Force Hospital/Royal Medical Services, Riffa, Bahrain
| | - Ahmed Kaladari
- Bahrain Defense Force Hospital/Royal Medical Services, Riffa, Bahrain
| | - Ghulam Khan
- SBI Pharmaceuticals Middle East and North Africa, Seef, Bahrain
| | | | - Riyadh Rehani
- SBI Pharmaceuticals Middle East and North Africa, Seef, Bahrain
| | | | - Aya Koda
- SBI Pharmaceuticals, Tokyo, Japan
| | | | | | - Abdulla Darwish
- Bahrain Defense Force Hospital/Royal Medical Services, Riffa, Bahrain
| |
Collapse
|
49
|
Pirro M, Mannarino MR, Bianconi V, Simental-Mendía LE, Bagaglia F, Mannarino E, Sahebkar A. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2016; 110:76-88. [PMID: 27157250 DOI: 10.1016/j.phrs.2016.04.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
Dyslipidemia and hyperglycemia are associated with an increased risk of ischemic cardiovascular disease. Positive effects of a nutraceutical combination comprising red yeast rice, berberine, policosanol, astaxanthin, coenzyme Q10 and folic acid (NComb) on plasma lipid and glucose levels have been reported in some but not all clinical trials. To address this inconsistency, we tried to estimate the size of lipid- and glucose-lowering effects of NComb through a systematic review and meta-analysis of randomized controlled trials. A systematic literature search in PubMed-Medline, SCOPUS and Google Scholar databases was conducted to identify randomized controlled trials investigating the effects of NComb on plasma lipids and glucose levels. Inverse variance-weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid and glucose levels using a random-effects model. Random-effects meta-regression was performed to assess the effect of putative confounders on plasma lipid and glucose levels. Fourteen trials (1670 subjects in the NComb arm and 1489 subjects in the control arm) met the eligibility criteria for lipid analysis and 10 trials (1014 subjects in the NComb arm and 962 subjects in the control arm) for glucose analysis. Overall, WMDs were significant for the impact of NComb supplementation on plasma levels of total cholesterol (-26.15mg/dL, p<0.001), LDL-cholesterol (-23.85mg/dL, p<0.001), HDL-cholesterol (2.53mg/dL, p<0.001), triglycerides (-13.83mg/dL, p<0.001) and glucose (-2.59mg/dL, p=0.010). NComb-induced amelioration of lipid profile was not affected by duration of supplementation nor by baseline lipid levels; conversely, a greater glucose-lowering effect of NComb was found with higher baseline glucose levels and longer durations of supplementation. In conclusion, the present results suggest that NComb supplementation is associated with improvement of lipid and glucose profile. Short-term beneficial effects of NComb supplementation appear to be maintained in the long term.
Collapse
Affiliation(s)
- Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Massimo Raffaele Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Francesco Bagaglia
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Elmo Mannarino
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Metabolic Research Centre, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| |
Collapse
|
50
|
Lee YM, Wolf P, Hauner H, Skurk T. Effect of a fermented dietary supplement containing chromium and zinc on metabolic control in patients with type 2 diabetes: a randomized, placebo-controlled, double-blind cross-over study. Food Nutr Res 2016; 60:30298. [PMID: 27343205 PMCID: PMC4920940 DOI: 10.3402/fnr.v60.30298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND For the increasing development of type 2 diabetes dietary habits play an important role. In this regard, dietary supplements are of growing interest to influence the progression of this disease. OBJECTIVE The aim of this study was to investigate the effect of a cascade-fermented dietary supplement based on fruits, nuts, and vegetables fortified with chromium and zinc on metabolic control in patients with type 2 diabetes mellitus. METHODS This was a randomized, placebo-controlled, double-blind, intervention study under free-living conditions using a cross-over design. Thirty-six patients with type 2 diabetes mellitus were enrolled and randomized either to receive a cascade-fermented dietary supplement enriched with chromium (100 µg/d) and zinc (15 mg/d) or a placebo similar in taste but without supplements, over a period of 12 weeks. After a wash-out period of 12 weeks, the patients received the other test product. The main outcome variable was the levels of glycated hemoglobin (HbA1c). Other outcome variables were fasting blood glucose, fructosamine, and lipid parameters. RESULTS Thirty-one patients completed the study. HbA1c showed no relevant changes during both treatment periods, nor was there a relevant difference between the two treatments (HbA1c: p=0.48). The same results were found for fructosamine and fasting glucose (fructosamine: p=0.9; fasting glucose: p=0.31). In addition, there was no effect on lipid metabolism. CONCLUSION This intervention study does not provide evidence that a cascade-fermented plant-based dietary supplement enriched with a combination of chromium and zinc improves glucose metabolism in patients with type 2 diabetes mellitus under free-living conditions.
Collapse
Affiliation(s)
- Yu-Mi Lee
- ZIEL Institute for Food and Health, Clinical Nutritional Medicine, Technical University of Munich, Munich, Germany;
| | - Petra Wolf
- Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- ZIEL Institute for Food and Health, Clinical Nutritional Medicine, Technical University of Munich, Munich, Germany.,Institute of Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Skurk
- ZIEL Institute for Food and Health, Clinical Nutritional Medicine, Technical University of Munich, Munich, Germany.,ZIEL Institute for Food and Health, Core Facility Human Studies, Technical University of Munich, Munich, Germany
| |
Collapse
|