1
|
Wang T, Roach MJ, Harvey K, Morlanes JE, Kiedik B, Al-Eryani G, Greenwald A, Kalavros N, Dezem FS, Ma Y, Pita-Juarez YH, Wise K, Degletagne C, Elz A, Hadadianpour A, Johanneson J, Pakiam F, Ryu H, Newell EW, Tonon L, Kohlway A, Drennon T, Abousoud J, Stott R, Lund P, Durruthy J, Vallejo AF, Li W, Salomon R, Kaczorowski D, Warren J, Butler LM, O'Toole S, Plummer J, Vlachos IS, Lundeberg J, Swarbrick A, Martelotto LG. snPATHO-seq, a versatile FFPE single-nucleus RNA sequencing method to unlock pathology archives. Commun Biol 2024; 7:1340. [PMID: 39414943 PMCID: PMC11484811 DOI: 10.1038/s42003-024-07043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) samples are valuable but underutilized in single-cell omics research due to their low RNA quality. In this study, leveraging a recent advance in single-cell genomic technology, we introduce snPATHO-seq, a versatile method to derive high-quality single-nucleus transcriptomic data from FFPE samples. We benchmarked the performance of the snPATHO-seq workflow against existing 10x 3' and Flex assays designed for frozen or fresh samples and highlighted the consistency in snRNA-seq data produced by all workflows. The snPATHO-seq workflow also demonstrated high robustness when tested across a wide range of healthy and diseased FFPE tissue samples. When combined with FFPE spatial transcriptomic technologies such as FFPE Visium, the snPATHO-seq provides a multi-modal sampling approach for FFPE samples, allowing more comprehensive transcriptomic characterization.
Collapse
Affiliation(s)
- Taopeng Wang
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michael J Roach
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Kate Harvey
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | - Beata Kiedik
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ghamdan Al-Eryani
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Alissa Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nikolaos Kalavros
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Felipe Segato Dezem
- Center for Spatial Omics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuling Ma
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yered H Pita-Juarez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kellie Wise
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Cyril Degletagne
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, Lyon, France
| | - Anna Elz
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Azi Hadadianpour
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack Johanneson
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Fiona Pakiam
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Evan W Newell
- Fred Hutch Innovation Lab, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Laurie Tonon
- CRCL Core facilities, Centre de Recherche en Cancérologie de Lyon (CRCL) INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, Lyon, France
- Fondation Synergie Lyon Cancer, Plateforme de Bioinformatique Gilles Thomas, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wenyan Li
- Children's Cancer Institute, UNSW Lowy Cancer Research Centre, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert Salomon
- Children's Cancer Institute, UNSW Lowy Cancer Research Centre, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Dominik Kaczorowski
- Cellular Genomics Platform, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joanna Warren
- Cellular Genomics Platform, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Sandra O'Toole
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- School of Medicine, University of Western Sydney, Sydney, NSW, Australia
| | - Jasmine Plummer
- Center for Spatial Omics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joakim Lundeberg
- KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Luciano G Martelotto
- Adelaide Centre for Epigenetics, University of Adelaide, Adelaide, SA, Australia.
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Cizauskas HE, Burnham HV, Panni A, Peña A, Alvarez-Arce A, Davis MT, Araujo KN, Delligatti CE, Edassery S, Kirk JA, Arora R, Barefield DY. Proteolytic degradation of atrial sarcomere proteins underlies contractile defects in atrial fibrillation. Am J Physiol Heart Circ Physiol 2024; 327:H460-H472. [PMID: 38940916 PMCID: PMC11442024 DOI: 10.1152/ajpheart.00148.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Atrial fibrillation (AFib) is the most common cardiac rhythm disturbance, often treated via electrical cardioversion. Following rhythm restoration, a period of depressed mechanical function known as atrial stunning occurs, suggesting that defects in contractility occur in AFib and are revealed upon restoration of rhythm. This project aims to define the contractile remodeling that occurs in AFib. To assess contractile function, we used a canine atrial tachypacing model of induced AFib. Mass spectrometry analysis showed dysregulation of contractile proteins in samples from AFib compared with sinus rhythm atria. Atrial cardiomyocytes show reduced force of contraction, decreased resting tension, and increased calcium sensitivity in skinned single cardiomyocyte studies. These alterations correlated with degradation of myofilament proteins including myosin heavy chain altering force of contraction, titin altering resting tension, and troponin I altering calcium sensitivity. We measured degradation of other myofilament proteins, including cardiac myosin binding protein C and actinin, that show degradation products in the AFib samples that are absent in the sinus rhythm atria. Many of the degradation products appeared as discrete cleavage products that are generated by calpain proteolysis. We assessed calpain activity and found it to be significantly increased. These results provide an understanding of the contractile remodeling that occurs in AFib and provide insight into the molecular explanation for atrial stunning and the increased risk of atrial thrombus and stroke in AFib.NEW & NOTEWORTHY Atrial fibrillation is the most common cardiac rhythm disorder, and remodeling during atrial fibrillation is highly variable between patients. This study has defined the biophysical changes in contractility that occur in atrial fibrillation along with identifying potential molecular mechanisms that may drive this remodeling. This includes proteolysis of several myofilament proteins including titin, troponin I, myosin heavy chain, myosin binding protein C, and actinin, which is consistent with the observed contractile deficits.
Collapse
Affiliation(s)
- Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Azaria Panni
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Alexandra Peña
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Alejandro Alvarez-Arce
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - M Therese Davis
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Kelly N Araujo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Christine E Delligatti
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Seby Edassery
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Gondal MUR, Mehmood RS, Khan RP, Malik J. Atrial myopathy. Curr Probl Cardiol 2024; 49:102381. [PMID: 38191102 DOI: 10.1016/j.cpcardiol.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
This paper delves into the progressive concept of atrial myopathy, shedding light on its development and its impact on atrial characteristics. It extensively explores the intricate connections between atrial myopathy, atrial fibrillation (AF), and strokes. Researchers have sought additional contributors to AF-related strokes due to the absence of a clear timing correlation between paroxysmal AF episodes and strokes in patients with cardiac implantable electronic devices. Through various animal models and human investigations, a close interrelation among aging, inflammation, oxidative stress, and stretching mechanisms has been identified. These mechanisms contribute to fibrosis, alterations in electrical properties, autonomic remodeling, and a heightened pro-thrombotic state. These interconnected factors establish a detrimental cycle, exacerbating atrial myopathy and elevating the risk of sustained AF and strokes. By emphasizing the significance of atrial myopathy and the risk of strokes that are distinct from AF, the paper also discusses methods for identifying patients with atrial myopathy. Moreover, it proposes an approach to incorporate the concept of atrial myopathy into clinical practice to guide anticoagulation decisions in individuals with AF.
Collapse
Affiliation(s)
| | - Raja Sadam Mehmood
- Department of Medicine, Shifa International Hospital, Islamabad, Pakistan
| | | | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan.
| |
Collapse
|
4
|
Inciardi RM, Bonelli A, Biering‐Sorensen T, Cameli M, Pagnesi M, Lombardi CM, Solomon SD, Metra M. Left atrial disease and left atrial reverse remodelling across different stages of heart failure development and progression: a new target for prevention and treatment. Eur J Heart Fail 2022; 24:959-975. [PMID: 35598167 PMCID: PMC9542359 DOI: 10.1002/ejhf.2562] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
The left atrium is a dynamic chamber with peculiar characteristics. Stressors and disease mechanisms may deeply modify its structure and function, leading to left atrial remodelling and disease. Left atrial disease is a predictor of poor outcomes. It may be a consequence of left ventricular systolic and diastolic dysfunction and neurohormonal and inflammatory activation and/or actively contribute to the progression and clinical course of heart failure through multiple mechanisms such as left ventricular filling and development of atrial fibrillation and subsequent embolic events. There is growing evidence that therapy may improve left atrial function and reverse left atrial remodelling. Whether this translates into changes in patient's prognosis is still unknown. In this review we report current data about changes in left atrial size and function across different stages of development and progression of heart failure. At each stage, drug therapies, lifestyle interventions and procedures have been associated with improvement in left atrial structure and function, namely a reduction in left atrial volume and/or an improvement in left atrial strain function, a process that can be defined as left atrial reverse remodelling and, in some cases, this has been associated with improvement in clinical outcomes. Further evidence is still needed mainly with respect of the possible role of left atrial reverse remodelling as an independent mechanism affecting the patient's clinical course and as regards better standardization of clinically meaningful changes in left atrial measurements. Summarizing current evidence, this review may be the basis for further studies.
Collapse
Affiliation(s)
- Riccardo M. Inciardi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Andrea Bonelli
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Tor Biering‐Sorensen
- Department of Cardiology, Herlev and Gentofte Hospital, and the Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Matteo Cameli
- Division of Cardiology, Department of Medical BiotechnologiesUniversity of SienaSienaItaly
| | - Matteo Pagnesi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Carlo Mario Lombardi
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Scott D. Solomon
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMAUSA
| | - Marco Metra
- ASST Spedali Civili di Brescia and Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| |
Collapse
|
5
|
Cao ZM, Qiang J, Zhu JH, Li HX, Tao YF, He J, Xu P, Dong ZJ. Transcriptional inhibition of steroidogenic factor 1 in vivo in Oreochromis niloticus increased weight and suppressed gonad development. Gene 2022; 809:146023. [PMID: 34673205 DOI: 10.1016/j.gene.2021.146023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Steroidogenic factor 1 (sf1) (officially designated as nuclear receptor subfamily 5 group A member 1 [NR5A1]) is an important regulator of gonad development. Previous studies on sf1 in fish have been limited to cloning and in vitro expression experiments. In this study, we used antisense RNA to down-regulate sf1 transcription and sf1 protein expression. Down-regulation of sf1 resulted in an increase in body weight and inhibition of gonadal development in both males and females with the consequent lower gonadosomatic index compared to fish in the control group. Hematoxylin-eosin staining of the gonads of fish with down-regulated sf1 revealed fewer seminiferous tubules and sperm in the testis of males. In addition, the oocytes were mainly stage II and many of them were atretic follicle. We conducted comparative transcriptome and proteome analyses between the sf1-down-regulated group and the control group. These analyses revealed multiple gene-protein pairs and pathways involved in regulating the observed changes, including 44 and 74 differently expressed genes and proteins in males and females, respectively. The results indicated that dysfunctional retinal metabolism and fatty acid metabolism could be causes of the observed weight gain and gonad abnormalities in sf1-down-regulated fish. These findings demonstrate the feasibility of using antisense RNA for gene editing in fish. This methodology allows the study gene function in species less amenable to gene editing as for example aquaculture species with long life cycles.
Collapse
Affiliation(s)
- Zhe-Ming Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jun-Hao Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Hong-Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Jie He
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Zai-Jie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
6
|
Ottolia M, John S, Hazan A, Goldhaber JI. The Cardiac Na + -Ca 2+ Exchanger: From Structure to Function. Compr Physiol 2021; 12:2681-2717. [PMID: 34964124 DOI: 10.1002/cphy.c200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, California, USA
| | - Adina Hazan
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Kunišek L, Matušan Ilijaš K, Medved I, Ferenčić A, Erdeljac D, Arbanas S, Kunišek J. Cardiomyocytes calpain 2 expression: Diagnostic forensic marker for sudden cardiac death caused by early myocardial ischemia and an indicator of the duration of myocardial agonal period? Med Hypotheses 2021; 158:110738. [PMID: 34863067 DOI: 10.1016/j.mehy.2021.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Sudden cardiac death (SCD) is an unexpected natural death of cardiac etiology and occurs within one hour of the onset of cardiac symptoms in an apparently healthy subject or within 24 h if death is not witnessed. The diagnosis of early myocardial ischemia (EMI) or acute myocardial infarction (AMI) after death is a challenge for forensic pathologists especially when death occurs in a short period of time after the onset of myocardial ischemia. Disorder of cardiomyocytes Ca2+ homeostasis caused by myocardial ischemia during SCD can lead to the activation of calcium-activated non-lysosomal cysteine protease, including calpains. They serve as a proteolytic unit for cell balance and also participate in the processes of apoptosis and necrosis. Agony is a period that precedes somatic death that differs from cellular agony which may evolve for hours after somatic death lasting differently depending on the cell type and mechanism of death. We hypothesize that the expression of calpain 2 in cardiomyocytes could be a specific and sensitive diagnostic forensic marker for SCD caused by EMI and an indicator of the duration of myocardial agonal period. We will conduct a retrospective study that will prove this hypothesis on the respondents who died of SCD by EMI and AMI, instant death by head gunshot and hanging. There is no data on such an analysis in the available literature. The standard hematoxylin-eosin staining will be used to detect cardiac tissue damage. The expression of calpain 2 in cardiomyocytes will be analyzed immunohistochemically. In SCD caused by EMI we expect lower level of calpain 2 expressionin comparison to AMI due to shorter duration of dying. Similar, we predict in the remote region lower calpain 2 expression than in the region of ischemia for both EMI and AMI. In instant death caused by perforating traumatic brain injury we expect mild or no calpain 2 expression throughout the whole myocardium because of very short (immediate) duration of dying. In death caused by hanging calpain 2 expression throughout the whole myocardium should be strong because of longer cellular agonal period. We expect that our results would indicate the immediate activation of calpain 2 in different causes of cardiomyocytes death. From the degree of expression of calpain 2 we could conclude about the duration of cardiomyocytes agony so calpain 2 could be used as a marker for the assessment the duration of somatic and cellular agony.
Collapse
Affiliation(s)
- Leon Kunišek
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia.
| | - Koviljka Matušan Ilijaš
- University Hospital Center Rijeka, Department of Pathology and Cytology, Rijeka, Krešimirova 42, Croatia
| | - Igor Medved
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia
| | - Antun Ferenčić
- University of Rijeka, Faculty of Medicine, Department of Forensic Medicine and Criminalistics, Rijeka, Croatia
| | - Danijela Erdeljac
- University Hospital Center Rijeka, Department of Cardiothoracic Surgery, Division of Cardiac Surgery, Rijeka, Krešimirova 42, Croatia
| | - Silvia Arbanas
- University of Rijeka, Faculty of Medicine, Department of Forensic Medicine and Criminalistics, Rijeka, Croatia
| | - Juraj Kunišek
- Thalassotherapia Crikvenica, Special Hospital for Medical Rehabilitation Crikvenica, Gajevo šetalište 21, Croatia
| |
Collapse
|
8
|
Hoover CA, Ott KL, Manring HR, Dew T, Borzok MA, Wright NT. Creating a 'Molecular Band-Aid'; Blocking an Exposed Protease Target Site in Desmoplakin. J Pers Med 2021; 11:jpm11050401. [PMID: 34065787 PMCID: PMC8151963 DOI: 10.3390/jpm11050401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation ‘hot-spot’ within the NH2-terminal third of the DSP protein (specifically, residues 299–515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447–451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation—tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This ‘molecular band-aid’ provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.
Collapse
Affiliation(s)
- Catherine A. Hoover
- Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA 16933, USA;
| | - Kendahl L. Ott
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA;
| | - Heather R. Manring
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (H.R.M.); (T.D.)
| | - Trevor Dew
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (H.R.M.); (T.D.)
| | - Maegen A. Borzok
- Department of Natural Sciences, Mansfield University of Pennsylvania, Mansfield, PA 16933, USA;
- Correspondence: (M.A.B.); (N.T.W.)
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA;
- Correspondence: (M.A.B.); (N.T.W.)
| |
Collapse
|
9
|
Acosta-Gutiérrez EG, Alba-Amaya AM, Roncancio-Rodríguez S, Navarro-Vargas JR. Post-cardiac arrest syndrome in adult hospitalized patients. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2021. [DOI: 10.5554/22562087.e972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Adult In-hospital Cardiac Arrest (IHCA) is defined as the loss of circulation of an in-patient. Following high-quality cardiopulmonary resuscitation (CPR), if the return of spontaneous circulation (ROSC) is achieved, the post-cardiac arrest syndrome develops (PCAS). This review is intended to discuss the current diagnosis and treatment of PCAS. To approach this topic, a bibliography search was conducted through direct digital access to the scientific literature published in English and Spanish between 2014 and 2020, in MedLine, SciELO, Embase and Cochrane. This search resulted in 248 articles from which original articles, systematic reviews, meta-analyses and clinical practice guidelines were selected for a total of 56 documents. The etiologies may be divided into 56% of in-hospital cardiac, and 44% of non-cardiac arrests. The incidence of this physiological collapse is up to 1.6 cases/1,000 patients admitted, and its frequency is higher in the intensive care units (ICU), with an overall survival rate of 13% at one year. The primary components of PCAS are brain injury, myocardial dysfunction and the persistence of the precipitating pathology. The mainstays for managing PCAS are the prevention of cardiac arrest, ventilation support, control of peri-cardiac arrest arrythmias, and interventions to optimize neurologic recovery. A knowledgeable healthcare staff in PCAS results in improved patient survival and future quality of life. Finally, there is clear need to do further research in the Latin American Population.
Collapse
|
10
|
Memantine and Ibuprofen pretreatment exerts anti-inflammatory effect against streptozotocin-induced astroglial inflammation via modulation of NMDA receptor-associated downstream calcium ion signaling. Inflammopharmacology 2020; 29:183-192. [PMID: 33026572 DOI: 10.1007/s10787-020-00760-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
We had previously reported that neuroinflammation and memory impairment associated with intracerebroventricular streptozotocin (ICV STZ) injection in rats was due to glial activation and modulation of the N-methyl-D-aspartate (NMDA) receptor function. However, the exact role of the NMDA receptor and the molecules associated with downstream calcium ion signaling in STZ-induced astroglial activation is not known. Thus, in the present study, Memantine (an NMDA receptor antagonist) and Ibuprofen (an anti-inflammatory drug) were used as the pharmacological tool to investigate the molecular mechanisms involved in STZ-induced astroglial inflammation. We have studied the effect of STZ (100 μM) treatment for 24 h on NMDA receptor subunits (NR1, NR2A, and NR2B) expression and its associated calcium ion regulated molecules calcium/calmodulin-dependent protein kinase II subunit α (CaMKIIα), cyclic AMP-response element-binding (CREB) protein, Calpain, and Caspase 3. We have found a significant increase in the expression of NR1, NR2B, Calpain, and Caspase 3 expression, whereas a decrease in the level of NR2A, CaMKIIα, and CREB protein expression after 24 h of STZ treatment. These results indicate that STZ altered the NMDA receptor subunit expression and its downstream calcium (Ca2+) ion signaling molecules. We have also found that both Memantine (5 µM) and Ibuprofen (200 μM) significantly prevented the STZ-induced change in CaMKIIα, CREB, Calpain, and Caspase 3 expressions in C6 astrocytoma cells. Interestingly, only Memantine (and not Ibuprofen) was able to prevent the changes in NMDA receptor subunit expression in STZ-treated astrocytoma cells. STZ treatment also increased the level of glial fibrillary acidic protein (GFAP), tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), and decreased the level of interleukin-10 (IL-10), indicating inflammatory condition, which was restored by both Memantine and Ibuprofen. These results suggest that both Memantine and Ibuprofen exert anti-inflammatory effect against STZ-induced astroglial activation and neuroinflammation via modulation of NMDA receptor-associated downstream calcium signaling cascade. However, only Memantine (not Ibuprofen) was able to revert STZ-induced changes in NMDA receptor subunit expression.
Collapse
|
11
|
Ko YU, Song HY, Kim WK, Yune TY, Yun N, Oh YJ. Calpain-mediated cleavage of Fbxw7 during excitotoxicity. Neurosci Lett 2020; 736:135265. [PMID: 32707070 DOI: 10.1016/j.neulet.2020.135265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Neuronal cell death induced by ischemic injury has been attributed to glutamate receptor-mediated excitotoxicity, which is known to be accompanied by Ca2+ overload in the cytoplasm with concomitant activation of calcium-dependent mechanisms. More specifically, the overactivation of calpains, calcium-dependent cysteine proteases, have been associated with neuronal cell death following glutamate treatment. Previously, we observed decreased expression levels of F-box/WD repeat domain-containing protein 7 (Fbxw7) after the hyperactivation of cyclin-dependent kinase 5 (Cdk5) in cortical neurons challenged with glutamate. As determined using in vitro calpain cleavage assays, we demonstrated that the cleavage of Fbxw7 was mediated by activated calpain and attenuated in the presence of the calpain inhibitor, calpeptin. Using the rat middle cerebral artery occlusion model, we confirmed that Fbxw7 was indeed cleaved by activated calpain in the ipsilateral cortex. Based on our data, we hypothesize that the negative regulation of Fbxw7 by calpain may contribute to neuronal cell death and that the preservation of Fbxw7 by the inhibition of calpain, Cdk5, or both composes a novel protective mechanism following excitotoxicity.
Collapse
Affiliation(s)
- Yeon Uk Ko
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, South Korea
| | - Hwa Young Song
- Department of Neuroscience, College of Medicine, Korea University, Seoul 02841, South Korea
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 02841, South Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, South Korea
| | - Nuri Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, South Korea.
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, South Korea.
| |
Collapse
|
12
|
Kornspan JD, Kosower NS, Vaisid T, Katzhandler J, Rottem S. Novel synthetic lipopeptides derived from Mycoplasma hyorhinis upregulate calpastatin in SH-SY5Y neuroblastoma cells and induce a neuroprotective effect against amyloid-β-peptide toxicity. FEMS Microbiol Lett 2020; 367:5824629. [PMID: 32329786 DOI: 10.1093/femsle/fnaa073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/22/2020] [Indexed: 11/14/2022] Open
Abstract
Previously, we showed that contamination of SH-SY5Y neuroblastoma cells by Mycoplasma hyorhinis strains NDMh and MCLD leads to increased levels of calpastatin (the endogenous, specific inhibitor of the Ca2+-dependent protease calpain), resulting in inhibition of calpain activation. We have found that the increased calpastatin level is promoted by the lipoprotein fraction (MhLpp) of the mycoplasmal membrane. Here, we present MhLpp-based novel synthetic lipopeptides that induce upregulation of calpastatin in SH-SY5Y neuroblastoma cells, leading to protection of the treated cells against Ca2+/amyloid-β-peptide toxicity. These lipopeptides present a new class of promising agents against calpain-induced cell toxicity.
Collapse
Affiliation(s)
- Jonathan D Kornspan
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nechama S Kosower
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Vaisid
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
13
|
Abstract
The authors discuss the concept of atrial myopathy; its relationship to aging, electrophysiological remodeling, and autonomic remodeling; the interplay between atrial myopathy, AF, and stroke; and suggest how to identify patients with atrial myopathy and how to incorporate atrial myopathy into decisions about anticoagulation. Atrial myopathy seen in animal models of AF and in patients with AF is the result of a combination of factors that lead to electrical and structural remodeling in the atrium. Although AF may lead to the initiation and/or progression of this myopathy, the presence of AF is by no means essential to the development or the maintenance of the atrial myopathic state. Methods to identify atrial myopathy include atrial electrograms, tissue biopsy, cardiac imaging, and certain serum biomarkers. A promising modality is 4-dimensional flow cardiac magnetic resonance. The concept of atrial myopathy may help guide oral anticoagulant therapy in selected groups of patients with AF, particularly those with low to intermediate risk of strokes and those who have undergone successful AF ablation. This review highlights the need for prospective randomized trials to test these hypotheses.
This paper discusses the evolving concept of atrial myopathy by presenting how it develops and how it affects the properties of the atria. It also reviews the complex relationships among atrial myopathy, atrial fibrillation (AF), and stroke. Finally, it discusses how to apply the concept of atrial myopathy in the clinical setting—to identify patients with atrial myopathy and to be more selective in anticoagulation in a subset of patients with AF. An apparent lack of a temporal relationship between episodes of paroxysmal AF and stroke in patients with cardiac implantable electronic devices has led investigators to search for additional factors that are responsible for AF-related strokes. Multiple animal models and human studies have revealed a close interplay of atrial myopathy, AF, and stroke via various mechanisms (e.g., aging, inflammation, oxidative stress, and stretch), which, in turn, lead to fibrosis, electrical and autonomic remodeling, and a pro-thrombotic state. The complex interplay among these mechanisms creates a vicious cycle of ever-worsening atrial myopathy and a higher risk of more sustained AF and strokes. By highlighting the importance of atrial myopathy and the risk of strokes independent of AF, this paper reviews the methods to identify patients with atrial myopathy and proposes a way to incorporate the concept of atrial myopathy to guide anticoagulation in patients with AF.
Collapse
Key Words
- 4D, 4 dimensional
- AF, atrial fibrillation
- APD, action potential duration
- CMR, cardiac magnetic resonance
- CRP, C-reactive protein
- Ca2+, calcium
- Cx, connexin
- GDF, growth differentiation factor
- IL, interleukin
- K+, potassium
- LA, left atrial
- LAA, left atrial appendage
- NADPH, nicotinamide adenine dinucleotide phosphate
- NOX2, catalytic, membrane-bound subunit of NADPH oxidase
- NT-proBNP, N-terminal pro B-type natriuretic peptide
- OAC, oral anticoagulant
- ROS, reactive oxygen species
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- atrial fibrillation
- atrial myopathy
- electrophysiology
- thrombosis
Collapse
Affiliation(s)
- Mark J Shen
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Cardiac Electrophysiology, Prairie Heart Institute of Illinois, HSHS St. John's Hospital, Springfield, Illinois
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.,Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), and CIBERCV, Madrid, Spain
| |
Collapse
|
14
|
Cao T, Fan S, Zheng D, Wang G, Yu Y, Chen R, Song LS, Fan GC, Zhang Z, Peng T. Increased calpain-1 in mitochondria induces dilated heart failure in mice: role of mitochondrial superoxide anion. Basic Res Cardiol 2019; 114:17. [PMID: 30874894 PMCID: PMC9444798 DOI: 10.1007/s00395-019-0726-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
We and others have reported that calpain-1 was increased in myocardial mitochondria from various animal models of heart disease. This study investigated whether constitutive up-regulation of calpain-1 restricted to mitochondria induced myocardial injury and heart failure and, if so, whether these phenotypes could be rescued by selective inhibition of mitochondrial superoxide production. Transgenic mice with human CAPN1 up-regulation restricted to mitochondria in cardiomyocytes (Tg-mtCapn1/tTA) were generated and characterized with low and high over-expression of transgenic human CAPN1 restricted to mitochondria, respectively. Transgenic up-regulation of mitochondria-targeted CAPN1 dose-dependently induced cardiac cell death, adverse myocardial remodeling, heart failure, and early death in mice, the changes of which were associated with mitochondrial dysfunction and mitochondrial superoxide generation. Importantly, a daily injection of mitochondria-targeted superoxide dismutase mimetics mito-TEMPO for 1 month starting from age 2 months attenuated cardiac cell death, adverse myocardial remodeling and heart failure, and reduced mortality in Tg-mtCapn1/tTA mice. In contrast, administration of TEMPO did not achieve similar cardiac protection in transgenic mice. Furthermore, transgenic up-regulation of mitochondria-targeted CAPN1 induced a reduction of ATP5A1 protein and ATP synthase activity in hearts. In cultured cardiomyocytes, increased calpain-1 in mitochondria promoted mitochondrial permeability transition pore (mPTP) opening and induced cell death, which were prevented by over-expression of ATP5A1, mito-TEMPO or cyclosporin A, an inhibitor of mPTP opening. In conclusion, this study has provided direct evidence demonstrating that increased mitochondrial calpain-1 is an important mechanism contributing to myocardial injury and heart failure by disrupting ATP synthase, and promoting mitochondrial superoxide generation and mPTP opening.
Collapse
Affiliation(s)
- Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuai Fan
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4S2, Canada
- Department of Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yong Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Shanghai Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhuxu Zhang
- Department of Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
- Critical Illness Research, Lawson Health Research Institute, London Health Sciences Centre, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, N6A 4S2, Canada.
- Department of Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada.
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, N6A 4S2, Canada.
| |
Collapse
|
15
|
Choy MK, Javierre BM, Williams SG, Baross SL, Liu Y, Wingett SW, Akbarov A, Wallace C, Freire-Pritchett P, Rugg-Gunn PJ, Spivakov M, Fraser P, Keavney BD. Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nat Commun 2018; 9:2526. [PMID: 29955040 PMCID: PMC6023870 DOI: 10.1038/s41467-018-04931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Long-range chromosomal interactions bring distal regulatory elements and promoters together to regulate gene expression in biological processes. By performing promoter capture Hi-C (PCHi-C) on human embryonic stem cell-derived cardiomyocytes (hESC-CMs), we show that such promoter interactions are a key mechanism by which enhancers contact their target genes after hESC-CM differentiation from hESCs. We also show that the promoter interactome of hESC-CMs is associated with expression quantitative trait loci (eQTLs) in cardiac left ventricular tissue; captures the dynamic process of genome reorganisation after hESC-CM differentiation; overlaps genome-wide association study (GWAS) regions associated with heart rate; and identifies new candidate genes in such regions. These findings indicate that regulatory elements in hESC-CMs identified by our approach control gene expression involved in ventricular conduction and rhythm of the heart. The study of promoter interactions in other hESC-derived cell types may be of utility in functional investigation of GWAS-associated regions.
Collapse
Affiliation(s)
- Mun-Kit Choy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| | - Biola M Javierre
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias I Pujol, Badalona, 08916, Barcelona, Spain
| | - Simon G Williams
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephanie L Baross
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Yingjuan Liu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Paula Freire-Pritchett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Department of Biological Science, Florida State University, Tallahassee, 32306, FL, USA.
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
16
|
Laberge A, Arif S, Moulin VJ. Microvesicles: Intercellular messengers in cutaneous wound healing. J Cell Physiol 2018; 233:5550-5563. [DOI: 10.1002/jcp.26426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Alexandra Laberge
- Centre de recherche en organogenese experimentale de l'Université Laval/LOEXCentre de recherche du CHU de QuebecQuebecCanada
| | - Syrine Arif
- Centre de recherche en organogenese experimentale de l'Université Laval/LOEXCentre de recherche du CHU de QuebecQuebecCanada
| | - Véronique J. Moulin
- Centre de recherche en organogenese experimentale de l'Université Laval/LOEXCentre de recherche du CHU de QuebecQuebecCanada
- Department of SurgeryFaculty of MedicineUniversite LavalQuebecCanada
| |
Collapse
|
17
|
Zhao Y, Cui GM, Zhou NN, Li C, Zhang Q, Sun H, Han B, Zou CW, Wang LJ, Li XD, Wang JC. Calpain-Calcineurin-Nuclear Factor Signaling and the Development of Atrial Fibrillation in Patients with Valvular Heart Disease and Diabetes. J Diabetes Res 2016; 2016:4639654. [PMID: 27123462 PMCID: PMC4830711 DOI: 10.1155/2016/4639654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/17/2016] [Indexed: 12/28/2022] Open
Abstract
Calpain, calcineurin (CaN), and nuclear factor of activated T cell (NFAT) play a key role in the development of atrial fibrillation. Patients with valvular heart disease (VHD) are prone to develop atrial fibrillation (AF). Thus, our current study was aimed at investigating whether activation of calpain-CaN-NFAT pathway is associated with the incidence of AF in the patients with VHD and diabetes. The expressions of calpain 2 and alpha- and beta-isoforms of CaN catalytic subunit (CnA) as well as NFAT-c3 and NFAT-c4 were quantified by quantitative reverse transcription-polymerase chain reaction in atrial tissues from 77 hospitalized patients with VHD and diabetes. The relevant protein content was measured by Western blot and calpain 2 in human atrium was localized by immunohistochemistry. We found that the expressions of calpain 2, CnA alpha and CnA beta, and NFAT-c3 but not NFAT-c4 were significantly elevated in the samples from patients with AF compared to those with sinus rhythm (SR). Elevated protein levels of calpain 2 and CnA were observed in patients with AF, and so was the enhanced localization of calpain 2. We thereby concluded that CaN together with its upstream molecule, calpain 2, and its downstream effector, NFAT-c3, might contribute to the development of AF in patients with VHD and diabetes.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Guo-ming Cui
- Shandong Medicinal Imaging Research Institute, Jinan 250021, China
| | - Nan-nan Zhou
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Cong Li
- Intensive Care Unit, Shouguang People's Hospital, Weifang 262700, China
| | - Qing Zhang
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China
| | - Bo Han
- Department of Cardiac Surgery, The 4th Hospital of Jinan, Jinan 250031, China
| | - Cheng-wei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Li-juan Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiao-dong Li
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jian-chun Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
- *Jian-chun Wang:
| |
Collapse
|
18
|
Hirsh BJ, Copeland-Halperin RS, Halperin JL. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: mechanistic links and clinical inferences. J Am Coll Cardiol 2015; 65:2239-51. [PMID: 25998669 DOI: 10.1016/j.jacc.2015.03.557] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
The association of atrial fibrillation (AF) with ischemic stroke has long been recognized; yet, the pathogenic mechanisms underlying this relationship are incompletely understood. Clinical schemas, such as the CHA2DS2-VASc (congestive heart failure, hypertension, age ≥ 75 years, diabetes mellitus, stroke/transient ischemic attack, vascular disease, age 65 to 74 years, sex category) score, incompletely account for thromboembolic risk, and emerging evidence suggests that stroke can occur in patients with AF even after sinus rhythm is restored. Atrial fibrosis correlates with both the persistence and burden of AF, and gadolinium-enhanced magnetic resonance imaging is gaining utility for detection and quantification of the fibrotic substrate, but methodological challenges limit its use. Factors related to evolution of the thrombogenic fibrotic atrial cardiomyopathy support the view that AF is a marker of stroke risk regardless of whether or not the arrhythmia is sustained. Antithrombotic therapy should be guided by a comprehensive assessment of intrinsic risk rather than the presence or absence of AF at a given time.
Collapse
|
19
|
Hua Y, Nair S. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim Biophys Acta Mol Basis Dis 2014; 1852:195-208. [PMID: 24815358 DOI: 10.1016/j.bbadis.2014.04.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/25/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Yinan Hua
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| | - Sreejayan Nair
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, School of Pharmacy, College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
20
|
Bukowska A, Lendeckel U, Goette A. Atrial Calpains: Mediators of Atrialmyopathies in Atrial Fibrillation. J Atr Fibrillation 2014; 6:1021. [PMID: 27957058 DOI: 10.4022/jafib.1021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/21/2014] [Accepted: 03/04/2014] [Indexed: 01/24/2023]
Abstract
Atrial fibrillation (AF) is associated with substantial structural changes at cell and tissue level. Cellular hypertrophy, disintegration of sarcomeres, mitochondrial swelling and apoptosis have been described as typical histo-morphologic alterations in AF. Main initiators for cellular alterations in fibrillating atrial myocytes are cytosolic calcium overload and oxidative stress. Calpains are intracellular Ca2+- activated proteases and important mediators of calcium overload. Activation of calpains and down-regulation of the calpain inhibitor, calpastatin, contribute to myocardial damage in fibrillating atria. Thus, deregulations of the expression, activity, or subcellular localization of calpain within atrial myocytes have been established as important mediators of atrial myopathy during AF.
Collapse
Affiliation(s)
- Alicja Bukowska
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, Ernst-Moritz-Arndt University,Greifswald, Germany
| | - Andreas Goette
- EUTRAF Working Group: Molecular Electrophysiology, University Hospital Magdeburg, Germany; Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital, Paderborn,Germany
| |
Collapse
|
21
|
JESEL LAURENCE, ARENTZ THOMAS, HERRERA-SIKLODY CLAUDIA, TRENK DIETMAR, ZOBAIRI FATIHA, ABBAS MALAK, WEBER REINHOLD, MINNERS JAN, TOTI FLORENCE, MOREL OLIVIER. Do Atrial Differences in Endothelial Damage, Leukocyte and Platelet Activation, or Tissue Factor Activity Contribute to Chamber-Specific Thrombogenic Status in Patients with Atrial Fibrillation? J Cardiovasc Electrophysiol 2013; 25:266-70. [DOI: 10.1111/jce.12312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 10/04/2013] [Indexed: 01/03/2023]
Affiliation(s)
- LAURENCE JESEL
- University of Strasbourg; EA7293 Stress vasculaire et tissulaire Strasbourg France
| | - THOMAS ARENTZ
- Universitäts-Herzzentrum Freiburg-Bad Krozingen; Klinik für Kardiologie und Angiologie II; Bad Krozingen Germany
| | - CLAUDIA HERRERA-SIKLODY
- Universitäts-Herzzentrum Freiburg-Bad Krozingen; Klinik für Kardiologie und Angiologie II; Bad Krozingen Germany
| | - DIETMAR TRENK
- Universitäts-Herzzentrum Freiburg-Bad Krozingen; Klinik für Kardiologie und Angiologie II; Bad Krozingen Germany
| | - FATIHA ZOBAIRI
- University of Strasbourg; EA7293 Stress vasculaire et tissulaire Strasbourg France
| | - MALAK ABBAS
- University of Strasbourg; EA7293 Stress vasculaire et tissulaire Strasbourg France
- Faculty of Sciences; Lebanon University; Hadath Lebanon
| | - REINHOLD WEBER
- Universitäts-Herzzentrum Freiburg-Bad Krozingen; Klinik für Kardiologie und Angiologie II; Bad Krozingen Germany
| | - JAN MINNERS
- Universitäts-Herzzentrum Freiburg-Bad Krozingen; Klinik für Kardiologie und Angiologie II; Bad Krozingen Germany
| | - FLORENCE TOTI
- University of Strasbourg; EA7293 Stress vasculaire et tissulaire Strasbourg France
| | - OLIVIER MOREL
- University of Strasbourg; EA7293 Stress vasculaire et tissulaire Strasbourg France
| |
Collapse
|
22
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|
23
|
Microparticles in atrial fibrillation: A link between cell activation or apoptosis, tissue remodelling and thrombogenicity. Int J Cardiol 2013; 168:660-9. [DOI: 10.1016/j.ijcard.2013.03.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 12/31/2012] [Accepted: 03/17/2013] [Indexed: 11/24/2022]
|
24
|
Undrovinas A, Maltsev VA, Sabbah HN. Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure. PLoS One 2013; 8:e54436. [PMID: 23596505 PMCID: PMC3626653 DOI: 10.1371/journal.pone.0054436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022] Open
Abstract
Calpain is an intracellular Ca2+ -activated protease that is involved in numerous Ca2+ dependent regulation of protein function in many cell types. This paper tests a hypothesis that calpains are involved in Ca2+ -dependent increase of the late sodium current (INaL) in failing heart. Chronic heart failure (HF) was induced in 2 dogs by multiple coronary artery embolization. Using a conventional patch-clamp technique, the whole-cell INaL was recorded in enzymatically isolated ventricular cardiomyocytes (VCMs) in which INaL was activated by the presence of a higher (1μM) intracellular [Ca2+] in the patch pipette. Cell suspensions were exposed to a cell- permeant calpain inhibitor MDL-28170 for 1–2 h before INaL recordings. The numerical excitation-contraction coupling (ECC) model was used to evaluate electrophysiological effects of calpain inhibition in silico. MDL caused acceleration of INaL decay evaluated by the two-exponential fit (τ1 = 42±3.0 ms τ2 = 435±27 ms, n = 6, in MDL vs. τ1 = 52±2.1 ms τ2 = 605±26 control no vehicle, n = 11, and vs. τ1 = 52±2.8 ms τ2 = 583±37 ms n = 7, control with vehicle, P<0.05 ANOVA). MDL significantly reduced INaL density recorded at –30 mV (0.488±0.03, n = 12, in control no vehicle, 0.4502±0.0210, n = 9 in vehicle vs. 0.166±0.05pA/pF, n = 5, in MDL). Our measurements of current-voltage relationships demonstrated that the INaL density was decreased by MDL in a wide range of potentials, including that for the action potential plateau. At the same time the membrane potential dependency of the steady-state activation and inactivation remained unchanged in the MDL-treated VCMs. Our ECC model predicted that calpain inhibition greatly improves myocyte function by reducing the action potential duration and intracellular diastolic Ca2+ accumulation in the pulse train.
Collapse
Affiliation(s)
- Albertas Undrovinas
- Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States of America.
| | | | | |
Collapse
|
25
|
CORRADI DOMENICO, CALLEGARI SERGIO, MAESTRI ROBERTA, FERRARA DAVID, MANGIERI DOMENICA, ALINOVI ROSSELLA, MOZZONI PAOLA, PINELLI SILVANA, GOLDONI MATTEO, PRIVITERA YLENIAADELAIDE, BARTOLI VERONICA, ASTORRI ETTORE, MACCHI EMILIO, VAGLIO AUGUSTO, BENUSSI STEFANO, ALFIERI OTTAVIO. Differential Structural Remodeling of the Left-Atrial Posterior Wall in Patients Affected by Mitral Regurgitation with or Without Persistent Atrial Fibrillation: A Morphological and Molecular Study. J Cardiovasc Electrophysiol 2011; 23:271-9. [DOI: 10.1111/j.1540-8167.2011.02187.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wadosky KM, Li L, Rodríguez JE, Min JN, Bogan D, Gonzalez J, Patterson C, Kornegay JN, Willis M. Regulation of the calpain and ubiquitin-proteasome systems in a canine model of muscular dystrophy. Muscle Nerve 2011; 44:553-62. [PMID: 21826685 DOI: 10.1002/mus.22125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have tested the hypothesis that calpain and/or proteasome inhibition is beneficial in Duchenne muscular dystrophy, based largely on evidence that calpain and proteasome activities are enhanced in the mdx mouse. METHODS mRNA expression of ubiquitin-proteasome and calpain system components were determined using real-time polymerase chain reaction in skeletal muscle and heart in the golden retriever muscular dystrophy model. Similarly, calpain 1 and 2 and proteasome activities were determined using fluorometric activity assays. RESULTS We found that less than half of the muscles tested had increases in proteasome activity, and only half had increased calpain activity. In addition, transcriptional regulation of the ubiquitin-proteasome system was most pronounced in the heart, where numerous components were significantly decreased. CONCLUSION This study illustrates the diversity of expression and activities of the ubiquitin-proteasome and calpain systems, which may lead to unexpected consequences in response to pharmacological inhibition.
Collapse
Affiliation(s)
- Kristine M Wadosky
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Patterson C, Portbury A, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 2011; 109:453-62. [PMID: 21817165 PMCID: PMC3151485 DOI: 10.1161/circresaha.110.239749] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in the regulation of the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed.
Collapse
Affiliation(s)
- Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Departments of Medicine, Pharmacology, Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|