1
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Artawinata PC, Lorraine S, Waturangi DE. Isolation and characterization of bacteriophages from soil against food spoilage and foodborne pathogenic bacteria. Sci Rep 2023; 13:9282. [PMID: 37286897 DOI: 10.1038/s41598-023-36591-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
Microbial food spoilage and foodborne disease are the main challenges in the food industry regarding food shelf life. Current preservation methods are frequently associated with changes in organoleptic characteristics and loss of nutrients. For this reason, bacteriophage offers an alternative natural method as a biocontrol agent that can reduce bacterial contamination in food without altering the organoleptic properties. This study was conducted to isolate and characterize bacteriophage from soil to control food spoilage bacteria, such as Bacillus cereus and Bacillus subtilis, and foodborne pathogenic bacteria, such as enterotoxigenic Escherichia coli (ETEC) and enterohemorrhagic E. coli (EHEC). Isolation was done by agar overlay assay method, and phages BC-S1, BS-S2, ETEC-S3, and EHEC-S4 were recovered. The host range of all isolated phages tended to be narrow and had high specificity towards the specific bacteria. The phage efficiency were measured where ETEC-S3 showed no effectivity against B. cereus and EHEC-S4 showed low efficiency against Enteropathogenic E. coli (EPEC). Morphology analysis was conducted for phage BC-S1 and ETEC-S3 with Transmission Electron Microscopy (TEM), and it is shown to belong to the Caudovirales order. Phages BC-S1 and BS-S2 significantly reduced the host bacteria when applied to the cooked rice and pasteurized milk samples with miMOI of 0.1. While phage ETEC-S3 at miMOI of 0.001 and phage EHEC-S4 at miMOI of 1 also showed a significant reduction when applied to chicken meat and lettuce samples at storage temperatures of 4 °C and 28 °C. The highest bacterial reduction of 100% was shown by phage BC-S1 on pasteurized milk samples and reduction up to 96.06% by phage ETEC-S3 on chicken meat samples at 28 °C incubation.
Collapse
Affiliation(s)
- Putri Christy Artawinata
- Food Technology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Sesilia Lorraine
- Food Technology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Master in Biotechnology Department, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jenderal Sudirman 51 Street, South Jakarta, DKI Jakarta, 12930, Indonesia.
| |
Collapse
|
3
|
Tan CW, Rukayadi Y, Hasan H, Abdul-Mutalib NA, Jambari NN, Hara H, Thung TY, Lee E, Radu S. Isolation and Characterization of Six Vibrio parahaemolyticus Lytic Bacteriophages From Seafood Samples. Front Microbiol 2021; 12:616548. [PMID: 33776954 PMCID: PMC7987779 DOI: 10.3389/fmicb.2021.616548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
Vibrio parahaemolyticus is a foodborne pathogen that is frequently isolated from a variety of seafood. To control this pathogenic Vibrio spp., the implementation of bacteriophages in aquaculture and food industries have shown a promising alternative to antibiotics. In this study, six bacteriophages isolated from the seafood samples demonstrated a narrow host range specificity that infecting only the V. parahaemolyticus strains. Morphological analysis revealed that bacteriophages Vp33, Vp22, Vp21, and Vp02 belong to the Podoviridae family, while bacteriophages Vp08 and Vp11 were categorized into the Siphoviridae family. All bacteriophages were composed of DNA genome and showed distinctive restriction fragment length polymorphism. The optimal MOI for bacteriophage propagation was determined to be 0.001 to 1. One-step growth curve revealed that the latent period ranged from 10 to 20 min, and the burst size of bacteriophage was approximately 17 to 51 PFU/cell. The influence of temperature and pH levels on the stability of bacteriophages showed that all bacteriophages were optimally stable over a wide range of temperatures and pH levels. In vitro lytic activity of all bacteriophages demonstrated to have a significant effect against V. parahaemolyticus. Besides, the application of a bacteriophage cocktail instead of a single bacteriophage suspension was observed to have a better efficiency to control the growth of V. parahaemolyticus. Results from this study provided a basic understanding of the physiological and biological properties of the isolated bacteriophages before it can be readily used as a biocontrol agent against the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
- Chia Wanq Tan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Yaya Rukayadi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Hanan Hasan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Noor-Azira Abdul-Mutalib
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Nuzul Noorahya Jambari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Hirofumi Hara
- Department of Environmental Engineering and Green Technology, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Tze Young Thung
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Epeng Lee
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Son Radu
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 2021; 12:564532. [PMID: 33664712 PMCID: PMC7920989 DOI: 10.3389/fmicb.2021.564532] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes' feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward's method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.
Collapse
Affiliation(s)
- Felipe Molina
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Microbiology, Department of Biomedical Sciences, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
5
|
Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, Dundar M, Bertelli M. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020024. [PMID: 33170167 PMCID: PMC8023132 DOI: 10.23750/abm.v91i13-s.10819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | | | | | | | | | | | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Matteo Bertelli
- EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy.
| |
Collapse
|
6
|
Lukman C, Yonathan C, Magdalena S, Waturangi DE. Isolation and characterization of pathogenic Escherichia coli bacteriophages from chicken and beef offal. BMC Res Notes 2020; 13:8. [PMID: 31907069 PMCID: PMC6945691 DOI: 10.1186/s13104-019-4859-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/14/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. RESULTS Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL-1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.
Collapse
Affiliation(s)
- Celosia Lukman
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Christopher Yonathan
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Stella Magdalena
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Biology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia.
| |
Collapse
|
7
|
Current taxonomy of Rhodococcus species and their role in infections. Eur J Clin Microbiol Infect Dis 2018; 37:2045-2062. [PMID: 30159693 DOI: 10.1007/s10096-018-3364-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Rhodococcus is a genus of obligate aerobic, Gram-positive, partially acid-fast, catalase-positive, non-motile, and none-endospore bacteria. The genus Rhodococcus was first introduced by Zopf. This bacterium can be isolated from various sources of the environment and can grow well in non-selective medium. A large number of phenotypic characterizations are used to compare different species of the genus Rhodococcus, and these tests are not suitable for accurate identification at the genus and species level. Among nucleic acid-based methods, the most powerful target gene for revealing reliable phylogenetic relationships is 16S ribosomal RNA gene (16S rRNA gene) sequence analysis, but this gene is unable to differentiation some of Rhodococcus species. To date, whole genome sequencing analysis has solved taxonomic complexities in this genus. Rhodococcus equi is the major cause of foal pneumonia, and its implication in human health is related to cases in immunocompromised patients. Macrolide family together with rifampicin is one of the most effective antibiotic agents for treatment rhodococcal infections.
Collapse
|
8
|
Salem M, Virtanen S, Korkeala H, Skurnik M. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland. J Appl Microbiol 2015; 118:599-608. [PMID: 25495090 DOI: 10.1111/jam.12722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/13/2014] [Accepted: 12/07/2014] [Indexed: 11/26/2022]
Abstract
AIMS Bacteriophages infect bacteria, and they are present everywhere in the world including the intestinal tracts of animals. Yersiniosis is a common foodborne infection caused by Yersinia enterocolitica and Yersinia pseudotuberculosis. As these bacteria are frequently isolated from pigs, we wanted to know whether Yersinia-specific bacteriophages are also present in the pig stools and, if so, whether there is a positive or negative association between the prevalence of the Yersinia phages and the pathogenic Yersinia in the stool samples. METHODS AND RESULTS Altogether 793 pig stool samples collected between November 2010 and March 2012 from 14 Finnish pig farms were screened for the presence of bacteriophages able to infect Y. enterocolitica serotype O:3, O:5,27 or O:9 strains, or Y. pseudotuberculosis serotype O:1a, O:1b or O:3 strains. Yersinia phages were isolated from 90 samples from eight farms. Yersinia enterocolitica O:3 was infected by 59 phages, 28 phages infected serotypes O:3 and O:5,27, and eight phages infected serotypes O:3, O:5,27 and O:9, and Y. pseudotuberculosis O:1a by eight phages. Many phages originating from pigs in the same farm were identical based on their restriction enzyme digestion patterns; 20 clearly different phages were selected for further characterization. Host ranges of these phages were tested with 94 Yersinia strains. Six of the phages infected eight strains, 13 phages infected three strains, and one phage infected only one strain, indicating that the phages had a relatively narrow host range. CONCLUSIONS There was a clear association between the presence of the host bacteria and specific phages in the stools. SIGNIFICANCE AND IMPACT OF THE STUDY The isolated bacteriophages may have potential as biocontrol agents for yersiniosis in both humans and pigs in future, and as alternatives or in addition to antibiotics. To our knowledge, this is the first reported isolation of Yersinia-specific phages from pig stool samples.
Collapse
Affiliation(s)
- M Salem
- Department of Bacteriology and Immunology, Haartman Institute, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; Department of Microbiology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | | | | | | |
Collapse
|
9
|
Dang VT, Sullivan MB. Emerging methods to study bacteriophage infection at the single-cell level. Front Microbiol 2014; 5:724. [PMID: 25566233 PMCID: PMC4274963 DOI: 10.3389/fmicb.2014.00724] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022] Open
Abstract
Bacteria and their viruses (phages) are abundant across diverse ecosystems and their interactions influence global biogeochemical cycles and incidence of disease. Problematically, both classical and metagenomic methods insufficiently assess the host specificity of phages and phage–host infection dynamics in nature. Here we review emerging methods to study phage–host interaction and infection dynamics with a focus on those that offer resolution at the single-cell level. These methods leverage ever-increasing sequence data to identify virus signals from single-cell amplified genome datasets or to produce primers/probes to target particular phage–bacteria pairs (digital PCR and phageFISH), even in complex communities. All three methods enable study of phage infection of uncultured bacteria from environmental samples, while the latter also discriminates between phage–host interaction outcomes (e.g., lytic, chronic, lysogenic) in model systems. Together these techniques enable quantitative, spatiotemporal studies of phage–bacteria interactions from environmental samples of any ecosystem, which will help elucidate and predict the ecological and evolutionary impacts of specific phage–host pairings in nature.
Collapse
Affiliation(s)
- Vinh T Dang
- Department of Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA ; Department of Molecular and Cellular Biology, University of Arizona Tucson, AZ, USA
| |
Collapse
|
10
|
Díaz-Muñoz SL, Koskella B. Bacteria-phage interactions in natural environments. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:135-83. [PMID: 25131402 DOI: 10.1016/b978-0-12-800259-9.00004-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phages are considered the most abundant and diverse biological entities on Earth and are notable not only for their sheer abundance, but also for their influence on bacterial hosts. In nature, bacteria-phage relationships are complex and have far-reaching consequences beyond particular pairwise interactions, influencing everything from bacterial virulence to eukaryotic fitness to the carbon cycle. In this review, we examine bacteria and phage distributions in nature first by highlighting biogeographic patterns and nonhost environmental influences on phage distribution, then by considering the ways in which phages and bacteria interact, emphasizing phage life cycles, bacterial responses to phage infection, and the complex patterns of phage host specificity. Finally, we discuss phage impacts on bacterial abundance, genetics, and physiology, and further aim to clarify distinctions between current theoretical models and point out areas in need of future research.
Collapse
Affiliation(s)
- Samuel L Díaz-Muñoz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA; Department of Integrative Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt Koskella
- Department of Biosciences, University of Exeter, Penryn Campus, Tremough, Cornwall, United Kingdom.
| |
Collapse
|
11
|
Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 2013; 167:9-33. [PMID: 23993705 DOI: 10.1016/j.vetmic.2013.06.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.
Collapse
Affiliation(s)
- José A Vázquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH9 3JT, UK; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
| | | | | | | | | | | |
Collapse
|