1
|
Ruff SE, Schwab L, Vidal E, Hemingway JD, Kraft B, Murali R. Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and oxygen-producing metabolic pathways in apparently anoxic environments. FEMS Microbiol Ecol 2024; 100:fiae132. [PMID: 39327011 PMCID: PMC11549561 DOI: 10.1093/femsec/fiae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Nearly all molecular oxygen (O2) on Earth is produced via oxygenic photosynthesis by plants or photosynthetically active microorganisms. Light-independent O2 production, which occurs both abiotically, e.g. through water radiolysis, or biotically, e.g. through the dismutation of nitric oxide or chlorite, has been thought to be negligible to the Earth system. However, recent work indicates that O2 is produced and consumed in dark and apparently anoxic environments at a much larger scale than assumed. Studies have shown that isotopically light O2 can accumulate in old groundwaters, that strictly aerobic microorganisms are present in many apparently anoxic habitats, and that microbes and metabolisms that can produce O2 without light are widespread and abundant in diverse ecosystems. Analysis of published metagenomic data reveals that the enzyme putatively capable of nitric oxide dismutation forms four major phylogenetic clusters and occurs in at least 16 bacterial phyla, most notably the Bacteroidota. Similarly, a re-analysis of published isotopic signatures of dissolved O2 in groundwater suggests in situ production in up to half of the studied environments. Geochemical and microbiological data support the conclusion that "dark oxygen production" is an important and widespread yet overlooked process in apparently anoxic environments with far-reaching implications for subsurface biogeochemistry and ecology.
Collapse
Affiliation(s)
- S Emil Ruff
- Marine Biological Laboratory, Ecosystems Center and J Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA 02543, United States
| | - Laura Schwab
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Emeline Vidal
- Marine Biological Laboratory, Ecosystems Center and J Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA 02543, United States
| | - Jordon D Hemingway
- Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
| | - Beate Kraft
- Nordcee, Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Ranjani Murali
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89119, United States
| |
Collapse
|
2
|
Bicaldo IEC, Padilla KSAR, Tu TH, Chen WT, Mendoza-Pascual MU, Vicera CVB, de Leon JR, Poblete KN, Austria ES, Lopez MLD, Kobayashi Y, Shiah FK, Papa RDS, Okuda N, Wang PL, Lin LH. The methane-oxidizing microbial communities of three maar lakes in tropical monsoon Asia. Front Microbiol 2024; 15:1410666. [PMID: 39044952 PMCID: PMC11263035 DOI: 10.3389/fmicb.2024.1410666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Methane-oxidizing bacteria (MOB) is a group of planktonic microorganisms that use methane as their primary source of cellular energy. For tropical lakes in monsoon Asia, there is currently a knowledge gap on MOB community diversity and the factors influencing their abundance. Herewith, we present a preliminary assessment of the MOB communities in three maar lakes in tropical monsoon Asia using Catalyzed Reporter Deposition, Fluorescence In-Situ Hybridization (CARD-FISH), 16S rRNA amplicon sequencing, and pmoA gene sequencing. Correlation analysis between MOB abundances and lakes' physicochemical parameters following seasonal monsoon events were performed to explain observed spatial and temporal patterns in MOB diversity. The CARD-FISH analyses detected the three MOB types (I, II, and NC10) which aligned with the results from 16S rRNA amplicons and pmoA gene sequencing. Among community members based on 16S rRNA genes, Proteobacterial Type I MOB (e.g., Methylococcaceae and Methylomonadaceae), Proteobacterial Type II (Methylocystaceae), Verrucomicrobial (Methylacidiphilaceae), Methylomirabilota/NC10 (Methylomirabilaceae), and archaeal ANME-1a were found to be the dominant methane-oxidizers in three maar lakes. Analysis of microbial diversity and distribution revealed that the community compositions in Lake Yambo vary with the seasons and are more distinct during the stratified period. Temperature, DO, and pH were significantly and inversely linked with type I MOB and Methylomirabilota during stratification. Only MOB type I was influenced by monsoon changes. This research sought to establish a baseline for the diversity and ecology of planktonic MOB in tropical monsoon Asia to better comprehend their contribution to the CH4 cycle in tropical freshwater ecosystems.
Collapse
Affiliation(s)
- Iona Eunice C. Bicaldo
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Karol Sophia Agape R. Padilla
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
- Department of Science and Technology, Science Education Institute, Taguig, Philippines
| | - Tzu-Hsuan Tu
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wan Ting Chen
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
| | - Milette U. Mendoza-Pascual
- Department of Environmental Science, School of Science and Engineering, Ateneo Research Institute for Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | | | - Justine R. de Leon
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, University of Santo Tomas, Manila, Philippines
| | | | | | - Mark Louie D. Lopez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Yuki Kobayashi
- Center for Ecological Research, Kyoto University, Shiga, Japan
| | - Fuh-Kwo Shiah
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Rey Donne S. Papa
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, University of Santo Tomas, Manila, Philippines
| | - Noboru Okuda
- Center for Ecological Research, Kyoto University, Shiga, Japan
- Research Center for Inland Seas, Kobe University, Kobe, Japan
- Research Institute for Humanity and Nature, Kamigamo Motoyama, Kita Ward, Kyoto, Japan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Borsodi AK. Taxonomic diversity of extremophilic prokaryotes adapted to special environmental parameters in Hungary: a review. Biol Futur 2024; 75:183-192. [PMID: 38753295 DOI: 10.1007/s42977-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
4
|
Su Y, Liu W, Rahaman MH, Chen Z, Zhai J. Methane emission from water level fluctuation zone of the Three Gorges Reservoir: Seasonal variation and microbial mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168935. [PMID: 38042199 DOI: 10.1016/j.scitotenv.2023.168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Periodic and significant water level fluctuations within the Three Gorges Reservoir (TGR) create a complex water level fluctuation zone (WLFZ) that can significantly influence greenhouse gas emissions. However, the scarcity of comprehensive studies investigating long-term monitoring and analysis of CH4 flux patterns and underlying mechanisms concerning water level variations, environmental characteristics, and microbial communities has limited our understanding. This study conducted a four-year monitoring campaign to examine in situ CH4 emissions from three representative sampling sites. Results indicated that the CH4 flux remained relatively stable at lower water levels, specifically at the control site (S1). However, water level fluctuations significantly influenced CH4 emissions at the sampling sites situated within the WLFZ. Notably, the highest CH4 flux of 0.252 ± 0.089 mg/(m2·h) was observed during the drying period (June to August), while the lowest CH4 flux of 0.048 ± 0.026 mg/(m2·h) was recorded during the flooding period. Moreover, CH4 emissions through the water-air interface surpassed those through the soil-air interface. The CH4 flux positively correlated with organic carbon, temperature, and soil moisture. The relative abundance of methane metabolism microorganisms peaked during the drying period and decreased during the impounding and flooding periods. The primary methanogenesis pathway was hydrogenotrophic, whereas methanotrophic processes were mainly aerobic, with Ca. Methylomirabilis governing the anaerobic methanotrophic process. Overall, the current findings serve as crucial theoretical references for understanding CH4 emissions and carbon metabolism processes within WLFZ environments.
Collapse
Affiliation(s)
- Yiming Su
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China
| | - Wenbo Liu
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Md Hasibur Rahaman
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha, Suchdol, Czech Republic
| | - Jun Zhai
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Chongqing University, Chongqing 400045, China; Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China.
| |
Collapse
|
5
|
Deng Y, Liang C, Zhu X, Zhu X, Chen L, Pan H, Xun F, Tao Y, Xing P. Methylomonadaceae was the active and dominant methanotroph in Tibet lake sediments. ISME COMMUNICATIONS 2024; 4:ycae032. [PMID: 38524764 PMCID: PMC10960969 DOI: 10.1093/ismeco/ycae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Methane (CH4), an important greenhouse gas, significantly impacts the local and global climate. Our study focused on the composition and activity of methanotrophs residing in the lakes on the Tibetan Plateau, a hotspot for climate change research. Based on the field survey, the family Methylomonadaceae had a much higher relative abundance in freshwater lakes than in brackish and saline lakes, accounting for ~92% of total aerobic methanotrophs. Using the microcosm sediment incubation with 13CH4 followed by high throughput sequencing and metagenomic analysis, we further demonstrated that the family Methylomonadaceae was actively oxidizing CH4. Moreover, various methylotrophs, such as the genera Methylotenera and Methylophilus, were detected in the 13C-labeled DNAs, which suggested their participation in CH4-carbon sequential assimilation. The presence of CH4 metabolism, such as the tetrahydromethanopterin and the ribulose monophosphate pathways, was identified in the metagenome-assembled genomes of the family Methylomonadaceae. Furthermore, they had the potential to adapt to oxygen-deficient conditions and utilize multiple electron acceptors, such as metal oxides (Fe3+), nitrate, and nitrite, for survival in the Tibet lakes. Our findings highlighted the predominance of Methylomonadaceae and the associated microbes as active CH4 consumers, potentially regulating the CH4 emissions in the Tibet freshwater lakes. These insights contributed to understanding the plateau carbon cycle and emphasized the significance of methanotrophs in mitigating climate change.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Chulin Liang
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaomeng Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Hongan Pan
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Fan Xun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| |
Collapse
|
6
|
Seppey CVW, Cabrol L, Thalasso F, Gandois L, Lavergne C, Martinez-Cruz K, Sepulveda-Jauregui A, Aguilar-Muñoz P, Astorga-España MS, Chamy R, Dellagnezze BM, Etchebehere C, Fochesatto GJ, Gerardo-Nieto O, Mansilla A, Murray A, Sweetlove M, Tananaev N, Teisserenc R, Tveit AT, Van de Putte A, Svenning MM, Barret M. Biogeography of microbial communities in high-latitude ecosystems: Contrasting drivers for methanogens, methanotrophs and global prokaryotes. Environ Microbiol 2023; 25:3364-3386. [PMID: 37897125 DOI: 10.1111/1462-2920.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.
Collapse
Affiliation(s)
- Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
| | - Léa Cabrol
- Aix-Marseille University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Frederic Thalasso
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Laure Gandois
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Céline Lavergne
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karla Martinez-Cruz
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
- Environmental Physics Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | | | - Polette Aguilar-Muñoz
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bruna Martins Dellagnezze
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Gilberto J Fochesatto
- Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Oscar Gerardo-Nieto
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Andrés Mansilla
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - Alison Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada, USA
| | - Maxime Sweetlove
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Nikita Tananaev
- Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia
- Institute of Natural Sciences, North-Eastern Federal University, Yakutsk, Russia
| | - Roman Teisserenc
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anton Van de Putte
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
7
|
Ouyang C, Qin Y, Liang Y, Gou Y. Community structure and network interaction of aerobic methane-oxidizing bacteria in Chongqing's central urban area in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56368-56381. [PMID: 36914933 DOI: 10.1007/s11356-023-26310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A reservoir is an important source of methane (CH4), which is consumed by aerobic methane-oxidizing bacteria (MOB), representing the main CH4 sink in water. The central urban area of Chongqing in the Three Gorges Reservoir (TGR) area was selected as the study area in 2021. High-throughput sequencing was used to analyze the community structure and abundance of MOBs. The results showed that Methylocystis (Type II) was the dominant MOB in water, whereas Methylococcus (Type I) and Methylocystis co-dominated the sediments. High water temperature in the study area largely accounted for the predominance of Type II MOBs in the two habitats. Moreover, the influence of environmental factors on MOB community and its interspecific relationship were significantly regulated by the operation of the TGR. In the low-water-level period, NO2--N and CO2 concentration significantly correlated with Methylocystis, whereas in the high-water-level period, the higher discharge and velocity weakened the influence of all environmental factors on Methylocystis. In addition, the scouring of sediments by increasing discharge in the high-water-level period caused a significant decrease in dissolved CH4 concentration. The decrease in substrate increased interspecific competition within the MOB community, especially between different types of MOBs, in the high-water-level period.
Collapse
Affiliation(s)
- Changyue Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yue Liang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yujia Gou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
8
|
Zhu X, Deng Y, Hernández M, Fang J, Xing P, Liu Y. Distinct responses of soil methanotrophy in hummocks and hollows to simulated glacier meltwater and temperature rise in Tibetan glacier foreland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160888. [PMID: 36521618 DOI: 10.1016/j.scitotenv.2022.160888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Glacier foreland soils are known to be essential methane (CH4) consumers. However, global warming and increased glacier meltwater have turned some foreland meadows into swamp meadows. The potential impact of this change on the function of foreland soils in methane consumption remains unclear. Therefore, we collected Tibetan glacier foreland soils in the non-melting season from typical microtopography in swamp meadows (hummock and hollow). Three soil moisture conditions (moist, saturated, and submerged) were set by adding glacier runoff water. Soil samples were then incubated in the laboratory for two weeks at 10 °C and 20 °C. About 5 % of 13CH4/12CH4 was added to the incubation bottles, and daily methane concentrations were measured. DNA stable isotope probing (DNA-SIP) and high-throughput sequencing were combined to target the active methanotroph populations. The results showed that type Ia methanotrophs, including Crenothrix, Methylobacter, and an unclassified Methylomonadaceae cluster, actively oxidized methane at 10 °C and 20 °C. There were distinct responses of methanotrophs to soil moisture rises in hummock and hollow soils, resulting in different methane oxidation potentials. In both hummock and hollow soils, the methane oxidation potential was positively correlated with temperature. Furthermore, saturated hummock soils exhibited the highest methane oxidation potential and methanotroph populations, while submerged hollow soils had the lowest. This suggests that the in-situ hummock soils, generally saturated with water, are more essential than in-situ hollows, typically submerged in water, for alleviating the global warming potential of swamp meadows in the Tibetan glacier foreland during the growing season.
Collapse
Affiliation(s)
- Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
| | - Jie Fang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Xing
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Shen LD, Geng CY, Ren BJ, Jin JH, Huang HC, Liu X, Yang WT, Yang YL, Liu JQ, Tian MH. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. MICROBIAL ECOLOGY 2023; 85:441-453. [PMID: 35098330 DOI: 10.1007/s00248-022-01968-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.
Collapse
Affiliation(s)
- Li-Dong Shen
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Cai-Yu Geng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bing-Jie Ren
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing-Hao Jin
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He-Chen Huang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wang-Ting Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mao-Hui Tian
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
10
|
Roldán DM, Carrizo D, Sánchez-García L, Menes RJ. Diversity and Effect of Increasing Temperature on the Activity of Methanotrophs in Sediments of Fildes Peninsula Freshwater Lakes, King George Island, Antarctica. Front Microbiol 2022; 13:822552. [PMID: 35369426 PMCID: PMC8969513 DOI: 10.3389/fmicb.2022.822552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Global warming has a strong impact on polar regions. Particularly, the Antarctic Peninsula and nearby islands have experienced a marked warming trend in the past 50 years. Therefore, higher methane (CH4) emissions from this area could be expected in the future. Since mitigation of these emissions can be carried out by microbial oxidation, understanding this biological process is crucial since to our knowledge, no related studies have been performed in this area before. In this work, the aerobic CH4 oxidation potential of five freshwater lake sediments of Fildes Peninsula (King George Island, South Shetland Islands) was determined with values from 0.07 to 10 μmol CH4 gdw–1 day–1 and revealed up to 100-fold increase in temperature gradients (5, 10, 15, and 20°C). The structure and diversity of the bacterial community in the sediments were analyzed by next-generation sequencing (Illumina MiSeq) of 16S rRNA and pmoA genes. A total of 4,836 ASVs were identified being Proteobacteria, Actinobacteriota, Acidobacteriota, and Bacteroidota the most abundant phyla. The analysis of the pmoA gene identified 200 ASVs of methanotrophs, being Methylobacter Clade 2 (Type I, family Methylococcaceae) the main responsible of the aerobic CH4 oxidation. Moreover, both approaches revealed the presence of methanotrophs of the classes Gammaproteobacteria (families Methylococcaceae and Crenotrichaceae), Alphaproteobacteria (family Methylocystaceae), Verrucomicrobia (family Methylacidiphilaceae), and the candidate phylum of anaerobic methanotrophs Methylomirabilota. In addition, bacterial phospholipid fatty acids (PLFA) biomarkers were studied as a proxy for aerobic methane-oxidizing bacteria and confirmed these results. Methanotrophic bacterial diversity was significantly correlated with pH. In conclusion, our findings suggest that aerobic methanotrophs could mitigate in situ CH4 emissions in a future scenario with higher temperatures in this climate-sensitive area. This study provides new insights into the diversity of methanotrophs, as well as the influence of temperature on the CH4 oxidation potential in sediments of freshwater lakes in polar regions of the southern hemisphere.
Collapse
Affiliation(s)
- Diego M. Roldán
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel Carrizo
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Laura Sánchez-García
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Madrid, Spain
| | - Rodolfo Javier Menes
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Microbiología, Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Rodolfo Javier Menes,
| |
Collapse
|
11
|
Altshuler I, Raymond-Bouchard I, Magnuson E, Tremblay J, Greer CW, Whyte LG. Unique high Arctic methane metabolizing community revealed through in situ 13CH 4-DNA-SIP enrichment in concert with genome binning. Sci Rep 2022; 12:1160. [PMID: 35064149 PMCID: PMC8782848 DOI: 10.1038/s41598-021-04486-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Greenhouse gas (GHG) emissions from Arctic permafrost soils create a positive feedback loop of climate warming and further GHG emissions. Active methane uptake in these soils can reduce the impact of GHG on future Arctic warming potential. Aerobic methane oxidizers are thought to be responsible for this apparent methane sink, though Arctic representatives of these organisms have resisted culturing efforts. Here, we first used in situ gas flux measurements and qPCR to identify relative methane sink hotspots at a high Arctic cytosol site, we then labeled the active microbiome in situ using DNA Stable Isotope Probing (SIP) with heavy 13CH4 (at 100 ppm and 1000 ppm). This was followed by amplicon and metagenome sequencing to identify active organisms involved in CH4 metabolism in these high Arctic cryosols. Sequencing of 13C-labeled pmoA genes demonstrated that type II methanotrophs (Methylocapsa) were overall the dominant active methane oxidizers in these mineral cryosols, while type I methanotrophs (Methylomarinovum) were only detected in the 100 ppm SIP treatment. From the SIP-13C-labeled DNA, we retrieved nine high to intermediate quality metagenome-assembled genomes (MAGs) belonging to the Proteobacteria, Gemmatimonadetes, and Chloroflexi, with three of these MAGs containing genes associated with methanotrophy. A novel Chloroflexi MAG contained a mmoX gene along with other methane oxidation pathway genes, identifying it as a potential uncultured methane oxidizer. This MAG also contained genes for copper import, synthesis of biopolymers, mercury detoxification, and ammonia uptake, indicating that this bacterium is strongly adapted to conditions in active layer permafrost and providing new insights into methane biogeochemical cycling. In addition, Betaproteobacterial MAGs were also identified as potential cross-feeders with methanotrophs in these Arctic cryosols. Overall, in situ SIP labeling combined with metagenomics and genome binning demonstrated to be a useful tool for discovering and characterizing novel organisms related to specific microbial functions or biogeochemical cycles of interest. Our findings reveal a unique and active Arctic cryosol microbial community potentially involved in CH4 cycling.
Collapse
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences NMBU, Universitetstunet 3, 1430, Ås, Norway.
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Julien Tremblay
- Energy, Mining and Environment Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
- Energy, Mining and Environment Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
12
|
The Influence of Above-Ground Herbivory on the Response of Arctic Soil Methanotrophs to Increasing CH 4 Concentrations and Temperatures. Microorganisms 2021; 9:microorganisms9102080. [PMID: 34683401 PMCID: PMC8540837 DOI: 10.3390/microorganisms9102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
Rising temperatures in the Arctic affect soil microorganisms, herbivores, and peatland vegetation, thus directly and indirectly influencing microbial CH4 production. It is not currently known how methanotrophs in Arctic peat respond to combined changes in temperature, CH4 concentration, and vegetation. We studied methanotroph responses to temperature and CH4 concentration in peat exposed to herbivory and protected by exclosures. The methanotroph activity was assessed by CH4 oxidation rate measurements using peat soil microcosms and a pure culture of Methylobacter tundripaludum SV96, qPCR, and sequencing of pmoA transcripts. Elevated CH4 concentrations led to higher CH4 oxidation rates both in grazed and exclosed peat soils, but the strongest response was observed in grazed peat soils. Furthermore, the relative transcriptional activities of different methanotroph community members were affected by the CH4 concentrations. While transcriptional responses to low CH4 concentrations were more prevalent in grazed peat soils, responses to high CH4 concentrations were more prevalent in exclosed peat soils. We observed no significant methanotroph responses to increasing temperatures. We conclude that methanotroph communities in these peat soils respond to changes in the CH4 concentration depending on their previous exposure to grazing. This “conditioning” influences which strains will thrive and, therefore, determines the function of the methanotroph community.
Collapse
|
13
|
Yun J, Crombie AT, Ul Haque MF, Cai Y, Zheng X, Wang J, Jia Z, Murrell JC, Wang Y, Du W. Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics in the Zoige wetland of the Tibetan Plateau. Environ Microbiol 2021; 23:6520-6535. [PMID: 34390603 DOI: 10.1111/1462-2920.15697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023]
Abstract
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.
Collapse
Affiliation(s)
- Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
14
|
Lu L, Li X, Li Z, Chen Y, Sabio Y García CA, Yang J, Luo F, Zou X. Aerobic methanotrophs in an urban water cycle system: Community structure and network interaction pattern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145045. [PMID: 33770879 DOI: 10.1016/j.scitotenv.2021.145045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play an important role in reducing methane emissions in nature. Most current researches focus on the natural habitats (e.g., lakes, reservoirs, wetlands, paddy fields, etc.). However, methanotrophs and the methane-oxidizing process remain essentially unclear in artificial habitat, such as the urban water cycle systems. Here, high-throughput sequencing and qPCR were used to analyze the community structure and abundance of MOB. Six different systems were selected from Yunyang City, Chongqing, China, including the raw water system (RW), the water supply pipe network system (SP), the wastewater pipe network system (WP), the hospital wastewater treatment system (HP), the municipal wastewater treatment plant system (WT) and the downstream river system (ST) of a wastewater treatment plant. Results clearly showed that the MOB community structure and network interaction patterns of the urban water cycle system were different from those of natural water bodies. Type I MOB was the dominant clade in HP. Methylocysis in Type II was the most abundant genus among the whole urban water cycle system, indicating that this genus had a high adaptability to the environment. Temperature, dissolved oxygen, pH and concentration significantly affected the MOB communities in the urban water cycle system. The network of MOB in WT was the most complicated, and there were competitive relationships among species in WP. The structure of the network in HP was unstable, and therefore, it was vulnerable to environmental disturbances. Methylocystis (Type II) and Methylomonas (Type I) were the most important keystone species in the entire urban water cycle system. Overall, these findings broaden the understanding of the distribution and interaction patterns of MOB communities in an urban water cycle system and provide valuable clues for ecosystem restoration and environmental management.
Collapse
Affiliation(s)
- Lunhui Lu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinrui Li
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Zhe Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yao Chen
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Carmen A Sabio Y García
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Int. Güiraldes 2620, Pabellón II, Ciudad Universitaria, CP 1428 Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Argentina
| | - Jixiang Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Fang Luo
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xi Zou
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, PR China
| |
Collapse
|
15
|
Rainer EM, Seppey CVW, Tveit AT, Svenning MM. Methanotroph populations and CH4 oxidation potentials in high-Arctic peat are altered by herbivory induced vegetation change. FEMS Microbiol Ecol 2021; 96:5868763. [PMID: 32639555 PMCID: PMC8202349 DOI: 10.1093/femsec/fiaa140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/07/2020] [Indexed: 01/11/2023] Open
Abstract
Methane oxidizing bacteria (methanotrophs) within the genus
Methylobacter constitute the biological filter for methane
(CH4) in many Arctic soils. Multiple Methylobacter strains
have been identified in these environments but we seldom know the ecological significance
of the different strains. High-Arctic peatlands in Svalbard are heavily influenced by
herbivory, leading to reduced vascular plant and root biomass. Here, we have measured
potential CH4 oxidation rates and identified the active methantrophs in grazed
peat and peat protected from grazing by fencing (exclosures) for 18 years. Grazed peat
sustained a higher water table, higher CH4 concentrations and lower oxygen
(O2) concentrations than exclosed peat. Correspondingly, the highest
CH4 oxidation potentials were closer to the O2 rich surface in the
grazed than in the protected peat. A comparison of 16S rRNA genes showed that the majority
of methanotrophs in both sites belong to the genus Methylobacter. Further
analyses of pmoA transcripts revealed that several
Methylobacter OTUs were active in the peat but that different OTUs
dominated the grazed peat than the exclosed peat. We conclude that grazing influences soil
conditions, the active CH4 filter and that different
Methylobacter populations are responsible for CH4 oxidation
depending on the environmental conditions.
Collapse
Affiliation(s)
- Edda M Rainer
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
16
|
Le Moigne A, Bartosiewicz M, Schaepman-Strub G, Abiven S, Pernthaler J. The biogeochemical variability of Arctic thermokarst ponds is reflected by stochastic and niche-driven microbial community assembly processes. Environ Microbiol 2020; 22:4847-4862. [PMID: 32996246 PMCID: PMC7702111 DOI: 10.1111/1462-2920.15260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 01/22/2023]
Abstract
Shallow thermokarst ponds are a conspicuous landscape element of the Arctic Siberian tundra with high biogeochemical variability. Little is known about how microbes from the regional species pool assemble into local pond communities and how the resulting patterns affect functional properties such as dissolved organic carbon (DOC) remineralization and greenhouse gas (GHG) turnover. We analysed the pelagic microbiomes of 20 ponds in north‐eastern Siberia in the context of their physico‐chemical properties. Ponds were categorized as polygonal or trough according to their geomorphological origin. The diversity of bacteria and eukaryotic microbes was assessed by ribosomal gene tag sequencing. Null model analysis revealed an important role of stochastic assembly processes within ponds of identical origin, in particular for genotypes only occurring in few systems. Nevertheless, the two pond types clearly represented distinct niches for both the bacterial and eukaryotic microbial communities. Carbon dioxide concentration, indicative of heterotrophic microbial processes, varied greatly, especially in the trough ponds. Methane concentrations were lower in polygonal ponds and were correlated with the estimated abundance of methanotrophs. Thus, the overall functional variability of Arctic ponds reflects the stochastic assembly of their microbial communities. Distinct functional subcommunities can, nevertheless, be related to GHG concentrations.
Collapse
Affiliation(s)
- Alizée Le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,URPP Global Change and Biodiversity, University of Zürich, Zürich, Switzerland
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Gabriela Schaepman-Strub
- URPP Global Change and Biodiversity, University of Zürich, Zürich, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Samuel Abiven
- Department of Geography, University of Zurich, Zürich, Switzerland.,Laboratoire de Géologie, UMR 8538 Ecole Normale Supérieure, CNRS, PSL Research University, Paris, France.,Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP-Ecotron IledeFrance), Département de Biologie, Ecole Normale Supérieure, CNRS, PSL Research University, Paris, France
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland.,URPP Global Change and Biodiversity, University of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Meyer-Dombard DR, Bogner JE, Malas J. A Review of Landfill Microbiology and Ecology: A Call for Modernization With 'Next Generation' Technology. Front Microbiol 2020; 11:1127. [PMID: 32582086 PMCID: PMC7283466 DOI: 10.3389/fmicb.2020.01127] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Engineered and monitored sanitary landfills have been widespread in the United States since the passage of the Clean Water Act (1972) with additional controls under RCRA Subtitle D (1991) and the Clean Air Act Amendments (1996). Concurrently, many common perceptions regarding landfill biogeochemical and microbiological processes and estimated rates of gas production also date from 2 to 4 decades ago. Herein, we summarize the recent application of modern microbiological tools as well as recent metadata analysis using California, USEPA and international data to outline an evolving view of landfill biogeochemical/microbiological processes and rates. We focus on United States landfills because these are uniformly subject to stringent national and state requirements for design, operations, monitoring, and reporting. From a microbiological perspective, because anoxic conditions and methanogenesis are rapidly established after daily burial of waste and application of cover soil, the >1000 United States landfills with thicknesses up to >100 m form a large ubiquitous group of dispersed 'dark' ecosystems dominated by anaerobic microbial decomposition pathways for food, garden waste, and paper substrates. We review past findings of landfill ecosystem processes, and reflect on the potential impact that application of modern sequencing technologies (e.g., high throughput platforms) could have on this area of research. Moreover, due to the ever evolving composition of landfilled waste reflecting transient societal practices, we also consider unusual microbial processes known or suspected to occur in landfill settings, and posit areas of research that will be needed in coming decades. With growing concerns about greenhouse gas emissions and controls, the increase of chemicals of emerging concern in the waste stream, and the potential resource that waste streams represent, application of modernized molecular and microbiological methods to landfill ecosystem research is of paramount importance.
Collapse
Affiliation(s)
- D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
18
|
In 't Zandt MH, Liebner S, Welte CU. Roles of Thermokarst Lakes in a Warming World. Trends Microbiol 2020; 28:769-779. [PMID: 32362540 DOI: 10.1016/j.tim.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Abstract
Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon dioxide and methane which release long-term carbon stocks into the atmosphere, thereby initiating a positive climate feedback potentially contributing up to a 0.39°C rise of surface air temperatures by 2300. This review describes the potential role of thermokarst lakes in a warming world and the microbial mechanisms that underlie their contributions to the global greenhouse gas budget.
Collapse
Affiliation(s)
- Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Hao Q, Liu F, Zhang Y, Wang O, Xiao L. Methylobacter accounts for strong aerobic methane oxidation in the Yellow River Delta with characteristics of a methane sink during the dry season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135383. [PMID: 31810682 DOI: 10.1016/j.scitotenv.2019.135383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Recent investigations demonstrate that some coastal wetlands are atmospheric methane sinks, but the regulatory mechanisms are not clear. Here, the main pathway and operator of methane oxidation in the Yellow River Delta (YRD) wetland, a methane source in the wet season but a methane sink in the dry season, were investigated. The anaerobic oxidation of methane (AOM) and aerobic methane oxidation (AMO) abilities of wetland soil were measured, and the microbial community structure was analyzed. The experimental results showed that AMO was active throughout the year. In contrast, AOM was weak and even undetected. The microbial community analysis indicated that Methylomicrobium and Methylobacter potentially scavenged methane in oxic environments. A representative strain of Methylobacter, which was isolated from the soil, presented a strong AMO ability at high concentrations of methane and air. Overall, this study showed that active AMO performing by Methylobacter may account for methane sink in the YRD wetland during the dry season. Our research not only has determined the way in which methane sinks are formed but also identified the potential functional microbes. In particular, we confirmed the function of potential methanotroph by pure culture. Our research provides biological evidence for why some wetlands have methane sink characteristics, which may help to understand the global methane change mechanism.
Collapse
Affiliation(s)
- Qinqin Hao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Yuechao Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Oumei Wang
- Binzhou Medical University, Yantai, 264003, PR China
| | - Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
20
|
Reis PCJ, Thottathil SD, Ruiz-González C, Prairie YT. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates. Environ Microbiol 2019; 22:738-751. [PMID: 31769176 DOI: 10.1111/1462-2920.14877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
Abstract
Lake methane (CH4 ) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.
Collapse
Affiliation(s)
- Paula C J Reis
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Shoji D Thottathil
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Barcelona, E-08003, Spain
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada
| |
Collapse
|
21
|
Crevecoeur S, Ruiz-González C, Prairie YT, Del Giorgio PA. Large-scale biogeography and environmental regulation of methanotrophic bacteria across boreal inland waters. Mol Ecol 2019; 28:4181-4196. [PMID: 31479544 DOI: 10.1111/mec.15223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023]
Abstract
Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here, we used high-throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic community composition and the environmental factors that influence their distribution and relative abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal landscape. Within one region, soil and soil water samples were additionally taken from the surrounding watersheds in order to cover the full terrestrial-aquatic continuum. The composition of methanotrophic communities across the boreal landscape showed only a modest degree of regional differentiation but a strong structuring along the hydrologic continuum from soil to lake communities, regardless of regions. This pattern along the hydrologic continuum was mostly explained by a clear niche differentiation between type I and type II methanotrophs along environmental gradients in pH, and methane concentrations. Our results suggest very different roles of type I and type II methanotrophs within inland waters, the latter likely having a terrestrial source and reflecting passive transport and dilution along the aquatic networks, but this is an unresolved issue that requires further investigation.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC, Canada
| | - Clara Ruiz-González
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC, Canada
| | - Paul A Del Giorgio
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
22
|
Microbial communities involved in the methane cycle in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe. Antonie van Leeuwenhoek 2019; 112:1801-1814. [PMID: 31372944 DOI: 10.1007/s10482-019-01308-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Although arctic and subarctic lakes are important sources of methane, the emission of which will increase due to the melting of permafrost, the processes related to the methane cycle in such environments are far from being comprehensively understood. Here we studied the microbial communities in the near-bottom water layer and sediments of the meromictic subarctic Lake Svetloe using high-throughput sequencing of the 16S rRNA and methyl coenzyme M reductase subunit A genes. Hydrogenotrophic methanogens of the order Methanomicrobiales were abundant, both in the water column and in sediments, while the share of acetoclastic Methanosaetaceae decreased with the depth of sediments. Members of the Methanomassiliicoccales order were absent in the water but abundant in the deep sediments. Archaea known to perform anaerobic oxidation of methane were not found. The bacterial component of the microbial community in the bottom water layer included oxygenic (Cyanobacteria) and anoxygenic (Chlorobi) phototrophs, aerobic Type I methanotrophs, methylotrophs, syntrophs, and various organotrophs. In deeper sediments the diversity of the microbial community decreased, and it became dominated by methanogenic archaea and the members of the Bathyarchaeota, Chloroflexi and Deltaproteobacteria. This study shows that the sediments of a subarctic meromictic lake contain a taxonomically and metabolically diverse community potentially capable of complete mineralization of organic matter.
Collapse
|
23
|
Rahalkar MC, Khatri K, Pandit PS, Dhakephalkar PK. A putative novel Methylobacter member (KRF1) from the globally important Methylobacter clade 2: cultivation and salient draft genome features. Antonie van Leeuwenhoek 2019; 112:1399-1408. [PMID: 30968234 DOI: 10.1007/s10482-019-01262-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/02/2019] [Indexed: 11/28/2022]
Abstract
Methane oxidation by methanotrophs is a very important environmental process in the mitigation of methane. Methylobacter (Mtb.) clade 2 members have been reported as dominant methane oxidisers in soils and sediments worldwide. We enriched and purified a methanotroph from a tropical rice field soil sample from India. The highly enriched culture showed the presence of motile, long and thick rods (3-5 µm × 0.9-1.2 µm) and minor presence of short, thin rods. The culture was purified on agarose medium and formed yellow colonies which showed the presence of only thick and long rods, henceforth termed as strain KRF1. Based on 16S rRNA gene sequence analysis, strain KRF1 shows close phylogenetic affiliation to Methylobacter tundripaludum SV96T (98.6% similarity). Due to the taxonomic novelty, and being the first member of Mtb. related to Mtb. tundripaludum from the tropics, the draft genome was sequenced. From the blastx analysis of the contigs, it was clear that the culture still had contamination of another organism, a Methylophilus species. The data binned in two clear bins: Mtb. related contigs and Methylophilus-related contigs. The binned draft genome of KRF1 shows features including the typical pathways for methane metabolism, denitrification and the presence of molybdenum iron and vanadium-iron nitrogenase genes. KRF1 is phylogenetically distinct from the five strains of Mtb. tundripaludum including SV96T, Lake Washington strains and OWC strains, showing ~ 26% DDH and ~ 81% ANIb values and a unique position in a phylogenomic tree. Subsequently, KRF1 has been completely purified from its methylotrophic partner and a pure culture has been established and maintained in a WDCM approved culture collection, the MACS Collection of Microorganisms (as MCM 1471). KRF1 is thus the first cultured member of a putative novel species of Methylobacter clade 2 isolated from the tropics.
Collapse
Affiliation(s)
- Monali C Rahalkar
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India. .,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| | - Kumal Khatri
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Pranitha S Pandit
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Prashant K Dhakephalkar
- C2, Bioenergy Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.,Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| |
Collapse
|
24
|
Smith GJ, Angle JC, Solden LM, Borton MA, Morin TH, Daly RA, Johnston MD, Stefanik KC, Wolfe R, Gil B, Wrighton KC. Members of the Genus Methylobacter Are Inferred To Account for the Majority of Aerobic Methane Oxidation in Oxic Soils from a Freshwater Wetland. mBio 2018; 9:e00815-18. [PMID: 30401770 PMCID: PMC6222125 DOI: 10.1128/mbio.00815-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Microbial carbon degradation and methanogenesis in wetland soils generate a large proportion of atmospheric methane, a highly potent greenhouse gas. Despite their potential to mitigate greenhouse gas emissions, knowledge about methane-consuming methanotrophs is often limited to lower-resolution single-gene surveys that fail to capture the taxonomic and metabolic diversity of these microorganisms in soils. Here our objective was to use genome-enabled approaches to investigate methanotroph membership, distribution, and in situ activity across spatial and seasonal gradients in a freshwater wetland near Lake Erie. 16S rRNA gene analyses demonstrated that members of the methanotrophic Methylococcales were dominant, with the dominance largely driven by the relative abundance of four taxa, and enriched in oxic surface soils. Three methanotroph genomes from assembled soil metagenomes were assigned to the genus Methylobacter and represented the most abundant methanotrophs across the wetland. Paired metatranscriptomes confirmed that these Old Woman Creek (OWC) Methylobacter members accounted for nearly all the aerobic methanotrophic activity across two seasons. In addition to having the capacity to couple methane oxidation to aerobic respiration, these new genomes encoded denitrification potential that may sustain energy generation in soils with lower dissolved oxygen concentrations. We further show that Methylobacter members that were closely related to the OWC members were present in many other high-methane-emitting freshwater and soil sites, suggesting that this lineage could participate in methane consumption in analogous ecosystems. This work contributes to the growing body of research suggesting that Methylobacter may represent critical mediators of methane fluxes in freshwater saturated sediments and soils worldwide.IMPORTANCE Here we used soil metagenomics and metatranscriptomics to uncover novel members within the genus Methylobacter We denote these closely related genomes as members of the lineage OWC Methylobacter Despite the incredibly high microbial diversity in soils, here we present findings that unexpectedly showed that methane cycling was primarily mediated by a single genus for both methane production ("Candidatus Methanothrix paradoxum") and methane consumption (OWC Methylobacter). Metatranscriptomic analyses revealed that decreased methanotrophic activity rather than increased methanogenic activity possibly contributed to the greater methane emissions that we had previously observed in summer months, findings important for biogeochemical methane models. Although members of this Methylococcales order have been cultivated for decades, multi-omic approaches continue to illuminate the methanotroph phylogenetic and metabolic diversity harbored in terrestrial and marine ecosystems.
Collapse
Affiliation(s)
- Garrett J Smith
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jordan C Angle
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Lindsey M Solden
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A Borton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Timothy H Morin
- Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael D Johnston
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Kay C Stefanik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil and Environmental Engineering and Geodetic Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard Wolfe
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bohrer Gil
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio, USA
- Department of Civil and Environmental Engineering and Geodetic Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:23-31. [PMID: 28686892 DOI: 10.1016/j.scitotenv.2017.06.187] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/25/2023]
Abstract
Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.
Collapse
Affiliation(s)
- Karla Martinez-Cruz
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Armando Sepulveda-Jauregui
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Katey Walter Anthony
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Frederic Thalasso
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| |
Collapse
|
26
|
Crevecoeur S, Vincent WF, Comte J, Matveev A, Lovejoy C. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds. PLoS One 2017; 12:e0188223. [PMID: 29182670 PMCID: PMC5705078 DOI: 10.1371/journal.pone.0188223] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022] Open
Abstract
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- * E-mail:
| | - Warwick F. Vincent
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
| | - Jérôme Comte
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Alex Matveev
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
| | - Connie Lovejoy
- Département de Biologie, Centre d’études nordiques (CEN) and Takuvik Joint International Laboratory, Université Laval, Québec, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
- Québec-Océan, Université Laval, Québec, Québec, Canada
| |
Collapse
|
27
|
High Temporal and Spatial Variability of Atmospheric-Methane Oxidation in Alpine Glacier Forefield Soils. Appl Environ Microbiol 2017; 83:AEM.01139-17. [PMID: 28687652 DOI: 10.1128/aem.01139-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/30/2017] [Indexed: 11/20/2022] Open
Abstract
Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from -3.7 to -0.03 mg CH4 m-2 day-1 Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories.IMPORTANCE Oxidation of methane (CH4) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories.
Collapse
|
28
|
Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates. mSphere 2017; 2:mSphere00309-17. [PMID: 28861523 PMCID: PMC5566838 DOI: 10.1128/mspheredirect.00309-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH3D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH3D procedure with the well-established 14C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH3D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH3D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics. Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH3D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH3D procedure and the well-established 14CH4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH3D method were directly and consistently proportional to 14C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH3D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH3D procedure with the well-established 14C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH3D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH3D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics.
Collapse
|
29
|
Stackhouse B, Lau MCY, Vishnivetskaya T, Burton N, Wang R, Southworth A, Whyte L, Onstott TC. Atmospheric CH 4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. GEOBIOLOGY 2017; 15:94-111. [PMID: 27474434 DOI: 10.1111/gbi.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
The response of methanotrophic bacteria capable of oxidizing atmospheric CH4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH4 gdw-1 d-1 ). Extrapolation of the CH4 oxidation rates to the field yields net CH4 uptake fluxes ranging from 11 to 73 μmol CH4 m-2 d-1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH4 oxidation rates vs. water saturation and the depth to the water table during summer thaw.
Collapse
Affiliation(s)
- B Stackhouse
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - M C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - T Vishnivetskaya
- The Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - N Burton
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - R Wang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - A Southworth
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - L Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - T C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
30
|
Danilova OV, Belova SE, Gagarinova IV, Dedysh SN. Microbial community composition and methanotroph diversity of a subarctic wetland in Russia. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716050039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Deng Y, Cui X, Dumont MG. Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiol Lett 2016; 363:fnw168. [PMID: 27369086 DOI: 10.1093/femsle/fnw168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sedge-dominated wetlands on the Qinghai-Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography Science Nanjing Normal University, Nanjing 210023, China Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Xiaoyong Cui
- College of Life Sciences University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Marc G Dumont
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| |
Collapse
|
32
|
Osudar R, Liebner S, Alawi M, Yang S, Bussmann I, Wagner D. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia. FEMS Microbiol Ecol 2016; 92:fiw116. [PMID: 27230921 DOI: 10.1093/femsec/fiw116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 01/01/2023] Open
Abstract
Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.
Collapse
Affiliation(s)
- Roman Osudar
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg, 14473 Potsdam, Germany GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Ingeborg Bussmann
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Biological Station Helgoland, Kurpromenade 201, 27498 Helgoland, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| |
Collapse
|
33
|
Wen X, Yang S, Liebner S. Evaluation and update of cutoff values for methanotrophic pmoA gene sequences. Arch Microbiol 2016; 198:629-36. [PMID: 27098810 DOI: 10.1007/s00203-016-1222-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 01/16/2023]
Abstract
The functional pmoA gene is frequently used to probe the diversity and phylogeny of methane-oxidizing bacteria (MOB) in various environments. Here, we compared the similarities between the pmoA gene and the corresponding 16S rRNA gene sequences of 77 described species covering gamma- and alphaproteobacterial methanotrophs (type I and type II MOB, respectively) as well as methanotrophs from the phylum Verrucomicrobia. We updated and established the weighted mean pmoA gene cutoff values on the nucleotide level at 86, 82, and 71 % corresponding to the 97, 95, and 90 % similarity of the 16S rRNA gene. Based on these cutoffs, the functional gene fragments can be entirely processed at the nucleotide level throughout software platforms such as Mothur or QIIME which provide a user-friendly and command-based alternative to amino acid-based pipelines. Type II methanotrophs are less divergent than type I both with regard to ribosomal and functional gene sequence similarity and GC content. We suggest that this agrees with the theory of different life strategies proposed for type I and type II MOB.
Collapse
Affiliation(s)
- Xi Wen
- Helmholtz Center Potsdam, GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany.,College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, 730030, China
| | - Sizhong Yang
- Helmholtz Center Potsdam, GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany. .,State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Susanne Liebner
- Helmholtz Center Potsdam, GFZ German Research Centre for Geosciences, Section 5.3 Geomicrobiology, Telegrafenberg, 14473, Potsdam, Germany
| |
Collapse
|
34
|
Pandit PS, Rahalkar MC, Dhakephalkar PK, Ranade DR, Pore S, Arora P, Kapse N. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches. MICROBIAL ECOLOGY 2016; 71:634-644. [PMID: 26547567 DOI: 10.1007/s00248-015-0697-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.
Collapse
Affiliation(s)
- Pranitha S Pandit
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Monali C Rahalkar
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
| | | | - Dilip R Ranade
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
- Microbial Culture Collection, NCCS, Sai-Trinity Building Garware Circle, Pashan, Pune, Maharashtra, 411021, India
| | - Soham Pore
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Preeti Arora
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Neelam Kapse
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| |
Collapse
|
35
|
McCann CM, Wade MJ, Gray ND, Roberts JA, Hubert CRJ, Graham DW. Microbial Communities in a High Arctic Polar Desert Landscape. Front Microbiol 2016; 7:419. [PMID: 27065980 PMCID: PMC4814466 DOI: 10.3389/fmicb.2016.00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of microbial communities in polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla dominated the soils and accounted for 95% of all sequences, with the Proteobacteria, Actinobacteria, and Chloroflexi being the major lineages. In contrast to previous investigations of Arctic soils, relative Acidobacterial abundances were found to be very low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to characteristic circumneutral soil pHs in this region, which has resulted from the weathering of underlying carbonate bedrock. In addition, we compared previously measured geochemical conditions as possible controls on soil microbial communities. Phosphorus, pH, nitrogen, and calcium levels all significantly correlated with β-diversity, indicating landscape-scale lithological control of available nutrients, which in turn, significantly influenced soil community composition. In addition, soil phosphorus and pH significantly correlated with α-diversity, particularly with the Shannon diversity and Chao 1 richness indices.
Collapse
Affiliation(s)
- Clare M McCann
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| | - Matthew J Wade
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| | | | - Casey R J Hubert
- School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon Tyne, UK; Energy Bioengineering and Geomicrobiology, University of Calgary, CalgaryAB, Canada
| | - David W Graham
- School of Civil Engineering and Geosciences, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Arctic soil microbial diversity in a changing world. Res Microbiol 2015; 166:796-813. [DOI: 10.1016/j.resmic.2015.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/23/2023]
|
37
|
Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 2015; 5:3212. [PMID: 24526077 DOI: 10.1038/ncomms4212] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022] Open
Abstract
Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus 'Methanoflorens stordalenmirensis' gen. nov. sp. nov., belonging to the uncultivated lineage 'Rice Cluster II' (Candidatus 'Methanoflorentaceae' fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, 'Methanoflorentaceae' are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus 'M. stordalenmirensis' appears to be a key mediator of methane-based positive feedback to climate warming.
Collapse
|
38
|
Shvaleva A, Siljanen HMP, Correia A, Costa e Silva F, Lamprecht RE, Lobo-do-Vale R, Bicho C, Fangueiro D, Anderson M, Pereira JS, Chaves MM, Cruz C, Martikainen PJ. Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference. Front Microbiol 2015; 6:1104. [PMID: 26528257 PMCID: PMC4604323 DOI: 10.3389/fmicb.2015.01104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023] Open
Abstract
Cork oak woodlands (montado) are agroforestry systems distributed all over the Mediterranean basin with a very important social, economic and ecological value. A generalized cork oak decline has been occurring in the last decades jeopardizing its future sustainability. It is unknown how loss of tree cover affects microbial processes that are consuming greenhouse gases in the montado ecosystem. The study was conducted under two different conditions in the natural understory of a cork oak woodland in center Portugal: under tree canopy (UC) and open areas without trees (OA). Fluxes of methane and nitrous oxide were measured with a static chamber technique. In order to quantify methanotrophs and bacteria capable of nitrous oxide consumption, we used quantitative real-time PCR targeting the pmoA and nosZ genes encoding the subunit of particulate methane mono-oxygenase and catalytic subunit of the nitrous oxide reductase, respectively. A significant seasonal effect was found on CH4 and N2O fluxes and pmoA and nosZ gene abundance. Tree cover had no effect on methane fluxes; conversely, whereas the UC plots were net emitters of nitrous oxide, the loss of tree cover resulted in a shift in the emission pattern such that the OA plots were a net sink for nitrous oxide. In a seasonal time scale, the UC had higher gene abundance of Type I methanotrophs. Methane flux correlated negatively with abundance of Type I methanotrophs in the UC plots. Nitrous oxide flux correlated negatively with nosZ gene abundance at the OA plots in contrast to that at the UC plots. In the UC soil, soil organic matter had a positive effect on soil extracellular enzyme activities, which correlated positively with the N2O flux. Our results demonstrated that tree cover affects soil properties, key enzyme activities and abundance of microorganisms and, consequently net CH4 and N2O exchange.
Collapse
Affiliation(s)
- Alla Shvaleva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Henri M. P. Siljanen
- Department of Environmental Science, University of Eastern FinlandKuopio, Finland
| | - Alexandra Correia
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Filipe Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Richard E. Lamprecht
- Department of Environmental Science, University of Eastern FinlandKuopio, Finland
| | - Raquel Lobo-do-Vale
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Catarina Bicho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - David Fangueiro
- Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | | | - João S. Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Maria M. Chaves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Cristina Cruz
- Centre for Ecology Evolution and Environmental Changes, Faculdade de Ciências, Universidade de LisboaLisboa, Portugal
| | | |
Collapse
|
39
|
Methanotrophic and Methanogenic Communities in Swiss Alpine Fens Dominated by Carex rostrata and Eriophorum angustifolium. Appl Environ Microbiol 2015; 81:5832-44. [PMID: 26092454 DOI: 10.1128/aem.01519-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
Vascular plants play a key role in controlling CH4 emissions from natural wetlands, because they influence CH4 production, oxidation, and transport to the atmosphere. Here we investigated differences in the abundance and composition of methanotrophic and methanogenic communities in three Swiss alpine fens dominated by different vascular plant species under natural conditions. The sampling locations either were situated at geographically distinct sites with different physicochemical properties but the same dominant plant species (Carex rostrata) or were located within the same site, showing comparable physicochemical pore water properties, but had different plant species (C. rostrata or Eriophorum angustifolium). All three locations were permanently submerged and showed high levels of CH4 emissions (80.3 to 184.4 mg CH4 m(-2) day(-1)). Soil samples were collected from three different depths with different pore water CH4 and O2 concentrations and were analyzed for pmoA and mcrA gene and transcript abundance and community composition, as well as soil structure. The dominant plant species appeared to have a significant influence on the composition of the active methanotrophic communities (transcript level), while the methanogenic communities differed significantly only at the gene level. Yet no plant species-specific microbial taxa were discerned. Moreover, for all communities, differences in composition were more pronounced with the site (i.e., with different physicochemical properties) than with the plant species. Moreover, depth significantly influenced the composition of the active methanotrophic communities. Differences in abundance were generally low, and active methanotrophs and methanogens coexisted at all three locations and depths independently of CH4 and O2 concentrations or plant species.
Collapse
|
40
|
Blake LI, Tveit A, Øvreås L, Head IM, Gray ND. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability. PLoS One 2015; 10:e0129733. [PMID: 26083466 PMCID: PMC4471053 DOI: 10.1371/journal.pone.0129733] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 01/06/2023] Open
Abstract
Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not necessarily to the seasonal release of previously frozen organic carbon from thawing permafrost soils. However, as temperatures increase such inputs of carbon will likely have a greater influence on methane production and methanogen community structure. Understanding the action and limitations of anaerobic microorganisms within cold environments may provide information which can be used in defining region-specific differences in the microbial processes; which ultimately control methane flux to the atmosphere.
Collapse
Affiliation(s)
- Lynsay I. Blake
- Newcastle University, School of Civil engineering and Geosciences, Newcastle upon Tyne, United Kingdom
| | - Alexander Tveit
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | - Lise Øvreås
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
| | - Ian M. Head
- Newcastle University, School of Civil engineering and Geosciences, Newcastle upon Tyne, United Kingdom
| | - Neil D. Gray
- Newcastle University, School of Civil engineering and Geosciences, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
41
|
Methylotrophs in natural habitats: current insights through metagenomics. Appl Microbiol Biotechnol 2015; 99:5763-79. [PMID: 26051673 DOI: 10.1007/s00253-015-6713-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 01/10/2023]
Abstract
The focus of this review is on the recent data from the omics approaches, measuring the presence of methylotrophs in natural environments. Both Bacteria and Archaea are considered. The data are discussed in the context of the current knowledge on the biochemistry of methylotrophy and the physiology of cultivated methylotrophs. One major issue discussed is the recent metagenomic data pointing toward the activity of "aerobic" methanotrophs, such as Methylobacter, in microoxic or hypoxic conditions. A related issue of the metabolic distinction between aerobic and "anaerobic" methylotrophy is addressed in the light of the genomic and metagenomic data for respective organisms. The role of communities, as opposed to single-organism activities in environmental cycling of single-carbon compounds, such as methane, is also discussed. In addition, the emerging issue of the role of non-traditional methylotrophs in global metabolism of single-carbon compounds and the role of methylotrophy pathways in non-methylotrophs is briefly mentioned.
Collapse
|
42
|
Tveit AT, Urich T, Frenzel P, Svenning MM. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci U S A 2015; 112:E2507-16. [PMID: 25918393 PMCID: PMC4434766 DOI: 10.1073/pnas.1420797112] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa.
Collapse
Affiliation(s)
- Alexander Tøsdal Tveit
- Department of Arctic and Marine Biology, University of Tromsø The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna, Austria; Austrian Polar Research Institute, 1090, Vienna, Austria; and
| | - Peter Frenzel
- Department of Biochemistry, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Mette Marianne Svenning
- Department of Arctic and Marine Biology, University of Tromsø The Arctic University of Norway, 9037 Tromsø, Norway;
| |
Collapse
|
43
|
Yun J, Zhang H, Deng Y, Wang Y. Aerobic methanotroph diversity in Sanjiang wetland, Northeast China. MICROBIAL ECOLOGY 2015; 69:567-576. [PMID: 25351140 DOI: 10.1007/s00248-014-0506-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Aerobic methanotrophs present in wetlands can serve as a methane filter and thereby significantly reduce methane emissions. Sanjiang wetland is a major methane source and the second largest wetland in China, yet little is known about the characteristics of aerobic methanotrophs in this region. In the present study, we investigated the diversity and abundance of methanotrophs in marsh soils from Sanjiang wetland with three different types of vegetation by 16S ribosomal RNA (rRNA) and pmoA gene analysis. Quantitative polymerase chain reaction analysis revealed the highest number of pmoA gene copies in marsh soils vegetated with Carex lasiocarpa (10(9) g(-1) dry soil), followed by Carex meyeriana, and the least with Deyeuxia angustifolia (10(8) g(-1) dry soil). Consistent results were obtained using Sanger sequencing and pyrosequencing techniques, both indicating the codominance of Methylobacter and Methylocystis species in Sanjiang wetland. Other less abundant methanotrophy, including cultivated Methylomonas and Methylosinus genus, and uncultured clusters such as LP20 and JR-1, were also detected in the wetland. Methanotroph diversity was almost the same in three different vegetation covered soils, suggesting that vegetation types had very little influence on the methanotroph diversity. Our study gives an in-depth insight into the community composition of aerobic methanotrophs in the Sanjiang wetland.
Collapse
Affiliation(s)
- Juanli Yun
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | | | | | | |
Collapse
|
44
|
Crevecoeur S, Vincent WF, Comte J, Lovejoy C. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 2015; 6:192. [PMID: 25926816 PMCID: PMC4396522 DOI: 10.3389/fmicb.2015.00192] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/20/2015] [Indexed: 11/15/2022] Open
Abstract
Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters.
Collapse
Affiliation(s)
- Sophie Crevecoeur
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Centre d'Études Nordiques, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada
| | - Warwick F Vincent
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Centre d'Études Nordiques, Université Laval Québec, QC, Canada
| | - Jérôme Comte
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Centre d'Études Nordiques, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada
| | - Connie Lovejoy
- Département de Biologie and Takuvik Joint International Laboratory, Université Laval Québec, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Québec, QC, Canada ; Québec Océan, Université Laval Québec, QC, Canada
| |
Collapse
|
45
|
Gittel A, Bárta J, Kohoutová I, Schnecker J, Wild B, Čapek P, Kaiser C, Torsvik VL, Richter A, Schleper C, Urich T. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front Microbiol 2014; 5:541. [PMID: 25360132 PMCID: PMC4199454 DOI: 10.3389/fmicb.2014.00541] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023] Open
Abstract
Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.
Collapse
Affiliation(s)
- Antje Gittel
- Department of Biology, Centre for Geobiology, University of BergenBergen, Norway
- Department of Bioscience, Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South BohemiaČeské Budějovice, Czech Republic
| | - Iva Kohoutová
- Department of Ecosystems Biology, University of South BohemiaČeské Budějovice, Czech Republic
| | - Jörg Schnecker
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
- Austrian Polar Research InstituteVienna, Austria
| | - Birgit Wild
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
- Austrian Polar Research InstituteVienna, Austria
| | - Petr Čapek
- Department of Ecosystems Biology, University of South BohemiaČeské Budějovice, Czech Republic
| | - Christina Kaiser
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Vigdis L. Torsvik
- Department of Biology, Centre for Geobiology, University of BergenBergen, Norway
| | - Andreas Richter
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
- Austrian Polar Research InstituteVienna, Austria
| | - Christa Schleper
- Department of Biology, Centre for Geobiology, University of BergenBergen, Norway
- Austrian Polar Research InstituteVienna, Austria
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Tim Urich
- Austrian Polar Research InstituteVienna, Austria
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| |
Collapse
|
46
|
Henneberger R, Chiri E, Bodelier PEL, Frenzel P, Lüke C, Schroth MH. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 2014; 17:1721-37. [PMID: 25186436 DOI: 10.1111/1462-2920.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/31/2014] [Indexed: 01/11/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Yun J, Ju Y, Deng Y, Zhang H. Bacterial community structure in two permafrost wetlands on the Tibetan Plateau and Sanjiang Plain, China. MICROBIAL ECOLOGY 2014; 68:360-369. [PMID: 24718907 DOI: 10.1007/s00248-014-0415-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 10(10) 16S rRNA gene copies per gram of wet soil in both wetlands, with 10(8) pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.
Collapse
Affiliation(s)
- Juanli Yun
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | | | | | | |
Collapse
|
48
|
Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers. Appl Environ Microbiol 2014; 80:5944-54. [PMID: 25063667 DOI: 10.1128/aem.01539-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.
Collapse
|
49
|
Sharp CE, Martínez-Lorenzo A, Brady AL, Grasby SE, Dunfield PF. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS Microbiol Ecol 2014; 90:92-102. [DOI: 10.1111/1574-6941.12375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023] Open
Affiliation(s)
- Christine E. Sharp
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| | | | - Allyson L. Brady
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| | | | - Peter F. Dunfield
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| |
Collapse
|
50
|
Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila ES, Fritze H. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 2014; 88:596-611. [PMID: 24701995 DOI: 10.1111/1574-6941.12327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023] Open
Abstract
Sphagnum-associated methanotrophs (SAM) are an important sink for the methane (CH4) formed in boreal peatlands. We aimed to reveal how peatland succession, which entails a directional change in several environmental variables, affects SAM and their activity. Based on the pmoA microarray results, SAM community structure changes when a peatland develops from a minerotrophic fen to an ombrotrophic bog. Methanotroph subtypes Ia, Ib, and II showed slightly contrasting patterns during succession, suggesting differences in their ecological niche adaptation. Although the direct DNA-based analysis revealed a high diversity of type Ib and II methanotrophs throughout the studied peatland chronosequence, stable isotope probing (SIP) of the pmoA gene indicated they were active mainly during the later stages of succession. In contrast, type Ia methanotrophs showed active CH4 consumption in all analyzed samples. SIP-derived (13)C-labeled 16S rRNA gene clone libraries revealed a high diversity of SAM in every succession stage including some putative Methylocella/Methyloferula methanotrophs that are not detectable with the pmoA-based approach. In addition, a high diversity of 16S rRNA gene sequences likely representing cross-labeled nonmethanotrophs was discovered, including a significant proportion of Verrucomicrobia-related sequences. These results help to predict the effects of changing environmental conditions on SAM communities and activity.
Collapse
Affiliation(s)
- Anuliina Putkinen
- Southern Finland Regional Unit, Finnish Forest Research Institute, Vantaa, Finland
| | | | | | | | | | | | | |
Collapse
|