1
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of Stem Cells in Ageing and Age-related Diseases. Mech Ageing Dev 2025:112069. [PMID: 40324541 DOI: 10.1016/j.mad.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Stem cell functions and ageing are deeply interconnected, continually influencing each other in multiple ways. Stem cells play a vital role in organ maintenance, regeneration, and homeostasis, all of which decline over time due to gradual reduction in their self-renewal, differentiation, and growth factor secretion potential. The functional decline is attributed to damaging extrinsic environmental factors and progressively worsening intrinsic genetic and biochemical processes. These ageing-associated deteriorative changes have been extensively documented, paving the way for the discovery of novel biomarkers of ageing for detection, diagnosis, and treatment of age-related diseases. Age-dependent changes in adult stem cells include numerical decline, loss of heterogeneity, reduced self-renewal and differentiation, leading to a drastic reduction in regenerative potential, and thereby drive the ageing process. Conversely, ageing also adversely alters the stem cell niche, disrupting the molecular pathways underlying stem cell homing, self-renewal, differentiation, and growth factor secretion, all of which are critical for tissue repair and regeneration. A holistic understanding of these molecular mechanisms, through empirical research and clinical trials, is essential for designing targeted therapies to modulate ageing and improve health parameters in older individuals.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi-110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India; National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi - 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Akshay Bhardwaj
- Global Research Alliances, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Shoag JE, Srinivasa A, Loh CA, Liu MH, Lassen E, Melanaphy S, Costa BM, Grońska-Pęski M, Jabara NT, Picciotto S, Choi U, Bohorquez AD, Barbieri CE, Callum P, Skytte AB, Evrony GD. Direct measurement of the male germline mutation rate in individuals using sequential sperm samples. Nat Commun 2025; 16:2546. [PMID: 40089484 PMCID: PMC11910575 DOI: 10.1038/s41467-025-57507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025] Open
Abstract
Mutations that accumulate in the human male germline with age are a major driver of genetic diversity and contribute to genetic diseases. However, aging-related male germline mutation rates have not been measured directly in germline cells (sperm) at the level of individuals. We developed a study design in which we recalled 23 sperm donors with prior banked samples to provide new sperm samples. The old and new sequential sperm samples were separated by long timespans, ranging from 10 to 33 years. We profiled these samples by high-fidelity duplex sequencing and demonstrate that direct high-fidelity sequencing of sperm yields cohort-wide mutation rates and patterns consistent with prior family-based (trio) studies. In every individual, we detected an increase in sperm mutation burden between the two sequential samples, yielding individual-specific measurements of germline mutation rate. Deep whole-genome sequencing of sequential sperm samples from two individuals followed by targeted validation measured remarkably stable mosaicism of clonal mutations that likely arose during embryonic and germline development, suggesting that age did not substantially impact the diversity of spermatogonial stem cell pools in these individuals. Our application of high-fidelity and deep whole-genome sequencing to sequential sperm samples provides insight into aging-related mutation processes in the male germline.
Collapse
Affiliation(s)
- Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Amoolya Srinivasa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Caitlin A Loh
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Mei Hong Liu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Lassen
- Cryos International Sperm and Egg Bank, Aarhus, Denmark
| | | | - Benjamin M Costa
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Nisrine T Jabara
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Shany Picciotto
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Una Choi
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
| | - Anyull D Bohorquez
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | - Gilad D Evrony
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, NY, USA.
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
3
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
4
|
Gupta S, Sholl LM, Yang Y, Osunkoya AO, Gordetsky JB, Cornejo KM, Michalova K, Maclean F, Dvindenko E, Snuderl M, Hirsch MS, Anderson WJ, Rowsey RA, Jimenez RE, Cheville JC, Sadow PM, Colecchia M, Ricci C, Ulbright TM, Berney DM, Acosta AM. Genomic analysis of spermatocytic tumors demonstrates recurrent molecular alterations in cases with malignant clinical behavior. J Pathol 2024; 262:50-60. [PMID: 37792634 DOI: 10.1002/path.6210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Spermatocytic tumor (ST) is a rare type of germ cell tumor that occurs exclusively in the postpubertal testis and typically affects elderly men. Most STs are benign, but rare cases exhibit aggressive clinical behavior, often in association with transition to sarcomatoid histology. Limited molecular analyses have been performed on STs; therefore, their genomic and epigenomic features remain incompletely described. Twenty-seven samples from 25 individual patients were analyzed with a combination of DNA sequencing panels, genomic methylation profiling, SNP array, isochromosome (12p) [i(12p)] FISH, and immunohistochemistry. The series included five metastasizing tumors (three with sarcomatoid transformation, one anaplastic, and one conventional) and 20 non-metastasizing tumors (14 anaplastic and six conventional). Anaplastic tumors comprised a monomorphic population of intermediate-sized neoplastic cells, as previously described. Multiomic analyses demonstrated that there were two genomic subgroups of STs: one with diploid genomes and hotspot RAS/RAF variants and the other with global ploidy shift and absence of recurrent mutations. Relative gain of chromosome 9 was a consistent finding in both subgroups. A comparison of metastasizing and non-metastasizing cases demonstrated that aggressive behavior was associated with the acquisition of pathogenic TP53 mutations and/or relative gains of 12p/i(12p). In cases with sarcomatoid transformation, TP53 mutations seem to underlie the transition to sarcomatoid histology. Genomic methylation analysis demonstrated that aggressive cases with gains of 12p cluster closer to pure seminomas than to STs without gains of 12p. In conclusion, STs include two genomic subgroups, characterized by global ploidy shifts without recurrent mutations and diploid genomes with RAS/RAF hotspot mutations, respectively. Biologic progression was associated with relative gains of 12p and TP53 mutations. The findings in STs with relative gains of 12p suggest that they may exhibit biologic characteristics akin to those seen in germ cell neoplasia in situ-related germ cell tumors rather than non-germ cell neoplasia in situ-derived STs. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiying Yang
- Department of Pathology, New York University, New York, NY, USA
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Kristine M Cornejo
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Fiona Maclean
- Department of Pathology, Douglass Hanly Moir Pathology, Macquarie University, Sydney, NSW, Australia
| | - Eugénia Dvindenko
- Department of Pathology, Instituto Português de Oncologia, Lisbon, Portugal
| | - Matija Snuderl
- Department of Pathology, New York University, New York, NY, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William J Anderson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ross A Rowsey
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurizio Colecchia
- Department of Pathology, Universita Vita Salute San Raffaele, Milan, Italy
| | - Costantino Ricci
- Pathology Unit, Maggiore Hospital-AUSL Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Daniel M Berney
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Andres Martin Acosta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
5
|
Xu N, Shi W, Cao X, Zhou X, Jin L, Huang HF, Chen S, Xu C. Parental mosaicism detection and preimplantation genetic testing in families with multiple transmissions of de novo mutations. J Med Genet 2023; 60:910-917. [PMID: 36707240 PMCID: PMC10447385 DOI: 10.1136/jmg-2022-108920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND De novo mutations (DNMs) are linked with many severe early-onset disorders ranging from rare congenital malformation to intellectual disability. Conventionally, DNMs are considered to have an estimated recurrence rate of 1%. Recently, studies have revealed a higher prevalence of parental mosaicism, leading to a greater recurrence risk, resulting in a second child harbouring the same DNM as a previous child. METHODS In this study, we included 10 families with DNMs leading to adverse pregnancy outcomes. DNA was extracted from tissue samples, including parental peripheral blood, parental saliva and paternal sperm. High-throughput sequencing was used to screen for parental mosaicism with a depth of more than 5000× on average and a variant allele fraction (VAF) detection limit of 0.5%. RESULTS The presence of mosaicism was detected in sperms in two families, with VAFs of 2.8% and 2.5%, respectively. Both families have a history of multiple adverse pregnancies and DNMs shared by siblings. Preimplantation genetic testing (PGT) and prenatal diagnosis were performed in one family, thereby preventing the reoccurrence of DNMs. CONCLUSION This study is the first to report the successful implementation of PGT for monogenic/single gene defects in the parental mosaicism family. Our study suggests that mosaic detection of paternal sperm is warranted in families with recurrent DNMs leading to adverse pregnancy outcomes, and PGT can effectively block the transmission of the pathogenic mutation.
Collapse
Affiliation(s)
- Naixin Xu
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xianling Cao
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xuanyou Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li Jin
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Wood KA, Goriely A. The impact of paternal age on new mutations and disease in the next generation. Fertil Steril 2022; 118:1001-1012. [PMID: 36351856 PMCID: PMC10909733 DOI: 10.1016/j.fertnstert.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis. We discuss the recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions, the so-called "paternal age effect" disorders that show a strong association between paternal age and disease prevalence, and discuss the underlying mechanism ("selfish selection") and implications of this process in more detail. More broadly, understanding the causes and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice given that the average age of fatherhood is steadily increasing in many developed nations.
Collapse
Affiliation(s)
- Katherine A Wood
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom.
| |
Collapse
|
7
|
Stolzenbach V, Woods DC, Tilly JL. Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Front Cell Dev Biol 2022; 10:942652. [PMID: 36081905 PMCID: PMC9445274 DOI: 10.3389/fcell.2022.942652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of natural selection, or "survival of the fittest", refers to an evolutionary process in nature whereby traits emerge in individuals of a population through random gene alterations that enable those individuals to better adapt to changing environmental conditions. This genetic variance allows certain members of the population to gain an advantage over others in the same population to survive and reproduce in greater numbers under new environmental pressures, with the perpetuation of those advantageous traits in future progeny. Here we present that the behavior of adult stem cells in a tissue over time can, in many respects, be viewed in the same manner as evolution, with each stem cell clone being representative of an individual within a population. As stem cells divide or are subjected to cumulative oxidative damage over the lifespan of the organism, random genetic alterations are introduced into each clone that create variance in the population. These changes may occur in parallel to, or in response to, aging-associated changes in microenvironmental cues perceived by the stem cell population. While many of these alterations will be neutral or silent in terms of affecting cell function, a small fraction of these changes will enable certain clones to respond differently to shifts in microenvironmental conditions that arise with advancing age. In some cases, the same advantageous genetic changes that support survival and expansion of certain clones over others in the population (viz. non-neutral competition) could be detrimental to the downstream function of the differentiated stem cell descendants. In the context of the germline, such a situation would be devastating to successful propagation of the species across generations. However, even within a single generation, the “evolution” of stem cell lineages in the body over time can manifest into aging-related organ dysfunction and failure, as well as lead to chronic inflammation, hyperplasia, and cancer. Increased research efforts to evaluate stem cells within a population as individual entities will improve our understanding of how organisms age and how certain diseases develop, which in turn may open new opportunities for clinical detection and management of diverse pathologies.
Collapse
|
8
|
Kanatsu-Shinohara M, Naoki H, Tanaka T, Tatehana M, Kikkawa T, Osumi N, Shinohara T. Regulation of male germline transmission patterns by the Trp53-Cdkn1a pathway. Stem Cell Reports 2022; 17:1924-1941. [PMID: 35931081 PMCID: PMC9481916 DOI: 10.1016/j.stemcr.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 10/27/2022] Open
Abstract
A small number of offspring are born from the numerous sperm generated from spermatogonial stem cells (SSCs). However, little is known regarding the rules and molecular mechanisms that govern germline transmission patterns. Here we report that the Trp53 tumor suppressor gene limits germline genetic diversity via Cdkn1a. Trp53-deficient SSCs outcompeted wild-type (WT) SSCs and produced significantly more progeny after co-transplantation into infertile mice. Lentivirus-mediated transgenerational lineage analysis showed that offspring bearing the same virus integration were repeatedly born in a non-random pattern from WT SSCs. However, SSCs lacking Trp53 or Cdkn1a sired transgenic offspring in random patterns with increased genetic diversity. Apoptosis of KIT+ differentiating germ cells was reduced in Trp53- or Cdkn1a-deficient mice. Reduced CDKN1A expression in Trp53-deficient spermatogonia suggested that Cdkn1a limits genetic diversity by supporting apoptosis of syncytial spermatogonial clones. Therefore, the TRP53-CDKN1A pathway regulates tumorigenesis and the germline transmission pattern.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, Chiyodaku, Tokyo 100-0004, Japan
| | - Honda Naoki
- Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takashi Tanaka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Misako Tatehana
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
Abstract
Paternal age at conception has been increasing. In this review, we first present the results from the major mammalian animal models used to establish that increasing paternal age does affect progeny outcome. These models provide several major advantages including the possibility to assess multi- transgenerational effects of paternal age on progeny in a relatively short time window. We then present the clinical observations relating advanced paternal age to fertility and effects on offspring with respect to perinatal health, cancer risk, genetic diseases, and neurodevelopmental effects. An overview of the potential mechanism operating in altering germ cells in advanced age is presented. This is followed by an analysis of the current state of management of reproductive risks associated with advanced paternal age. The numerous challenges associated with developing effective, practical strategies to mitigate the impact of advanced paternal age are outlined along with an approach on how to move forward with this important clinical quandary.
Collapse
Affiliation(s)
- Peter T. K. Chan
- Department of Urology, McGill University Health Centre, Montreal, QC, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Nie X, Munyoki SK, Sukhwani M, Schmid N, Missel A, Emery BR, DonorConnect, Stukenborg JB, Mayerhofer A, Orwig KE, Aston KI, Hotaling JM, Cairns BR, Guo J. Single-cell analysis of human testis aging and correlation with elevated body mass index. Dev Cell 2022; 57:1160-1176.e5. [PMID: 35504286 PMCID: PMC9090997 DOI: 10.1016/j.devcel.2022.04.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 01/15/2023]
Abstract
Aging men display reduced reproductive health; however, testis aging is poorly understood at the molecular and genomic levels. Here, we utilized single-cell RNA-seq to profile over 44,000 cells from both young and older men and examined age-related changes in germline development and in the testicular somatic cells. Age-related changes in spermatogonial stem cells appeared modest, whereas age-related dysregulation of spermatogenesis and somatic cells ranged from moderate to severe. Altered pathways included signaling and inflammation in multiple cell types, metabolic signaling in Sertoli cells, hedgehog signaling and testosterone production in Leydig cells, cell death and growth in testicular peritubular cells, and possible developmental regression in both Leydig and peritubular cells. Remarkably, the extent of dysregulation correlated with body mass index in older but not in younger men. Collectively, we reveal candidate molecular mechanisms underlying the complex testicular changes conferred by aging and their possible exacerbation by concurrent chronic conditions such as obesity.
Collapse
Affiliation(s)
- Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sarah K Munyoki
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nina Schmid
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, Munich, 82152, Germany
| | - Annika Missel
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, Munich, 82152, Germany
| | - Benjamin R Emery
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Jan-Bernd Stukenborg
- NORDFERTIL Research Laboratory Stockholm, Childhood Cancer Research Unit, Bioclinicum J9:30, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Solna 17164, Sweden
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Ludwig-Maximilians-University (LMU), Grosshaderner Strasse 9, Planegg, Munich, 82152, Germany
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kenneth I Aston
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Jingtao Guo
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Chico-Sordo L, Córdova-Oriz I, Polonio AM, S-Mellado LS, Medrano M, García-Velasco JA, Varela E. Reproductive aging and telomeres: Are women and men equally affected? Mech Ageing Dev 2021; 198:111541. [PMID: 34245740 DOI: 10.1016/j.mad.2021.111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Isabel Córdova-Oriz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Alba María Polonio
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Lucía Sánchez S-Mellado
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Marta Medrano
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; IVIRMA Madrid, Spain.
| | - Juan Antonio García-Velasco
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Madrid, Spain; Rey Juan Carlos University, Madrid, Spain.
| | - Elisa Varela
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
12
|
Morimoto H, Kanatsu-Shinohara M, Orwig KE, Shinohara T. Expression and functional analyses of ephrin type-A receptor 2 in mouse spermatogonial stem cells†. Biol Reprod 2021; 102:220-232. [PMID: 31403678 DOI: 10.1093/biolre/ioz156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/06/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) undergo continuous self-renewal division in response to self-renewal factors. The present study identified ephrin type-A receptor 2 (EPHA2) on mouse SSCs and showed that supplementation of glial cell-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), which are both SSC self-renewal factors, induced EPHA2 expression in cultured SSCs. Spermatogonial transplantation combined with magnetic-activated cell sorting or fluorescence-activated cell sorting also revealed that EPHA2 was expressed in SSCs. Additionally, ret proto-oncogene (RET) phosphorylation levels decreased following the knockdown (KD) of Epha2 expression via short hairpin ribonucleic acid (RNA). Although the present immunoprecipitation experiments did not reveal an association between RET with EPHA2, RET interacted with FGFR2. The Epha2 KD decreased the proliferation of cultured SSCs and inhibited the binding of cultured SSCs to laminin-coated plates. The Epha2 KD also significantly reduced the colonization of testis cells by spermatogonial transplantation. EPHA2 was also expressed in human GDNF family receptor alpha 1-positive spermatogonia. The present results indicate that SSCs express EPHA2 and suggest that it is a critical modifier of self-renewal signals in SSCs.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Wang L, Li L, Wu X, Wong CKC, Perrotta A, Silvestrini B, Sun F, Cheng CY. mTORC1/rpS6 and p-FAK-Y407 signaling regulate spermatogenesis: Insights from studies of the adjudin pharmaceutical/toxicant model. Semin Cell Dev Biol 2021; 121:53-62. [PMID: 33867214 DOI: 10.1016/j.semcdb.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
In rodents and humans, the major cellular events at spermatogenesis include self-renewal of spermatogonial stem cells and undifferentiated spermatogonia via mitosis, commitment of spermatogonia to differentiation and transformation to spermatocytes, meiosis, spermiogenesis, and the release of spermatozoa at spermiation. While details of the morphological changes during these cellular events have been delineated, knowledge gap exists between the morphological changes in the seminiferous epithelium and the underlying molecular mechanism(s) that regulate these cellular events. Even though many of the regulatory proteins and biomolecules that modulate spermatogenesis are known based on studies using genetic models, the underlying regulatory mechanism(s), in particular signaling pathways/proteins, remain unexplored since much of the information regarding the signaling regulation is unknown. Studies in the past decade, however, have unequivocally demonstrated that the testis is using several signaling proteins and/or pathways to regulate multiple cellular events to modulate spermatogenesis. These include mTORC1/rpS6/Akt1/2 and p-FAK-Y407. While selective inhibitors and/or agonists and antagonists are available to examine some of these signaling proteins, their use have limitations due to their specificities and also potential systemic cytotoxicity. On the other hand, the use of genetic models has had profound implications for our understanding of the molecular regulation of spermatogenesis, and these knockout (null) models have also revealed the factors that are critical for spermatogenesis. Nonetheless, additional studies using in vitro and in vivo models are necessary to unravel the signaling pathways involved in regulating seminiferous epithelial cycle. Emerging data from studies, such as the use of the adjudin pharmaceutical/toxicant model, have illustrated that this non-hormonal male contraceptive drug is utilizing specific signaling pathways/proteins to induce specific defects in spermatogenesis, yielding mechanistic insights on the regulation of spermatogenesis. We sought to review these recent data in this article, highlighting an interesting approach that can be considered for future studies.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Adolfo Perrotta
- Department of Translational & Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China.
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China; The Population Council, Center for Biomedical Research, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
14
|
Aitken RJ, De Iuliis GN, Nixon B. The Sins of Our Forefathers: Paternal Impacts on De Novo Mutation Rate and Development. Annu Rev Genet 2020; 54:1-24. [DOI: 10.1146/annurev-genet-112618-043617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spermatogonial stem cells (SSCs) are generally characterized by excellent DNA surveillance and repair, resulting in one of the lowest spontaneous mutation rates in the body. However, the barriers to mutagenesis can be overwhelmed under two sets of circumstances. First, replication errors may generate age-dependent mutations that provide the mutant cells with a selective advantage, leading to the clonal expansions responsible for dominant genetic diseases such as Apert syndrome and achondroplasia. The second mechanism centers on the vulnerability of the male germline to oxidative stress and the induction of oxidative DNA damage in spermatozoa. Defective repair of such oxidative damage in the fertilized oocyte results in the creation of mutations in the zygote that can influence the health and well-being of the offspring. A particular hot spot for such oxidative attack on chromosome 15 has been found to align with several mutations responsible for paternally mediated disease, including cancer, psychiatric disorders, and infertility.
Collapse
Affiliation(s)
- R. John Aitken
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
15
|
Looijenga LH, Van der Kwast TH, Grignon D, Egevad L, Kristiansen G, Kao CS, Idrees MT. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am J Surg Pathol 2020; 44:e66-e79. [PMID: 32205480 PMCID: PMC7289140 DOI: 10.1097/pas.0000000000001465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The International Society of Urological Pathology (ISUP) organized a Consultation Conference in March 2019 dealing with applications of molecular pathology in Urogenital Pathology, including testicular tumors (with a focus on germ cell tumors [GCTs]), preceded by a survey among its members to get insight into current practices in testicular germ cell tumor (TGCT) diagnostics and adoption of the ISUP immunohistochemical guidelines published in 2014. On the basis of the premeeting survey, the most commonly used immunomarker panel includes OCT3/4, placental alkaline phosphate, D2-40, SALL4, CD117, and CD30 for GCTs and the documentation of germ cell neoplasia in situ (GCNIS). Molecular testing, specifically 12p copy gain, is informative to distinguish non-GCNIS versus GCNIS related GCTs, and establishing germ cell origin of tumors both in the context of primary and metastatic lesions. Other molecular methodologies currently available but not widely utilized for TGCTs include genome-wide and targeted approaches for specific genetic anomalies, P53 mutations, genomic MDM2 amplification, and detection of the p53 inactivating miR-371a-3p. The latter also holds promise as a serum marker for malignant TGCTs. This manuscript provides an update on the classification of TGCTs, and describes the current and future role of molecular-genetic testing. The following recommendations are made: (1) Presence of GCNIS should be documented in all cases along with extent of spermatogenesis; (2) Immunohistochemical staining is optional in the following scenarios: identification of GCNIS, distinguishing embryonal carcinoma from seminoma, confirming presence of yolk sac tumor and/or choriocarcinoma, and differentiating spermatocytic tumor from potential mimics; (3) Detection of gain of the short arm of chromosome 12 is diagnostic to differentiate between non-GCNIS versus GCNIS related GCTs and supportive to the germ cell origin of both primary and metastatic tumors.
Collapse
Affiliation(s)
| | | | | | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet Sweden, Solna, Sweden
| | - Glen Kristiansen
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | | |
Collapse
|
16
|
Abstract
The mechanisms that regulate the balance between stem cell duplication and differentiation in adult tissues remain in debate. Using a combination of genetic lineage tracing and marker-based assays, the quantitative statistical analysis of clone size and cell composition has provided insights into the patterns of stem cell fate across a variety of tissue types and organisms. These studies have emphasized the role of niche factors and environmental cues in promoting stem cell competence, fate priming, and stochastic renewal programs. At the same time, evidence for injury-induced "cellular reprogramming" has revealed the remarkable flexibility of cell states, allowing progenitors to reacquire self-renewal potential during regeneration. Together, these findings have questioned the nature of stem cell identity and function. Here, focusing on a range of canonical tissue types, we review how quantitative modeling-based approaches have uncovered conserved patterns of stem cell fate and provided new insights into the mechanisms that regulate self-renewal.
Collapse
Affiliation(s)
- Lemonia Chatzeli
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Benjamin D Simons
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
17
|
Bodmer WF, Crouch DJM. Somatic selection of poorly differentiating variant stem cell clones could be a key to human ageing. J Theor Biol 2020; 489:110153. [PMID: 31935413 DOI: 10.1016/j.jtbi.2020.110153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/28/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
Any replicating system in which heritable variants with differing replicative potentials can arise is subject to a Darwinian evolutionary process. The continually replicating adult tissue stem cells that control the integrity of many tissues of long-lived, multicellular, complex vertebrate organisms, including humans, constitute such a replicating system. Our suggestion is that somatic selection for mutations (or stable epigenetic changes) that cause an increased rate of adult tissue stem cell proliferation, and their long-term persistence, at the expense of normal differentiation, is a major key to the ageing process. Once an organism has passed the reproductive age, there is no longer any significant counterselection at the organismal level to this inevitable cellular level Darwinian process.
Collapse
Affiliation(s)
- Walter F Bodmer
- Department of Oncology, Cancer and Immunogenetics Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.
| | - Daniel J M Crouch
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Old Road Campus, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Predicting Gonadal Germ Cell Cancer in People with Disorders of Sex Development; Insights from Developmental Biology. Int J Mol Sci 2019; 20:ijms20205017. [PMID: 31658757 PMCID: PMC6834166 DOI: 10.3390/ijms20205017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023] Open
Abstract
The risk of gonadal germ cell cancer (GGCC) is increased in selective subgroups, amongst others, defined patients with disorders of sex development (DSD). The increased risk is due to the presence of part of the Y chromosome, i.e., GonadoBlastoma on Y chromosome GBY region, as well as anatomical localization and degree of testicularization and maturation of the gonad. The latter specifically relates to the germ cells present being at risk when blocked in an embryonic stage of development. GGCC originates from either germ cell neoplasia in situ (testicular environment) or gonadoblastoma (ovarian-like environment). These precursors are characterized by presence of the markers OCT3/4 (POU5F1), SOX17, NANOG, as well as TSPY, and cKIT and its ligand KITLG. One of the aims is to stratify individuals with an increased risk based on other parameters than histological investigation of a gonadal biopsy. These might include evaluation of defined susceptibility alleles, as identified by Genome Wide Association Studies, and detailed evaluation of the molecular mechanism underlying the DSD in the individual patient, combined with DNA, mRNA, and microRNA profiling of liquid biopsies. This review will discuss the current opportunities as well as limitations of available knowledge in the context of predicting the risk of GGCC in individual patients.
Collapse
|
19
|
Yilmaz E, Mihci E, Nur B, Alper ÖM, Taçoy Ş. Recent Advances in Craniosynostosis. Pediatr Neurol 2019; 99:7-15. [PMID: 31421914 DOI: 10.1016/j.pediatrneurol.2019.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 12/25/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022]
Abstract
Craniosynostosis is a pathologic craniofacial disorder and is defined as the premature fusion of one or more cranial (calvarial) sutures. Cranial sutures are fibrous joints consisting of nonossified mesenchymal cells that play an important role in the development of healthy craniofacial skeletons. Early fusion of these sutures results in incomplete brain development that may lead to complications of several severe medical conditions including seizures, brain damage, mental delay, complex deformities, strabismus, and visual and breathing problems. As a congenital disease, craniosynostosis has a heterogeneous origin that can be affected by genetic and epigenetic alterations, teratogens, and environmental factors and make the syndrome highly complex. To date, approximately 200 syndromes have been linked to craniosynostosis. In addition to being part of a syndrome, craniosynostosis can be nonsyndromic, formed without any additional anomalies. More than 50 nuclear genes that relate to craniosynostosis have been identified. Besides genetic factors, epigenetic factors like microRNAs and mechanical forces also play important roles in suture fusion. As craniosynostosis is a multifactorial disorder, evaluating the craniosynostosis syndrome requires and depends on all the information obtained from clinical findings, genetic analysis, epigenetic or environmental factors, or gene modulators. In this review, we will focus on embryologic and genetic studies, as well as epigenetic and environmental studies. We will discuss published studies and correlate the findings with unknown aspects of craniofacial disorders.
Collapse
Affiliation(s)
- Elanur Yilmaz
- Department of Medical Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Ercan Mihci
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Banu Nur
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| | - Özgül M Alper
- Department of Medical Biology and Genetics, Akdeniz University Medical School, Antalya, Turkey.
| | - Şükran Taçoy
- Department of Pediatric Genetics, Akdeniz University Medical School, Antalya, Turkey
| |
Collapse
|
20
|
Eisenberg DTA, Kuzawa CW. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0442. [PMID: 29335366 DOI: 10.1098/rstb.2016.0442] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Telomeres are repeating DNA found at the ends of chromosomes that, in the absence of restorative processes, shorten with cell replications and are implicated as a cause of senescence. It appears that sperm telomere length (TL) increases with age in humans, and as a result offspring of older fathers inherit longer telomeres. We review possible mechanisms underlying this paternal age at conception (PAC) effect on TL, including sperm telomere extension due to telomerase activity, age-dependent changes in the spermatogonial stem cell population (possibly driven by 'selfish' spermatogonia) and non-causal confounding. In contrast to the lengthening of TL with PAC, higher maternal age at conception appears to predict shorter offspring TL in humans. We review evidence for heterogeneity across species in the PAC effect on TL, which could relate to differences in statistical power, sperm production rates or testicular telomerase activity. Finally, we review the hypothesis that the PAC effect on TL may allow a gradual multi-generational adaptive calibration of maintenance effort, and reproductive lifespan, to local demographic conditions: descendants of males who reproduced at a later age are likely to find themselves in an environment where increased maintenance effort, allowing later reproduction, represents a fitness improving resource allocation.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
21
|
Abstract
Achondroplasia is the most common of the skeletal dysplasias that result in marked short stature (dwarfism). Although its clinical and radiologic phenotype has been described for more than 50 years, there is still a great deal to be learned about the medical issues that arise secondary to this diagnosis, the manner in which these are best diagnosed and addressed, and whether preventive strategies can ameliorate the problems that can compromise the health and well being of affected individuals. This review provides both an updated discussion of the care needs of those with achondroplasia and an exploration of the limits of evidence that is available regarding care recommendations, controversies that are currently present, and the many areas of ignorance that remain.
Collapse
Affiliation(s)
- Richard M Pauli
- Midwest Regional Bone Dysplasia Clinic, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1500 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
22
|
Cioppi F, Casamonti E, Krausz C. Age-Dependent De Novo Mutations During Spermatogenesis and Their Consequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:29-46. [DOI: 10.1007/978-3-030-21664-1_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Maher GJ, Ralph HK, Ding Z, Koelling N, Mlcochova H, Giannoulatou E, Dhami P, Paul DS, Stricker SH, Beck S, McVean G, Wilkie AOM, Goriely A. Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Res 2018; 28:1779-1790. [PMID: 30355600 PMCID: PMC6280762 DOI: 10.1101/gr.239186.118] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Mosaic mutations present in the germline have important implications for reproductive risk and disease transmission. We previously demonstrated a phenomenon occurring in the male germline, whereby specific mutations arising spontaneously in stem cells (spermatogonia) lead to clonal expansion, resulting in elevated mutation levels in sperm over time. This process, termed "selfish spermatogonial selection," explains the high spontaneous birth prevalence and strong paternal age-effect of disorders such as achondroplasia and Apert, Noonan and Costello syndromes, with direct experimental evidence currently available for specific positions of six genes (FGFR2, FGFR3, RET, PTPN11, HRAS, and KRAS). We present a discovery screen to identify novel mutations and genes showing evidence of positive selection in the male germline, by performing massively parallel simplex PCR using RainDance technology to interrogate mutational hotspots in 67 genes (51.5 kb in total) in 276 biopsies of testes from five men (median age, 83 yr). Following ultradeep sequencing (about 16,000×), development of a low-frequency variant prioritization strategy, and targeted validation, we identified 61 distinct variants present at frequencies as low as 0.06%, including 54 variants not previously directly associated with selfish selection. The majority (80%) of variants identified have previously been implicated in developmental disorders and/or oncogenesis and include mutations in six newly associated genes (BRAF, CBL, MAP2K1, MAP2K2, RAF1, and SOS1), all of which encode components of the RAS-MAPK pathway and activate signaling. Our findings extend the link between mutations dysregulating the RAS-MAPK pathway and selfish selection, and show that the aging male germline is a repository for such deleterious mutations.
Collapse
Affiliation(s)
- Geoffrey J Maher
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Hannah K Ralph
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Zhihao Ding
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Nils Koelling
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Hana Mlcochova
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Eleni Giannoulatou
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Pawan Dhami
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Dirk S Paul
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Stefan H Stricker
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Gilean McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Anne Goriely
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
24
|
Morin SJ, Scott RT. Knowledge gaps in male infertility: a reproductive endocrinology and infertility perspective. Transl Androl Urol 2018; 7:S283-S291. [PMID: 30159234 PMCID: PMC6087846 DOI: 10.21037/tau.2018.05.02] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reproductive research has moved forward at a remarkable pace. Some of these advances are the result of a separation between male and female specialties, allowing focused study in specific areas of the field. However, the different training programs between male and female fertility specialists has created an environment in which some discoveries are not put in the greater context of clinical care. At times, interventions have been measured against surrogate markers of outcome that may not impact the most meaningful outcome for patients—the delivery of a healthy neonate. For example, medical and surgical interventions that use changes in semen parameters may have a limited impact on the likelihood of achieving a live birth due to the limitations inherent in the semen analysis for predicting outcomes. Other commonly used tests, such as sperm DNA fragmentation assays provide promising biological plausibility to account for subfertility of some male partners. However, until well defined thresholds for predicting outcomes in different treatment scenarios are available, changes in sperm DNA fragmentation testing is not an adequate outcome for measuring the utility of interventions. The biggest limitation for these tests remains their analysis of bulk semen. Tests allowing interrogation of the reproductive competence of a given sperm, while allowing that sperm to be used in assisted reproductive technology procedures remain elusive. Progress toward reaching this end (whether by hyaluronic acid binding, IMSI, or Ramen spectroscopy) is underway, but much remains to be learned. Achieving testing and capture of individual sperm would better facilitate studies that measure the most meaningful outcome for patients and providers—the delivery of a healthy baby.
Collapse
Affiliation(s)
- Scott J Morin
- IVI RMA New Jersey, Basking Ridge, NJ, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard T Scott
- IVI RMA New Jersey, Basking Ridge, NJ, USA.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Yatsenko AN, Turek PJ. Reproductive genetics and the aging male. J Assist Reprod Genet 2018; 35:933-941. [PMID: 29524155 PMCID: PMC6030011 DOI: 10.1007/s10815-018-1148-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/25/2018] [Indexed: 01/10/2023] Open
Abstract
PURPOSE To examine current evidence of the known effects of advanced paternal age on sperm genetic and epigenetic changes and associated birth defects and diseases in offspring. METHODS Review of published PubMed literature. RESULTS Advanced paternal age (> 40 years) is associated with accumulated damage to sperm DNA and mitotic and meiotic quality control mechanisms (mismatch repair) during spermatogenesis. This in turn causes well-delineated abnormalities in sperm chromosomes, both numerical and structural, and increased sperm DNA fragmentation (3%/year of age) and single gene mutations (relative risk, RR 10). An increase in related abnormalities in offspring has also been described, including miscarriage (RR 2) and fetal loss (RR 2). There is also a significant increase in rare, single gene disorders (RR 1.3 to 12) and congenital anomalies (RR 1.2) in offspring. Current research also suggests that autism, schizophrenia, and other forms of "psychiatric morbidity" are more likely in offspring (RR 1.5 to 5.7) with advanced paternal age. Genetic defects related to faulty sperm quality control leading to single gene mutations and epigenetic alterations in several genetic pathways have been implicated as root causes. CONCLUSIONS Advanced paternal age is associated with increased genetic and epigenetic risk to offspring. However, the precise age at which risk develops and the magnitude of the risk are poorly understood or may have gradual effects. Currently, there are no clinical screenings or diagnostic panels that target disorders associated with advanced paternal age. Concerned couples and care providers should pursue or recommend genetic counseling and prenatal testing regarding specific disorders.
Collapse
Affiliation(s)
- Alexander N. Yatsenko
- Department of OB/GYN and Reproductive Sciences, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Room A206, Pittsburgh, PA 15213 USA
| | - Paul J. Turek
- The Turek Clinics, 55 Francisco St., Suite 300, San Francisco, CA 94133 USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW When providing accurate clinical diagnosis and genetic counseling in craniosynostosis, the challenge is heightened by knowledge that etiology in any individual case may be entirely genetic, entirely environmental, or anything in between. This review will scope out how recent genetic discoveries from next-generation sequencing have impacted on the clinical genetic evaluation of craniosynostosis. RECENT FINDINGS Survey of a 13-year birth cohort of patients treated at a single craniofacial unit demonstrates that a genetic cause of craniosynostosis can be identified in one quarter of cases. The substantial contributions of mutations in two genes, TCF12 and ERF, is confirmed. Important recent discoveries are mutations of CDC45 and SMO in specific craniosynostosis syndromes, and of SMAD6 in nonsyndromic midline synostosis. The added value of exome or whole genome sequencing in the diagnosis of difficult cases is highlighted. SUMMARY Strategies to optimize clinical genetic diagnostic pathways by combining both targeted and next-generation sequencing are discussed. In addition to improved genetic counseling, recent discoveries spotlight the important roles of signaling through the bone morphogenetic protein and hedgehog pathways in cranial suture biogenesis, as well as a key requirement for adequate cell division in suture maintenance.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- aClinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital bOxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre cCraniofacial Unit, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | |
Collapse
|
27
|
Segundo GRS, Takano OA, Moraes LSL, Nadaf MISV, Fernandes SJ, Ochs HD, Torgerson TR. Paternal gonadal mosaicism as cause of a puzzling inheritance pattern of activated PI3-kinase delta syndrome. Ann Allergy Asthma Immunol 2017; 119:564-566. [PMID: 29107464 DOI: 10.1016/j.anai.2017.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Gesmar R S Segundo
- Department of Pediatrics, University of Washington, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington; Pediatrics Department, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Olga A Takano
- Pediatrics Department, Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Líllian S L Moraes
- Pediatrics Department, Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Maria I S V Nadaf
- Pediatrics Department, Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Sergio J Fernandes
- Pediatrics Department, Universidade Federal do Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Hans D Ochs
- Department of Pediatrics, University of Washington, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington, Seattle, Washington; Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
28
|
Wilkie AOM, Goriely A. Gonadal mosaicism and non-invasive prenatal diagnosis for 'reassurance' in sporadic paternal age effect (PAE) disorders. Prenat Diagn 2017; 37:946-948. [PMID: 28686291 PMCID: PMC5638092 DOI: 10.1002/pd.5108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/25/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Anne Goriely
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Arditi JD, Thomaidis L, Frysira H, Doulgeraki A, Chrousos GP, Kanaka-Gantenbein C. Long-term follow-up of a child with Klinefelter syndrome and achondroplasia from infancy to 16 years. J Pediatr Endocrinol Metab 2017; 30:797-803. [PMID: 28672740 DOI: 10.1515/jpem-2016-0362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/12/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Achondroplasia (ACH), an autosomal dominant skeletal dysplasia, occurs in approximately 1:20,000 births. On the other hand, 47,XXY aneuploidy (Klinefelter syndrome [KS]) is the most common sex chromosome disorder, with a prevalence of approximately 1:600 males. To the best of our knowledge, only five cases of patients presenting both ACH and KS have been reported to date in the international literature. However, none of these cases has been longitudinally followed during the entire childhood. CASE PRESENTATION We report a male patient with ACH and KS, diagnosed in early infancy because of his typical phenotype of ACH. The diagnosis was confirmed by molecular analysis revealing a de novo heterozygous 1138 G-to-A mutation of the FGFR3 gene. During his first assessment, a karyotype was performed, which also revealed coexistence of KS. He was followed by our pediatric endocrinology team until the age of 16 years, then he was gradually transferred to adult endocrine care. CONCLUSIONS This is the first reported case with both conditions that was diagnosed in infancy and was longitudinally followed by a pediatric endocrinology team regularly, from infancy to late adolescence. With a typical phenotype of ACH, it is striking and noteworthy that he did not develop the classical endocrine complications of a child with KS, neither did he necessitate testosterone supplementation during his pubertal development, due to his normal virilization and testosterone levels.
Collapse
|
30
|
Kanatsu-Shinohara M, Naoki H, Shinohara T. Nonrandom Germline Transmission of Mouse Spermatogonial Stem Cells. Dev Cell 2017; 38:248-61. [PMID: 27505415 DOI: 10.1016/j.devcel.2016.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/19/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
Abstract
Genes are thought to be transmitted to offspring by random fertilization of a small number of oocytes with numerous spermatozoa. Here we analyzed the dynamics of male germline transmission by genetic marking and transplantation of spermatogonial stem cells (SSCs). We found that offspring deriving from a small number of specific SSCs appear within a limited time. Interestingly, the same SSC clones reappear later with an average functional lifespan of ∼124.4 days. Cyclic offspring production from SSCs was not caused by changes in SSC self-renewal activity because lineage-tracing analyses suggested that all SSCs actively proliferated. Selection appears to occur during the differentiating spermatogonia stage, when extensive apoptosis was observed. The pattern of germline transmission could be predicted using a mathematical model in which SSCs repeat cycles of transient spermatogenic burst and refractory periods. Thus, spermatogenesis is a regulated process whereby specific SSC clones are repeatedly recruited for fertilization with long-term cycles.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Japan Science and Technology Agency, PRESTO, Kyoto 606-8501, Japan.
| | - Honda Naoki
- Imaging Platform for Spatio-temporal Information, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Giannoulatou E, Maher GJ, Ding Z, Gillis AJM, Dorssers LCJ, Hoischen A, Rajpert-De Meyts E, McVean G, Wilkie AOM, Looijenga LHJ, Goriely A. Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline. PLoS One 2017; 12:e0178169. [PMID: 28542371 PMCID: PMC5439955 DOI: 10.1371/journal.pone.0178169] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Adult male germline stem cells (spermatogonia) proliferate by mitosis and, after puberty, generate spermatocytes that undertake meiosis to produce haploid spermatozoa. Germ cells are under evolutionary constraint to curtail mutations and maintain genome integrity. Despite constant turnover, spermatogonia very rarely form tumors, so-called spermatocytic tumors (SpT). In line with the previous identification of FGFR3 and HRAS selfish mutations in a subset of cases, candidate gene screening of 29 SpTs identified an oncogenic NRAS mutation in two cases. To gain insights in the etiology of SpT and into properties of the male germline, we performed whole-genome sequencing of five tumors (4/5 with matched normal tissue). The acquired single nucleotide variant load was extremely low (~0.2 per Mb), with an average of 6 (2-9) non-synonymous variants per tumor, none of which is likely to be oncogenic. The observed mutational signature of SpTs is strikingly similar to that of germline de novo mutations, mostly involving C>T transitions with a significant enrichment in the ACG trinucleotide context. The tumors exhibited extensive aneuploidy (50-99 autosomes/tumor) involving whole-chromosomes, with recurrent gains of chr9 and chr20 and loss of chr7, suggesting that aneuploidy itself represents the initiating oncogenic event. We propose that SpT etiology recapitulates the unique properties of male germ cells; because of evolutionary constraints to maintain low point mutation rate, rare tumorigenic driver events are caused by a combination of gene imbalance mediated via whole-chromosome aneuploidy. Finally, we propose a general framework of male germ cell tumor pathology that accounts for their mutational landscape, timing and cellular origin.
Collapse
Affiliation(s)
- Eleni Giannoulatou
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Geoffrey J. Maher
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Zhihao Ding
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ad J. M. Gillis
- Department of Pathology, Erasmus MC—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Department of Pathology, Erasmus MC—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leendert H. J. Looijenga
- Department of Pathology, Erasmus MC—University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anne Goriely
- Clinical Genetics Group, MRC-Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Kanatsu-Shinohara M, Naoki H, Shinohara T. Nonrandom contribution of left and right testes to germline transmission from mouse spermatogonial stem cells. Biol Reprod 2017; 97:902-910. [PMID: 29136097 DOI: 10.1093/biolre/iox141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Vast amounts of sperm are produced from spermatogonial stem cells (SSCs), which continuously undergo self-renewal. We examined the possible effect of laterality in male germline transmission efficiency of SSCs using a spermatogonial transplantation technique. We transplanted the same number of wild-type and Egfp transgenic SSCs in the same or different testes of individual recipient mice and compared the fertility of each type of recipient by natural mating. Transgenic mice were born within 3 months after transplantation regardless of the transplantation pattern. However, transgenic offspring were born at a significantly increased frequency when wild-type and transgenic SSCs were transplanted separately. In addition, this type of recipient sired significantly more litters that consisted exclusively of transgenic mice, which suggested that left and right testes have different time windows for fertilization. Thus, laterality plays an important role in germline transmission patterns from SSCs.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kyoto, Japan
| | - Honda Naoki
- Imaging Platform for Spatio-temporal Information, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Abstract
Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive.
Collapse
Affiliation(s)
- Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Ziyue Gao
- Howard Hughes Medical Institute & Dept. of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| |
Collapse
|
34
|
Whelan EC, Nwala AC, Osgood C, Olariu S. Selective mutation accumulation: a computational model of the paternal age effect. Bioinformatics 2016; 32:3790-3797. [PMID: 27531106 DOI: 10.1093/bioinformatics/btw528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION As the mean age of parenthood grows, the effect of parental age on genetic disease and child health becomes ever more important. A number of autosomal dominant disorders show a dramatic paternal age effect due to selfish mutations: substitutions that grant spermatogonial stem cells (SSCs) a selective advantage in the testes of the father, but have a deleterious effect in offspring. In this paper we present a computational technique to model the SSC niche in order to examine the phenomenon and draw conclusions across different genes and disorders. RESULTS We used a Markov chain to model the probabilities of mutation and positive selection with cell divisions. The model was fitted to available data on disease incidence and also mutation assays of sperm donors. Strength of selective advantage is presented for a range of disorders including Apert's syndrome and achondroplasia. Incidence of the diseases was predicted closely for most disorders and was heavily influenced by the site-specific mutation rate and the number of mutable alleles. The model also successfully predicted a stronger selective advantage for more strongly activating gain-of-function mutations within the same gene. Both positive selection and the rate of copy-error mutations are important in adequately explaining the paternal age effect. AVAILABILITY AND IMPLEMENTATION C ++/R source codes and documentation including compilation instructions are available under GNU license at https://github.com/anwala/NicheSimulation CONTACT: ewhel001@odu.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Eoin C Whelan
- Department of Biology, Old Dominion University, Norfolk, VA, USA
| | - Alexander C Nwala
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| | | | - Stephan Olariu
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
35
|
Abstract
Genome sequencing studies of de novo mutations in humans have revealed surprising incongruities in our understanding of human germline mutation. In particular, the mutation rate observed in modern humans is substantially lower than that estimated from calibration against the fossil record, and the paternal age effect in mutations transmitted to offspring is much weaker than expected from our long-standing model of spermatogenesis. I consider possible explanations for these discrepancies, including evolutionary changes in life-history parameters such as generation time and the age of puberty, a possible contribution from undetected post-zygotic mutations early in embryo development, and changes in cellular mutation processes at different stages of the germline. I suggest a revised model of stem-cell state transitions during spermatogenesis, in which 'dark' gonial stem cells play a more active role than hitherto envisaged, with a long cycle time undetected in experimental observations. More generally, I argue that the mutation rate and its evolution depend intimately on the structure of the germline in humans and other primates.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.
Collapse
Affiliation(s)
- Aylwyn Scally
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
36
|
Maher GJ, Rajpert-De Meyts E, Goriely A, Wilkie AOM. Cellular correlates of selfish spermatogonial selection. Andrology 2016; 4:550-3. [PMID: 27115825 PMCID: PMC4879506 DOI: 10.1111/andr.12185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/23/2023]
Affiliation(s)
- G J Maher
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - A Goriely
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - A O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Pohl E, Gromoll J, Kliesch S, Wistuba J. An alternative interpretation of cellular 'selfish spermatogonial selection'-clusters in the human testis indicates the need for 3-D-analyses. Andrology 2016; 4:213-7. [PMID: 26891892 DOI: 10.1111/andr.12142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 02/01/2023]
Abstract
The 'selfish spermatogonial selection'- model was proposed to explain the paternal age effect (PAE) of some congenital disorders associated with point mutations in male germ cells. According to this, spermatogonia carrying pathogenic mutations gain a selection advantage over non-mutated spermatogonia which leads to an increased number of mutated spermatogonia and consequently spermatozoa over time. Recently, an immunohistochemical approach using the premeiotic marker melanoma antigen family A4 (MAGE A4) was undertaken by the Wilkie group to confirm the presence of microclones of putatively mutated spermatogonia in testes of elderly men. The objective of our study was the age-dependent assessment of testes from men with normal spermatogenesis using MAGE A4 immunohistochemistry to identify and corroborate cellular clusters indicative for 'selfish spermatogonial selection' in our cohort. We analyzed testicular tissues obtained from men with normal spermatogenesis assigned to three age groups [(1) 28.8 ± 2.7 years; (2) 48.1 ± 1 years; (3) 71.9 ± 6.8 years, n/group = 8]. We could detect very similar distribution patterns of MAGE A4-positive cells and the presence of several types of microclusters as reported previously. However, these cellular clusters, indicative for clonal expansion, were not only present in testes from elderly men but also in those from age group 1 and 2. Using graphical three-dimensional modelling, we identified that cross-section directions e.g. longitudinal sections might provoke misleading interpretation of spermatogonial clusters, in particular when the tissue processing is limited. Thus, appropriate fixation and embedding is needed for reliable analysis of testicular sections. We therefore propose a more careful interpretation of such spermatogonial clusters and recommend a 3-D analysis to unequivocally determine 'selfish spermatogonial selection'-manifestations.
Collapse
Affiliation(s)
- E Pohl
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Germany
| | - J Gromoll
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Germany
| | - S Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Germany
| |
Collapse
|
38
|
Gunes S, Hekim GNT, Arslan MA, Asci R. Effects of aging on the male reproductive system. J Assist Reprod Genet 2016; 33:441-54. [PMID: 26867640 DOI: 10.1007/s10815-016-0663-y] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/18/2016] [Indexed: 01/01/2023] Open
Abstract
The study aims to discuss the effects of aging on the male reproductive system. A systematic review was performed using PubMed from 1980 to 2014. Aging is a natural process comprising of irreversible changes due to a myriad of endogenous and environmental factors at the level of all organs and systems. In modern life, as more couples choose to postpone having a child due to various socioeconomic reasons, research for understanding the effects of aging on the reproductive system has gained an increased importance. Paternal aging also causes genetic and epigenetic changes in spermatozoa, which impair male reproductive functions through their adverse effects on sperm quality and count as, well as, on sexual organs and the hypothalamic-pituitary-gonadal axis. Hormone production, spermatogenesis, and testes undergo changes as a man ages. These small changes lead to decrease in both the quality and quantity of spermatozoa. The offspring of older fathers show high prevalence of genetic abnormalities, childhood cancers, and several neuropsychiatric disorders. In addition, the latest advances in assisted reproductive techniques give older men a chance to have a child even with poor semen parameters. Further studies should investigate the onset of gonadal senesce and its effects on aging men.
Collapse
Affiliation(s)
- Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | | | - Mehmet Alper Arslan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
39
|
Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proc Natl Acad Sci U S A 2016; 113:2454-9. [PMID: 26858415 DOI: 10.1073/pnas.1521325113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.
Collapse
|
40
|
von Kopylow K, Schulze W, Salzbrunn A, Spiess AN. Isolation and gene expression analysis of single potential human spermatogonial stem cells. Mol Hum Reprod 2016; 22:229-39. [PMID: 26792870 DOI: 10.1093/molehr/gaw006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
STUDY HYPOTHESIS It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. STUDY FINDING We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. WHAT IS KNOWN ALREADY The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). STUDY DESIGN, SAMPLES/MATERIALS, METHODS We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. MAIN RESULTS AND THE ROLE OF CHANCE Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. LIMITATIONS, REASONS FOR CAUTION The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. WIDER IMPLICATIONS OF THE FINDINGS The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. STUDY FUNDING AND COMPETING INTERESTS The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests.
Collapse
Affiliation(s)
- K von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - W Schulze
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany MVZ Fertility Center Hamburg GmbH, amedes-group, 20095 Hamburg, Germany
| | - A Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - A-N Spiess
- Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Abstract
Diversity is the basis of fitness selection. Although the genome of an individual is considered to be largely stable, there is theoretical and experimental evidence--both in model organisms and in humans--that genetic mosaicism is the rule rather than the exception. The continuous generation of cell variants, their interactions and selective pressures lead to life-long tissue dynamics. Individuals may thus enjoy 'clonal health', defined as a clonal composition that supports healthy morphology and physiology, or suffer from clonal configurations that promote disease, such as cancer. The contribution of mosaicism to these processes starts during embryonic development. In this Opinion article, we argue that the road to cancer might begin during these early stages.
Collapse
Affiliation(s)
- Luis C Fernández
- Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares-CNIC, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Francisco X Real
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, and at the Epithelial Carcinogenesis Group, Cancer Cell Biology Programme, Spanish National Cancer Research Centre-CNIO, 28029 Madrid, Spain
| |
Collapse
|
42
|
Forster P, Hohoff C, Dunkelmann B, Schürenkamp M, Pfeiffer H, Neuhuber F, Brinkmann B. Elevated germline mutation rate in teenage fathers. Proc Biol Sci 2015; 282:20142898. [PMID: 25694621 PMCID: PMC4345458 DOI: 10.1098/rspb.2014.2898] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Men age and die, while cells in their germline are programmed to be immortal. To elucidate how germ cells maintain viable DNA despite increasing parental age, we analysed DNA from 24 097 parents and their children, from Europe, the Middle East and Africa. We chose repetitive microsatellite DNA that mutates (unlike point mutations) only as a result of cellular replication, providing us with a natural ‘cell-cycle counter’. We observe, as expected, that the overall mutation rate for fathers is seven times higher than for mothers. Also as expected, mothers have a low and lifelong constant DNA mutation rate. Surprisingly, however, we discover that (i) teenage fathers already set out from a much higher mutation rate than teenage mothers (potentially equivalent to 77–196 male germline cell divisions by puberty); and (ii) ageing men maintain sperm DNA quality similar to that of teenagers, presumably by using fresh batches of stem cells known as ‘A-dark spermatogonia’.
Collapse
Affiliation(s)
- Peter Forster
- Institute for Forensic Genetics, Münster 48161, Germany Murray Edwards College, University of Cambridge, Cambridge CB3 0DF, UK
| | | | - Bettina Dunkelmann
- Institute of Legal Medicine, University of Salzburg, Ignaz-Harrer-Strasse 79, Salzburg 5020, Austria
| | | | - Heidi Pfeiffer
- Institute of Legal Medicine, University of Münster, Münster 48149, Germany
| | - Franz Neuhuber
- Institute of Legal Medicine, University of Salzburg, Ignaz-Harrer-Strasse 79, Salzburg 5020, Austria
| | | |
Collapse
|
43
|
Abstract
Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging.
Collapse
Affiliation(s)
- Peter D Adams
- University of Glasgow and Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - K Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
44
|
PLCζ disruption with complete fertilization failure in normozoospermia. J Assist Reprod Genet 2015; 32:879-86. [PMID: 25986342 DOI: 10.1007/s10815-015-0496-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Intracytoplasmic sperm injection (ICSI) is widely used to achieve fertilization in the presence of severe male factor, resulting in high fertilization rates. Nevertheless, 1-3 % of couples experience complete fertilization failure after ICSI. When a male factor is identified, assisted oocyte activation (AOA) can help overcome fertilization failures. The objective of this study is to describe a case of repeated complete fertilization failures after ICSI with donor oocytes, and to investigate the molecular and functional aspects of phospholipase C zeta (PLCζ) protein in the patient semen. METHODS The patient was a normozoospermic male who had previously fathered, through natural conception, four children by a different partner. Molecular and functional analysis of sperm-specific PLCζ in the patient and control samples by means of gene sequencing, immunocytochemistry, Western blot, mouse oocyte activation test (MOAT), and mouse oocyte calcium analysis (MOCA) were used. RESULTS PLCζ expression levels and distribution were significantly disrupted, although MOAT and MOCA did not indicate a decrease in activation ability. CONCLUSIONS Normozoospermic males can have disrupted expression and distribution of PLCζ, and reduced activation ability after ICSI in human oocytes, despite their normal activation potential in functional testing using mouse oocytes. Discrepancy among molecular and functional data might exist, as mutations in the gene sequence may not be the only cause of alteration in PLCζ protein related to activation failures.
Collapse
|
45
|
Ramm SA, Schärer L, Ehmcke J, Wistuba J. Sperm competition and the evolution of spermatogenesis. Mol Hum Reprod 2014; 20:1169-79. [PMID: 25323971 DOI: 10.1093/molehr/gau070] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spermatogenesis is a long and complex process that, despite the shared overall goal of producing the male gamete, displays striking amounts of interspecific diversity. In this review, we argue that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number and morphology of sperm produced, and in the molecular and cellular processes by which this happens. We begin by reviewing the basic biology of spermatogenesis in some of the main animal model systems to illustrate this diversity, and then ask to what extent this variation arises from the evolutionary forces acting on spermatogenesis, most notably sperm competition. We explore five specific aspects of spermatogenesis from an evolutionary perspective, namely: (i) interspecific diversity in the number and morphology of sperm produced; (ii) the testicular organizations and stem cell systems used to produce them; (iii) the large number and high evolutionary rate of genes underpinning spermatogenesis; (iv) the repression of transcription during spermiogenesis and its link to the potential for haploid selection; and (v) the phenomenon of selection acting at the level of the germline. Overall we conclude that adopting an evolutionary perspective can shed light on many otherwise opaque features of spermatogenesis, and help to explain the diversity of ways in which males of different species perform this fundamentally important process.
Collapse
Affiliation(s)
- Steven A Ramm
- Evolutionary Biology, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jens Ehmcke
- Central Animal Facility of the Faculty of Medicine, University of Münster, Albert-Schweitzer-Campus 1 (A8), 48149 Münster, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Albert-Schweitzer-Campus 1 (D11), 48149 Münster, Germany
| |
Collapse
|
46
|
Kwon WS, Rahman MS, Pang MG. Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphotyrosine proteins. J Proteome Res 2014; 13:4505-17. [PMID: 25223855 DOI: 10.1021/pr500524p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Male infertility refers to the inability of a man to achieve a pregnancy in a fertile female. In more than one-third of cases, infertility arises due to the male factor. Therefore, developing strategies for the diagnosis and prognosis of male infertility is critical. Simultaneously, a satisfactory model for the cellular mechanisms that regulate normal sperm function must be established. In this regard, tyrosine phosphorylation is one of the most common mechanisms through which several signal transduction pathways are adjusted in spermatozoa. It regulates the various aspects of sperm function, for example, motility, hyperactivation, capacitation, the acrosome reaction, fertilization, and beyond. Several recent large-scale studies have identified the proteins that are phosphorylated in spermatozoa to acquire fertilization competence. However, most of these studies are basal and have not presented an overall mechanism through which tyrosine phosphorylation regulates male infertility. In this review, we focus of this mechanism, discussing most of the tyrosine-phosphorylated proteins in spermatozoa that have been identified to date. We categorized tyrosine-phosphorylated proteins in spermatozoa that regulate male infertility using MedScan Reader (v5.0) and Pathway Studio (v9.0).
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | | | | |
Collapse
|