1
|
Wang J, Verkerk AO, Wilders R, Zhang Y, Zhang K, Prakosa A, Rivaud MR, Marsman EMJ, Boender AR, Klerk M, Fokkert L, de Jonge B, Neef K, Kirzner OF, Bezzina CR, Remme CA, Tan HL, Boukens BJ, Devalla HD, Trayanova NA, Christoffels VM, Barnett P, Boink GJJ. SCN10A-short gene therapy to restore conduction and protect against malignant cardiac arrhythmias. Eur Heart J 2025; 46:1747-1762. [PMID: 39973098 DOI: 10.1093/eurheartj/ehaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/27/2024] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AND AIMS Life-threatening arrhythmias are a well-established consequence of reduced cardiac sodium current (INa). Gene therapy approaches to increase INa have demonstrated potential benefits to prevent arrhythmias. However, the development of such therapies is hampered by the large size of sodium channels. In this study, SCN10A-short (S10s), a short transcript encoding the carboxy-terminal domain of the human neuronal sodium channel, was evaluated as a gene therapy target to increase INa and prevent arrhythmias. METHODS Adeno-associated viral vector overexpressing S10s was injected into wild type and Scn5a-haploinsufficient mice on which patch-clamp studies, optical mapping, electrocardiogram analyses, and ischaemia reperfusion were performed. In vitro and in silico studies were conducted to further explore the effect of S10s gene therapy in the context of human hearts. RESULTS Cardiac S10s overexpression increased cellular INa, maximal action potential upstroke velocity, and action potential amplitude in Scn5a-haploinsufficient cardiomyocytes. S10s gene therapy rescues conduction slowing in Scn5a-haploinsufficient mice and prevented ventricular tachycardia induced by ischaemia-reperfusion in wild type mice. S10s overexpression increased maximal action potential upstroke velocity in human inducible pluripotent stem cell-derived cardiomyocytes and prevented inducible arrhythmias in simulated human heart models. CONCLUSIONS S10s gene therapy may be effective to treat cardiac conduction abnormalities and associated arrhythmias.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Yingnan Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kelly Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - E Madelief J Marsman
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Arie R Boender
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
| | - Mischa Klerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Berend de Jonge
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Klaus Neef
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands
| | - Osne F Kirzner
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Department of Anaesthesiology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Hanno L Tan
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands
- PacingCure B.V., Roetersstraat 35, Amsterdam 1018 WB, The Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Pan QM, Bi FF, Jing ZH, Cao M, Cui C, Liu F, Jin L, Yi-Jie H, Tian H, Yu T, Yun W, Shan HL, Zhou YH. A New target of ischemic ventricular arrhythmias-ITFG2. Eur J Pharmacol 2025; 991:177301. [PMID: 39864577 DOI: 10.1016/j.ejphar.2025.177301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported. In this study, we found ITFG2 overexpression, induced by an adeno-associated virus serotype 9 vector, partially reduced the incidence of ischemic ventricular arrhythmias and shortened the duration of ventricular arrhythmias in mice after myocardial infarction. Conversely, shRNA-mediated knockdown of endogenous ITFG2 aggravated ischemic ventricular arrhythmias. ITFG2 overexpression also shortened the prolonged QRS complex and increased the epicardial conduction velocity in MI mice. Additionally, the hearts from ITFG2 overexpression mice exhibited a higher maximal upstroke velocity at phase 0 of transmembrane action potential compared to MI mice. Patch-clamp analyses demonstrated a 50% increase in the peak current of voltage-dependent Na+ channel by ITFG2 overexpression in isolated ventricular cardiomyocytes post MI. In cultured neonatal mouse cardiomyocytes under hypoxic conditions, ITFG2 up-regulated Nav1.5 protein expression by inhibiting its ubiquitination. Co-immunoprecipitation experiments showed that ITFG2 reduces the binding affinity between NEDD4-2 and Nav1.5, thereby inhibiting Nav1.5 ubiquitination. Taken together, our data highlight the critical role of ITFG2 in reducing susceptibility to ischemic ventricular arrhythmias by down-regulating Nav1.5 ubiquitination. These findings suggest that ITFG2 may serve as a novel target for treating ischemic ventricular arrhythmias.
Collapse
Affiliation(s)
- Qing-Ming Pan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Fang-Fang Bi
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Ze-Hong Jing
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Miao Cao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Chen Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Fu Liu
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China
| | - Li Jin
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - He Yi-Jie
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China; Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Hua Tian
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China
| | - Tong Yu
- Hanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Wu Yun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, PR China
| | - Hong-Li Shan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China; Hanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Yu-Hong Zhou
- Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian, 361023, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
3
|
Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din TM, Bankston JR, Li J. The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels. J Gen Physiol 2025; 157:e202413669. [PMID: 39820972 PMCID: PMC11740781 DOI: 10.1085/jgp.202413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - John R. Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
4
|
Alsaloum M, Dib-Hajj SD, Page DA, Ruben PC, Krainer AR, Waxman SG. Voltage-gated sodium channels in excitable cells as drug targets. Nat Rev Drug Discov 2025:10.1038/s41573-024-01108-x. [PMID: 39901031 DOI: 10.1038/s41573-024-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
Excitable cells - including neurons, muscle cells and cardiac myocytes - are unique in expressing high densities of voltage-gated sodium (NaV) channels. This molecular adaptation enables these cells to produce action potentials, and is essential to their function. With the advent of the molecular revolution, the concept of 'the' sodium channel has been supplanted by understanding that excitable cells in mammals can express any of nine different forms of sodium channels (NaV1.1-NaV1.9). Selective expression in particular types of cells, together with a key role in controlling action potential firing, makes some of these NaV subtypes especially attractive molecular targets for drug development. Although these different channel subtypes display a common overall structure, differences in their amino acid sequences have provided a basis for the development of subtype-specific drugs. This approach has resulted in exciting progress in the development of drugs for epilepsy, cardiac disorders and pain. In this Review, we discuss recent progress in the development of drugs that selectively target each of the sodium channel subtypes.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Lee HL, Chang PC, Wo HT, Chou SC, Chou CC. Mechanistic Insights into Melatonin's Antiarrhythmic Effects in Acute Ischemia-Reperfusion-Injured Rabbit Hearts Undergoing Therapeutic Hypothermia. Int J Mol Sci 2025; 26:615. [PMID: 39859328 PMCID: PMC11766167 DOI: 10.3390/ijms26020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups. HF was induced by rapid right ventricular pacing. Melatonin was administered orally (10 mg/kg/day) for four weeks, and IR was created by 60-min coronary artery ligation and 30-min reperfusion. The hearts were then excised and Langendorff-perfused for optical mapping studies at normothermia, followed by TH. Melatonin significantly reduced ventricular fibrillation (VF) maintenance. In failing hearts, melatonin reduced the spatially discordant alternans (SDA) inducibility mainly by modulating intracellular Ca2+ dynamics via upregulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and calsequestrin 2 and attenuating the downregulation of phosphorylated phospholamban protein expression. In control hearts, melatonin improved conduction slowing and reduced dispersion of action potential duration (APDdispersion) by upregulating phosphorylated connexin 43, attenuating the downregulation of SERCA2a and phosphorylated phospholamban and attenuating the upregulation of phosphorylated Ca2+/calmodulin-dependent protein kinase II. TH significantly retarded intracellular Ca2+ decay slowed conduction, and increased APDdispersion, thereby facilitating SDA induction, which counteracted the beneficial effects of melatonin in reducing VF maintenance.
Collapse
Affiliation(s)
- Hui-Ling Lee
- Department of Anesthesia, Chang Gung Memorial Hospital, Taipei Branch, Taipei 10507, Taiwan;
| | - Po-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan; (P.-C.C.); (H.-T.W.); (S.-C.C.)
- School of Medicine, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Hung-Ta Wo
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan; (P.-C.C.); (H.-T.W.); (S.-C.C.)
| | - Shih-Chun Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan; (P.-C.C.); (H.-T.W.); (S.-C.C.)
| | - Chung-Chuan Chou
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan; (P.-C.C.); (H.-T.W.); (S.-C.C.)
- School of Medicine, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| |
Collapse
|
6
|
Bahrami P, Aromolaran KA, Aromolaran AS. Mechanistic Relevance of Ventricular Arrhythmias in Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2024; 25:13423. [PMID: 39769189 PMCID: PMC11677834 DOI: 10.3390/ijms252413423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing at an alarming rate worldwide, with limited effective therapeutic interventions in patients. Sudden cardiac death (SCD) and ventricular arrhythmias present substantial risks for the prognosis of these patients. Obesity is a risk factor for HFpEF and life-threatening arrhythmias. Obesity and its associated metabolic dysregulation, leading to metabolic syndrome, are an epidemic that poses a significant public health problem. More than one-third of the world population is overweight or obese, leading to an enhanced risk of incidence and mortality due to cardiovascular disease (CVD). Obesity predisposes patients to atrial fibrillation and ventricular and supraventricular arrhythmias-conditions that are caused by dysfunction in the electrical activity of the heart. To date, current therapeutic options for the cardiomyopathy of obesity are limited, suggesting that there is considerable room for the development of therapeutic interventions with novel mechanisms of action that will help normalize sinus rhythms in obese patients. Emerging candidates for modulation by obesity are cardiac ion channels and Ca-handling proteins. However, the underlying molecular mechanisms of the impact of obesity on these channels and Ca-handling proteins remain incompletely understood. Obesity is marked by the accumulation of adipose tissue, which is associated with a variety of adverse adaptations, including dyslipidemia (or abnormal systemic levels of free fatty acids), increased secretion of proinflammatory cytokines, fibrosis, hyperglycemia, and insulin resistance, which cause electrical remodeling and, thus, predispose patients to arrhythmias. Furthermore, adipose tissue is also associated with the accumulation of subcutaneous and visceral fat, which is marked by distinct signaling mechanisms. Thus, there may also be functional differences in the effects of the regional distribution of fat deposits on ion channel/Ca-handling protein expression. Evaluating alterations in their functional expression in obesity will lead to progress in the knowledge of the mechanisms responsible for obesity-related arrhythmias. These advances are likely to reveal new targets for pharmacological modulation. Understanding how obesity and related mechanisms lead to cardiac electrical remodeling is likely to have a significant medical and economic impact. Nevertheless, substantial knowledge gaps remain regarding HFpEF treatment, requiring further investigations to identify potential therapeutic targets. The objective of this study is to review cardiac ion channel/Ca-handling protein remodeling in the predisposition to metabolic HFpEF and arrhythmias. This review further highlights interleukin-6 (IL-6) as a potential target, cardiac bridging integrator 1 (cBIN1) as a promising gene therapy agent, and leukotriene B4 (LTB4) as an underappreciated pathway in future HFpEF management.
Collapse
Affiliation(s)
- Pegah Bahrami
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Kelly A. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
| | - Ademuyiwa S. Aromolaran
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, 95 S 2000 E, Salt Lake City, UT 84112, USA; (P.B.); (K.A.A.)
- Department of Surgery, Division of Cardiothoracic Surgery, Nutrition & Integrative Physiology, Biochemistry & Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Tarantino A, Ciconte G, Melgari D, Frosio A, Ghiroldi A, Piccoli M, Villa M, Creo P, Calamaio S, Castoldi V, Coviello S, Micaglio E, Cirillo F, Locati ET, Negro G, Boccellino A, Mastrocinque F, Ćalović Ž, Ricagno S, Leocani L, Vicedomini G, Santinelli V, Rivolta I, Anastasia L, Pappone C. NaV1.5 autoantibodies in Brugada syndrome: pathogenetic implications. Eur Heart J 2024; 45:4336-4348. [PMID: 39078224 PMCID: PMC11491155 DOI: 10.1093/eurheartj/ehae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND AND AIMS Patients suffering from Brugada syndrome (BrS) are predisposed to life-threatening cardiac arrhythmias. Diagnosis is challenging due to the elusive electrocardiographic (ECG) signature that often requires unconventional ECG lead placement and drug challenges to be detected. Although NaV1.5 sodium channel dysfunction is a recognized pathophysiological mechanism in BrS, only 25% of patients have detectable SCN5A variants. Given the emerging role of autoimmunity in cardiac ion channel function, this study explores the presence and potential impact of anti-NaV1.5 autoantibodies in BrS patients. METHODS Using engineered HEK293A cells expressing recombinant NaV1.5 protein, plasma from 50 BrS patients and 50 controls was screened for anti-NaV1.5 autoantibodies via western blot, with specificity confirmed by immunoprecipitation and immunofluorescence. The impact of these autoantibodies on sodium current density and their pathophysiological effects were assessed in cellular models and through plasma injection in wild-type mice. RESULTS Anti-NaV1.5 autoantibodies were detected in 90% of BrS patients vs. 6% of controls, yielding a diagnostic area under the curve of .92, with 94% specificity and 90% sensitivity. These findings were consistent across varying patient demographics and independent of SCN5A mutation status. Electrophysiological studies demonstrated a significant reduction specifically in sodium current density. Notably, mice injected with BrS plasma showed Brugada-like ECG abnormalities, supporting the pathogenic role of these autoantibodies. CONCLUSIONS The study demonstrates the presence of anti-NaV1.5 autoantibodies in the majority of BrS patients, suggesting an immunopathogenic component of the syndrome beyond genetic predispositions. These autoantibodies, which could serve as additional diagnostic markers, also prompt reconsideration of the underlying mechanisms of BrS, as evidenced by their role in inducing the ECG signature of the syndrome in wild-type mice. These findings encourage a more comprehensive diagnostic approach and point to new avenues for therapeutic research.
Collapse
Affiliation(s)
- Adriana Tarantino
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- School of Medicine, University Vita-Salute San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
| | - Giuseppe Ciconte
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- School of Medicine, University Vita-Salute San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Dario Melgari
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Anthony Frosio
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Marco Piccoli
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Marco Villa
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Pasquale Creo
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Serena Calamaio
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS Ospedale San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
| | - Simona Coviello
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Emanuele Micaglio
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Emanuela Teresina Locati
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Gabriele Negro
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Antonio Boccellino
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Flavio Mastrocinque
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Žarko Ćalović
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Stefano Ricagno
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Letizia Leocani
- School of Medicine, University Vita-Salute San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS Ospedale San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
| | - Gabriele Vicedomini
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Vincenzo Santinelli
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| | - Ilaria Rivolta
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, 20900 Monza, Italy
| | - Luigi Anastasia
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- School of Medicine, University Vita-Salute San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
- School of Medicine, University Vita-Salute San Raffaele, Via Olgettina, 58, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan, 2, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
8
|
Elhanafy E, Ahangar AA, Roth R, Gamal El-Din TM, Bankston JR, Li J. ELUCIDATING THE DIFFERENTIAL IMPACTS OF EQUIVALENT GATING-CHARGE MUTATIONS IN VOLTAGE-GATED SODIUM CHANNELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612021. [PMID: 39314455 PMCID: PMC11419121 DOI: 10.1101/2024.09.09.612021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 μs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our μs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
9
|
Owais A, Barney M, Ly OT, Brown G, Chen H, Sridhar A, Pavel A, Khetani SR, Darbar D. Genetics and Pharmacogenetics of Atrial Fibrillation: A Mechanistic Perspective. JACC Basic Transl Sci 2024; 9:918-934. [PMID: 39170958 PMCID: PMC11334418 DOI: 10.1016/j.jacbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 08/23/2024]
Abstract
The heritability of atrial fibrillation (AF) is well established. Over the last decade genetic architecture of AF has been unraveled by genome-wide association studies and family-based studies. However, the translation of these genetic discoveries has lagged owing to an incomplete understanding of the pathogenic mechanisms underlying the genetic variants, challenges in classifying variants of uncertain significance (VUS), and limitations of existing disease models. We review the mechanistic insight provided by basic science studies regarding AF mechanisms, recent developments in high-throughput classification of VUS, and advances in bioengineered cardiac models for developing personalized therapy for AF.
Collapse
Affiliation(s)
- Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Grace Brown
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
10
|
Song T, Hui W, Huang M, Guo Y, Yu M, Yang X, Liu Y, Chen X. Dynamic Changes in Ion Channels during Myocardial Infarction and Therapeutic Challenges. Int J Mol Sci 2024; 25:6467. [PMID: 38928173 PMCID: PMC11203447 DOI: 10.3390/ijms25126467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.
Collapse
Affiliation(s)
- Tongtong Song
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenting Hui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Min Huang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yan Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Meiyi Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xiaoyu Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China; (T.S.); (W.H.); (M.H.); (Y.G.); (M.Y.); (X.Y.); (Y.L.)
| |
Collapse
|
11
|
Piccirillo G, Moscucci F, Mezzadri M, Caltabiano C, Cisaria G, Vizza G, De Santis V, Giuffrè M, Stefano S, Scinicariello C, Carnovale M, Corrao A, Lospinuso I, Sciomer S, Rossi P. Artificial Intelligence Applied to Electrical and Non-Invasive Hemodynamic Markers in Elderly Decompensated Chronic Heart Failure Patients. Biomedicines 2024; 12:716. [PMID: 38672072 PMCID: PMC11048014 DOI: 10.3390/biomedicines12040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES The first aim of this study was to assess the predictive power of Tend interval (Te) and non-invasive hemodynamic markers, based on bioimpedance in decompensated chronic heart failure (CHF). The second one was to verify the possible differences in repolarization and hemodynamic data between CHF patients grouped by level of left ventricular ejection fraction (LVEF). Finally, we wanted to check if repolarization and hemodynamic data changed with clinical improvement or worsening in CHF patients. METHODS Two hundred and forty-three decompensated CHF patients were studied by 5 min ECG recordings to determine the mean and standard deviation (TeSD) of Te (first study). In a subgroup of 129 patients (second study), non-invasive hemodynamic and repolarization data were recorded for further evaluation. RESULTS Total in-hospital and cardiovascular mortality rates were respectively 19 and 9%. Te was higher in the deceased than in surviving subjects (Te: 120 ± 28 vs. 100 ± 25 ms) and multivariable logistic regression analysis reported that Te was related to an increase of total (χ2: 35.45, odds ratio: 1.03, 95% confidence limit: 1.02-1.05, p < 0.001) and cardiovascular mortality (χ2: 32.58, odds ratio: 1.04, 95% confidence limit: 1.02-1.06, p < 0.001). Subjects with heart failure with reduced ejection fraction (HFrEF) reported higher levels of repolarization and lower non-invasive systolic hemodynamic data in comparison to those with preserved ejection fraction (HFpEF). In the subgroup, patients with the NT-proBNP reduction after therapy showed a lower rate of Te, heart rate, blood pressures, contractility index, and left ventricular ejection time in comparison with the patients without NT-proBNP reduction. CONCLUSION Electrical signals from ECG and bioimpedance were capable of monitoring the patients with advanced decompensated CHF. These simple, inexpensive, non-invasive, easily repeatable, and transmissible markers could represent a tool to remotely monitor and to intercept the possible worsening of these patients early by machine learning and artificial intelligence tools.
Collapse
Affiliation(s)
- Gianfranco Piccirillo
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Federica Moscucci
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Martina Mezzadri
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Cristina Caltabiano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Giovanni Cisaria
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Guendalina Vizza
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Valerio De Santis
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Marco Giuffrè
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Sara Stefano
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Claudia Scinicariello
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Myriam Carnovale
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Andrea Corrao
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Ilaria Lospinuso
- Department of Internal Medicine and Medical Specialties, Policlinico Umberto I, Viale del Policlinico, 155, 00161 Rome, Italy;
| | - Susanna Sciomer
- Department of Internal and Clinical Medicine, Anesthesiology and Cardiovascular Sciences, Policlinico Umberto I, “Sapienza” University of Rome, 00185 Rome, Italy; (G.P.); (M.M.); (C.C.); (G.C.); (G.V.); (V.D.S.); (M.G.); (S.S.); (C.S.); (M.C.); (A.C.); (S.S.)
| | - Pietro Rossi
- Arrhythmology Unit, Fatebenefratelli Hospital, Isola Tiberina-Gemelli Isola, 00186 Rome, Italy;
| |
Collapse
|
12
|
Ko MY, Chon SH, Park H, Min E, Kim Y, Cha SW, Seo JW, Lee BS, Ka M, Hyun SA. Perfluorooctanoic acid induces cardiac dysfunction in human induced pluripotent stem cell-derived cardiomyocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116170. [PMID: 38452704 DOI: 10.1016/j.ecoenv.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Perfluorooctanoic acid (PFOA), commonly found in drinking water, leads to widespread exposure through skin contact, inhalation, and ingestion, resulting in detectable levels of PFOA in the bloodstream. In this study, we found that exposure to PFOA disrupts cardiac function in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed reductions in field and action potentials in hiPSC-CMs exposed to PFOA. Furthermore, PFOA demonstrated a dose-dependent inhibitory effect on various ion channels, including the calcium, sodium, and potassium channels. Additionally, we noted dose-dependent inhibition of the expression of these ion channels in hiPSC-CMs following exposure to PFOA. These findings suggest that PFOA exposure can impair cardiac ion channel function and decrease the transcription of genes associated with these channels, potentially contributing to cardiac dysfunction such as arrhythmias. Our study sheds light on the electrophysiological and epigenetic consequences of PFOA-induced cardiac dysfunction, underscoring the importance of further research on the cardiovascular effects of perfluorinated compounds (PFCs).
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Graduate School of Pre-Clinical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Joung-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
13
|
De Coster T, Teplenin AS, Feola I, Bart CI, Ramkisoensing AA, den Ouden BL, Ypey DL, Trines SA, Panfilov AV, Zeppenfeld K, de Vries AAF, Pijnappels DA. 'Trapped re-entry' as source of acute focal atrial arrhythmias. Cardiovasc Res 2024; 120:249-261. [PMID: 38048392 PMCID: PMC10939464 DOI: 10.1093/cvr/cvad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/21/2023] [Accepted: 10/07/2023] [Indexed: 12/06/2023] Open
Abstract
AIMS Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.
Collapse
Affiliation(s)
- Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Alexander S Teplenin
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Iolanda Feola
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Arti A Ramkisoensing
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Bram L den Ouden
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Dirk L Ypey
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Serge A Trines
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Alexander V Panfilov
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
- Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium
- Biomed Laboratory, Ural Federal University, 620002 Ekaterinburg, Russia
- World-Class Research Center ‘Digital Biodesign and Personalized Healthcare’, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Katja Zeppenfeld
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, PO 9600, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
14
|
Lesage A, Lorenzini M, Burel S, Sarlandie M, Bibault F, Lindskog C, Maloney D, Silva JR, Townsend RR, Nerbonne JM, Marionneau C. Determinants of iFGF13-mediated regulation of myocardial voltage-gated sodium (NaV) channels in mouse. J Gen Physiol 2023; 155:e202213293. [PMID: 37516919 PMCID: PMC10374952 DOI: 10.1085/jgp.202213293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 06/30/2023] [Indexed: 07/31/2023] Open
Abstract
Posttranslational regulation of cardiac NaV1.5 channels is critical in modulating channel expression and function, yet their regulation by phosphorylation of accessory proteins has gone largely unexplored. Using phosphoproteomic analysis of NaV channel complexes from adult mouse left ventricles, we identified nine phosphorylation sites on intracellular fibroblast growth factor 13 (iFGF13). To explore the potential roles of these phosphosites in regulating cardiac NaV currents, we abolished expression of iFGF13 in neonatal and adult mouse ventricular myocytes and rescued it with wild-type (WT), phosphosilent, or phosphomimetic iFGF13-VY. While the increased rate of closed-state inactivation of NaV channels induced by Fgf13 knockout in adult cardiomyocytes was completely restored by adenoviral-mediated expression of WT iFGF13-VY, only partial rescue was observed in neonatal cardiomyocytes after knockdown. The knockdown of iFGF13 in neonatal ventricular myocytes also shifted the voltage dependence of channel activation toward hyperpolarized potentials, a shift that was not reversed by WT iFGF13-VY expression. Additionally, we found that iFGF13-VY is the predominant isoform in adult ventricular myocytes, whereas both iFGF13-VY and iFGF13-S are expressed comparably in neonatal ventricular myocytes. Similar to WT iFGF13-VY, each of the iFGF13-VY phosphomutants studied restored NaV channel inactivation properties in both models. Lastly, Fgf13 knockout also increased the late Na+ current in adult cardiomyocytes, and this effect was restored with expression of WT and phosphosilent iFGF13-VY. Together, our results demonstrate that iFGF13 is highly phosphorylated and displays differential isoform expression in neonatal and adult ventricular myocytes. While we found no roles for iFGF13 phosphorylation, our results demonstrate differential effects of iFGF13 on neonatal and adult mouse ventricular NaV channels.
Collapse
Affiliation(s)
- Adrien Lesage
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Maxime Lorenzini
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Sophie Burel
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Marine Sarlandie
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Floriane Bibault
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | | | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - R. Reid Townsend
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO, USA
- Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Jeanne M. Nerbonne
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University Medical School, St. Louis, MO, USA
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO, USA
| | - Céline Marionneau
- CNRS, INSERM, L’institut du Thorax, Nantes Université, Nantes, France
| |
Collapse
|
15
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Nasilli G, Yiangou L, Palandri C, Cerbai E, Davis RP, Verkerk AO, Casini S, Remme CA. Beneficial effects of chronic mexiletine treatment in a human model of SCN5A overlap syndrome. Europace 2023; 25:euad154. [PMID: 37369559 PMCID: PMC10299896 DOI: 10.1093/europace/euad154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS SCN5A mutations are associated with various cardiac phenotypes, including long QT syndrome type 3 (LQT3), Brugada syndrome (BrS), and cardiac conduction disease (CCD). Certain mutations, such as SCN5A-1795insD, lead to an overlap syndrome, with patients exhibiting both features of BrS/CCD [decreased sodium current (INa)] and LQT3 (increased late INa). The sodium channel blocker mexiletine may acutely decrease LQT3-associated late INa and chronically increase peak INa associated with SCN5A loss-of-function mutations. However, most studies have so far employed heterologous expression systems and high mexiletine concentrations. We here investigated the effects of a therapeutic dose of mexiletine on the mixed phenotype associated with the SCN5A-1795insD mutation in HEK293A cells and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS AND RESULTS To assess only the chronic effects on trafficking, HEK293A cells transfected with wild-type (WT) SCN5A or SCN5A-1795insD were incubated for 48 h with 10 µm mexiletine followed by wash-out, which resulted in an increased peak INa for both SCN5A-WT and SCN5A-1795insD and an increased late INa for SCN5A-1795insD. Acute re-exposure of HEK293A cells to 10 µm mexiletine did not impact on peak INa but significantly decreased SCN5A-1795insD late INa. Chronic incubation of SCN5A-1795insD hiPSC-CMs with mexiletine followed by wash-out increased peak INa, action potential (AP) upstroke velocity, and AP duration. Acute re-exposure did not impact on peak INa or AP upstroke velocity, but significantly decreased AP duration. CONCLUSION These findings demonstrate for the first time the therapeutic benefit of mexiletine in a human cardiomyocyte model of SCN5A overlap syndrome.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Cerbai
- Department NeuroFarBa, University of Florence, Viale Gaetano Pieraccini 6, 50139, Florence, Italy
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Arie O Verkerk
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Terahertz Waves Enhance the Permeability of Sodium Channels. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
With the help of molecular dynamics simulations and an artificial sodium channel model, we corroborated that the application of terahertz stimulation at a characteristic frequency can largely increase the permeability of the sodium channel by a factor of 33.6. The mechanism is that the carboxylate groups in the filter region transfer the absorbed terahertz photon energy to the sodium ions, which increase the ions’ kinetic energy; this results in breaking the hydrated hydrogen bonding network between the hydrosphere layer of the ions and the carboxylate groups, thereby increasing their diffusion and reducing the energy barrier for them to cross the channel. This study on terahertz-driven particle transmembrane transport offers new ideas for targeted therapy of channel diseases and for developing novel integrated engineering systems in energy conversion and storage.
Collapse
|
18
|
Galles GD, Infield DT, Clark CJ, Hemshorn ML, Manikandan S, Fazan F, Rasouli A, Tajkhorshid E, Galpin JD, Cooley RB, Mehl RA, Ahern CA. Tuning phenylalanine fluorination to assess aromatic contributions to protein function and stability in cells. Nat Commun 2023; 14:59. [PMID: 36599844 PMCID: PMC9813137 DOI: 10.1038/s41467-022-35761-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The aromatic side-chains of phenylalanine, tyrosine, and tryptophan interact with their environments via both hydrophobic and electrostatic interactions. Determining the extent to which these contribute to protein function and stability is not possible with conventional mutagenesis. Serial fluorination of a given aromatic is a validated method in vitro and in silico to specifically alter electrostatic characteristics, but this approach is restricted to a select few experimental systems. Here, we report a group of pyrrolysine-based aminoacyl-tRNA synthetase/tRNA pairs (tRNA/RS pairs) that enable the site-specific encoding of a varied spectrum of fluorinated phenylalanine amino acids in E. coli and mammalian (HEK 293T) cells. By allowing the cross-kingdom expression of proteins bearing these unnatural amino acids at biochemical scale, these tools may potentially enable the study of biological mechanisms which utilize aromatic interactions in structural and cellular contexts.
Collapse
Affiliation(s)
- Grace D Galles
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Colin J Clark
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Marcus L Hemshorn
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Shivani Manikandan
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Frederico Fazan
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Ali Rasouli
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason D Galpin
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Richard B Cooley
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Ryan A Mehl
- The GCE4All Research Center, Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
19
|
Zhao F, Fang L, Wang Q, Ye Q, He Y, Xu W, Song Y. Exploring the Pivotal Components Influencing the Side Effects Induced by an Analgesic-Antitumor Peptide from Scorpion Venom on Human Voltage-Gated Sodium Channels 1.4 and 1.5 through Computational Simulation. Toxins (Basel) 2022; 15:33. [PMID: 36668853 PMCID: PMC9864070 DOI: 10.3390/toxins15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Voltage-gated sodium channels (VGSCs, or Nav) are important determinants of action potential generation and propagation. Efforts are underway to develop medicines targeting different channel subtypes for the treatment of related channelopathies. However, a high degree of conservation across its nine subtypes could lead to the off-target adverse effects on skeletal and cardiac muscles due to acting on primary skeletal muscle sodium channel Nav1.4 and cardiac muscle sodium channel Nav1.5, respectively. For a long evolutionary process, some peptide toxins from venoms have been found to be highly potent yet selective on ion channel subtypes and, therefore, hold the promising potential to be developed into therapeutic agents. In this research, all-atom molecular dynamic methods were used to elucidate the selective mechanisms of an analgesic-antitumor β-scorpion toxin (AGAP) with human Nav1.4 and Nav1.5 in order to unravel the primary reason for the production of its adverse reactions on the skeletal and cardiac muscles. Our results suggest that the rational distribution of residues with ring structures near position 38 and positive residues in the C-terminal on AGAP are critical factors to ensure its analgesic efficacy. Moreover, the substitution for residues with benzene is beneficial to reduce its side effects.
Collapse
Affiliation(s)
- Fan Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liangyi Fang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qi Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qi Ye
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yanan He
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weizhuo Xu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yongbo Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
20
|
O'Reilly M, Sommerfeld LC, O'Shea C, Broadway-Stringer S, Andaleeb S, Reyat JS, Kabir SN, Stastny D, Malinova A, Delbue D, Fortmueller L, Gehmlich K, Pavlovic D, Skryabin BV, Holmes AP, Kirchhof P, Fabritz L. Familial atrial fibrillation mutation M1875T-SCN5A increases early sodium current and dampens the effect of flecainide. Europace 2022; 25:1152-1161. [PMID: 36504385 PMCID: PMC10062360 DOI: 10.1093/europace/euac218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is the most common cardiac arrhythmia. Pathogenic variants in genes encoding ion channels are associated with familial AF. The point mutation M1875T in the SCN5A gene, which encodes the α-subunit of the cardiac sodium channel Nav1.5, has been associated with increased atrial excitability and familial AF in patients. METHODS AND RESULTS We designed a new murine model carrying the Scn5a-M1875T mutation enabling us to study the effects of the Nav1.5 mutation in detail in vivo and in vitro using patch clamp and microelectrode recording of atrial cardiomyocytes, optical mapping, electrocardiogram, echocardiography, gravimetry, histology, and biochemistry. Atrial cardiomyocytes from newly generated adult Scn5a-M1875T+/- mice showed a selective increase in the early (peak) cardiac sodium current, larger action potential amplitude, and a faster peak upstroke velocity. Conduction slowing caused by the sodium channel blocker flecainide was less pronounced in Scn5a-M1875T+/- compared to wildtype atria. Overt hypertrophy or heart failure in Scn5a-M1875T+/- mice could be excluded. CONCLUSION The Scn5a-M1875T point mutation causes gain-of-function of the cardiac sodium channel. Our results suggest increased atrial peak sodium current as a potential trigger for increased atrial excitability.
Collapse
Affiliation(s)
- Molly O'Reilly
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK.,Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Laura C Sommerfeld
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK.,University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany.,DZHK Standort Hamburg/Kiel/Luebeck, Martinistraße 52, Hamburg 20246, Germany
| | - C O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - S Broadway-Stringer
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - S Andaleeb
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - J S Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - S N Kabir
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - D Stastny
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany
| | - A Malinova
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - D Delbue
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany.,DZHK Standort Hamburg/Kiel/Luebeck, Martinistraße 52, Hamburg 20246, Germany
| | - L Fortmueller
- University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany.,DZHK Standort Hamburg/Kiel/Luebeck, Martinistraße 52, Hamburg 20246, Germany
| | - K Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - D Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK
| | - B V Skryabin
- Medical Faculty, Core Facility Transgenic animal and genetic engineering Models (TRAM), University of Muenster, Muenster, Germany
| | - A P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK.,Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - P Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK.,DZHK Standort Hamburg/Kiel/Luebeck, Martinistraße 52, Hamburg 20246, Germany.,Department of Cardiology, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany
| | - L Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham B15 2TT, UK.,University Center of Cardiovascular Science, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany.,DZHK Standort Hamburg/Kiel/Luebeck, Martinistraße 52, Hamburg 20246, Germany.,Department of Cardiology, University Heart and Vascular Center, UKE Hamburg, Martinistraße 52, Hamburg 20246, Germany
| |
Collapse
|
21
|
Yin TP, Yan YF, He JM. Aconitum coreanum Rapaics: Botany, traditional uses, phytochemistry, pharmacology, and toxicology. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract
The present review summarizes the multifaceted uses and recent findings regarding the phytochemistry, traditional use, pharmacology, and toxicity of the extracts and compounds of Aconitum coreanum Rapaics (Ranunculaceae) for the first time to facilitate further research and exploitation of these types of compounds and the utilization of A. coreanum plants. A. coreanum is one of the most important medicinal Aconitum species and has been traditionally and popularly used in China and other Asian countries for the treatment of headaches and migraines, Bi syndrome induced by wind, cold and dampness, and facial paralysis. Phytochemical studies have led to the isolation of 55 distinct small molecule compounds from A. coreanum, most of which are diterpenoid alkaloids. Related pharmacological studies have focused primarily on the antiarrhythmic, anti-inflammatory, analgesic, and anticancer activities of A. coreanum and its derived drugs. Alkaloids have been demonstrated to be the main active ingredients in this plant. In particular, hetisine-type DAs, mainly Guan-fu base A and its analogues, which possess prominent antiarrhythmic effects, other effects, and hypotoxicity, could be regarded as the representative constituents of A. coreanum. Polysaccharides from A. coreanum also displayed broad bioactivities, demonstrating great potential for further research and exploitation. However, few of the current studies have examined the main active components in A. coreanum from different regions. In addition, most of the pharmacological studies on A. coreanum polysaccharides were carried out using crude or poorly characterized fractions. Finally, reliable analytical methods and deeper studies on the toxicity of the compounds from A. coreanum are needed to ensure the safe usage of these products.
Collapse
Affiliation(s)
- Tian-Peng Yin
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University , Zhuhai , PR China
| | - Yuan-Feng Yan
- Faculty of Bioengineering, Zhuhai Campus of Zunyi Medical University , Zhuhai , PR China
| | - Jian-Min He
- School of Resource and Environment, Baoshan University , Baoshan , 678000 , PR China
| |
Collapse
|
22
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
23
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
24
|
Ingleby-Talecki L, van Dijkman SC, Oosterholt SP, Della Pasqua O, Winter C, Cunnington M, Rebar L, Forero-Schwanhaeuser S, Patel V, Cooper JA, Bahinski A, Chaudhary KW. Cardiac sodium channel inhibition by lamotrigine: in vitro characterization and clinical implications. Clin Transl Sci 2022; 15:1978-1989. [PMID: 35579204 PMCID: PMC9372421 DOI: 10.1111/cts.13311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Lamotrigine, approved for use as an antiseizure medication as well as the treatment of bipolar disorder, inhibits sodium channels in the brain to reduce repetitive neuronal firing and pathological release of glutamate. The shared homology of sodium channels and lack of selectivity associated with channel blocking agents can cause slowing of cardiac conduction and increased proarrhythmic potential. The Vaughan‐Williams classification system differentiates sodium channel blockers using biophysical properties of binding. As such, Class Ib inhibitors, including mexiletine, do not slow cardiac conduction as measured by the electrocardiogram, at therapeutically relevant exposure. Our goal was to characterize the biophysical properties of NaV1.5 block and to support the observed clinical safety of lamotrigine. We used HEK‐293 cells stably expressing the hNaV1.5 channel and voltage clamp electrophysiology to quantify the potency (half‐maximal inhibitory concentration) against peak and late channel current, on‐/off‐rate binding kinetics, voltage‐dependence, and tonic block of the cardiac sodium channel by lamotrigine; and compared to clinically relevant Class Ia (quinidine), Ib (mexiletine), and Ic (flecainide) inhibitors. Lamotrigine blocked peak and late NaV1.5 current at therapeutically relevant exposure, with rapid kinetics and biophysical properties similar to the class Ib inhibitor mexiletine. However, no clinically meaningful prolongation in QRS or PR interval was observed in healthy subjects in a new analysis of a previously reported thorough QT clinical trial (SCA104648). In conclusion, the weak NaV1.5 block and rapid kinetics do not translate into clinically relevant conduction slowing at therapeutic exposure and support the clinical safety of lamotrigine in patients suffering from epilepsy and bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linda Rebar
- GSK US Regulatory Affairs, Collegeville, PA 19426, USA
| | | | - Vickas Patel
- Former GSK Employee, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
25
|
Absolute Quantification of Nav1.5 Expression by Targeted Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23084177. [PMID: 35456996 PMCID: PMC9028338 DOI: 10.3390/ijms23084177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Nav1.5 is the pore forming α-subunit of the cardiac voltage-gated sodium channel that initiates cardiac action potential and regulates the human heartbeat. A normal level of Nav1.5 is crucial to cardiac function and health. Over- or under-expression of Nav1.5 can cause various cardiac diseases ranging from short PR intervals to Brugada syndromes. An assay that can directly quantify the protein amount in biological samples would be a priori to accurately diagnose and treat Nav1.5-associated cardiac diseases. Due to its large size (>200 KD), multipass transmembrane domains (24 transmembrane passes), and heavy modifications, Nav1.5 poses special quantitation challenges. To date, only the relative quantities of this protein have been measured in biological samples. Here, we describe the first targeted and mass spectrometry (MS)-based quantitative assay that can provide the copy numbers of Nav1.5 in cells with a well-defined lower limit of quantification (LLOQ) and precision. Applying the developed assay, we successfully quantified transiently expressed Nav1.5 in as few as 1.5 million Chinese hamster ovary (CHO) cells. The obtained quantity was 3 ± 2 fmol on the column and 3 ± 2 × 104 copies/cell. To our knowledge, this is the first absolute quantity of Nav1.5 measured in a biological sample.
Collapse
|
26
|
Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Pharmacotherapy 2022; 148:112726. [DOI: 10.1016/j.biopha.2022.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
|
27
|
Peana D, Polo-Parada L, Domeier TL. Arrhythmogenesis in the aged heart following ischaemia-reperfusion: role of transient receptor potential vanilloid 4. Cardiovasc Res 2022; 118:1126-1137. [PMID: 33881517 PMCID: PMC9125801 DOI: 10.1093/cvr/cvab141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/20/2021] [Indexed: 12/26/2022] Open
Abstract
AIMS Cardiomyocyte Ca2+ homoeostasis is altered with ageing and predisposes the heart to Ca2+ intolerance and arrhythmia. Transient receptor potential vanilloid 4 (TRPV4) is an osmotically activated cation channel with expression in cardiomyocytes of the aged heart. The objective of this study was to examine the role of TRPV4 in Ca2+ handling and arrhythmogenesis following ischaemia-reperfusion (I/R), a pathological scenario associated with osmotic stress. METHODS AND RESULTS Cardiomyocyte membrane potential was monitored prior to and following I/R in Langendorff-perfused hearts of Aged (19-28 months) male and female C57BL/6 mice ± TRPV4 inhibition (1 μM HC067047, HC). Diastolic resting membrane potential was similar between Aged and Aged HC at baseline, but following I/R Aged exhibited depolarized diastolic membrane potential vs. Aged HC. The effects of TRPV4 on cardiomyocyte Ca2+ signalling following I/R were examined in isolated hearts of Aged cardiac-specific GCaMP6f mice (±HC) using high-speed confocal fluorescence microscopy, with cardiomyocytes of Aged exhibiting an increased incidence of pro-arrhythmic Ca2+ signalling vs. Aged HC. In the isolated cell environment, cardiomyocytes of Aged responded to sustained hypoosmotic stress (250mOsm) with an increase in Ca2+ transient amplitude (fluo-4) and higher incidence of pro-arrhythmic diastolic Ca2+ signals vs. Aged HC. Intracardiac electrocardiogram measurements in isolated hearts following I/R revealed an increased arrhythmia incidence, an accelerated time to ventricular arrhythmia, and increased arrhythmia score in Aged vs. Aged HC. Aged exhibited depolarized resting membrane potential, increased pro-arrhythmic diastolic Ca2+ signalling, and greater incidence of arrhythmia when compared with Young (3-5 months). CONCLUSION TRPV4 contributes to pro-arrhythmic cardiomyocyte Ca2+ signalling, electrophysiological abnormalities, and ventricular arrhythmia in the aged mouse heart.
Collapse
Affiliation(s)
- Deborah Peana
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
28
|
Wang JY, Tang B, Sheng WX, Hua LD, Zeng Y, Fan CX, Deng WY, Gao MM, Zhu WW, He N, Su T. Clinical and Functional Features of Epilepsy-Associated In-Frame Deletion Variants in SCN1A. Front Mol Neurosci 2022; 15:828846. [PMID: 35359575 PMCID: PMC8964123 DOI: 10.3389/fnmol.2022.828846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Naturally occurring in-frame deletion is a unique type of genetic variations, causing the loss of one or more amino acids of proteins. A number of in-frame deletion variants in an epilepsy-associated gene SCN1A, encoding voltage gated sodium channel alpha unit 1.1 (Nav1.1), have been reported in public database. In contrast to the missense and truncation variants, the in-frame deletions in SCN1A remains largely uncharacterized. Methods We summarized the basic information of forty-four SCN1A in-frame deletion variants and performed further analysis on six variants identified in our cases with epilepsy. Mutants of the six in-frame deletions and one truncating variant used as comparison were generated and co-transfected with beta-1 and -2 subunits in tsA201 cells, followed by patch clamp recordings. Results Reviewing all the in-frame deletions showed that they spread over the entire Nav1.1 protein, without obvious “hot spots.” The dominant type (54%) was single residue loss. There was no obvious relationship between the length or locations of deletions and their clinical phenotypes. The six in-frame deletions were two single residue deletions (p.M400del and p.I1772del), one microdeletion (p.S128_F130del) and three macrodeletions (p.T303_R322del, p.T160_Y202del, and p.V1335_V1428del). They scatter and affect different functional domains, including transmembrane helices, pore region, and P-loop. Electrophysiological recordings revealed no measurable sodium current in all of the six mutants. In contrast, the truncating mutant p.M1619Ifs*7 that loses a long stretch of peptides retains partial function. Significance The complete loss-of-function in these shortened, abnormal mutants indicates that Nav1.1 protein is a highly accurate structure, and many of the residues have no redundancy to ion conductance. In-frame deletions caused particularly deleterious effect on protein function possibly due to the disruption of ordered residues.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Wen-Xiang Sheng
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Li-Dong Hua
- Translational Medicine Center, Maternal and Child Health Research Institute, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Yang Zeng
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Cui-Xia Fan
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Wei-Yi Deng
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Mei-Mei Gao
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
| | - Wei-Wen Zhu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies, Ministry of Education of China, Guangzhou, China
- *Correspondence: Tao Su,
| |
Collapse
|
29
|
Tran HNT, McMahon KL, Deuis JR, Vetter I, Schroeder CI. Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. J Biol Chem 2022; 298:101728. [PMID: 35167877 PMCID: PMC8927997 DOI: 10.1016/j.jbc.2022.101728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
μ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a ‘native’ CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, μ-conotoxin KIIIA, the smallest and most studied μ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native μ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native μ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three μ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of μ-conotoxins targeting therapeutically relevant NaV subtypes.
Collapse
Affiliation(s)
- Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia; Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
30
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
31
|
Sirish P, Diloretto DA, Thai PN, Chiamvimonvat N. The Critical Roles of Proteostasis and Endoplasmic Reticulum Stress in Atrial Fibrillation. Front Physiol 2022; 12:793171. [PMID: 35058801 PMCID: PMC8764384 DOI: 10.3389/fphys.2021.793171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) remains the most common arrhythmia seen clinically. The incidence of AF is increasing due to the aging population. AF is associated with a significant increase in morbidity and mortality, yet current treatment paradigms have proven largely inadequate. Therefore, there is an urgent need to develop new effective therapeutic strategies for AF. The endoplasmic reticulum (ER) in the heart plays critical roles in the regulation of excitation-contraction coupling and cardiac function. Perturbation in the ER homeostasis due to intrinsic and extrinsic factors, such as inflammation, oxidative stress, and ischemia, leads to ER stress that has been linked to multiple conditions including diabetes mellitus, neurodegeneration, cancer, heart disease, and cardiac arrhythmias. Recent studies have documented the critical roles of ER stress in the pathophysiological basis of AF. Using an animal model of chronic pressure overload, we demonstrate a significant increase in ER stress in atrial tissues. Moreover, we demonstrate that treatment with a small molecule inhibitor to inhibit the soluble epoxide hydrolase enzyme in the arachidonic acid metabolism significantly reduces ER stress as well as atrial electrical and structural remodeling. The current review article will attempt to provide a perspective on our recent understandings and current knowledge gaps on the critical roles of proteostasis and ER stress in AF progression.
Collapse
Affiliation(s)
- Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Daphne A Diloretto
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, United States.,Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Kistamás K, Hézső T, Horváth B, Nánási PP. Late sodium current and calcium homeostasis in arrhythmogenesis. Channels (Austin) 2021; 15:1-19. [PMID: 33258400 PMCID: PMC7757849 DOI: 10.1080/19336950.2020.1854986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/26/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac late sodium current (INa,late) is the small sustained component of the sodium current active during the plateau phase of the action potential. Several studies demonstrated that augmentation of the current can lead to cardiac arrhythmias; therefore, INa,late is considered as a promising antiarrhythmic target. Fundamentally, enlarged INa,late increases Na+ influx into the cell, which, in turn, is converted to elevated intracellular Ca2+ concentration through the Na+/Ca2+ exchanger. The excessive Ca2+ load is known to be proarrhythmic. This review describes the behavior of the voltage-gated Na+ channels generating INa,late in health and disease and aims to discuss the physiology and pathophysiology of Na+ and Ca2+ homeostasis in context with the enhanced INa,late demonstrating also the currently accessible antiarrhythmic choices.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Transcription factor Meis1 act as a new regulator of ischemic arrhythmias in mice. J Adv Res 2021; 39:275-289. [PMID: 35777912 PMCID: PMC9263651 DOI: 10.1016/j.jare.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
The reduction of Meis1 after MI leads to an increased susceptibility to arrhythmia. Meis1 deficiency is related to ubiquitination proteasome pathway mediated by CDC20. Meis1 acts as a new transcription activator for SCN5A in cardiomyocytes. After Meis1 recovery, the electrophysiological function in cardiomyocytes are improved. Meis1 is a new target for the treatment of arrhythmia after myocardial infarction.
Introduction Objectives Methods Results Conclusion
Collapse
|
34
|
Structure of human Na v1.5 reveals the fast inactivation-related segments as a mutational hotspot for the long QT syndrome. Proc Natl Acad Sci U S A 2021; 118:2100069118. [PMID: 33712541 DOI: 10.1073/pnas.2100069118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nav1.5 is the primary voltage-gated Na+ (Nav) channel in the heart. Mutations of Nav1.5 are associated with various cardiac disorders exemplified by the type 3 long QT syndrome (LQT3) and Brugada syndrome (BrS). E1784K is a common mutation that has been found in both LQT3 and BrS patients. Here we present the cryo-EM structure of the human Nav1.5-E1784K variant at an overall resolution of 3.3 Å. The structure is nearly identical to that of the wild-type human Nav1.5 bound to quinidine. Structural mapping of 91- and 178-point mutations that are respectively associated with LQT3 and BrS reveals a unique distribution pattern for LQT3 mutations. Whereas the BrS mutations spread evenly on the structure, LQT3 mutations are clustered mainly to the segments in repeats III and IV that are involved in gating, voltage-sensing, and particularly inactivation. A mutational hotspot involving the fast inactivation segments is identified and can be mechanistically interpreted by our "door wedge" model for fast inactivation. The structural analysis presented here, with a focus on the impact of mutations on inactivation and late sodium current, establishes a structure-function relationship for the mechanistic understanding of Nav1.5 channelopathies.
Collapse
|
35
|
Rivaud MR, Delmar M, Remme CA. Heritable arrhythmia syndromes associated with abnormal cardiac sodium channel function: ionic and non-ionic mechanisms. Cardiovasc Res 2021; 116:1557-1570. [PMID: 32251506 PMCID: PMC7341171 DOI: 10.1093/cvr/cvaa082] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centres around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (i) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (ii) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (iii) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macromolecular complexes within the different microdomains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mathilde R Rivaud
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, 435 E 30th St, NSB 707, New York, NY 10016, USA
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam UMC (location AMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Meigberdreef 15, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|
36
|
Chen AY, Brooks BR, Damjanovic A. Determinants of conductance of a bacterial voltage-gated sodium channel. Biophys J 2021; 120:3050-3069. [PMID: 34214541 DOI: 10.1016/j.bpj.2021.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
Through molecular dynamics (MD) and free energy simulations in electric fields, we examine the factors influencing conductance of bacterial voltage-gated sodium channel NavMs. The channel utilizes four glutamic acid residues in the selectivity filter (SF). Previously, we have shown, through constant pH and free energy calculations of pKa values, that fully deprotonated, singly protonated, and doubly protonated states are all feasible at physiological pH, depending on how many ions are bound in the SF. With 173 MD simulations of 450 or 500 ns and additional free energy simulations, we determine that the conductance is highest for the deprotonated state and decreases with each additional proton bound. We also determine that the pKa value of the four glutamic residues for the transition between deprotonated and singly protonated states is close to the physiological pH and that there is a small voltage dependence. The pKa value and conductance trends are in agreement with experimental work on bacterial Nav channels, which show a decrease in maximal conductance with lowering of pH, with pKa in the physiological range. We examine binding sites for Na+ in the SF, compare with previous work, and note a dependence on starting structures. We find that narrowing of the gate backbone to values lower than the crystal structure's backbone radius reduces the conductance, whereas increasing the gate radius further does not affect the conductance. Simulations with some amount of negatively charged lipids as opposed to purely neutral lipids increases the conductance, as do simulations at higher voltages.
Collapse
Affiliation(s)
- Ada Y Chen
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland; Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ana Damjanovic
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
37
|
EphA4 is highly expressed in the atria of heart and its deletion leads to atrial hypertrophy and electrocardiographic abnormalities in rats. Life Sci 2021; 278:119595. [PMID: 33974931 DOI: 10.1016/j.lfs.2021.119595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023]
Abstract
AIMS EphA4 is a member of the Eph receptor family, and expressed mainly in central nervous system (CNS), which is involved in CNS development and multiple diseases. Due to the variability in EphA4 expression, we wondered if EphA4 is expressed in other tissues, and what role does EphA4 play? MATERIALS AND METHODS We generated an EphA4 knockout (KO) rat line with red fluorescent marker protein encoded by the mCherry cassette inserted downstream of the EphA4 promoter as a reporter. Using this system, we observed high expression of EphA4 in the heart atria and in the brain. KEY FINDINGS EphaA4 KO rats (EphA4-/-) developed obvious atrial hypertrophy with an increased atria-to-heart weight ratio and atrial cardiomyocyte cross-sectional area at six months of age. EphA4-/- rats had reduced atrial end diastolic volume (EDV), atrial ejection fraction (EF) and left ventricular EF. They also exhibited increased amplitude of QRS complexes and QT intervals, with invisible p waves. RNA sequencing revealed that EphA4 KO altered the transcription of multiple genes involved in regulation of transcription and translation, ion binding, metabolism and cell adhesion. Deletion of EphA4 reduced IGF1 mRNA and protein expression, which is involved in cardiac remodeling. SIGNIFICANCE Our data demonstrated that EphA4 was highly expressed in the atria and its deletion caused atrial dysfunction. Our findings also suggested that the EphA4 KO rat could be a potential model for studies on atrial remodeling.
Collapse
|
38
|
Zheng Y, Wan X, Yang D, Ramirez-Navarro A, Liu H, Fu JD, Deschênes I. A Heart Failure-Associated SCN5A Splice Variant Leads to a Reduction in Sodium Current Through Coupled-Gating With the Wild-Type Channel. Front Physiol 2021; 12:661429. [PMID: 33828490 PMCID: PMC8019726 DOI: 10.3389/fphys.2021.661429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Nav1.5, encoded by the gene SCN5A, is the predominant voltage-gated sodium channel expressed in the heart. It initiates the cardiac action potential and thus is crucial for normal heart rhythm and function. Dysfunctions in Nav1.5 have been involved in multiple congenital or acquired cardiac pathological conditions such as Brugada syndrome (BrS), Long QT Syndrome Type 3, and heart failure (HF), all of which can lead to sudden cardiac death (SCD) - one of the leading causes of death worldwide. Our lab has previously reported that Nav1.5 forms dimer channels with coupled gating. We also found that Nav1.5 BrS mutants can exert a dominant-negative (DN) effect and impair the function of wildtype (WT) channels through coupled-gating with the WT. It was previously reported that reduction in cardiac sodium currents (INa), observed in HF, could be due to the increased expression of an SCN5A splice variant - E28D, which results in a truncated sodium channel (Nav1.5-G1642X). In this study, we hypothesized that this SCN5A splice variant leads to INa reduction in HF through biophysical coupling with the WT. We showed that Nav1.5-G1642X is a non-functional channel but can interact with the WT, resulting in a DN effect on the WT channel. We found that both WT and the truncated channel Nav1.5-G1642X traffic at the cell surface, suggesting biophysical coupling. Indeed, we found that the DN effect can be abolished by difopein, an inhibitor of the biophysical coupling. Interestingly, the sodium channel polymorphism H558R, which has beneficial effect in HF patients, could also block the DN effect. In summary, the HF-associated splice variant Nav1.5-G1642X suppresses sodium currents in heart failure patients through a mechanism involving coupled-gating with the wildtype sodium channel.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoping Wan
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Dandan Yang
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Angelina Ramirez-Navarro
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Haiyan Liu
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ji-Dong Fu
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Lorenzini M, Burel S, Lesage A, Wagner E, Charrière C, Chevillard PM, Evrard B, Maloney D, Ruff KM, Pappu RV, Wagner S, Nerbonne JM, Silva JR, Townsend RR, Maier LS, Marionneau C. Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites. J Gen Physiol 2021; 153:211660. [PMID: 33410863 PMCID: PMC7797897 DOI: 10.1085/jgp.202012646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.
Collapse
Affiliation(s)
- Maxime Lorenzini
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Sophie Burel
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Adrien Lesage
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Emily Wagner
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Camille Charrière
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Pierre-Marie Chevillard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Bérangère Evrard
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| | - Dan Maloney
- Bioinformatics Solutions Inc., Waterloo, Ontario, Canada
| | - Kiersten M Ruff
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Stefan Wagner
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University Medical School, St. Louis, MO.,Department of Medicine, Washington University Medical School, St. Louis, MO
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - R Reid Townsend
- Department of Medicine, Washington University Medical School, St. Louis, MO.,Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - Lars S Maier
- Department of Internal Medicine II, University Heart Center, University Hospital Regensburg, Regensburg, Germany
| | - Céline Marionneau
- Université de Nantes, Centre national de la recherche scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du thorax, Nantes, France
| |
Collapse
|
40
|
Wang P, Zhu X, Wei M, Liu Y, Yoshimura K, Zheng M, Liu G, Kume S, Kurokawa T, Ono K. Disruption of asparagine-linked glycosylation to rescue and alter gating of the Na V1.5-Na + channel. Heart Vessels 2021; 36:589-596. [PMID: 33392644 DOI: 10.1007/s00380-020-01736-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
SCN5A gene encodes the voltage-gated sodium channel NaV1.5 which is composed of a pore-forming α subunit of the channel. Asparagine (N)-linked glycosylation is one of the common post-translational modifications in proteins. The aim of this study was to investigate impact of N-linked glycosylation disruption on the Na+ channel, and the mechanism by which glycosylation regulates the current density and gating properties of the Na+ channel. The NaV1.5-Na+ channel isoform (α submit) derived from human was stably expressed in human embryonic kidney (HEK)-293 cells (Nav1.5-HEK cell). We applied the whole-cell patch-clamp technique to study the impact of N-linked glycosylation disruption in Nav1.5-HEK cell. Inhibition of the N-glycosylation with tunicamycin caused a significant increase of NaV1.5 channel current (INa) when applied for 24 h. Tunicamycin shifted the steady-state inactivation curve to the hyperpolarization direction, whereas the activation curve was unaffected. Recovery from inactivation was prolonged, while the fast phase (τfast) and the slow phase (τslow) of the current decay was unaffected by tunicamycin. INa was unaffected by tunicamycin in the present of a proteasome inhibitor MG132 [N-[(phenylmethoxy)carbonyl]-L-leucy-N-[(1S)-1-formyl-3-methylbutyl]-L-leucinamide], while it was significantly increased by tunicamycin in the presence of a lysosome inhibitor butyl methacrylate (BMA). These findings suggest that N-glycosylation disruption rescues the NaV1.5 channel possibly through the alteration of ubiquitin-proteasome activity, and changes gating properties of the NaV1.5 channel by modulating glycan milieu of the channel protein.
Collapse
Affiliation(s)
- Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Xiufang Zhu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mengyan Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kenshi Yoshimura
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, Hebei Province, 050031, People's Republic of China
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
41
|
Xu L, Shi R. Generation of functional Na V1.5 current by endogenous transcriptional activation of SCN5A. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1892524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Rui Shi
- Department of Gynaecology and Obstetrics, East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
42
|
Elevated EZH2 in ischemic heart disease epigenetically mediates suppression of Na V1.5 expression. J Mol Cell Cardiol 2020; 153:95-103. [PMID: 33370552 DOI: 10.1016/j.yjmcc.2020.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Suppression of the cardiac sodium channel NaV1.5 leads to fatal arrhythmias in ischemic heart disease (IHD). However, the transcriptional regulation of NaV1.5 in cardiac ischemia is still unclear. Our studies are aimed to investigate the expression of enhancer of zeste homolog 2 (EZH2) in IHD and regulation of cardiac NaV1.5 expression by EZH2. Human heart tissue was obtained from IHD and non-failing heart (NFH) patients; mouse heart tissue was obtained from the peri-infarct zone of hearts with myocardial infarction (MI) and hearts with a sham procedure. Protein and mRNA expression were measured by immunoblotting, immunostaining, and qRT-PCR. Protein-DNA binding and promoter activity were analyzed by ChIP-qPCR and luciferase assays, respectively. Na+ channel activity was assessed by whole-cell patch clamp recordings. EZH2 and H3K27me3 were increased while NaV1.5 expression was reduced in IHD hearts and in mouse MI hearts compared to the controls. Reduced NaV1.5 and increased EZH2 mRNA levels were observed in mouse MI hearts. A selective EZH2 inhibitor, GSK126 decreased H3K27me3 and elevated NaV1.5 in HL-1 cells. Silencing of EZH2 expression decreased H3K27me3 and increased NaV1.5 in these cells. EZH2 and H3K27me3 were enriched in the promoter regions of Scn5a and were decreased by treatment with EZH2 siRNA. GSK126 inhibited the enrichment of H3K27me3 in the Scn5a promoter and enhanced Scn5a transcriptional activity. GSK126 significantly increased Na+ channel activity. Taken together, EZH2 is increased in ischemic hearts and epigenetically suppresses Scn5a transcription by H3K27me3, leading to decreased NaV1.5 expression and Na+ channel activity underlying the pathogenesis of arrhythmias.
Collapse
|
43
|
Agwa AJ, Tran P, Mueller A, Tran HNT, Deuis JR, Israel MR, McMahon KL, Craik DJ, Vetter I, Schroeder CI. Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. J Biol Chem 2020; 295:5067-5080. [PMID: 32139508 PMCID: PMC7152767 DOI: 10.1074/jbc.ra119.012281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
Huwentoxin-IV (HwTx-IV) is a gating modifier peptide toxin from spiders that has weak affinity for the lipid bilayer. As some gating modifier toxins have affinity for model lipid bilayers, a tripartite relationship among gating modifier toxins, voltage-gated ion channels, and the lipid membrane surrounding the channels has been proposed. We previously designed an HwTx-IV analogue (gHwTx-IV) with reduced negative charge and increased hydrophobic surface profile, which displays increased lipid bilayer affinity and in vitro activity at the voltage-gated sodium channel subtype 1.7 (NaV1.7), a channel targeted in pain management. Here, we show that replacements of the positively-charged residues that contribute to the activity of the peptide can improve gHwTx-IV's potency and selectivity for NaV1.7. Using HwTx-IV, gHwTx-IV, [R26A]gHwTx-IV, [K27A]gHwTx-IV, and [R29A]gHwTx-IV variants, we examined their potency and selectivity at human NaV1.7 and their affinity for the lipid bilayer. [R26A]gHwTx-IV consistently displayed the most improved potency and selectivity for NaV1.7, examined alongside off-target NaVs, compared with HwTx-IV and gHwTx-IV. The lipid affinity of each of the three novel analogues was weaker than that of gHwTx-IV, but stronger than that of HwTx-IV, suggesting a possible relationship between in vitro potency at NaV1.7 and affinity for lipid bilayers. In a murine NaV1.7 engagement model, [R26A]gHwTx-IV exhibited an efficacy comparable with that of native HwTx-IV. In summary, this study reports the development of an HwTx-IV analogue with improved in vitro selectivity for the pain target NaV1.7 and with an in vivo efficacy similar to that of native HwTx-IV.
Collapse
Affiliation(s)
- Akello J Agwa
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alexander Mueller
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hue N T Tran
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mathilde R Israel
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4103, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, Centre for Pain Research, The University of Queensland, Brisbane, Queensland 4072, Australia
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
44
|
Matasic DS, Yoon JY, McLendon JM, Mehdi H, Schmidt MS, Greiner AM, Quinones P, Morgan GM, Boudreau RL, Irani K, Brenner C, London B. Modulation of the cardiac sodium channel Na V1.5 peak and late currents by NAD + precursors. J Mol Cell Cardiol 2020; 141:70-81. [PMID: 32209328 PMCID: PMC7234910 DOI: 10.1016/j.yjmcc.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
RATIONALE The cardiac sodium channel NaV1.5, encoded by SCN5A, produces the rapidly inactivating depolarizing current INa that is responsible for the initiation and propagation of the cardiac action potential. Acquired and inherited dysfunction of NaV1.5 results in either decreased peak INa or increased residual late INa (INa,L), leading to tachy/bradyarrhythmias and sudden cardiac death. Previous studies have shown that increased cellular NAD+ and NAD+/NADH ratio increase INa through suppression of mitochondrial reactive oxygen species and PKC-mediated NaV1.5 phosphorylation. In addition, NAD+-dependent deacetylation of NaV1.5 at K1479 by Sirtuin 1 increases NaV1.5 membrane trafficking and INa. The role of NAD+ precursors in modulating INa remains unknown. OBJECTIVE To determine whether and by which mechanisms the NAD+ precursors nicotinamide riboside (NR) and nicotinamide (NAM) affect peak INa and INa,Lin vitro and cardiac electrophysiology in vivo. METHODS AND RESULTS The effects of NAD+ precursors on the NAD+ metabolome and electrophysiology were studied using HEK293 cells expressing wild-type and mutant NaV1.5, rat neonatal cardiomyocytes (RNCMs), and mice. NR increased INa in HEK293 cells expressing NaV1.5 (500 μM: 51 ± 18%, p = .02, 5 mM: 59 ± 22%, p = .03) and RNCMs (500 μM: 60 ± 26%, p = .02, 5 mM: 74 ± 39%, p = .03) while reducing INa,L at the higher concentration (RNCMs, 5 mM: -45 ± 11%, p = .04). NR (5 mM) decreased NaV1.5 K1479 acetylation but increased INa in HEK293 cells expressing a mutant form of NaV1.5 with disruption of the acetylation site (NaV1.5-K1479A). Disruption of the PKC phosphorylation site abolished the effect of NR on INa. Furthermore, NAM (5 mM) had no effect on INa in RNCMs or in HEK293 cells expressing wild-type NaV1.5, but increased INa in HEK293 cells expressing NaV1.5-K1479A. Dietary supplementation with NR for 10-12 weeks decreased QTc in C57BL/6 J mice (0.35% NR: -4.9 ± 2.0%, p = .14; 1.0% NR: -9.5 ± 2.8%, p = .01). CONCLUSIONS NAD+ precursors differentially regulate NaV1.5 via multiple mechanisms. NR increases INa, decreases INa,L, and warrants further investigation as a potential therapy for arrhythmic disorders caused by NaV1.5 deficiency and/or dysfunction.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Jin-Young Yoon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Jared M McLendon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Haider Mehdi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Mark S Schmidt
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Alexander M Greiner
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Pravda Quinones
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Gina M Morgan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Ryan L Boudreau
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Barry London
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America; Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America.
| |
Collapse
|
45
|
Du YY, Zou L, Wang XX, Dai LY, Ling XN, Xu ZX. Inhibitory effect of gallic acid on voltage-gated Na + channels in rat cardiomyocytes. Clin Exp Pharmacol Physiol 2020; 47:771-779. [PMID: 31925815 DOI: 10.1111/1440-1681.13254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
Gallic acid (GA) has a protective effect on the cardiovascular system. To study its cardiac electrophysiological effects, voltage-gated Na+ channel currents (INa ) were recorded in rat cardiomyocytes using whole-cell patch clamp techniques. Moreover, the effects of GA on aconitine-induced arrhythmias were assessed using electrocardiograms in vivo. We found that the current-voltage characteristic curve (I-V curve) of INa significantly shifted in the presence of 1, 3, and 10 μmol/L of GA. The peak sodium current density (INa -Peak) was reduced from -84.02 ± 5.68 pA/pF to -65.78 ± 3.96 pA/pF with 1 μmol/L, -54.45 ± 5.18 pA/pF with 3 μmol/L, and -44.20 ± 4.35 pA/pF with 10 μmol/L, respectively. GA shifted the steady-state activation curve of INa and recovery curve to the right and the steady-state inactivation curve to the left. The observed inhibitory effect was comparable to that of amiodarone. GA pre-treatment significantly prolonged the onset of fatal ventricular fibrillation. Our results indicated that GA inhibited INa in rat ventricular myocytes and aconitine-induced arrhythmias in vivo. These results suggest the potential of GA for development as a novel anti-arrhythmic therapeutic.
Collapse
Affiliation(s)
- Ya-Ya Du
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Li Zou
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xiu-Xiu Wang
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Le-Yao Dai
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Xin-Nan Ling
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Zheng-Xin Xu
- Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Animal Infectious Diseases and Zoonosis Prevention and Control, Yangzhou, China.,Key Laboratory of Integrative Medicine Prevention and Treatment in Jiangsu Province Room, Yangzhou, China.,Jiangsu Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Yangzhou, China
| |
Collapse
|
46
|
Tran HNT, Tran P, Deuis JR, Agwa AJ, Zhang AH, Vetter I, Schroeder CI. Enzymatic Ligation of a Pore Blocker Toxin and a Gating Modifier Toxin: Creating Double-Knotted Peptides with Improved Sodium Channel NaV1.7 Inhibition. Bioconjug Chem 2019; 31:64-73. [DOI: 10.1021/acs.bioconjchem.9b00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hue N. T. Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Akello J. Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan H. Zhang
- Center for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
47
|
Wang F, Liu Y, Liao H, Xue Y, Zhan X, Fang X, Liang Y, Wei W, Rao F, Zhang Q, Deng H, Lin Y, Liu F, Lin W, Zhang B, Wu S. Genetic Variants on SCN5A, KCNQ1, and KCNH2 in Patients with Ventricular Arrhythmias during Acute Myocardial Infarction in a Chinese Population. Cardiology 2019; 145:38-45. [PMID: 31751991 DOI: 10.1159/000502833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. About half of sudden deaths from AMI are mainly because of malignant ventricular arrhythmias (VA) after AMI. The sodium channel gene SCN5A and potassium channel genes KCNQ1 and KCNH2 have been widely reported to be genetic risk factors for arrhythmia including Brugada syndrome and long QT syndrome (LQTS). A few studies reported the association of SCN5A variant with ventricular tachycardia (VT)/ventricular fibrillation (VF) complicating AMI. However, little is known about the role of KCNQ1 and KCNH2 in AMI with VA (AMI_VA). This study focuses on investigating the potential variants on SCN5A, KCNQ1, and KCNH2 contributing to AMI with VA in a Chinese population. MATERIALS AND METHODS In total, 139 patients with AMI_VA, and 337 patients with AMI only, were included. Thirty exonic sites were selected to be screened. Sanger sequencing was used to detect variants. A subsequent association study was also performed between AMI_VA and AMI. RESULTS Twelve variants [5 on KCNH2(NM_000238.3), 3 on KCNQ1(NM_000218.2), and 4 on SCN5A(NM_198056.2)] were identified in AMI_VA patients. Only 5 (KCNH2: c.2690A>C; KCNQ1: c.1927G>A, c.1343delC; SCN5A: c.1673A>G, c.3578G>A) of them are missense variants. Two (KCNQ1: c.1343delC and SCN5A: c.3578G>A) of the missense variants were predicted to be clinically pathogenic. All these variants were further genotyped in an AMI without VA group. The association study identified a statistically significant difference in genotype frequency of KCNH2: c.1539C>T and KCNH2: c.1467C>T between the AMI and AMI_VA groups. Moreover, 2 rare variants (KCNQ1: c.1944C>T and SCN5A: c.3621C>T) showed an elevated allelic frequency (more than 1.5-fold) in the AMI_VA group when compared to the AMI group. CONCLUSION Twelve variants (predicting from benign/VUS to pathogenic) were identified on KCNH2, KCNQ1, and SCN5A in patients with AMI_VA. Genotype frequency comparison between AMI_VA and AMI identified 2 significant common variants on KCNH2. Meanwhile, the allelic frequency of 2 rare variants on KCNQ1 and SCN5A, respectively, were identified to be enriched in AMI_VA, although there was no statistical significance. The present study suggests that the ion-channel genes KCNH2, KCNQ1, and SCN5A may contribute to the pathogenesis of VA during AMI.
Collapse
Affiliation(s)
- Feng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongtao Liao
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yumei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianzhang Zhan
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xianhong Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanhong Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qianhuan Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yubi Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fangzhou Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,
| | - Shulin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Clinical Pharmacology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
48
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
49
|
Casini S, Albesa M, Wang Z, Portero V, Ross-Kaschitza D, Rougier JS, Marchal GA, Chung WK, Bezzina CR, Abriel H, Remme CA. Functional Consequences of the SCN5A-p.Y1977N Mutation within the PY Ubiquitylation Motif: Discrepancy between HEK293 Cells and Transgenic Mice. Int J Mol Sci 2019; 20:ijms20205033. [PMID: 31614475 PMCID: PMC6829230 DOI: 10.3390/ijms20205033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023] Open
Abstract
Dysfunction of the cardiac sodium channel Nav1.5 (encoded by the SCN5A gene) is associated with arrhythmias and sudden cardiac death. SCN5A mutations associated with long QT syndrome type 3 (LQT3) lead to enhanced late sodium current and consequent action potential (AP) prolongation. Internalization and degradation of Nav1.5 is regulated by ubiquitylation, a post-translational mechanism that involves binding of the ubiquitin ligase Nedd4-2 to a proline-proline-serine-tyrosine sequence of Nav1.5, designated the PY-motif. We investigated the biophysical properties of the LQT3-associated SCN5A-p.Y1977N mutation located in the Nav1.5 PY-motif, both in HEK293 cells as well as in newly generated mice harboring the mouse homolog mutation Scn5a-p.Y1981N. We found that in HEK293 cells, the SCN5A-p.Y1977N mutation abolished the interaction between Nav1.5 and Nedd4-2, suppressed PY-motif-dependent ubiquitylation of Nav1.5, and consequently abrogated Nedd4-2 induced sodium current (INa) decrease. Nevertheless, homozygous mice harboring the Scn5a-p.Y1981N mutation showed no electrophysiological alterations nor changes in AP or (late) INa properties, questioning the in vivo relevance of the PY-motif. Our findings suggest the presence of compensatory mechanisms, with additional, as yet unknown, factors likely required to reduce the “ubiquitylation reserve” of Nav1.5. Future identification of such modulatory factors may identify potential triggers for arrhythmias and sudden cardiac death in the setting of LQT3 mutations.
Collapse
Affiliation(s)
- Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Maxime Albesa
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Zizun Wang
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Vincent Portero
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Daniela Ross-Kaschitza
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Jean-Sébastien Rougier
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Gerard A Marchal
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Wendy K Chung
- Departments of Pediatrics & Medicine, Columbia University Medical Center, 1150 St Nicholas Avenue, New York, NY 10032, USA.
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| | - Hugues Abriel
- Ion Channels and Channelopathies Laboratory, Institute for Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| | - Carol Ann Remme
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|