1
|
Peñalva DA, Munafó JP, Antollini SS. Cholesterol´s role in membrane organization and nicotinic acetylcholine receptor function: Implications for aging and Alzheimer's disease. Chem Phys Lipids 2025; 269:105484. [PMID: 40147619 DOI: 10.1016/j.chemphyslip.2025.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Biological membranes are complex entities composed of various molecules exhibiting lateral and transbilayer lipid asymmetries, along with a selective spatial distribution of different membrane proteins. This dynamic orchestration is crucial for proper physiological functions, undergoes changes with aging, and is disturbed in several neurological disorders. In this review, we analyze the impact of disruption in this equilibrium on physiological aging and the onset of pathological conditions. Alzheimer´s disease (AD) is a multifactorial neurodegenerative disorder in the elderly, characterized by the increased presence of the Aβ peptide, which supports the amyloid hypothesis of the disease. However, AD also involves a progressive loss of cholinergic innervation, leading to the cholinergic hypothesis of the disease. Nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, and Aβ peptides, their oligomeric and fibrillar species, which increase in hydrophobicity as they develop, interact with membranes. Therefore, a membrane hypothesis of the disease emerges as a bridge between the other two. Here, we discuss the impact of the membrane environment, through direct or indirect mechanisms, on cholinergic signaling and Aβ formation and subsequent incorporation into the membrane, with a special focus on the crucial role of cholesterol in these processes.
Collapse
Affiliation(s)
- Daniel A Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Arora P, Swati, Rani S, Jha S, Gupta S, Kumar S. Innovative approaches in acetylcholinesterase inhibition: a pathway to effective Alzheimer's disease treatment. Mol Divers 2025:10.1007/s11030-025-11170-1. [PMID: 40126739 DOI: 10.1007/s11030-025-11170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Acetylcholinesterase inhibitors (AChEIs) are essential in the treatment of neurodegenerative disorders like Alzheimer's disease, as they prevent the breakdown of acetylcholine, thereby enhancing cognitive function. This review provides a comprehensive analysis of the structural motifs and mechanisms governing AChEI pharmacological activity, with a focus on medicinal chemistry strategies to enhance potency, selectivity, and pharmacokinetic properties. Beginning with the physiological role of acetylcholinesterase in neurological disorders, the review explores the historical evolution of AChEIs and highlights key structural interactions with catalytic, peripheral anionic, and allosteric binding sites. Advances in computational modeling, virtual screening, and structure-based drug design are discussed, alongside emerging approaches, such as multi-target-directed ligands and prodrugs. Additionally, the significance of natural products and drug repurposing in identifying novel AChEI scaffolds is emphasized, contributing to chemical diversity and innovation in drug discovery. By integrating computational tools, expansive chemical libraries, and innovative design strategies, this review identifies promising directions for developing effective AChEIs. These advancements hold great potential in addressing the multifaceted nature of neurodegenerative diseases and improving therapeutic interventions.
Collapse
Affiliation(s)
- Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India.
- School of Healthcare, CT University, Ferozepur Road, Ludhiana, Punjab, 142024, India.
| | - Swati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Supriya Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Sumeet Jha
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Sneha Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Cao J, Zhang C, Lo CZ, Guo Q, Ding J, Luo X, Zhang Z, Chen F, Cheng T, Chen J, Zhao X. Integrating rare pathogenic variant prioritization with gene-based association analysis to identify novel genes and relevant multimodal traits for Alzheimer's disease. Alzheimers Dement 2025; 21:e14444. [PMID: 39713882 PMCID: PMC11851317 DOI: 10.1002/alz.14444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Increasing evidence has highlighted rare variants in Alzheimer's disease (AD). However, insufficient sample sizes, especially in underrepresented ethnic groups, hinder their investigation. Additionally, their impact on endophenotypes remains largely unexplored. METHODS We prioritized rare likely-deleterious variants based on whole-genome sequencing data from a Chinese AD cohort (n = 988). Gene-based optimal sequence kernel association tests were conducted between AD cases and normal controls to identify AD-related genes. Network clustering, endophenotype association, and cellular experiments were conducted to evaluate their functional consequences. RESULTS We identified 11 novel AD candidate genes, which captured AD-related pathways and enhanced AD risk prediction performance. Key genes (RABEP1, VIPR1, RPL3L, and CABIN1) were linked to cognitive decline and brain atrophy. Experiments showed RABEP1 p.R845W inducing endocytosis dysregulation and exacerbating toxic amyloid β accumulation, underscoring its therapeutic potential. DISCUSSION Our findings highlighted the contributions of rare variants to AD and provided novel insights into AD therapeutics. HIGHLIGHTS Identified 11 novel AD candidate genes in a Chinese AD cohort. Correlated candidate genes with AD-related cognitive and brain imaging traits. Indicated RABEP1 p.R845W as a critical AD contributor in the endocytic pathway.
Collapse
Affiliation(s)
- Jixin Cao
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Cheng Zhang
- Institute for Translational Brain ResearchFudan UniversityShanghaiChina
| | - Chun‐Yi Zac Lo
- Department of Biomedical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
| | - Qihao Guo
- Department of GerontologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jing Ding
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Xiaohui Luo
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Zi‐Chao Zhang
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Feng Chen
- Department of RadiologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)HaikouHainanChina
| | | | - Tian‐Lin Cheng
- Institute for Translational Brain ResearchFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- State Key Laboratory of Medical NeurobiologyInstitutes of Brain Science, Fudan UniversityShanghaiChina
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan UniversityShanghaiChina
| | - Jingqi Chen
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Xing‐Ming Zhao
- Department of NeurologyZhongshan Hospital and Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- State Key Laboratory of Medical NeurobiologyInstitutes of Brain Science, Fudan UniversityShanghaiChina
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
- Lingang LaboratoryShanghaiChina
| | | |
Collapse
|
4
|
Biswas P, Jain J, Hasan W, Bose D, Yadav RS. Biochemical Alterations and Motor Dysfunctions in Corpus Striatum of Rats Brain Exposed to Azo Dyes. Toxicol Res (Camb) 2024; 13:tfae216. [PMID: 39703340 PMCID: PMC11652610 DOI: 10.1093/toxres/tfae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/16/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Azo food dyes are prohibited in most countries, but their injudicious use is still reported particularly in the developing Nations. Continuous use of contaminated food raises health concerns and given this the present study designed to investigate the effects of 3 non-permitted azo dyes (metanil yellow - MY, malachite green - MG, and sudan III - SIII) on neurobehavioral, neurochemicals, mitochondrial dysfunction, oxidative stress, and histopathological changes in the corpus striatum of rats. Rats were grouped and treated with MY (430 mg/kg), MG (13.75 mg/kg), SIII (250 mg/kg) & mixture (YGR) (MY 143.33 + MG 4.52 + SIII 83.33 mg/kg) p.o. for 60 days showed a significant decrease in grip strength and motor activity, the activity of acetylcholinesterase (AChE), monoamine oxidase - B (MAO-B), and mitochondrial complex I and II compared to the control. The treated groups showed a significant increase in lipid peroxidation and a decrease in the level of reduced glutathione, superoxide dismutase, and catalase as compared to the control. Histopathology of the corpus striatum revealed immense damage. Data from the present study correlate between azo dyes and changes in the behavior of rats which have been associated with the altered biochemicals and neurochemicals activities. In conclusion, exposure to azo dyes caused neurotoxicity involving motor impairments associated with enhanced oxidative stress, mitochondrial dysfunctions, AChE and MAO-B inhibition, and neuronal damage in the corpus striatum of rats.
Collapse
Affiliation(s)
- Pronit Biswas
- School of Forensic Science, National Forensic Sciences University (An Institution of National Importance), Delhi – 110085, India
- Department of Criminology & Forensic Science, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar – 470003 (MP), India
| | - Juli Jain
- Department of Zoology, Pradhan Mantri College of Excellence, Government Shahid Chandrashekhar Aazad College, Jhabua – 457661 (MP), India
| | - Whidul Hasan
- Department of Neurobiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Brookline, Boston - 02115, USA
| | - Devasish Bose
- Department of Criminology & Forensic Science, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar – 470003 (MP), India
| | - Rajesh Singh Yadav
- School of Forensic Science, National Forensic Sciences University (An Institution of National Importance), Bhopal – 462030 (MP), India
| |
Collapse
|
5
|
Conway T, Seidler K, Barrow M. Unlocking choline's potential in Alzheimer's disease: A narrative review exploring the neuroprotective and neurotrophic role of phosphatidylcholine and assessing its impact on memory and learning. Clin Nutr ESPEN 2024; 64:177-195. [PMID: 39357562 DOI: 10.1016/j.clnesp.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND AND AIMS Growing evidence suggests nutritional intervention may influence the development and progression of Alzheimer's Disease (AD). Choline, an essential dietary nutrient plays a critical role in neurological development and brain function, however, its effects on AD in humans is unclear. The research aims to investigate mechanistic links between dietary choline intake and cognitive functioning, focusing on the role of phosphatidylcholine (PC) in neuroplasticity and its interaction with amyloid beta (Aβ) peptides in neuron membranes. Additionally, human evidence on the potential benefits of PC interventions on AD, cognition, and proposed mechanisms are evaluated. METHODS A reproducible systematic literature search was performed using a three-tranche strategy, consisting of a review, mechanism, and intervention search. Using PubMed as the main database, 1254 titles and abstracts were screened, 149 papers were read in full and 65 peer-reviewed papers were accepted, critically appraised, and analysed in a narrative review. RESULTS Predominantly preclinical evidence demonstrated that PC enhances neuroplasticity, a key biological substrate for cognition, by activating intracellular neuronal signalling pathways or through neuron membrane function. Molecular dynamic simulation methods provided a mechanistic understanding of the interconnection between neuronal PC content and the potential behaviour and trajectory of Aβ peptide aggregation. The results indicate that the neuronal membrane composition of PC is critical to inhibiting Aβ aggregation and neuronal damage, protecting the neuron from Aβ toxicity. This might provide a foundation for optimising cellular PC which may prove beneficial in the treatment or prevention of neurodegenerative disease. Altered PC metabolism in AD was evidenced in observational studies; however, whether this relationship represents a cause or consequence of AD remains to be determined. Human intervention studies did not produce conclusive evidence supporting its effectiveness in enhancing cognitive function. This lack of consistency primarily stems from methodological constraints within the conducted studies. Human observational research provided the most compelling evidence linking a higher dietary PC intake to a reduced risk of dementia and significant improvements in cognitive testing. CONCLUSION Despite the lack of randomised control trials (RCTs) assessing the efficacy of lecithin/PC to improve cognition in AD patients, there exists promising evidence supporting its neuroprotective and neurotrophic role. This review establishes an evidence-based framework through chains of mechanistic evidence, that may provide potential strategies for enhanced neuroprotection and reduced neurodegeneration caused by AD. Considering the escalating global burden of AD and the current shortcomings in effective treatments, this review together with the limitations and gaps identified in the existing research presents valuable insights that emphasise the urgency of more comprehensive research into the relationship between PC and AD.
Collapse
Affiliation(s)
- Tara Conway
- Centre for Nutrition Education and Lifestyle Management (CNELM), PO Box 3739, Wokingham, Berkshire, RG40 9UA, UK.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management (CNELM), PO Box 3739, Wokingham, Berkshire, RG40 9UA, UK.
| | - Michelle Barrow
- Centre for Nutrition Education and Lifestyle Management (CNELM), PO Box 3739, Wokingham, Berkshire, RG40 9UA, UK.
| |
Collapse
|
6
|
Soni AG, Verma A, Joshi R, Shah K, Soni D, Kaur CD, Saraf S, Chauhan NS. Phytoactive drugs used in the treatment of Alzheimer's disease and dementia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8633-8649. [PMID: 38940847 DOI: 10.1007/s00210-024-03243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
The prevalence of Alzheimer's disease and other forms of dementia is increasing worldwide, and finding effective treatments for these conditions is a major public health challenge. Natural bioactive drugs have been identified as a promising source of potential treatments, due to their ability to target multiple pathways and their low toxicity. This paper reviews the current state of research on natural bioactive drugs used in the treatment of Alzheimer's disease and other dementias. The paper summarizes the findings of studies on various natural compounds, including curcumin, resveratrol, caffeine, genistein, quercetin, GinkoBiloba, Withaniasomnifera, Ginseng Brahmi, Giloy, and huperzine, and their effects on cognitive function, neuroinflammation, and amyloid-beta accumulation. In this review, we discuss the mechanism of action involved in the treatment of Alzheimer's disease. The paper also discusses the challenges associated with developing natural bioactive drugs for dementia treatment, including issues related to bioavailability and standardization. Finally, the paper suggests directions for future research in this area, including the need for more rigorous clinical trials and the development of novel delivery systems to improve the efficacy of natural bioactive drugs. Overall, this review highlights the potential of natural bioactive drugs as a promising avenue for the development of safe and effective treatments for Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Anshita Gupta Soni
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Astha Verma
- ShriRawatpuraSarkar Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, (U.P.), India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University Campus, Aarang, Raipur, Chhattisgarh, India
| | - Chanchal Deep Kaur
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
7
|
Zhang Q, Singh P, Peng DW, Peng EY, Burns JM, Swerdlow RH, Suo WZ. Proactive M2 blockade prevents cognitive decline in GRK5-deficient APP transgenic mice via enhancing cholinergic neuronal resilience. J Biol Chem 2024; 300:107619. [PMID: 39098530 PMCID: PMC11400976 DOI: 10.1016/j.jbc.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) poses an immense challenge in healthcare, lacking effective therapies. This study investigates the potential of anthranilamide derivative (AAD23), a selective M2 receptor antagonist, in proactively preventing cognitive impairments and cholinergic neuronal degeneration in G protein-coupled receptor kinase-5-deficient Swedish APP (GAP) mice. GAP mice manifest cognitive deficits by 7 months and develop senile plaques by 9 months. A 6-month AAD23 treatment was initiated at 5 months and stopped at 11 months before behavioral assessments without the treatment. AAD23-treated mice exhibited preserved cognitive abilities and improved cholinergic axonal health in the nucleus basalis of Meynert akin to wildtype mice. Conversely, vehicle-treated GAP mice displayed memory deficits and pronounced cholinergic axonal swellings in the nucleus basalis of Meynert. Notably, AAD23 treatment did not alter senile plaques and microgliosis. These findings highlight AAD23's efficacy in forestalling AD-related cognitive decline in G protein-coupled receptor kinase-5-deficient subjects, attributing its success to restoring cholinergic neuronal integrity and resilience, enhancing resistance against diverse degenerative insults.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Prabhakar Singh
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - David W Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Evelyn Y Peng
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA
| | - Jeffery M Burns
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA
| | - William Z Suo
- Laboratory for Alzheimer's Disease and Aging Research, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri, USA; Department of Neurology, University of Kansas Medical College, Kansas City, Kansas, USA; Department of Physiology, University of Kansas Medical College, Kansas City, Kansas, USA; The University of Kansas Alzheimer's Disease Center, Kansas City, Kansas, USA.
| |
Collapse
|
8
|
Ramakrishna K, Karuturi P, Siakabinga Q, T A G, Krishnamurthy S, Singh S, Kumari S, Kumar GS, Sobhia ME, Rai SN. Indole-3 Carbinol and Diindolylmethane Mitigated β-Amyloid-Induced Neurotoxicity and Acetylcholinesterase Enzyme Activity: In Silico, In Vitro, and Network Pharmacology Study. Diseases 2024; 12:184. [PMID: 39195183 DOI: 10.3390/diseases12080184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by beta-amyloid (Aβ) deposition and increased acetylcholinesterase (AchE) enzyme activities. Indole 3 carbinol (I3C) and diindolylmethane (DIM) are reported to have neuroprotective activities against various neurological diseases, including ischemic stroke, Parkinson's disease, neonatal asphyxia, depression, stress, neuroinflammation, and excitotoxicity, except for AD. In the present study, we have investigated the anti-AD effects of I3C and DIM. Methods: Docking and molecular dynamic studies against AchE enzyme and network pharmacological studies were conducted for I3C and DIM. I3C and DIM's neuroprotective effects against self and AchE-induced Aβ aggregation were investigated. The neuroprotective effects of I3C and DIM against Aβ-induced neurotoxicity were assessed in SH-S5Y5 cells by observing cell viability and ROS. Results: Docking studies against AchE enzyme with I3C and DIM show binding efficiency of -7.0 and -10.3, respectively, and molecular dynamics studies revealed a better interaction and stability between I3C and AchE and DIM and AchE. Network pharmacological studies indicated that I3C and DIM interacted with several proteins involved in the pathophysiology of AD. Further, I3C and DIM significantly inhibited the AchE (IC50: I3C (18.98 µM) and DIM (11.84 µM)) and self-induced Aβ aggregation. Both compounds enhanced the viability of SH-S5Y5 cells that are exposed to Aβ and reduced ROS. Further, I3C and DIM show equipotential neuroprotection when compared to donepezil. Conclusions: Our findings indicate that both I3C and DIM show anti-AD effects by inhibiting the Aβ induced neurotoxicity and AchE activities.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Praditha Karuturi
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Queen Siakabinga
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Gajendra T A
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Shreya Singh
- SBS College of Pharmacy, Malwan, Fatehpur 212664, Uttar Pradesh, India
| | - Sonia Kumari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, Punjab, India
| | - G Siva Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, Punjab, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, Punjab, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
9
|
Thawkar BS, Kaur G. Betanin combined with virgin coconut oil inhibits neuroinflammation in aluminum chloride-induced toxicity in rats by regulating NLRP3 inflammasome. J Tradit Complement Med 2024; 14:287-299. [PMID: 38707915 PMCID: PMC11068997 DOI: 10.1016/j.jtcme.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 05/07/2024] Open
Abstract
Background and aim Activating NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) is crucial in the pathogenesis of Alzheimer's disease (AD). A multimodal treatment intervention is the most feasible way to alter the course of AD progression. Hence, the current study was conducted to study the combination of betanin (BET) and virgin coconut oil (VCO) on NLRP3 regulation in aluminum chloride-induced AD in Wistar rats. Experimental procedure BET (100,200 mg/kg) and VCO (1, 5 g/kg) alone and in combination (BET 100 mg/kg + VCO 1 g/kg and BET 200 mg/kg + VCO 5 g/kg) were given orally for 42 days. On day 21 and 42nd, the behavioral test was performed to check the animal's cognition. Acetylcholinesterase (AChE) activity, oxidative stress markers, estimation of NLRP3 and IL-1β, and histological examinations were conducted in the hippocampus (H) and cortex (C). Results and conclusion Treatment with BET and VCO alone or combined improved behavioral characteristics (MWM and PA p < 0.0001; EPM p = 0.5184), inhibited AChE activity (C, p = 0.0101; H, p < 0.0001), and lowered oxidative stress in the brain. Also, combination treatment restored the levels of NLRP3 (C, p = 0.0062; H, p < 0.0001) and IL1β (C, p = 0.0005; H, p = 0.0098). The combination treatment significantly reduced the degree of neuronal degeneration, amyloid deposition, and necrosis in the brain tissue. The current study revealed that the combination strategy effectively controlled neuroinflammation via modulation of the NLRP3 inflammasome pathway, paving the way for the new treatment.
Collapse
Affiliation(s)
- Baban S. Thawkar
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
10
|
Abdallah AE. Review on anti-alzheimer drug development: approaches, challenges and perspectives. RSC Adv 2024; 14:11057-11088. [PMID: 38586442 PMCID: PMC10995770 DOI: 10.1039/d3ra08333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Alzheimer is an irreversible progressive neurodegenerative disease that causes failure of cerebral neurons and disability of the affected person to practice normal daily life activities. There is no concrete evidence to identify the exact reason behind the disease, so several relevant hypotheses emerged, highlighting many possible therapeutic targets, such as acetylcholinesterase, cholinergic receptors, N-methyl d-aspartate receptors, phosphodiesterase, amyloid β protein, protein phosphatase 2A, glycogen synthase kinase-3 beta, β-secretase, γ-secretase, α-secretase, serotonergic receptors, glutaminyl cyclase, tumor necrosis factor-α, γ-aminobutyric acid receptors, and mitochondria. All of these targets have been involved in the design of new potential drugs. An extensive number of these drugs have been studied in clinical trials. However, only galantamine, donepezil, and rivastigmine (ChEIs), memantine (NMDA antagonist), and aducanumab and lecanemab (selective anti-Aβ monoclonal antibodies) have been approved for AD treatment. Many drugs failed in the clinical trials to such an extent that questions have been posed about the significance of some of the aforementioned targets. On the contrary, the data of other drugs were promising and shed light on the significance of their targets for the development of new potent anti-alzheimer drugs.
Collapse
Affiliation(s)
- Abdallah E Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University 11884 Cairo Egypt
| |
Collapse
|
11
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
12
|
Shoukat S, Zia MA, Uzair M, Alsubki RA, Sajid K, Shoukat S, Attia KA, Fiaz S, Ali S, Kimiko I, Ali GM. Synergistic neuroprotection by phytocompounds of Bacopa monnieri in scopolamine-induced Alzheimer's disease mice model. Mol Biol Rep 2023; 50:7967-7979. [PMID: 37535247 DOI: 10.1007/s11033-023-08674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 β, TNF α, tau, and β secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.
Collapse
Affiliation(s)
- Shehla Shoukat
- Department of Plant Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Affiliated with Quaid-e-Azam University, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kaynat Sajid
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sana Shoukat
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
| | - Shaukat Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan.
| | - Itoh Kimiko
- Department of Plant Breeding and Genetics, University of Haripur, Haripur, Pakistan
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | | |
Collapse
|
13
|
Pradeep S, Prabhuswaminath SC, Reddy P, Srinivasa SM, Shati AA, Alfaifi MY, Eldin I. Elbehairi S, Achar RR, Silina E, Stupin V, Manturova N, Glossman-Mitnik D, Shivamallu C, Kollur SP. Anticholinesterase activity of Areca Catechu: In Vitro and in silico green synthesis approach in search for therapeutic agents against Alzheimer's disease. Front Pharmacol 2022; 13:1044248. [PMID: 36408228 PMCID: PMC9672481 DOI: 10.3389/fphar.2022.1044248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
For many years, the primary focus has been on finding effective treatments for Alzheimer's disease (AD), which has led to the identification of promising therapeutic targets. The necessity for AD stage-dependent optimal settings necessitated a herbal therapy strategy. The plant species Areca Catechu L. (AC) was selected based on the traditional uses against CNS-related diseases. AC leaf extract were prepared using a Soxhlet extraction method and hydroxyapatite nanoparticles (HAp-NPs) were synthesized from the same (AC-HAp-NPs). Powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transform infrared spectroscopy (FTIR) were used to confirm the structure and morphology of the as-prepared AC-HAp-NPs. The crystalline character of the AC-HAp-NPs was visible in the XRD pattern. The synthesized material was found to be nanoflake, with an average diameter of 15-20 nm, according to SEM analysis. The TEM and SAED pictures also revealed the form and size of AC-HAp-NPs. In vitro anti-acetylcholinesterase and butyrylcholinesterase (AChE and BChE) activities of hydroxyapatite nanoparticles produced from an AC leaf extract was tested in this study. When compared to control, AC-HAp-NPs had higher anti-AChE and BChE activity. The anti-acetylcholinesterase action of phytoconstituents generated from AC leaf extract was mediated by 4AQD and 4EY7, according to a mechanistic study conducted utilizing in silico research. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. The CDFT experiments are supplemented by the calculation of several useful calculated pharmacokinetics indices, their expected biological targets connected to the bioavailability of the five ligands in order to further the goal of studying their bioactivity.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Samudyata C. Prabhuswaminath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Sudhanva M. Srinivasa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, Mandya, Karnataka, India
| | - Ali A. Shati
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Sciences, King Khalid University, Abha, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Agouza, Giza, Egypt
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, Mascow, Russia
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru, Karnataka, India
| |
Collapse
|
14
|
Companys-Alemany J, Turcu AL, Vázquez S, Pallàs M, Griñán-Ferré C. Glial cell reactivity and oxidative stress prevention in Alzheimer's disease mice model by an optimized NMDA receptor antagonist. Sci Rep 2022; 12:17908. [PMID: 36284170 PMCID: PMC9596444 DOI: 10.1038/s41598-022-22963-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/21/2022] [Indexed: 01/20/2023] Open
Abstract
In Alzheimer's disease pathology, several neuronal processes are dysregulated by excitotoxicity including neuroinflammation and oxidative stress (OS). New therapeutic agents capable of modulating such processes are needed to foster neuroprotection. Here, the effect of an optimised NMDA receptor antagonist, UB-ALT-EV and memantine, as a gold standard, have been evaluated in 5XFAD mice. Following treatment with UB-ALT-EV, nor memantine, changes in the calcineurin (CaN)/NFAT pathway were detected. UB-ALT-EV increased neurotropic factors (Bdnf, Vgf and Ngf) gene expression. Treatments reduced astrocytic and microglial reactivity as revealed by glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1) quantification. Interestingly, only UB-ALT-EV was able to reduce gene expression of Trem2, a marker of microglial activation and NF-κB. Pro-inflammatory cytokines Il-1β, Ifn-γ, Ccl2 and Ccl3 were down-regulated in UB-ALT-EV-treated mice but not in memantine-treated mice. Interestingly, the anti-inflammatory markers of the M2-migroglial phenotype, chitinase-like 3 (Ym1) and Arginase-1 (Arg1), were up-regulated after treatment with UB-ALT-EV. Since iNOS gene expression decreased after UB-ALT-EV treatment, a qPCR array containing 84 OS-related genes was performed. We found changes in Il-19, Il-22, Gpx6, Ncf1, Aox1 and Vim gene expression after UB-ALT-EV. Hence, our results reveal a robust effect on neuroinflammation and OS processes after UB-ALT-EV treatment, surpassing the memantine effect in 5XFAD.
Collapse
Affiliation(s)
- Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Andreea L Turcu
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, Universitat de Barcelona (NeuroUB), Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
15
|
Nascimento LA, Nascimento ÉCM, Martins JBL. In silico study of tacrine and acetylcholine binding profile with human acetylcholinesterase: docking and electronic structure. J Mol Model 2022; 28:252. [PMID: 35947248 DOI: 10.1007/s00894-022-05252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer disease (AD) is a neurodegenerative process, one of the most common and incident dementia in the population over 60 years. AD manifests the presence of complex biochemical processes involved in neuronal degeneration, such as the formation of senile plaques containing amyloid-β peptides, the development of intracellular neurofibrillary tangles, and the suppression of the acetylcholine neurotransmitter. In this way, we performed a set of theoretical tests of tacrine ligand and acetylcholine neurotransmitter against the human acetylcholinesterase enzyme. Molecular docking was used to understand the most important interactions of these molecules with the enzyme. Computational chemistry calculation was carried out using MP2, DFT, and semi-empirical methods, starting from molecular docking structures. We have also performed studies regarding the non-covalent interactions, electron localization function, molecular electrostatic potential and explicit water molecule influence. For Trp86 residue, we show two main interactions in accordance to the results of the literature for TcAChE. First, intermolecular interactions of the cation-π and sigma-π type were found. Second, close stacking interactions were stablished between THA+ and Trp86 residue on one side and with Tyr337 residue on the other side.
Collapse
Affiliation(s)
- Letícia A Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Érica C M Nascimento
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - João B L Martins
- Computational Chemistry Laboratory, Institute of Chemistry, University of Brasilia, Brasilia, DF, 70910-900, Brazil.
| |
Collapse
|
16
|
Zhou Y, Kandel N, Bartoli M, Serafim LF, ElMetwally AE, Falkenberg SM, Paredes XE, Nelson CJ, Smith N, Padovano E, Zhang W, Mintz KJ, Ferreira BC, Cilingir EK, Chen J, Shah SK, Prabhakar R, Tagliaferro A, Wang C, Leblanc RM. Structure-Activity Relationship of Carbon Nitride Dots in Inhibiting Tau Aggregation. CARBON 2022; 193:1-16. [PMID: 35463198 PMCID: PMC9030089 DOI: 10.1016/j.carbon.2022.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Due to the numerous failed clinical trials of anti-amyloid drugs, microtubule associated protein tau (MAPT) now stands out as one of the most promising targets for AD therapy. In this study, we report for the first time the structure-dependent MAPT aggregation inhibition of carbon nitride dots (CNDs). CNDs have exhibited great promise as a potential treatment of Alzheimer's disease (AD) by inhibiting the aggregation of MAPT. In order to elucidate its structure-activity relationship, CNDs were separated via column chromatography and five fractions with different structures were obtained that were characterized by multiple spectroscopy methods. The increase of surface hydrophilic functional groups is consistent with the increase of polarity from fraction 1 to 5. Particle sizes (1-2 nm) and zeta potentials (~-20 mV) are similar among five fractions. With the increase of polarity from fraction 1 to 5, their MAPT aggregation inhibition capacity was weakened. This suggests hydrophobic interactions between CNDs and MAPT, validated via molecular dynamics simulations. With a zebrafish blood-brain barrier (BBB) model, CNDs were observed to cross the BBB through passive diffusion. CNDs were also found to inhibit the generation of multiple reactive oxygen species, which is an important contributor to AD pathogenesis.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- C-Dots, LLC, Miami, FL 33136, USA
| | - Nabin Kandel
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Mattia Bartoli
- Center for Sustainable Future, Italian Institute of Technology, Via Livorno 60, Turin 10144, Italy
| | | | | | | | - Xavier E. Paredes
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Nathan Smith
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Elisa Padovano
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Keenan J. Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Sujit K. Shah
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
17
|
Çakmak R, Başaran E, Şentürk M. Synthesis, characterization, and biological evaluation of some novel Schiff bases as potential metabolic enzyme inhibitors. Arch Pharm (Weinheim) 2022; 355:e2100430. [PMID: 34994010 DOI: 10.1002/ardp.202100430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 01/02/2023]
Abstract
In this study, a series of novel Schiff base derivatives containing a pyrazolone ring (2a-e) were designed, successfully synthesized for the first time, and characterized by elemental analysis and some spectroscopic methods. These compounds were tested for their inhibitory activities on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and the human carbonic anhydrase isoenzymes I and II (hCA I and II). All synthesized molecules indicated significant inhibition effects with IC50 values ranging from 14.15 to 107.62 nM against these enzymes. Compound 2d showed the most potent inhibitory activity among the tested molecules toward AChE and BChE (IC50 = 15.07 and 14.15 nM) compared to the standard drug neostigmine. We determined that the IC50 values of the tested molecules ranged between 16.86 and 57.96 nM for hCA I and 15.24-46.21 nM for hCA II. As a consequence, we may say that some of the Schiff base derivatives may be used as potential drug candidates in later studies.
Collapse
Affiliation(s)
- Reşit Çakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, Batman, Turkey
| | - Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, Batman, Turkey
| | - Murat Şentürk
- Department of Biochemistry, Pharmacy Faculty, Ağrı Ibrahim Çecen University, Ağrı, Turkey
| |
Collapse
|
18
|
Kowalski K, Mulak A. Small intestinal bacterial overgrowth in Alzheimer's disease. J Neural Transm (Vienna) 2021; 129:75-83. [PMID: 34797427 PMCID: PMC8738624 DOI: 10.1007/s00702-021-02440-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
The results of animal studies and clinical data support the gut microbiota contribution to the pathogenesis of Alzheimer’s disease (AD). The aim of this pilot study was to evaluate the prevalence of small intestinal bacterial overgrowth (SIBO) and fecal markers of intestinal inflammation and permeability in AD patients. The study was conducted in 45 AD patients and 27 controls. Data on comorbidities, pharmacotherapy, and gastrointestinal symptoms were acquired from medical records and a questionnaire. SIBO was evaluated using lactulose hydrogen breath test. Fecal calprotectin and zonulin levels were assessed by ELISA assays. The positive result of SIBO breath test was found in 49% of the AD patients and 22% of the controls (p = 0.025). The comparative analysis between SIBO-positive and SIBO-negative AD patients with respect to the degree of cognitive impairment, comorbidities and used medications did not reveal any statistically significant difference, except for less common heartburn in SIBO-positive AD patients than in SIBO-negative ones (9 vs 35%, p = 0.038). The median fecal calprotectin and zonulin levels in the AD group compared to the control group amounted to 43.1 vs 64.2 µg/g (p = 0.846) and 73.5 vs 49.0 ng/ml (p = 0.177), respectively. In the AD patients there was no association between the presence of SIBO and fecal calprotectin level. Patients with AD are characterized by higher prevalence of SIBO not associated with increased fecal calprotectin level that may be related to anti-inflammatory effect of cholinergic drugs used in the treatment of AD.
Collapse
Affiliation(s)
- Karol Kowalski
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.
| |
Collapse
|
19
|
Pradeep S, Jain AS, Dharmashekara C, Prasad SK, Akshatha N, Pruthvish R, Amachawadi RG, Srinivasa C, Syed A, Elgorban AM, Al Kheraif AA, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Synthesis, Computational Pharmacokinetics Report, Conceptual DFT-Based Calculations and Anti-Acetylcholinesterase Activity of Hydroxyapatite Nanoparticles Derived From Acorus Calamus Plant Extract. Front Chem 2021; 9:741037. [PMID: 34692640 PMCID: PMC8529163 DOI: 10.3389/fchem.2021.741037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Over the years, Alzheimer's disease (AD) treatments have been a major focus, culminating in the identification of promising therapeutic targets. A herbal therapy approach has been required by the demand of AD stage-dependent optimal settings. Present study describes the evaluation of anti-acetylcholinesterase (AChE) activity of hydroxyapatite nanoparticles derived from an Acorus calamus rhizome extract (AC-HAp NPs). The structure and morphology of as-prepared (AC-HAp NPs) was confirmed using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The crystalline nature of as-prepared AC-HAp NPs was evident from XRD pattern. The SEM analysis suggested the spherical nature of the synthesized material with an average diameter between 30 and 50 nm. Further, the TEM and HR-TEM images revealed the shape and size of as-prepared (AC-HAp NPs). The interplanar distance between two lattice fringes was found to be 0.342 nm, which further supported the crystalline nature of the material synthesized. The anti-acetylcholinesterase activity of AC-HAp NPs was greater as compared to that of pure HAp NPs. The mechanistic evaluation of such an activity carried out using in silico studies suggested that the anti-acetylcholinesterase activity of phytoconstituents derived from Acorus calamus rhizome extract was mediated by BNDF, APOE4, PKC-γ, BACE1 and γ-secretase proteins. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. With the further objective of analyzing their bioactivity, the CDFT studies are complemented with the estimation of some useful computed pharmacokinetics indices, their predicted biological targets, and the ADMET parameters related to the bioavailability of the five ligands are also reported.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Anisha S. Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | | | - R. Pruthvish
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, India
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangothri, Davangere, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| |
Collapse
|
20
|
Martorana A, Assogna M, DE Lucia V, Motta C, Bonomi CG, Bernocchi F, DI Donna MG, Koch G. Cognitive reserve and Alzheimer's biological continuum: clues for prediction and prevention of dementia. Minerva Med 2021; 112:441-447. [PMID: 33709673 DOI: 10.23736/s0026-4806.21.07448-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cognitive reserve is originally an epidemiological concept that encompasses individual abilities to cope with changes. It is considered the result of a balance between processes of cellular damage and repair, and its description raised much interest in predicting and preventing cognitive decline in aging and Alzheimer's disease (AD). In this study, we discussed the concept of cognitive reserve considering the recent definition of AD as a biological continuum and suggest that the protection of cognitive reserve may result from efficient synaptic plasticity mechanisms. Despite pathological changes of AD appearing very early during life, long before the onset of cognitive symptoms, different variables act together to keep repair mechanisms effective guaranteeing successful aging if environmental enrichment is maintained.
Collapse
Affiliation(s)
| | - Martina Assogna
- Memory Clinic, Tor Vergata University, Rome, Italy.,Unit of Non-Invasive Brain Stimulation, IRCCS Santa Lucia, Rome, Italy
| | | | - Caterina Motta
- Unit of Non-Invasive Brain Stimulation, IRCCS Santa Lucia, Rome, Italy
| | | | | | | | - Giacomo Koch
- Unit of Non-Invasive Brain Stimulation, IRCCS Santa Lucia, Rome, Italy.,Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Potential of Naturally Derived Alkaloids as Multi-Targeted Therapeutic Agents for Neurodegenerative Diseases. Molecules 2021; 26:molecules26030728. [PMID: 33573300 PMCID: PMC7866829 DOI: 10.3390/molecules26030728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Alkaloids are a class of secondary metabolites that can be derived from plants, fungi and marine sponges. They are widely known as a continuous source of medicine for the management of chronic disease including cancer, diabetes and neurodegenerative diseases. For example, galanthamine and huperzine A are alkaloid derivatives currently being used for the symptomatic management of neurodegenerative disease. The etiology of neurodegenerative diseases is polygenic and multifactorial including but not limited to inflammation, oxidative stress and protein aggregation. Therefore, natural-product-based alkaloids with polypharmacology modulation properties are potentially useful for further drug development or, to a lesser extent, as nutraceuticals to manage neurodegeneration. This review aims to discuss and summarise recent developments in relation to naturally derived alkaloids for neurodegenerative diseases.
Collapse
|
22
|
Tong X, Li X, Ayaz M, Ullah F, Sadiq A, Ovais M, Shahid M, Khayrullin M, Hazrat A. Neuroprotective Studies on Polygonum hydropiper L. Essential Oils Using Transgenic Animal Models. Front Pharmacol 2021; 11:580069. [PMID: 33584260 PMCID: PMC7873646 DOI: 10.3389/fphar.2020.580069] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Abstract
Polygonum hydropiper L. and related species are reported to possess neuroprotective potentials. In an attempt to validate its anti-Alzheimer's potentials, leaf oils (Ph. Lo) were extensively evaluated in this study against several in vitro and in vivo models of Alzheimer's disease. The Ph. Lo were tested against pathological targets of Alzheimer's diseases (ADs). The in vitro and in vivo assays were done for cholinesterase inhibition, anti-radical properties and cognitive assessments using transgenic animal models. In preliminary cholinesterase inhibition assays, Ph. Lo were more active against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS), and hydrogen peroxide (H2O2) radicals. Subsequently, Ph. Lo was evaluated for its effects on special memory, exploratory behavior, and coordination using shallow water maze (SWM), Y-maze, open filed, and balance beam tests. Animal pre-genotyping was done via polymerase chain reaction (PCR) to confirm amyloid precursor protein (APP) transgene, and after completion of drug therapy, brain homogenates from the cortex and hippocampus were evaluated for cholinesterase and free radical studies. In SWM task, disease control animals treated with 10 mg/kg of Ph. Lo for 5 days exhibited significant improvement in cognitive performance indicated by low escape times on 5th day compared with normal animals. In the Y-maze test, transgenic animals showed higher spontaneous alternation behavior than disease control animals and standard control group animals. Ph. Lo therapy has improved the exploratory behavior and declined anxiety behavior in diseased animals as accessed via open field test. Ph. Lo administration significantly augmented the motor and coordination abilities of transgenic animals when compared to other groups of animals and declined AChE, BChE activities as well as free radicals load in the cortex and hippocampus tissues. Based on our finding, it is concluded that Ph. Lo exhibit significant neuroprotective potentials preliminary due to their anti-radicals and cholinesterase inhibitory activities. Ph. Lo need further detailed studies as potential aromatherapy against neurodegenerative disorders.
Collapse
Affiliation(s)
- Xin Tong
- Department of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoling Li
- Department of Imaging, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Information Technology, Peshawar, Pakistan
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russia
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
23
|
Alarcón-Espósito J, Mallea M, Rodríguez-Lavado J. From Hybrids to New Scaffolds: The Latest Medicinal Chemistry Goals in Multi-target Directed Ligands for Alzheimer's Disease. Curr Neuropharmacol 2021; 19:832-867. [PMID: 32928087 PMCID: PMC8686302 DOI: 10.2174/1570159x18666200914155951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive, and fatal neurodegenerative disorder affecting cognition, behavior, and function, being one of the most common causes of mental deterioration in elderly people. Once thought as being just developed because of β amyloid depositions or neurofibrillary Tau tangles, during the last decades, numerous AD-related targets have been established, the multifactorial nature of AD became evident. In this context, the one drug-one target paradigm has resulted in being inefficient in facing AD and other disorders with complex etiology, opening the field for the emergence of the multitarget approach. In this review, we highlight the recent advances within this area, emphasizing in hybridization tools of well-known chemical scaffolds endowed with pharmacological properties concerning AD, such as curcumin-, resveratrol-, chromone- and indole-. We focus mainly on well established and incipient AD therapeutic targets, AChE, BuChE, MAOs, β-amyloid deposition, 5-HT4 and Serotonin transporter, with the aim to shed light about new insights in the AD multitarget therapy.
Collapse
Affiliation(s)
- Jazmín Alarcón-Espósito
- Departamento de Quimica Organica y Fisicoquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile
| | - Michael Mallea
- Departamento de Quimica Organica y Fisicoquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile
| | - Julio Rodríguez-Lavado
- Departamento de Quimica Organica y Fisicoquimica, Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Olivos 1007, Independencia, Santiago, Chile
| |
Collapse
|
24
|
Agarwal M, Alam MR, Haider MK, Malik MZ, Kim DK. Alzheimer's Disease: An Overview of Major Hypotheses and Therapeutic Options in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E59. [PMID: 33383712 PMCID: PMC7823376 DOI: 10.3390/nano11010059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), a progressively fatal neurodegenerative disorder, is the most prominent form of dementia found today. Patients suffering from Alzheimer's begin to show the signs and symptoms, like decline in memory and cognition, long after the cellular damage has been initiated in their brain. There are several hypothesis for the neurodegeneration process; however, the lack of availability of in vivo models makes the recapitulation of AD in humans impossible. Moreover, the drugs currently available in the market serve to alleviate the symptoms and there is no cure for the disease. There have been two major hurdles in the process of finding the same-the inefficiency in cracking the complexity of the disease pathogenesis and the inefficiency in delivery of drugs targeted for AD. This review discusses the different drugs that have been designed over the recent years and the drug delivery options in the field of nanotechnology that have been found most feasible in surpassing the blood-brain barrier (BBB) and reaching the brain.
Collapse
Affiliation(s)
- Mugdha Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, India;
| | - Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | | | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea;
- Hanvit Institute for Medical Genetics, Daegu 42601, Korea
| |
Collapse
|
25
|
Natural Compounds for the Prevention and Treatment of Cardiovascular and Neurodegenerative Diseases. Foods 2020; 10:foods10010029. [PMID: 33374186 PMCID: PMC7824130 DOI: 10.3390/foods10010029] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Secondary metabolites from plants and fungi are stimulating growing interest in consumers and, consequently, in the food and supplement industries. The beneficial effects of these natural compounds are being thoroughly studied and there are frequent updates about the biological activities of old and new molecules isolated from plants and fungi. In this article, we present a review of the most recent literature regarding the recent discovery of secondary metabolites through isolation and structural elucidation, as well as the in vitro and/or in vivo evaluation of their biological effects. In particular, the possibility of using these bioactive molecules in the prevention and/or treatment of widely spread pathologies such as cardiovascular and neurodegenerative diseases is discussed.
Collapse
|
26
|
Oh J, Park J, Park KC, Hwang JH, Park JH. Phosphonamidate Compounds for Butyrylcholinesterase Selective Inhibitors. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jintaek Oh
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| | - Jung‐Youl Park
- Department of Applied Chemistry Daejeon University Daejeon 34520 South Korea
| | - Kyoung Chan Park
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| | - Ji Hyun Hwang
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| | - Jeong Ho Park
- Department of Chemical & Biological Engineering Hanbat National University Daejeon 34158 South Korea
| |
Collapse
|
27
|
Pradeep S, Jain AS, Dharmashekara C, Prasad SK, Kollur SP, Syed A, Shivamallu C. Alzheimer's Disease and Herbal Combination Therapy: A Comprehensive Review. J Alzheimers Dis Rep 2020; 4:417-429. [PMID: 33283163 PMCID: PMC7683102 DOI: 10.3233/adr-200228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2020] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) was first described in 1907 and got its name after Alois Alzheimer, a German psychiatrist and neuropathologist. This disease starts slow, increasing gradually to worsen in the due course of time. AD is mainly characterized by the associated dementia, which is a decline of cognitive effects such as memory, praxis, and orientation. The dementia is further highlighted by the presence of psychological and behavioral symptoms. Additionally, AD is also associated with the multiple interconnected pathways linked neuropathological changes such as the formation of neurofibrillary tangles and amyloid-β plaques inside the brain. AD therapeutics have been of prime concern over the decades, resulting in the elucidation of promising therapeutic targets. The requirement of AD stage dependent optimized conditions has necessitated a combinatorial approach toward treatment. The priority in AD research has remained to develop disease-modifying and development-reducing drugs for treatment regimens followed during the early and later stages, respectively.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Anisha S. Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
28
|
A peptide fraction of Olive Flounder (Paralichthys olivaceus) Skin Hydrolysate Inhibits Amyloid-β Generation in SH-SY5Y Cells via Suppression of BACE1 Expression. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Oláh V, Knakker B, Trunk A, Lendvai B, Hernádi I. Dissociating cholinergic influence on alertness and temporal attention in primates in a simple reaction time paradigm. Eur J Neurosci 2020; 52:3776-3789. [PMID: 32516489 DOI: 10.1111/ejn.14852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
The ability to promptly respond to behaviourally relevant events depends on both general alertness and phasic changes in attentional state driven by temporal expectations. Using a variable foreperiod simple reaction time (RT) task in four adult male rhesus macaques, we investigated the role of the cholinergic system in alertness and temporal expectation. Foreperiod effects on RT reflect temporal expectation, while alertness is quantified as overall response speed. We measured these RT parameters under vehicle treatment and systemic administration of the muscarinic receptor antagonist scopolamine. We also investigated whether and to what extent the effects of scopolamine were reversed by donepezil, a cholinesterase inhibitor widely used for the treatment of dementia. In the control condition, RT showed a continuous decrease as the foreperiod duration increased, which clearly indicated the effect of temporal expectation on RT. This foreperiod effect was mainly detectable on the faster tail of the RT distribution and was eliminated by scopolamine. Furthermore, scopolamine treatment slowed down the average RT. Donepezil treatment was efficient on the slower tail of the RT distribution and improved scopolamine-induced impairments only on the average RT reflecting a general beneficial effect on alertness without any improvement in temporal expectation. The present results highlight the role of the cholinergic system in temporal expectation and alertness in primates and help delineate the efficacy and scope of donepezil and other cholinomimetic agents as cognitive enhancers in present and future clinical practice.
Collapse
Affiliation(s)
- Vilmos Oláh
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Balázs Knakker
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary
| | - Attila Trunk
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary
| | - Balázs Lendvai
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - István Hernádi
- Grastyán Translational Research Center, University of Pécs & Gedeon Richter Plc., Pécs, Hungary.,Department of Experimental Zoology and Neurobiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Szentágothai Research Center, Center for Neuroscience, University of Pécs, Pécs, Hungary.,Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
30
|
Mehrazar M, Hassankalhori M, Toolabi M, Goli F, Moghimi S, Nadri H, Bukhari SNA, Firoozpour L, Foroumadi A. Design and synthesis of benzodiazepine-1,2,3-triazole hybrid derivatives as selective butyrylcholinesterase inhibitors. Mol Divers 2019; 24:997-1013. [PMID: 31845210 DOI: 10.1007/s11030-019-10008-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
A new series of compounds based on benzodiazepine-1,2,3-triazole were synthesized and evaluated as cholinesterase inhibitors by Ellman's method. The compounds proved to be selective inhibitors of butyrylcholinesterase (BuChE) over acetylcholinesterase. The most potent compound was 3,3-dimethyl-11-(3-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]diazepin-1-one, identified as a submicromolar inhibitor of BuChE with IC50 value of 0.2 µM. In addition, the amyloid-β self-aggregation evaluation studies for selected compounds showed potent inhibitory effects compared to donepezil. The docking and cell viability studies supported the potential of compound 9b-6 as significant BuChE inhibitor.
Collapse
Affiliation(s)
- Mehrdad Mehrazar
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hassankalhori
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Goli
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf, Sakaka, 2014, Saudi Arabia
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
31
|
Fabiani C, Antollini SS. Alzheimer's Disease as a Membrane Disorder: Spatial Cross-Talk Among Beta-Amyloid Peptides, Nicotinic Acetylcholine Receptors and Lipid Rafts. Front Cell Neurosci 2019; 13:309. [PMID: 31379503 PMCID: PMC6657435 DOI: 10.3389/fncel.2019.00309] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Biological membranes show lateral and transverse asymmetric lipid distribution. Cholesterol (Chol) localizes in both hemilayers, but in the external one it is mostly condensed in lipid-ordered microdomains (raft domains), together with saturated phosphatidyl lipids and sphingolipids (including sphingomyelin and glycosphingolipids). Membrane asymmetries induce special membrane biophysical properties and behave as signals for several physiological and/or pathological processes. Alzheimer’s disease (AD) is associated with a perturbation in different membrane properties. Amyloid-β (Aβ) plaques and neurofibrillary tangles of tau protein together with neuroinflammation and neurodegeneration are the most characteristic cellular changes observed in this disease. The extracellular presence of Aβ peptides forming senile plaques, together with soluble oligomeric species of Aβ, are considered the major cause of the synaptic dysfunction of AD. The association between Aβ peptide and membrane lipids has been extensively studied. It has been postulated that Chol content and Chol distribution condition Aβ production and posterior accumulation in membranes and, hence, cell dysfunction. Several lines of evidence suggest that Aβ partitions in the cell membrane accumulate mostly in raft domains, the site where the cleavage of the precursor AβPP by β- and γ- secretase is also thought to occur. The main consequence of the pathogenesis of AD is the disruption of the cholinergic pathways in the cerebral cortex and in the basal forebrain. In parallel, the nicotinic acetylcholine receptor has been extensively linked to membrane properties. Since its transmembrane domain exhibits extensive contacts with the surrounding lipids, the acetylcholine receptor function is conditioned by its lipid microenvironment. The nicotinic acetylcholine receptor is present in high-density clusters in the cell membrane where it localizes mainly in lipid-ordered domains. Perturbations of sphingomyelin or cholesterol composition alter acetylcholine receptor location. Therefore, Aβ processing, Aβ partitioning, and acetylcholine receptor location and function can be manipulated by changes in membrane lipid biophysics. Understanding these mechanisms should provide insights into new therapeutic strategies for prevention and/or treatment of AD. Here, we discuss the implications of lipid-protein interactions at the cell membrane level in AD.
Collapse
Affiliation(s)
- Camila Fabiani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca CONICET-UNS, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
32
|
Huang M, Rathore SS, Lindau M. Drug testing complementary metal-oxide-semiconductor chip reveals drug modulation of transmitter release for potential therapeutic applications. J Neurochem 2019; 151:38-49. [PMID: 31274190 PMCID: PMC6837173 DOI: 10.1111/jnc.14815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease, are considered incurable and significantly reduce the quality of life of the patients. A variety of drugs that modulate neurotransmitter levels have been used for the treatment of the neurodegenerative diseases but with limited efficacy. In this work, an amperometric complementary metal‐oxide‐semiconductor (CMOS) chip is used for high‐throughput drug testing with respect to the modulation of transmitter release from single vesicles using chromaffin cells prepared from bovine adrenal glands as a model system. Single chromaffin cell amperometry was performed with high efficiency on the surface‐modified CMOS chip and follow‐up whole‐cell patch‐clamp experiments were performed to determine the readily releasable pool sizes. We show that the antidepressant drug bupropion significantly increases the amount of neurotransmitter released in individual quantal release events. The antidepressant drug citalopram accelerates rapid neurotransmitter release following stimulation and follow‐up patch‐clamp experiments reveal that this is because of the increase in the pool of readily releasable vesicles. These results shed light on the mechanisms by which bupropion and citalopram may be potentially effective in the treatment of neurodegenerative diseases. These results demonstrate that the CMOS amperometry chip technology is an excellent tool for drug testing to determine the specific mechanisms by which they modulate neurotransmitter release. ![]()
Collapse
Affiliation(s)
- Meng Huang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA.,School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Shailendra S Rathore
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
33
|
Olasehinde TA, Olaniran AO, Okoh AI. Aqueous-ethanol extracts of some South African seaweeds inhibit beta-amyloid aggregation, cholinesterases, and beta-secretase activities in vitro. J Food Biochem 2019; 43:e12870. [PMID: 31353743 DOI: 10.1111/jfbc.12870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
Abstract
In this study, we evaluated the anti-amyloidogenic, anticholinesterase, and antioxidant potentials of hydroethanolic extracts of Ecklonia maxima (ECK), Gelidium pristoides (GLD), Gracilaria gracilis (GCL), and Ulva lactuca (ULT). The effect of the extracts on β-amyloid (Aβ1-42 ) peptide were determined using electron microscope. The effects of the extracts on β-secretase and cholinesterase activities, as well as their radical scavenging and metal chelating activities were also assessed. Electron micrographs revealed that ECK, GLD, GCL, and ULT incubated with Aβ1-42 at different intervals (0-96 hr) showed very low levels of fibrils compared to the control. The extracts also inhibited β-secretase, acetylcholinesterase, and butyrylcholinesterase activities in a dose-dependent manner. Furthermore, the extracts scavenged hydroxyl radicals and were able to chelate Fe2+ in a dose-dependent manner. Our findings suggest that the seaweed extracts are potential sources of lead compounds and novel inhibitors of β-amyloid aggregation, β-secretase, and cholinesterases for the management of Alzheimer's diseases. PRACTICAL APPLICATIONS: Seaweeds have been identified as good sources of naturally occurring bioactive compounds with several medicinal properties. They are commonly used as functional foods and development of nutraceuticals, dietary supplements, and cosmeceuticals. However, the neuroprotective effects of many species of seaweeds have not been fully explored. The findings of this study suggests that Gracilaria gracilis, Ulva lactuca, Ecklonia maxima, and Gelidium pristoides are potential sources of cholinesterase, beta-secretase, and amyloid protein aggregation inhibitors. Hence, this support the use of these seaweeds as alternative sources of antioxidants and natural compounds with neuroprotective potentials for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
34
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 PMCID: PMC11469828 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
35
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
36
|
Albeely AM, Ryan SD, Perreault ML. Pathogenic Feed-Forward Mechanisms in Alzheimer's and Parkinson's Disease Converge on GSK-3. Brain Plast 2018; 4:151-167. [PMID: 30598867 PMCID: PMC6311352 DOI: 10.3233/bpl-180078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) share many commonalities ranging from signaling deficits such as altered cholinergic activity, neurotrophin and insulin signaling to cell stress cascades that result in proteinopathy, mitochondrial dysfunction and neuronal cell death. These pathological processes are not unidirectional, but are intertwined, resulting in a series of feed-forward loops that worsen symptoms and advance disease progression. At the center of these loops is glycogen synthase kinase-3 (GSK-3), a keystone protein involved in many of the multidirectional biological processes that contribute to AD and PD neuropathology. Here, a unified overview of the involvement of GSK-3 in the major processes involved in these diseases will be presented. The mechanisms by which these processes are linked will be discussed and the feed-forward pathways identified. In this regard, this review will put forth the notion that combination therapy, targeting these multiple facets of AD or PD neuropathology is a necessary next step in the search for effective therapies.
Collapse
Affiliation(s)
- Abdalla M. Albeely
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Scott D. Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L. Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018; 42:401-411. [PMID: 30337800 PMCID: PMC6190533 DOI: 10.1016/j.jgr.2017.12.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023] Open
Abstract
Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid β-protein (Aβ) formation by inhibiting β- and γ-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and Aβ-induced neurotoxicity, and decrease Aβ-induced production of reactive oxygen species and neuroinflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates Aβ-induced cholinergic deficits in AD models. Similarly, gintonin inhibits Aβ-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce Aβ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.
Collapse
Key Words
- AChE, acetylcholinesterase
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Adjuvant
- Alzheimer's disease
- Aβ, amyloid β-protein
- BDNF, brain-derived neurotrophic factor
- EGF, Epidermal growth factor
- GLP151, ginseng major latex-like protein 151
- Ginsenoside
- Gintonin
- LPA, Lysophosphatidic acid
- NGF, nerve growth factor
- NMDA, n-methyl-d-aspartic acid
- PI3K, phosphoinositide-3 kinase
- PPARγ, peroxisome proliferator-activated receptor-γ
- Panax ginseng
- ROS, reactive oxygen species
- sAPPα, soluble amyloid precursor protein α
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Institute of Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and toxicology program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Ajiboye BO, Akalabu MC, Ojo OA, Afolabi OB, Okesola MA, Olayide I, Oyinloye BE. Inhibitory effect of ethyl acetate fraction of
Solanum macrocarpon
L. leaves on cholinergic, monoaminergic, and purinergic enzyme activities. J Food Biochem 2018. [DOI: 10.1111/jfbc.12643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Basiru Olaitan Ajiboye
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Maureen Chidima Akalabu
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Oluwafemi Adeleke Ojo
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Olakunle Bamikole Afolabi
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Mary Abiola Okesola
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Israel Olayide
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| | - Babatunji Emmanuel Oyinloye
- Nutraceutical and Phytomedicine Research Laboratory, Biochemistry Programme, Department of Chemical Sciences Afe Babalola University Ado‐Ekiti Nigeria
| |
Collapse
|
39
|
Kim YJ, Lim HS, Kim Y, Lee J, Kim BY, Jeong SJ. Phytochemical Quantification and the In Vitro Acetylcholinesterase Inhibitory Activity of Phellodendron chinense and Its Components. Molecules 2017; 22:E925. [PMID: 28574473 PMCID: PMC6152634 DOI: 10.3390/molecules22060925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/28/2023] Open
Abstract
The dried bark of Phellodendron chinense has been used as a traditional herbal medicine to remove damp heat, relieve consumptive fever, and cure dysentery and diarrhea. In the present study, we performed quantitative analyses of the two components of P. chinense, phellodendrine and berberine, using high-performance liquid chromatography. A 70% ethanol extract of P. chinense was prepared and the two components were separated on a C-18 analytical column using a gradient solvent system of acetonitrile and 0.1% (v/v) aqueous trifluoroacetic acid. The ultraviolet wavelength used for detection was 200 nm for phellodendrine and 226 nm for berberine. The analytical method established here showed high linearity (correlation coefficient, ≥0.9991). The amount of phellodendrine and berberine used was 22.255 ± 0.123 mg/g and 269.651 ± 1.257 mg/g, respectively. Moreover, we performed an in vitro acetylcholinesterase (AChE) activity assay and an amyloid-β aggregation test to examine the biological properties of phellodendrine and berberine as therapeutic drugs for Alzheimer's disease. Phellodendrine and berberine inhibited AChE activity in a dose-dependent manner (IC50 = 36.51 and 0.44 μM, respectively). In contrast, neither phellodendrine nor berberine had an effect on amyloid-β aggregation. The P. chinense extract and phellodendrine, but not berberine, exhibited antioxidant activity by increasing radical scavenging activity. Moreover, P. chinense demonstrated a neuroprotective effect in hydrogen peroxide-treated HT22 hippocampal cells. Overall, our findings suggest that P. chinense has potential as an anti-Alzheimer's agent via the suppression of the enzymatic activity of acetylcholinesterase and the stimulation of antioxidant activity.
Collapse
Affiliation(s)
- Yu Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hye-Sun Lim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yoonju Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Jun Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Korean Medicine of Life Science, University of Science & Technology, Daejeon 34113, Korea.
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- Korean Medicine of Life Science, University of Science & Technology, Daejeon 34113, Korea.
| |
Collapse
|
40
|
Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, Karanam AK, Christopher S. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia. Clin Interv Aging 2017; 12:697-707. [PMID: 28458525 PMCID: PMC5402908 DOI: 10.2147/cia.s129145] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.
Collapse
Affiliation(s)
- Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital.,Duke-NUS, Graduate Medical School, Singapore
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology.,Alzheimer's Disease Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Vorapun Senanarong
- Division of Neurology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Irene Looi
- Clinical Research Centre.,Department of Medicine, Hospital Seberang Jaya, Penang, Malaysia
| | - Encarnita Ampil
- Department of Neurology and Psychiatry, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Kyung Won Park
- Department of Neurology and Cognitive Disorders and Dementia Center, Institute of Convergence Bio-Health, Dong-A University College of Medicine, Busan, Republic of Korea
| | | | | |
Collapse
|
41
|
Tang C, Hoo PCX, Tan LTH, Pusparajah P, Khan TM, Lee LH, Goh BH, Chan KG. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties. Front Pharmacol 2016; 7:474. [PMID: 28003804 PMCID: PMC5141589 DOI: 10.3389/fphar.2016.00474] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
Flammulina velutipes (enoki, velvet shank, golden needle mushroom or winter mushroom), one of the main edible mushrooms on the market, has long been recognized for its nutritional value and delicious taste. In recent decades, research has expanded beyond detailing its nutritional composition and delved into the biological activities and potential health benefits of its constituents. Many bioactive constituents from a range of families have been isolated from different parts of the mushroom, including carbohydrates, protein, lipids, glycoproteins, phenols, and sesquiterpenes. These compounds have been demonstrated to exhibit various biological activities, such as antitumour and anticancer activities, anti-atherosclerotic and thrombosis inhibition activity, antihypertensive and cholesterol lowering effects, anti-aging and antioxidant properties, ability to aid with restoring memory and overcoming learning deficits, anti-inflammatory, immunomodulatory, anti-bacterial, ribosome inactivation and melanosis inhibition. This review aims to consolidate the information concerning the phytochemistry and biological activities of various compounds isolated from F. velutipes to demonstrate that this mushroom is not only a great source of nutrients but also possesses tremendous potential in pharmaceutical drug development.
Collapse
Affiliation(s)
- Calyn Tang
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Pearl Ching-Xin Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
42
|
Basiri A, Xiao M, McCarthy A, Dutta D, Byrareddy SN, Conda-Sheridan M. Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2016; 27:228-231. [PMID: 27914796 DOI: 10.1016/j.bmcl.2016.11.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting 35million people worldwide. A common strategy to improve the well-being of AD patients consists on the inhibition of acetylcholinesterase with the concomitant increase of the neurotransmitter acetylcholine at cholinergic synapses. Two series of unreported N-benzylpiperidines 5(a-h) and thiazolopyrimidines 9(a-q) molecules were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) inhibitory activities. Among the newly synthesized compounds, 5h, 9h, 9j, and 9p displayed higher AChE enzyme inhibitory activities than the standard drug, galantamine, with IC50 values of 0.83, 0.98, and 0.73μM, respectively. Cytotoxicity studies of 5h, 9h, 9j, 9n and 9p on human neuroblastoma cells SH-SY5Y, showed no toxicity up to 40μM concentration. Molecular docking simulations of the active compounds 5h and 9p disclosed the crucial role of π-π-stacking in their binding interaction to the active site AChE enzyme. The presented compounds have potential as AChE inhibitors and potential AD drugs.
Collapse
Affiliation(s)
- Alireza Basiri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michelle Xiao
- School of Engineering, Stanford University, Stanford, CA 94305, United States
| | - Alec McCarthy
- School of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
43
|
Costanzo P, Cariati L, Desiderio D, Sgammato R, Lamberti A, Arcone R, Salerno R, Nardi M, Masullo M, Oliverio M. Design, Synthesis, and Evaluation of Donepezil-Like Compounds as AChE and BACE-1 Inhibitors. ACS Med Chem Lett 2016; 7:470-5. [PMID: 27190595 DOI: 10.1021/acsmedchemlett.5b00483] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 11/28/2022] Open
Abstract
An ecofriendly synthetic pathway for the synthesis of donepezil precursors is described. Alternative energy sources were used for the total synthesis in order to improve yields, regioselectively, and rate of each synthetic step and to reduce the coproduction of waste at the same time. For all products, characterized by an improved structural rigidity respect to donepezil, the inhibitor activity on AChE, the selectivity vs BuChE, the side-activity on BACE-1, and the effect on SHSY-5Y neuroblastoma cells viability were tested. Two potential new lead compounds for a dual therapeutic strategy against Alzheimer's disease were envisaged.
Collapse
Affiliation(s)
- Paola Costanzo
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Luca Cariati
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Doriana Desiderio
- Dipartimento di Bioscienze e Territorio, Università del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Roberta Sgammato
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Anna Lamberti
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
| | - Rosaria Arcone
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Raffaele Salerno
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| | - Monica Nardi
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci 12 C, 87037 Arcavacata di Rende (CS), Italy
| | - Mariorosario Masullo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE, Biotecnologie Avanzate, S.C. a R.L., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Manuela Oliverio
- Dipartimento di
Scienze della Salute, Università degli Studi della Magna Græcia Viale Europa, 88100 Loc. Germaneto (CZ), Italy
| |
Collapse
|
44
|
Martorana A, Di Lorenzo F, Belli L, Sancesario G, Toniolo S, Sallustio F, Sancesario GM, Koch G. Cerebrospinal Fluid Aβ42 Levels: When Physiological Become Pathological State. CNS Neurosci Ther 2015; 21:921-5. [PMID: 26555572 DOI: 10.1111/cns.12476] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Impaired amyloid beta (Aβ) metabolism is currently considered central to understand the pathophysiology of Alzheimer's disease (AD). Measurements of cerebrospinal fluid Aβ levels remain the most useful marker for diagnostic purposes and to individuate people at risk for AD. Despite recent advances criticized the direct role in neurodegeneration of cortical neurons, Aβ is considered responsible for synaptopathy and impairment of neurotransmission and therefore remains the major trigger of AD and future pharmacological treatment remain Aβ oriented. However, experimental and clinical findings showed that Aβ peptides could have a wider range of action responsible for cell dysfunction and for appearance of clinico-pathological entities different from AD. Such findings may induce misunderstanding of the real role played by Aβ in AD and therefore strengthen criticism on its centrality and need for CSF measurements. Aim of this review is to discuss the role of CSF Aβ levels in light of experimental, clinical pathologic, and electrophysiological results in AD and other pathological entities to put in a correct frame the value of Aβ changes.
Collapse
Affiliation(s)
- Alessandro Martorana
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Lorenzo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy.,Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lorena Belli
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Sancesario
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sofia Toniolo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Fabrizio Sallustio
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
45
|
Johannsson M, Snaedal J, Johannesson GH, Gudmundsson TE, Johnsen K. The acetylcholine index: an electroencephalographic marker of cholinergic activity in the living human brain applied to Alzheimer's disease and other dementias. Dement Geriatr Cogn Disord 2015; 39:132-42. [PMID: 25471612 DOI: 10.1159/000367889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The cholinergic hypothesis is well established and has led to the development of pharmacological treatments for Alzheimer's disease (AD). However, there has previously been no physiological means of monitoring cholinergic activity in vivo. METHODS An electroencephalography (EEG)-based acetylcholine (Ach) index reflecting the cholinergic activity in the brain was developed using data from a scopolamine challenge study. The applicability of the Ach index was examined in an elderly population of healthy controls and patients suffering from various causes of cognitive decline. RESULTS The Ach index showed a strong reduction in the severe stages of AD dementia. A high correlation was demonstrated between the Ach index and cognitive function. The index was reduced in patients with mild cognitive impairment and prodromal AD, indicating a decreased cholinergic activity. When considering the distribution of the Ach index in a population of healthy elderly subjects, an age-related threshold was revealed, beyond which there is a general decline in cholinergic activity. CONCLUSIONS The EEG-based Ach index provides, for the first time, a physiological means of monitoring the cholinergic activity in the human brain in vivo. This has great potential for aiding diagnosis and patient stratification as well as for monitoring disease progression and treatment response.
Collapse
|
46
|
Stefani A, Olivola E, Liguori C, Hainsworth AH, Saviozzi V, Angileri G, D'Angelo V, Galati S, Pierantozzi M. Catecholamine-Based Treatment in AD Patients: Expectations and Delusions. Front Aging Neurosci 2015; 7:67. [PMID: 25999852 PMCID: PMC4418272 DOI: 10.3389/fnagi.2015.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
In Alzheimer disease, the gap between excellence of diagnostics and efficacy of therapy is wide. Despite sophisticated imaging and biochemical markers, the efficacy of available therapeutic options is limited. Here we examine the possibility that assessment of endogenous catecholamine levels in cerebrospinal fluid (CSF) may fuel new therapeutic strategies. In reviewing the available literature, we consider the effects of levodopa, monoamine oxidase inhibitors, and noradrenaline (NE) modulators, showing disparate results. We present a preliminary assessment of CSF concentrations of dopamine (DA) and NE, determined by HPLC, in a small dementia cohort of either Alzheimer’s disease (AD) or frontotemporal dementia patients, compared to control subjects. Our data reveal detectable levels of DA, NE in CSF, though we found no significant alterations in the dementia population as a whole. AD patients exhibit a small impairment of the DA axis and a larger increase of NE concentration, likely to represent a compensatory mechanism. While waiting for preventive strategies, a pragmatic approach to AD may re-evaluate catecholamine modulation, possibly stratified to dementia subtypes, as part of the therapeutic armamentarium.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy ; IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Enrica Olivola
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | | | | | - Valentina Saviozzi
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | - Giacoma Angileri
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | - Vincenza D'Angelo
- Department of System Medicine, Università di Roma Tor Vergata , Rome , Italy
| | | | | |
Collapse
|
47
|
Koch G, Di Lorenzo F, Bonnì S, Giacobbe V, Bozzali M, Caltagirone C, Martorana A. Dopaminergic modulation of cortical plasticity in Alzheimer's disease patients. Neuropsychopharmacology 2014; 39:2654-61. [PMID: 24859851 PMCID: PMC4207345 DOI: 10.1038/npp.2014.119] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 11/09/2022]
Abstract
In animal models of Alzheimer's disease (AD), mechanisms of cortical plasticity such as long-term potentiation (LTP) and long-term depression (LTD) are impaired. In AD patients, LTP-like cortical plasticity is abolished, whereas LTD seems to be preserved. Dopaminergic transmission has been hypothesized as a new player in ruling mechanisms of cortical plasticity in AD. We aimed at investigating whether administration of the dopamine agonist rotigotine (RTG) could modulate cortical plasticity in AD patients, as measured by theta burst stimulation (TBS) protocols of repetitive transcranial stimulation applied over the primary motor cortex. Thirty mild AD patients were tested in three different groups before and after 4 weeks of treatment with RTG, rivastigmine (RVT), or placebo (PLC). Each patient was evaluated for plasticity induction of LTP/LTD-like effects using respectively intermittent TBS (iTBS) or continuous TBS protocols. Short-latency afferent inhibition (SAI) protocol was performed to indirectly assess central cholinergic activity. A group of age-matched healthy controls was recruited for baseline comparisons. Results showed that at baseline, AD patients were characterized by impaired LTP-like cortical plasticity, as assessed by iTBS. These reduced levels of LTP-like cortical plasticity were increased and normalized after RTG administration. No effect was induced by RVT or PLC on LTP. LTD-like cortical plasticity was not modulated in any condition. Cholinergic activity was increased by both RTG and RVT. Our findings reveal that dopamine agonists may restore the altered mechanisms of LTP-like cortical plasticity in AD patients, thus providing novel implications for therapies based on dopaminergic stimulation.
Collapse
Affiliation(s)
- Giacomo Koch
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy,Department of Neuroscience, Tor Vergata University, Rome, Italy,Non Invasive Brain Stimulation Unit, Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Fondazione, S. Lucia, Via Ardeatina, Rome 306-00179, Italy, Tel: +39 0651501181, Fax: +39 0651501180, E-mail:
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy,Department of Neuroscience, Tor Vergata University, Rome, Italy
| | - Sonia Bonnì
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Viola Giacobbe
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Marco Bozzali
- Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Non Invasive Brain Stimulation Unit, Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy,Department of Neuroscience, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
48
|
Revilla S, Ursulet S, Álvarez-López MJ, Castro-Freire M, Perpiñá U, García-Mesa Y, Bortolozzi A, Giménez-Llort L, Kaliman P, Cristòfol R, Sarkis C, Sanfeliu C. Lenti-GDNF gene therapy protects against Alzheimer's disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 2014; 20:961-72. [PMID: 25119316 DOI: 10.1111/cns.12312] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 02/01/2023] Open
Abstract
AIMS Glial cell-derived neurotrophic factor (GDNF) is emerging as a potent neurotrophic factor with therapeutic potential against a range of neurodegenerative conditions including Alzheimer's disease (AD). We assayed the effects of GDNF treatment in AD experimental models through gene-therapy procedures. METHODS Recombinant lentiviral vectors were used to overexpress GDNF gene in hippocampal astrocytes of 3xTg-AD mice in vivo, and also in the MC65 human neuroblastoma that conditionally overexpresses the 99-residue carboxyl-terminal (C99) fragment of the amyloid precursor protein. RESULTS After 6 months of overexpressing GDNF, 10-month-old 3xTg-AD mice showed preserved learning and memory, while their counterparts transduced with a green fluorescent protein vector showed cognitive loss. GDNF therapy did not significantly reduce amyloid and tau pathology, but rather, induced a potent upregulation of brain-derived neurotrophic factor that may act in concert with GDNF to protect neurons from atrophy and degeneration. MC65 cells overexpressing GDNF showed an abolishment of oxidative stress and cell death that was at least partially mediated by a reduced presence of intracellular C99 and derived amyloid β oligomers. CONCLUSIONS GDNF induced neuroprotection in the AD experimental models used. Lentiviral vectors engineered to overexpress GDNF showed to be safe and effective, both as a potential gene therapy and as a tool to uncover the mechanisms of GDNF neuroprotection, including cross talk between astrocytes and neurons in the injured brain.
Collapse
Affiliation(s)
- Susana Revilla
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Antidementia drug use among community-dwelling individuals with Alzheimer's disease in Finland: a nationwide register-based study. Int Clin Psychopharmacol 2014; 29:216-23. [PMID: 24608822 PMCID: PMC4047310 DOI: 10.1097/yic.0000000000000032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objective of this study was to investigate the prevalence of acetylcholinesterase inhibitor (AChEI) and memantine use, duration of treatment, concomitant use of these drugs, and factors associated with the discontinuation of AChEI therapy during 2006-2009. We utilized data from a nationwide sample of community-dwelling individuals with a clinically verified Alzheimer's disease diagnosed during the year 2005 (n=6858) as a part of the MEDALZ-2005 study. During the 4-year follow-up, 84% used AChEI and 47% used memantine. Altogether, 22% of the sample used both drugs concomitantly. The median duration of the first AChEI use period was 860 (interquartile range 295-1458) days and 1103 (interquartile range 489-1487) days for the total duration of AChEI use. Although 20% of the AChEI users discontinued the use during the first year, over half of them restarted later. The risk of discontinuation was higher for rivastigmine [hazard ratio 1.34 (confidence interval 1.22-1.48)] and galantamine users [hazard ratio 1.23 (confidence interval 1.15-1.37)] compared with donepezil users in the adjusted model. In conclusion, median time for AChEI use was over 3 years and every fifth Alzheimer's disease patient used AChEI and memantine concomitantly during the follow-up. The low rate of discontinuation is consistent with the Finnish Care Guideline but in contrast to the results reported from many other countries.
Collapse
|
50
|
Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2014; 19:767-82. [PMID: 24413832 PMCID: PMC6271370 DOI: 10.3390/molecules19010767] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to evaluate acetylcholinesterase (AChE) inhibitory and antioxidant activities of Lamiaceae medicinal plants growing wild in Croatia. Using Ellman's colorimetric assay all tested ethanolic extracts and their hydroxycinnamic acid constituents demonstrated in vitro AChE inhibitory properties in a dose dependent manner. The extracts of Mentha x piperita, M. longifolia, Salvia officinalis, Satureja montana, Teucrium arduini, T. chamaedrys, T. montanum, T. polium and Thymus vulgaris at 1 mg/mL showed strong inhibitory activity against AChE. The antioxidant potential of the investigated Lamiaceae species was assessed by DPPH• scavenging activity and total antioxidant capacity assays, in comparison with hydroxycinnamic acids and trolox. The extracts differed greatly in their total hydroxycinnamic derivatives content, determined spectrophotometrically. Rosmarinic acid was found to be the predominant constituent in most of the investigated medicinal plants (by RP-HPLC) and had a substantial influence on their AChE inhibitory and antioxidant properties, with the exception of Teucrium species. These findings indicate that Lamiaceae species are a rich source of various natural AChE inhibitors and antioxidants that could be useful in the prevention and treatment of Alzheimer's and other related diseases.
Collapse
Affiliation(s)
- Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Biljana Blažeković
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Marija Kindl
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Jelena Vladić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Agnieszka D Lower-Nedza
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| | - Adelheid H Brantner
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Marulićev trg 20, Zagreb 10000, Croatia.
| |
Collapse
|