1
|
De Stefano M, Barletta GDG, Morgera S, De Luca Y, Belaeff C, Power K, Baccigalupi L, De Vico G, Conte I, Ricca E, Saggese A. Probiotic spore-based antigen delivery: a novel oral vaccine strategy against Vibrio infections in aquaculture. Microb Cell Fact 2025; 24:96. [PMID: 40312352 PMCID: PMC12046727 DOI: 10.1186/s12934-025-02725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Vibriosis is a deadly illness caused by various species of the Vibrio genus. Due to its high incidence in aquaculture plants, vibriosis is responsible for significant economic losses. Currently, anti-vibriosis treatments rely on antibiotics. However, the global rise in antibiotic resistance necessitates the development of alternative approaches. Novel vaccines and effective probiotics have been proposed as potential alternative to antibiotics in fighting bacterial infections. Here we propose a combined vaccine/probiotic strategy based on the use of probiotic bacterial spores for the oral delivery of Vibrio antigens. Spores of various species of the Bacillus genus are widely used as probiotics and have been shown to efficiently display antigens in a non-recombinant way. RESULTS Spores of various probiotic strains were analyzed to assess their effectiveness in displaying a heterologous model protein, and B. megaterium MV30 was identified as the most efficient strain. MV30 spores were then used to display two antigens of Vibrio harveyi, the entire Hsp33 protein of 33 kDa and a 239 amino acids fragment of OmpK (OmpK21/260), identified as the most immunogenic part of the protein. While Hsp33 is a stable protein, OmpK21/260 is unstable at conditions mimicking those encountered in an aquaculture plant and the interaction with MV30 spores reduced such instability. The protective ability of the combined probiotic/vaccination strategy was assayed on Medaka fish (Oryzias latipes), as a model. In a challenge experiment with a virulent strain of Vibrio harveyi, a protective effect was observed with MV30 spores alone and such effect was significantly increased when the same spores displayed either one of the two antigens. CONCLUSION Our results support the use of probiotics and oral vaccines as a valid alternative to antibiotics and point to the application of probiotic spore-based antigen delivery as a novel strategy to fight pathogenic infections.
Collapse
Affiliation(s)
- Marina De Stefano
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Giovanni Di Gregorio Barletta
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
- Stazione Zoologica "Anton Dohrn", Naples, Italy
| | - Simona Morgera
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ylenia De Luca
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Chiara Belaeff
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Karen Power
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Loredana Baccigalupi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Gionata De Vico
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ivan Conte
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ezio Ricca
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.
| | - Anella Saggese
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
2
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Yuan C, Ji X, Zhang Y, Liu X, Ding L, Li J, Ren S, Liu F, Chen Z, Zhang L, Zhu W, Yu J, Wu J. Important role of Bacillus subtilis as a probiotic and vaccine carrier in animal health maintenance. World J Microbiol Biotechnol 2024; 40:268. [PMID: 39007987 DOI: 10.1007/s11274-024-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Bacillus subtilis is a widespread Gram-positive facultative aerobic bacterium that is recognized as generally safe. It has shown significant application value and great development potential in the animal farming industry. As a probiotic, it is frequently used as a feed growth supplement to effectively replace antibiotics due to its favourable effects on regulating the intestinal flora, improving intestinal immunity, inhibiting harmful microorganisms, and secreting bioactive substances. Consequently, the gut health and disease resistance of farmed animals can be improved. Both vegetative and spore forms of B. subtilis have also been utilized as vaccine carriers for delivering the antigens of infectious pathogens for over a decade. Notably, its spore form is regarded as one of the most prospective for displaying heterologous antigens with high activity and stability. Previously published reviews have predominantly focused on the development and applications of B. subtilis spore surface display techniques. However, this review aims to summarize recent studies highlighting the important role of B. subtilis as a probiotic and vaccine carrier in maintaining animal health. Specifically, we focus on the beneficial effects and underlying mechanisms of B. subtilis in enhancing disease resistance among farmed animals as well as its potential application as mucosal vaccine carriers. It is anticipated that B. subtilis will assume an even more prominent role in promoting animal health with in-depth research on its characteristics and genetic manipulation tools.
Collapse
Affiliation(s)
- Chunmei Yuan
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiang Ji
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Xinli Liu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenxing Zhu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
4
|
Lanz-Mendoza H, Gálvez D, Contreras-Garduño J. The plasticity of immune memory in invertebrates. J Exp Biol 2024; 227:jeb246158. [PMID: 38449328 DOI: 10.1242/jeb.246158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Whether specific immune protection after initial pathogen exposure (immune memory) occurs in invertebrates has long been uncertain. The absence of antibodies, B-cells and T-cells, and the short lifespans of invertebrates led to the hypothesis that immune memory does not occur in these organisms. However, research in the past two decades has supported the existence of immune memory in several invertebrate groups, including Ctenophora, Cnidaria, Nematoda, Mollusca and Arthropoda. Interestingly, some studies have demonstrated immune memory that is specific to the parasite strain. Nonetheless, other work does not provide support for immune memory in invertebrates or offers only partial support. Moreover, the expected biphasic immune response, a characteristic of adaptive immune memory in vertebrates, varies within and between invertebrate species. This variation may be attributed to the influence of biotic or abiotic factors, particularly parasites, on the outcome of immune memory. Despite its critical importance for survival, the role of phenotypic plasticity in immune memory has not been systematically examined in the past two decades. Additionally, the features of immune responses occurring in diverse environments have yet to be fully characterized.
Collapse
Affiliation(s)
- Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, INSP, 62100 Cuernavaca, Morelos, Mexico
| | - Dumas Gálvez
- Coiba Scientific Station, City of Knowledge, Calle Gustavo Lara, Boulevard 145B, Clayton 0843-01853, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Estafeta universitaria, Avenida Simón Bolívar, 0824, Panama
- Sistema Nacional de Investigación, Edificio 205, Ciudad del Saber, 0816-02852, Panama
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, UNAM, 58190 Morelia, Mexico
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
5
|
Tong Y, Yang J, Wang L, Chi X, Zhu C, Yin R, Zhang L, Li Y, Zhao C, Jia R. Effects of dietary supplementation of Anabaena sp. PCC7120 expressing VP28 protein on survival and histopathology after WSSV infection in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108865. [PMID: 37277048 DOI: 10.1016/j.fsi.2023.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Shrimp are especially susceptible to the White Spot Syndrome Virus (WSSV). Oral administration of the WSSV envelop protein VP28 is a promising approach to protect shrimp against WSSV. In this study, Macrobrachium nipponense (M. nipponense) were fed for 7 days with food supplemented with Anabaena sp. PCC 7120 (Ana7120) expressing VP28 and then challenged with WSSV. The survival rates of M. nipponense in three groups, including control, WSSV-challenged, and VP28-vaccinated, were subsequently determined. We also determined the WSSV content of different tissues and the tissue morphology in the absence of and after viral challenge. The survival rate of the positive control group (no vaccination and challenge, 10%) and empty vector group (fed with Ana7120 pRL-489 algae and challenged, 13.3%) was much lower than the survival rate of M. nipponense in wild type group (fed with Ana7120 and challenged, 18.9%), immunity group 1 (fed with 3.33% Ana7120 pRL-489-vp28 and challenged, 45.6%) or immunity group 2 (fed with 6.66% Ana7120 pRL-489-vp28 and challenged, 62.2%). RT-qPCR showed that WSSV content of the gill, hepatopancreas and muscle of immunity groups 1 and 2 were substantially lower than the positive control. Microscopic examination revealed that WSSV-challenged positive control exhibited large number of cell rupture, necrosis, nuclear exfoliation in gills and hepatopancreatic tissues. The gill and hepatopancreas of immunity group 1 showed partial symptoms of infection, yet the tissue was visibly healthier than that of the positive control group. No symptoms were visible in the gills and hepatopancreatic tissue of immunity group 2. The results demonstrate that the probability of M. nipponense infected by WSSV can be diminished by oral administration of cyanobacteria-expressed VP28. Such an approach could improve the disease resistance and delay the death of M. nipponense in the commercial production of this shrimp.
Collapse
Affiliation(s)
- Yupei Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jia Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoping Chi
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chan Zhu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Le Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaru Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunyan Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
6
|
Saggese A, Baccigalupi L, Donadio G, Ricca E, Isticato R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int J Mol Sci 2023; 24:10880. [PMID: 37446054 DOI: 10.3390/ijms241310880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The development of efficient mucosal vaccines is strongly dependent on the use of appropriate vectors. Various biological systems or synthetic nanoparticles have been proposed to display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune responses have been observed in animals immunized by the oral or nasal route. Here we review the use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of using the spore and of the recombinant vs. non-recombinant approach to display antigens on the spore surface. An overview of the immune responses induced by antigen-displaying spores so far tested in animals is presented and discussed.
Collapse
Affiliation(s)
- Anella Saggese
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy
| | - Ezio Ricca
- Department of Biology, Federico II University, 80126 Naples, Italy
| | - Rachele Isticato
- Department of Biology, Federico II University, 80126 Naples, Italy
| |
Collapse
|
7
|
Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules 2023; 13:947. [PMID: 37371527 DOI: 10.3390/biom13060947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Mucosal vaccines offer several advantages over injectable conventional vaccines, such as the induction of adaptive immunity, with secretory IgA production at the entry site of most pathogens, and needle-less vaccinations. Despite their potential, only a few mucosal vaccines are currently used. Developing new effective mucosal vaccines strongly relies on identifying innovative antigens, efficient adjuvants, and delivery systems. Several approaches based on phages, bacteria, or nanoparticles have been proposed to deliver antigens to mucosal surfaces. Bacterial spores have also been considered antigen vehicles, and various antigens have been successfully exposed on their surface. Due to their peculiar structure, spores conjugate the advantages of live microorganisms with synthetic nanoparticles. When mucosally administered, spores expressing antigens have been shown to induce antigen-specific, protective immune responses. This review accounts for recent progress in the formulation of spore-based mucosal vaccines, describing a spore's structure, specifically the spore surface, and the diverse approaches developed to improve its efficiency as a vehicle for heterologous antigen presentation.
Collapse
Affiliation(s)
- Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Naples, Italy
| |
Collapse
|
8
|
Liang X, Liang J, Cao J, Liu S, Wang Q, Ning Y, Liang Z, Zheng J, Zhang Z, Luo J, Chen Y, Huang X, Huang Y, Qin Q, Zhou S. Oral immunizations with Bacillus subtilis spores displaying VP19 protein provide protection against Singapore grouper iridovirus (SGIV) infection in grouper. FISH & SHELLFISH IMMUNOLOGY 2023:108860. [PMID: 37257567 DOI: 10.1016/j.fsi.2023.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Disease caused by Singapore grouper iridovirus (SGIV) results in major economic losses in the global grouper aquaculture industry. Vaccination is considered to be the most effective way to protect grouper from SGIV. In this study, the spores of Bacillus subtilis (B.subtilis) WB600 were utilized as the vehicle that the VP19 protein was displayed on the spores surface. To further investigate the effect of oral vaccination, the grouper were orally immunized with B.s-CotC-19 spores. After challenged, the survival rate of grouper orally vaccinated with B.s-CotC-19 spores was 34.5% and the relative percent survival (RPS) was 28.7% compared to the PBS group. Moreover, the viral load in the tissues of the B.s-CotC-19 group was significantly lower than that of the PBS group. The histopathological sections of head kidney and liver tissue from the B.s-CotC-19 group showed significantly less histopathology compared to the PBS group. In addition, the specific IgM levels in serum in the B.s-CotC-19 group was higher than those in the PBS group. In the hindgut tissue, the immune-related gene expression detected by quantitative real-time PCR (qRT-PCR) exhibited an increasing trend in different degrees in the B.s-CotC-19 group, suggesting that the innate and adaptive immune responses were activated. These results indicated that the oral administration of recombinant B.subtilis spores was effective for preventing SGIV infection. This study provided a feasible strategy for the controlling of fish virus diseases.
Collapse
Affiliation(s)
- Xia Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Junjia Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinqiao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shijia Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Quan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunshang Ning
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zengjian Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zemiao Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Luo
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjing Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China
| | - Yan Huang
- ZhongShan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| | - Sheng Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| |
Collapse
|
9
|
Dai C, Xiao L, Mo A, Yuan Y, Yuan J, Gu Z, Wang J. Effect of dietary Bacillus subtilis supplement on Cd toxicokinetics and Cd-induced immune and antioxidant impairment of Procambarus clarkii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43914-43926. [PMID: 36680717 DOI: 10.1007/s11356-023-25297-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd), a non-biodegradable contaminant in freshwater ecosystems, can pose a serious threat to aquatic animals at high levels. In this study, the Cd toxicokinetics and the immune and antioxidant defense were explored in Procambarus clarkii exposed to different levels of Cd (0, 0.1, 1.0 mg Cd/L) or treated with 1.0 mg Cd/L and dietary Bacillus subtilis supplementation (1 × 107 cfu/g). Results from the 21-day uptake and depuration experiment revealed that Cd exposure elicited a dose- and time-dependent uptake in all crayfish tissues, and the rank order of Cd concentration was gill > hepatopancreas > exoskeleton > muscle. The one-compartment model demonstrated that gills had the highest uptake rate (ku) value after Cd aqueous exposure and the ku and elimination rate (kd) values in gill, hepatopancreas, and exoskeleton of the group with 1.0 mg Cd/L were higher than those of the group at alow Cd concentration (0.1 mg Cd/L). However, B. subtilis could decrease Cd ku and increase Cd kd in hepatopancreas, resulting in the reduction of bioconcentration factors (BCF), steady-state concentrations (Css), and biological half-life (Tb1/2). A positive correlation was found between aqueous Cd concentration and the severity of hepatopancreas histopathological injury, while B. subtilis could ameliorate the pathological damage in the high Cd group. Similarly, aqueous exposure to Cd elevated malonaldehyde (MDA) content and suppressed the activities of lysozyme (LZM), acid phosphatase (ACP) in hepatopancreas and alkaline phosphatase (AKP) in hemolymph. The activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas were also inhibited. Nevertheless, they were all recovered with the dietary addition of B. subtilis. In conclusion, our results indicated that exposure to Cd significantly increased Cd accumulation and toxic damages in crayfish hepatopancreas, while dietary administration of B. subtilis to crayfish significantly decreased Cd accumulation and improved the immune and antioxidant defense, leading to the prevention in toxic effects of Cd.
Collapse
Affiliation(s)
- Caijiao Dai
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aijie Mo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchao Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junfa Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Burciaga RA, Ruiz-Guzmán G, Lanz-Mendoza H, Krams I, Contreras-Garduño J. The honey bees immune memory. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104528. [PMID: 36067906 DOI: 10.1016/j.dci.2022.104528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Invertebrates' immune priming or innate immune memory is an analogous response to the vertebrates' adaptive memory. We investigated if honey bees have immune memory. We compared survival and immune response between bees that were: 1) manipulated (Naïve), 2) challenged twice with the same pathogen Escherichia coli (Memory), 3) challenged twice with different pathogens (Staphylococcus aureus versus E. coli, Micrococcus lysodeikticus versus E. coli), or 4) with PBS (the diluent of bacteria) versus E. coli (heterologous challenge; Control). Results indicate better survival in the Memory than the Control group, and the Memory group showed a similar survival than Naïve insects. The Memory group had higher lytic activity but lower prophenoloxidase, phenoloxidase activity, and hemocyte count than the Control and Naïve groups. No differences were found in relative expression of defensin-1. This first demonstration of immune memory opens the questions about its molecular mechanisms and whether, immune memory could be used against natural parasites that affect honey bees, hence, if they could be "vaccinated" against some natural parasites.
Collapse
Affiliation(s)
- Rodrigo Aarón Burciaga
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | - Gloria Ruiz-Guzmán
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico
| | | | - Indrikis Krams
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Biotechnology, Daugavpils University, Daugavpils, Latvia; Department of Zoology and Animal Ecology, University of Latvia, Riga, Latvia
| | - Jorge Contreras-Garduño
- ENES, Unidad Morelia, UNAM. Antigua Carretera a Pátzcuaro, No.8701. Col. Ex-Hacienda San José de la Huerta Código, 58190, Morelia, Michoacán, Mexico.
| |
Collapse
|
11
|
|
12
|
Gonçalves G, Santos RA, Coutinho F, Pedrosa N, Curado M, Machado M, Costas B, Bonneville L, Serrano M, Carvalho AP, Díaz-Rosales P, Oliva-Teles A, Couto A, Serra CR. Oral vaccination of fish against vibriosis using spore-display technology. Front Immunol 2022; 13:1012301. [PMID: 36311700 PMCID: PMC9608137 DOI: 10.3389/fimmu.2022.1012301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/29/2022] [Indexed: 10/06/2024] Open
Abstract
Oral vaccines are highly demanded by the aquaculture sector, to allow mass delivery of antigens without using the expensive and labor-intensive injectable vaccines. These later require individual handling of fish, provoking stress-related mortalities. One possible strategy to create injection-free vaccine delivery vehicles is the use of bacterial spores, extremely resistant structures with wide biotechnological applications, including as probiotics, display systems, or adjuvants. Bacterial spores, in particular those of Bacillus subtilis, have been shown to behave as mucosal vaccine adjuvants in mice models. However, such technology has not been extensively explored against fish bacterial disease. In this study, we used a laboratory strain of B. subtilis, for which a variety of genetic manipulation tools are available, to display at its spores surface either a Vibrio antigenic protein, OmpK, or the green fluorescence protein, GFP. When previously vaccinated by immersion with the OmpK- carrying spores, zebrafish survival upon a bacterial challenge with V. anguillarum and V. parahaemolyticus, increased up to 50 - 90% depending on the pathogen targeted. Further, we were able to detect anti-GFP-antibodies in the serum of European seabass juveniles fed diets containing the GFP-carrying spores and anti-V. anguillarum antibodies in the serum of European seabass juveniles fed the OmpK-carrying spores containing diet. More important, seabass survival was increased from 60 to 86% when previously orally vaccinated with in-feed OmpK- carrying spores. Our results indicate that B. subtilis spores can effectively be used as antigen-carriers for oral vaccine delivery in fish.
Collapse
Affiliation(s)
- Gabriela Gonçalves
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Rafaela A. Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Filipe Coutinho
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Neide Pedrosa
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Maria Curado
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marina Machado
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lourenço Bonneville
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Oeiras, Portugal
| | - Mónica Serrano
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Oeiras, Portugal
| | - António Paulo Carvalho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA, INIA-CSIC), Madrid, Spain
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Ana Couto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cláudia R. Serra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| |
Collapse
|
13
|
Boonyakida J, Nakanishi T, Satoh J, Shimahara Y, Mekata T, Park EY. Immunostimulation of shrimp through oral administration of silkworm pupae expressing VP15 against WSSV. FISH & SHELLFISH IMMUNOLOGY 2022; 128:157-167. [PMID: 35917887 DOI: 10.1016/j.fsi.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most concerning pathogens in penaeid shrimp and can cause severe loss in shrimp aquaculture worldwide. Among the WSSV structural proteins, VP15, a DNA-binding protein located in the WSSV nucleocapsid, is an antiviral protein candidate to protect kuruma shrimp (Marsupenaeus japonicus) from WSSV infection. We identified that the truncated VP15, VP15(26-57), is responsible for the protective effect against the WSSV. This study attempts to develop an immunizing agent against WSSV using silkworm pupa as a delivery vector through oral administration. The VP15, VP15(26-57), and SR11 peptide derived from VP15(26-57) were expressed in silkworm pupae. Oral administration of feed mixed with the powdered pupae that expressed VP15-derived constructs enhanced the survivability of kuruma shrimp with an overall relative percent survival (RPS) higher than 70%. There is no death for the group receiving pupa/VP15(26-57), and the RPS is 100%. In addition, we also investigated the relative mRNA expression levels of immune-related genes by qPCR at different time points. Our results indicate that the oral administration of pupa/VP15-derived products could provide a high protective effect against WSSV and be a practical approach for controlling WSSV in aquaculture.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan.
| | - Takafumi Nakanishi
- Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan.
| | - Jun Satoh
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Tamaki Field Station, Mie, 519-0423, Japan.
| | - Yoshiko Shimahara
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Kamiura Field Station, Oita, 879-2602, Japan.
| | - Tohru Mekata
- Fisheries Technology Institute of National Research and Development Agency, Japan Fisheries Research and Education Agency, Namsei Field Station, Mie, 516-0193, Japan.
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan; Department of Applied Biological Chemistry, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ward, Shizuoka, 422-8529, Japan.
| |
Collapse
|
14
|
Lanz-Mendoza H, Contreras-Garduño J. Innate immune memory in invertebrates: Concept and potential mechanisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104285. [PMID: 34626688 DOI: 10.1016/j.dci.2021.104285] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Invertebrates are the protagonists of a recent paradigm shift because they now show that vertebrates are not the only group with immune memory. This review discusses the concept of immune priming, its characteristics, and differences with trained immunity and immune enhancement. We include an update of the current status of immune priming within generations in different groups of invertebrates which now include work in 5 Phyla: Ctenophora, Cnidaria, Mollusca, Nematoda, and Arthropoda. Clearly, few Phyla have been studied. We also resume and discuss the effector mechanism related to immune memory, including integrating viral elements into the genome, endoreplication, and epigenetics. The roles of other elements are incorporated, such as hemocytes, immune pathways, and metabolisms. We conclude that taking care of the experimental procedure will discern if results provide or do not support the invertebrates' immune memory and that regarding mechanisms, indeed, there are no studies on the immune memory mechanisms, this is how specificity is reached, and how and where the immune memory is stored and how is recall upon subsequent encounters. Finally, we discuss the possibility of having more than one mechanism working in different groups of invertebrates depending on the environmental conditions.
Collapse
Affiliation(s)
- Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, INSP, Cuernavaca, Morelos, Mexico.
| | | |
Collapse
|
15
|
Advances in the study of tegument protein VP26 in white spot syndrome virus. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Jiang L, Goldsmith MR, Xia Q. Advances in the Arms Race Between Silkworm and Baculovirus. Front Immunol 2021; 12:628151. [PMID: 33633750 PMCID: PMC7900435 DOI: 10.3389/fimmu.2021.628151] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insects are the largest group of animals. Nearly all organisms, including insects, have viral pathogens. An important domesticated economic insect is the silkworm moth Bombyx mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a well-established model of insect–virus interactions. Several recent studies have focused on this model and provided novel insights into viral infections and host defense. Here, we focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining and future directions of research on silkworm antiviral immunity. Elucidation of the interaction between silkworm and baculovirus furnishes a theoretical basis for targeted pest control, enhanced pathogen resistance in economically important insects, and bioreactor improvement.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Feed intake improvement, gut microbiota modulation and pathogens control by using Bacillus species in shrimp aquaculture. World J Microbiol Biotechnol 2021; 37:28. [PMID: 33439401 DOI: 10.1007/s11274-020-02987-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Aquaculture is one of the fastest-growing economic activities worldwide; shrimp production by aquaculture is around 70% or more of the total consumed. The development of this activity is inducing great benefits in the production of food and jobs; however, shrimp aquaculture is also generating; (1) ecological imbalance by pelagic species overexploitation to produce fish ingredients, (2) bays contamination by inappropriate waste management and (3) pathogens proliferation by antibiotics abuse. In this sense, a significant number of regulations and legal restrictions have been imposed; thus, aquaculture is no longer considered a profitable activity. Therefore, significant and innovative technologies need to be applied to ensure the sustainability and profitability of this activity. In this sense, probiotic bacteria are being used in aquaculture to improve feed intake, modulate gut microbiota and control pathogen proliferation. This work summarizes the results from researchers who worked extensively to show how probiotic bacteria can improve shrimp aquaculture development.
Collapse
|
18
|
Ricca E, Baccigalupi L, Isticato R. Spore-adsorption: Mechanism and applications of a non-recombinant display system. Biotechnol Adv 2020; 47:107693. [PMID: 33387640 DOI: 10.1016/j.biotechadv.2020.107693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Surface display systems have been developed to express target molecules on almost all types of biological entities from viruses to mammalian cells and on a variety of synthetic particles. Various approaches have been developed to achieve the display of many different target molecules, aiming at several technological and biomedical applications. Screening of libraries, delivery of drugs or antigens, bio-catalysis, sensing of pollutants and bioremediation are commonly considered as fields of potential application for surface display systems. In this review, the non-recombinant approach to display antigens and enzymes on the surface of bacterial spores is discussed. Examples of molecules displayed on the spore surface and their potential applications are summarized and a mechanism of display is proposed.
Collapse
Affiliation(s)
- Ezio Ricca
- Department of Biology, Federico II University of Naples, Italy.
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Italy
| | | |
Collapse
|
19
|
Liao S, Xu R, Wu H, Yu D, Wei S, He P, Jia R. Susceptibility of five different sizes of pathogenfree Litopenaeus vannamei to white spot syndrome virus (WSSV) by intramuscular inoculation. DISEASES OF AQUATIC ORGANISMS 2020; 141:149-155. [PMID: 32969347 DOI: 10.3354/dao03519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WWSV) has become one of the most widespread causes of mortality in commercial shrimp farming. In the present study, we used PCR to determine the shrimp infectious dose 50% endpoint (SID50 ml-1) of a Chinese isolate of WSSV in 5 different sizes of pathogen-free Litopenaeus vannamei inoculated intramuscularly. The lethal dose 50% endpoint (LD50 ml-1) was also determined from the percentage of dead shrimp. The LD50 ml-1 for 2, 4, 6, 8, and 10 cm shrimp were 104.68, 105.7, 106.70, 107.75, and 108.81, respectively, and the SID50 ml-1 were 104.68, 105.70, 106.90, 107.75, and 108.94, respectively. There was no significant difference between the LD50 ml-1 and SID50 ml-1 for each shrimp size, which indicated that all infected shrimp died. The lethal and infectious titer decreased about 1 log10 as shrimp size decreased 1 grade. These data clearly indicate that adult shrimp were more susceptible to WSSV than juvenile shrimp. The horizontal comparison showed that the amount of virus in the shrimp organs increased over the experimental period. The vertical comparison showed that virus quantity was lowest in the organs of 10 cm shrimp and highest in 2 cm shrimp, which indicates that the smaller shrimp had higher levels of viral replication. Hence, the optimal size for WSSV challenge in shrimp inoculated intramuscularly was 2 cm. The determination of virus titers in different sizes of shrimp represents a step towards creating strategies to reduce the negative impacts of WSSV in the aquaculture industry.
Collapse
Affiliation(s)
- Shengyu Liao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Boonyakida J, Xu J, Satoh J, Nakanishi T, Mekata T, Kato T, Park EY. Antigenic properties of VP15 from white spot syndrome virus in kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 101:152-158. [PMID: 32234560 DOI: 10.1016/j.fsi.2020.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
White spot syndrome virus (WSSV) is known as one of the most lethal pathogenic viruses in shrimp causing massive damage to shrimp aquaculture industries. To date, no effective treatment or prevention has been found. In this study, five recombinant viral proteins VP15, VP19, VP24, VP26, and VP28 were expressed and purified in E. coli, which were employed as candidates against WSSV in Kuruma shrimp Marsupenaeus japonicus. In vivo antiviral assay in this study newly revealed that VP15 of major nucleocapsid protein, being known as a DNA-binding protein provided the substantial protection against the viral infection when pre-injected into shrimps. Furthermore, we also verified the immunogenic effects of purified VP15 and VP19 proteins produced in a silkworm-bacmid expression system. Taken together, our study identified VP15 as an effective candidate against WSSV infection in the Kuruma shrimp. It is interesting to uncover why and how VP15 is involved in the immune memory in shrimp in the future study.
Collapse
Affiliation(s)
- Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Jian Xu
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Jun Satoh
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Oita, Japan.
| | - Takafumi Nakanishi
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Toru Mekata
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Saiki, Oita, Japan.
| | - Tatsuya Kato
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
21
|
Santos FDS, Mazzoli A, Maia AR, Saggese A, Isticato R, Leite F, Iossa S, Ricca E, Baccigalupi L. A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC. Microb Cell Fact 2020; 19:42. [PMID: 32075660 PMCID: PMC7029466 DOI: 10.1186/s12934-020-01308-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. Results Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. Conclusion Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.
Collapse
Affiliation(s)
- Francisco Denis S Santos
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.,Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Arianna Mazzoli
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ana Raquel Maia
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Anella Saggese
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Rachele Isticato
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Fabio Leite
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Susanna Iossa
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy
| | - Ezio Ricca
- Dipartimento di Biologia, Università di Napoli Federico II, Naples, Italy.
| | - Loredana Baccigalupi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
22
|
Progress in research and application development of surface display technology using Bacillus subtilis spores. Appl Microbiol Biotechnol 2020; 104:2319-2331. [PMID: 31989224 PMCID: PMC7223921 DOI: 10.1007/s00253-020-10348-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis is a widely distributed aerobic Gram-positive species of bacteria. As a tool in the lab, it has the advantages of nonpathogenicity and limited likelihood of becoming drug resistant. It is a probiotic strain that can be directly used in humans and animals. It can be induced to produce spores under nutrient deficiency or other adverse conditions. B. subtilis spores have unique physical, chemical, and biochemical characteristics. Expression of heterologous antigens or proteins on the surface of B. subtilis spores has been successfully performed for over a decade. As an update and supplement to previously published research, this paper reviews the latest research on spore surface display technology using B. subtilis. We have mainly focused on the regulation of spore coat protein expression, display and application of exogenous proteins, and identification of developing research areas of spore surface display technology.
Collapse
|
23
|
Sun H, Shang M, Tang Z, Jiang H, Dong H, Zhou X, Lin Z, Shi C, Ren P, Zhao L, Shi M, Zhou L, Pan H, Chang O, Li X, Huang Y, Yu X. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection. Appl Microbiol Biotechnol 2020; 104:1633-1646. [PMID: 31912200 PMCID: PMC7223688 DOI: 10.1007/s00253-019-10316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Clonorchis sinensis (C. sinensis), an important fishborne zoonotic parasite threatening public health, is of major socioeconomic importance in epidemic areas. Effective strategies are still urgently expected to prevent against C. sinensis infection. In the present study, paramyosin of C. sinensis (CsPmy) was stably and abundantly expressed on the surface of Bacillus subtilis spores. The recombinant spores (B.s-CotC-CsPmy) were incorporated in the basal pellets diet in three different dosages (1 × 105, 1 × 108, 1 × 1011 CFU/g pellets) and orally administrated to grass carp (Ctenopharyngodon idella). The immune responses and intestinal microbiota in the treated grass carp were investigated. Results showed that specific anti-CsPmy IgM levels in sera, skin mucus, bile, and intestinal mucus, as well as mRNA levels of IgM and IgZ in the spleen and head kidney, were significantly increased in B.s-CotC-CsPmy-1011 group. Besides, transcripts levels of IL-8 and TNF-αin the spleen and head kidney were also significantly elevated than the control groups. Moreover, mRNA levels of tight junction proteins in the intestines of B.s-CotC-CsPmy-1011 group increased. Potential pathogenetic bacteria with lower abundance and higher abundances of candidate probiotics and bacteria associated with digestion in 1 × 1011 CFU/g B.s-CotC-CsPmy spores administrated fishes could be detected compared with control group. The amount of metacercaria in per gram fish flesh was statistically decreased in 1 × 1011 CFU/g B.s-CotC-CsPmy spores orally immunized group. Our work demonstrated that B. subtilis spores presenting CsPmy on the surface could be a promising effective, safe, and needle-free candidate vaccine against C. sinensis infection for grass carp.
Collapse
Affiliation(s)
- Hengchang Sun
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mei Shang
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Hongye Jiang
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Huimin Dong
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Zhou
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhipeng Lin
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lu Zhao
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Mengchen Shi
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Lina Zhou
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ouqin Chang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River, Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Xuerong Li
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Yan Huang
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| | - Xinbing Yu
- Department of parasitology, Zhongshan School of medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education,, Guangzhou, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
24
|
Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol 2019; 202:427-435. [PMID: 31773195 DOI: 10.1007/s00203-019-01757-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/05/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
Beneficial microorganisms maintain the ecosystems, plants, animals and humans working in healthy conditions. In nature, around 95% of all microorganisms produce beneficial effects by increasing nutrients digestion and assimilation, preventing pathogens development and by improving environmental parameters. However, increase in human population and indiscriminate uses of antibiotics have been exerting a great pressure on agriculture, livestock, aquaculture, and also to the environment. This pressure has induced the decomposition of environmental parameters and the development of pathogenic strains resistant to most antibiotics. Therefore, all antibiotics have been restricted by corresponding authorities; hence, new and healthy alternatives to prevent or eliminate these pathogens need to be identified. Thus, probiotic bacteria utilization in aquaculture systems has emerged as a solution to prevent pathogens development, to enhance nutrients assimilation and to improve environmental parameters. In this sense, B. subtilis is an ideal multifunctional probiotic bacterium, with the capacity to solve these problems and also to increase aquaculture profitability.
Collapse
|
25
|
Sekar A, Kim M, Jeon H, Kim K. Screening and selection of bacteria inhibiting white spot syndrome virus infection to Litopenaeus vannamei. Biochem Biophys Rep 2019; 19:100663. [PMID: 31317076 PMCID: PMC6611967 DOI: 10.1016/j.bbrep.2019.100663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 11/30/2022] Open
Abstract
A total of 173 bacterial strains were isolated from different sources at different regions such as fermented foods, shrimp guts, sea water, mangrove water, and sediments. These bacteria were screened against white spot syndrome virus (WSSV) infection in Palaemon paucidens. Based on mortality, white spot level, and healthiness, three bacterial strains were selected and identified using 16S rRNA gene sequencing. These bacterial strains were Bacillus subtilis KA1, B. licheniformis KA2, and B. subtilis KA3. WSSV challenge test in pilot scale was conducted using Litopenaeus vannamei with B. subtilis KA1 and B. subtilis KA3. The survival ratio of shrimp was 0% for WSSV control after 17th days, 84% for B. subtilis KA1 plus WSSV after 26th days, and 28% for B. subtilis KA3 with WSSV after 26th days. B. subtilis KA1 showed good growth at 18-37 °C in with and without 3% NaCl, and therefore can be applied to aquaculture at low to high temperatures. B. subtilis KA1 produced protease and lipase which can increase digestion to shrimp; exhibited antibacterial activity against Vibrio parahaemolyticus; and significantly increased the survival of WSSV challenged shrimps.
Collapse
Affiliation(s)
- Ashokkumar Sekar
- Division of Bio-industry, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Myungjin Kim
- Division of Bio-industry, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Hantaek Jeon
- Aujeon Korea Co., 904, Wonmun-ro, Heungeop-myeon, Wonju-si, Gangwon-do, 26356, Republic of Korea
| | - Keun Kim
- Division of Bio-industry, The University of Suwon, Hwaseong, 18323, Republic of Korea
| |
Collapse
|
26
|
Sulthana A, Lakshmi SG, Madempudi RS. Genome Sequencing and Annotation of Bacillus subtilis UBBS-14 to Ensure Probiotic Safety. J Genomics 2019; 7:14-17. [PMID: 30820257 PMCID: PMC6389496 DOI: 10.7150/jgen.31170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/08/2019] [Indexed: 01/28/2023] Open
Abstract
Bacillus subtilis is a rod shaped, gram positive, spore producing bacterium. They are the normal flora of gastrointestinal tract of humans and it is the best characterized model organism for endospore formation. It has the ability to withstand environmental stress, and synthesize beneficial compounds, therefore, it is recognized as a high-quality probiotic supplement. To ensure the probiotic safety and the efficiency, we report the whole genome sequence (WGS) of Bacillus subtilis UBBS-14 strain. The draft genome sequence of Bacillus subtilis UBBS-14 consists of 4,048,984 bp and 4,017 genes, respectively. Bacillus subtilis UBBS-14 does not carry any antibiotic resistant genes containing plasmid, nor it contains any harmful putative virulence factors coding genes, therefore, it confirms the probiotic safety of the respective strain at genome level.
Collapse
Affiliation(s)
- Ayesha Sulthana
- Center for Research and Development, Unique Biotech Limited, Hyderabad - 500 078, India
| | - Suvarna G Lakshmi
- Center for Research and Development, Unique Biotech Limited, Hyderabad - 500 078, India
| | - Ratna Sudha Madempudi
- Center for Research and Development, Unique Biotech Limited, Hyderabad - 500 078, India
| |
Collapse
|
27
|
Hoelzer K, Bielke L, Blake DP, Cox E, Cutting SM, Devriendt B, Erlacher-Vindel E, Goossens E, Karaca K, Lemiere S, Metzner M, Raicek M, Collell Suriñach M, Wong NM, Gay C, Van Immerseel F. Vaccines as alternatives to antibiotics for food producing animals. Part 2: new approaches and potential solutions. Vet Res 2018; 49:70. [PMID: 30060759 PMCID: PMC6066917 DOI: 10.1186/s13567-018-0561-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Vaccines and other alternative products are central to the future success of animal agriculture because they can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, the second part in a two-part series, highlights new approaches and potential solutions for the development of vaccines as alternatives to antibiotics in food producing animals; opportunities, challenges and needs for the development of such vaccines are discussed in the first part of this series. As discussed in part 1 of this manuscript, many current vaccines fall short of ideal vaccines in one or more respects. Promising breakthroughs to overcome these limitations include new biotechnology techniques, new oral vaccine approaches, novel adjuvants, new delivery strategies based on bacterial spores, and live recombinant vectors; they also include new vaccination strategies in-ovo, and strategies that simultaneously protect against multiple pathogens. However, translating this research into commercial vaccines that effectively reduce the need for antibiotics will require close collaboration among stakeholders, for instance through public–private partnerships. Targeted research and development investments and concerted efforts by all affected are needed to realize the potential of vaccines to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks.
Collapse
Affiliation(s)
- Karin Hoelzer
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA.
| | - Lisa Bielke
- Ohio Agriculture and Research Development Center, Animal Sciences, Ohio State University, 202 Gerlaugh Hall, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Elisabeth Erlacher-Vindel
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | - Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| | - Kemal Karaca
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN, USA
| | | | - Martin Metzner
- RIPAC-LABOR GmbH, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - Margot Raicek
- Science and New Technologies Department, World Organisation for Animal Health (OIE), 12 Rue de Prony, 75017, Paris, France
| | | | - Nora M Wong
- The Pew Charitable Trusts, 901 E Street NW, Washington, DC, 20004, USA
| | - Cyril Gay
- Office of National Programs, Agricultural Research Service, USDA, Sunnyside Ave, 5601, Beltsville, MD, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salsiburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
28
|
Chang YH, Kumar R, Ng TH, Wang HC. What vaccination studies tell us about immunological memory within the innate immune system of cultured shrimp and crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:53-66. [PMID: 28279805 DOI: 10.1016/j.dci.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response.
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tze Hann Ng
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
29
|
Hosseini S, Curilovs A, Cutting SM. Biological Containment of Genetically Modified Bacillus subtilis. Appl Environ Microbiol 2018; 84:e02334-17. [PMID: 29150519 PMCID: PMC5772228 DOI: 10.1128/aem.02334-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
Genetic manipulation of bacterial spores of the genus Bacillus has shown potential for vaccination and for delivery of drugs or enzymes. Remarkably, proteins displayed on the spore surface retain activity and generally are not degraded. The heat stability of spores, coupled with their desiccation resistance, makes them suitable for delivery to humans or to animals by the oral route. Despite these attributes, one regulatory obstacle has remained regarding the fate of recombinant spores shed into the environment as viable spores. We have addressed the biological containment of GMO spores by utilizing the concept of a thymineless death, a phenomenon first reported 6 decades ago. Using Bacillus subtilis, we have inserted chimeric genes in the two thymidylate synthase genes, thyA and thyB, using a two-step process. Insertion is made first at thyA and then at thyB whereby resistance to trimethoprim enables selection of recombinants. Importantly, this method requires introduction of no new antibiotic resistance genes. Recombinant spores have a strict dependence on thymine (or thymidine), and in its absence cells lyse and die. Insertions are stable with no evidence for suppression or reversion. Using this system, we have successfully created a number of spore vaccines as well as spores displaying active enzymes.IMPORTANCE Genetic manipulation of bacterial spores offers a number of exciting possibilities for public and animal health, including their use as heat-stable vehicles for delivering vaccines or enzymes. Despite this, one remaining problem is the fate of recombinant spores released into the environment where they could survive in a dormant form indefinitely. We describe a solution whereby, following genetic manipulation, the bacterium is rendered dependent on thymine. As a consequence, spores if released would produce bacteria unable to survive, and they would exhibit a thymineless death due to rapid cessation of metabolism. The method we describe has been validated using a number of exemplars and solves a critical problem for containing spores of GMOs in the environment.
Collapse
Affiliation(s)
- Siamand Hosseini
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Alex Curilovs
- SporeGen Ltd., Bourne Labs, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Simon M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
- SporeGen Ltd., Bourne Labs, Royal Holloway University of London, Egham, Surrey, United Kingdom
| |
Collapse
|
30
|
Ullah A, Zuberi A, Ahmad M, Bashir Shah A, Younus N, Ullah S, Khattak MNK. Dietary administration of the commercially available probiotics enhanced the survival, growth, and innate immune responses in Mori (Cirrhinus mrigala) in a natural earthen polyculture system. FISH & SHELLFISH IMMUNOLOGY 2018; 72:266-272. [PMID: 29108973 DOI: 10.1016/j.fsi.2017.10.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
The use of probiotics is considered effective for survival, growth and enhanced immune response in aquaculture. In the current study, effects of commercially available probiotic (Magic Plus) was investigated on survival, growth and immune response of Mori (Cirrhinus mrigala) in a polyculture system. The experiment was conducted for 90 days on 1200 fingerlings in two groups i.e. control and probiotic supplemented groups each having 600 fingerlings. Control group was fed with 35% protein basal diet without any supplements and the other group was supplemented with commercially available probiotic at the rate of (1012 CFU kg-1 diet). After 90 days, probiotic supplemented group was characterized with significant increase (p < 0.05) in growth parameters like, total weight, total length, %weight gain, specific growth rate and survival growth rate. Immunological indices like, lysozyme activity, white blood cells, total plasma protein level and immunoglobulin (IgM) of supplemented group were also significantly (p < 0.05) enhanced. Moreover, digestive enzymes i.e. cellulase, protease and amylase were also found to be significantly (p < 0.05) hyper-active in probiotic supplemented groups. Haematological parameters like, RBCs, Hb, Hct, MCH and MCHC were also significantly (p < 0.05) increased. Thus, the current study strongly suggests that a commercially available probiotic Magic plus may serve as a healthy and immunostimulating feed additive in C. mrigala culture.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Zoology, Hazara University Mansehra, Pakistan
| | - Amina Zuberi
- Fisheries and Aquaculture Program, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ahmad
- Fisheries and Aquaculture Program, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Naima Younus
- Fisheries and Aquaculture Program, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sami Ullah
- Department of Zoology, Hazara University Mansehra, Pakistan
| | - Muhammad Nasir Khan Khattak
- Department of Zoology, Hazara University Mansehra, Pakistan; Department of Applied Biology, College of Sciences, University of Sharjah, United Arab Emirates.
| |
Collapse
|
31
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|
32
|
Recent progress in the development of white spot syndrome virus vaccines for protecting shrimp against viral infection. Arch Virol 2017. [DOI: 10.1007/s00705-017-3450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Tang Z, Sun H, Chen T, Lin Z, Jiang H, Zhou X, Shi C, Pan H, Chang O, Ren P, Yu J, Li X, Xu J, Huang Y, Yu X. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function. FISH & SHELLFISH IMMUNOLOGY 2017; 64:287-296. [PMID: 28323213 DOI: 10.1016/j.fsi.2017.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 106, 1 × 107, and 1 × 108 CFU g-1) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 107 CFU g-1) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P < 0.05) higher levels of IgM in samples of serum, bile, mucus of surface and intestinal compared to the control groups. Abundant colonization spores expressing CsCP were found in hindgut that is conducive to absorption and presentation of antigen. Moreover, B. subtilis spores appeared to show no sign of toxicity or damage in grass carp. Our cercariae challenge experiments suggested that oral administration of spores expressing CsCP could develop an effective protection against C. sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish.
Collapse
Affiliation(s)
- Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - TingJin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xinyi Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Houjun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Ouqin Chang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China
| | - Pengli Ren
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Jinyun Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
34
|
Fusion of flagellin 2 with bivalent white spot syndrome virus vaccine increases survival in freshwater shrimp. J Invertebr Pathol 2017; 144:97-105. [DOI: 10.1016/j.jip.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023]
|
35
|
Pham KC, Tran HTT, Van Doan C, Le PH, Van Nguyen AT, Nguyen HA, Hong HA, Cutting SM, Phan TN. Protection of Penaeus monodon against white spot syndrome by continuous oral administration of a low concentration of Bacillus subtilis spores expressing the VP28 antigen. Lett Appl Microbiol 2017; 64:184-191. [PMID: 27992657 DOI: 10.1111/lam.12708] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/19/2016] [Accepted: 12/12/2016] [Indexed: 11/28/2022]
Abstract
In this study, Bacillus subtilis spores expressing a chimeric protein, CotB-VP28, were used as a probiotic vaccine to protect black tiger shrimps (Penaeus monodon) against white spot syndrome virus (WSSV) infection. Oral administration of pellets coated with CotB-VP28 spores (at ≥1 × 109 CFU per g pellet) to shrimps induced immune-relating phenoloxydase activity (PO) in shrimps after 14 days of feeding (prior challenge) and at day 3 post challenge (1·26 and 1·70 fold increase respectively). A 75% protection rate was obtained by continuous feeding of the spore-coated pellets at ≥1 × 109 CFU per g for 14 days prior to WSSV challenge and during all the postchallenge period. Even when the amount of CotB-VP28 spores in feed pellets was reduced down to ≥5 × 107 CFU per g and ≥1 × 106 CFU per g, relatively high protection rates of 70 and 67·5%, respectively, were still obtained. By contrast, feeding pellets without spores (untreated group) and with naked spores (PY79 group) at ≥1 × 109 CFU per g could not protect shrimps against WSSV. These data suggest that supplementation of CotB-VP28 spores at low dose of ≥1 × 106 CFU per g could be effective as a prophylactic treatment of WSS for black tiger shrimps. SIGNIFICANCE AND IMPACT OF THE STUDY This study reports the protective efficacy of Bacillus subtilis CotB-VP28 spores on black tiger shrimps (Penaeus monodon) against white spot syndrome virus infection. Oral administration of pellets coated with CotB-VP28 spores (≥1 × 109 CFU per g) conferred 75% protection after white spot syndrome virus challenge. Even after reducing CotB-VP28 spores in feed pellets to ≥1 × 106 CFU per g, 67·5% protections was still obtained. These data indicate that supplementation of CotB-VP28 spores at a low dose of ≥1 × 106 CFU per g could be effective in prophylaxis against white spot syndrome in black tiger shrimps.
Collapse
Affiliation(s)
- K-C Pham
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam.,Department of Biochemistry, Institute of New Technology, Hanoi, Vietnam
| | - H T T Tran
- Faculty of Aquaculture, Can Tho University, Can Tho, Vietnam
| | - C Van Doan
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - P H Le
- Southern Monitoring Center for Aquaculture Environment and Epidemic, Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - A T Van Nguyen
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| | - H A Nguyen
- ANABIO Research & Development JSC, Hanoi, Vietnam
| | - H A Hong
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - S M Cutting
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - T-N Phan
- Key Laboratory of Enzyme and Protein Technology, VNU University of Science, Hanoi, Vietnam
| |
Collapse
|
36
|
Olmos Soto J. Bacillus Probiotic Enzymes: External Auxiliary Apparatus to Avoid Digestive Deficiencies, Water Pollution, Diseases, and Economic Problems in Marine Cultivated Animals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 80:15-35. [PMID: 28215324 DOI: 10.1016/bs.afnr.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exploitation of marine fishes is the main source of several life-supporting feed compounds such as proteins, lipids, and carbohydrates that maintain the production of most trading marine organisms by aquaculture. However, at this rate the marine inventory will go to the end soon, since fishery resources are finite. In this sense, the availability of the principal ingredients obtained from marine fishes is going to decrease considerably, increasing the diet prices and affecting the economy of this activity. Therefore, aquaculture industry needs to find nonexpensive land unconventional resources of protein, carbohydrates, and lipids and use bacterial probiotics to improve digestion-assimilation of these unfamiliar compounds. Bacillus subtilis is a cosmopolitan probiotic bacterium with a great enzymatic profile that could improve nutrient digestion-assimilation, induce healthy growth, and avoid water pollution, decreasing economic problems and increasing yields in the aquaculture industry. In this chapter, we present how Bacillus enzymes can help marine animals to assimilate nutrients from unconventional and economic plant resources.
Collapse
Affiliation(s)
- Jorge Olmos Soto
- Molecular Microbiology Laboratory, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico.
| |
Collapse
|
37
|
Wang H, Wang Y, Yang R. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl Microbiol Biotechnol 2017; 101:933-949. [PMID: 28062973 DOI: 10.1007/s00253-016-8080-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.
Collapse
Affiliation(s)
- He Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, 311800, China.
| | - Yunxiang Wang
- Jiyang College, Zhejiang Agriculture and Forestry University, Zhuji, Zhejiang, 311800, China
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
38
|
Sánchez-Ortiz AC, Angulo C, Luna-González A, Álvarez-Ruiz P, Mazón-Suástegui JM, Campa-Córdova ÁI. Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 59:95-102. [PMID: 27744059 DOI: 10.1016/j.fsi.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
The widespread overuse of antibiotics in aquaculture has led to the emergence of antibiotic-resistance shrimp pathogens, the negative impact on shrimp gut microbiota, and the presence of antimicrobial residues in aquaculture products, with negative consequences on human health. Alternatively, probiotics have positive effects on immunological responses and productive performance of aquatic animals. In this study, three probiotic bacteria, (Bacillus licheniformis MAt32, B. subtilis MAt43 and B. subtilis subsp. subtilis GAtB1), isolated from the Anadara tuberculosa were included in diets for juvenile shrimp, Litopenaeus vannamei, to evaluate their effects on growth, survival, disease prevalence, and immune-related gene expression. Shrimp naturally infected with WSSV and IHHNV were fed with the basal diet (control, T1) and diets supplemented with four levels of bacilli probiotic mix (1:1:1) at final concentration of (T2) 1 × 106, (T3) 2 × 106, (T4) 4 × 106, and (T5) 6 × 106 CFU g-1 of feed. The specific growth rate of shrimp was significantly higher in T2 than in T1 (control) treatment, and the final growth as well as the survival were similar among treated groups. The prevalence of WSSV and IHHNV infected shrimp was reduced in T2 and T4 treatments, respectively, compared with control. The mRNA expression of proPO gene was higher in treatment T4 than control. The LvToll1 gene was significantly up-regulated in treatments T4 and T5 compared to control. The SOD gene was up-regulated in treatment T5 compared to control. In contrast, the mRNA expression of the Hsp70 gene was down-regulated in treatments T4 and T5 respect to control, and the TGase gene remained unaffected by the level of bacillus probiotic mix. As conclusion, the bacilli probiotic mix (Bacillus spp.) enhanced immune-related gene expression in WSSV and IHHNV naturally infected shrimp. This is the first report of probiotic potential of bacteria isolated from A. tuberculosa on the immune response and viral prevalence in shrimp Litopenaeus vannamei.
Collapse
Affiliation(s)
- Ana Claudia Sánchez-Ortiz
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col., Playa Palo de Santa Rita, La Paz, B.C.S., C.P. 23090, Mexico
| | - Carlos Angulo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col., Playa Palo de Santa Rita, La Paz, B.C.S., C.P. 23090, Mexico.
| | - Antonio Luna-González
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN), Blvd. Juan de Dios Bátiz Paredes #250, Guasave, Sin., Mexico
| | - Píndaro Álvarez-Ruiz
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN), Blvd. Juan de Dios Bátiz Paredes #250, Guasave, Sin., Mexico
| | - José Manuel Mazón-Suástegui
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col., Playa Palo de Santa Rita, La Paz, B.C.S., C.P. 23090, Mexico
| | - Ángel Isidro Campa-Córdova
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Mar Bermejo 195, Col., Playa Palo de Santa Rita, La Paz, B.C.S., C.P. 23090, Mexico.
| |
Collapse
|
39
|
Sinnasamy S, Noordin NM, MacRae TH, Bin Abdullah MI, Bossier P, Wahid MEBA, Noriaki A, Sung YY. Ingestion of food pellets containing Escherichia coli overexpressing the heat-shock protein DnaK protects Penaeus vannamei (Boone) against Vibrio harveyi (Baumann) infection. JOURNAL OF FISH DISEASES 2016; 39:577-584. [PMID: 26132358 DOI: 10.1111/jfd.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Feeding aquatic animals with bacterial encapsulated heat-shock proteins (Hsps) is potentially a new method to combat vibriosis, an important disease affecting aquatic animals used in aquaculture. Food pellets comprised of shrimp and containing Escherichia coli overexpressing either DnaK-DnaJ-GrpE, the prokaryotic equivalents of Hsp70-Hsp40-Hsp20, or only DnaK were fed to juveniles of the white leg shrimp Penaeus vannamei, and protection against pathogenic Vibrio harveyi was determined. Maintaining pellets at different temperatures for varying lengths of time reduced the number of live adhering E. coli, as did contact with sea water, demonstrating that storage and immersion adversely affected bacterial survival and attachment to pellets. Feeding P. vannamei with E. coli did not compromise their survival, indicating that the bacteria were not pathogenic to shrimp. Feeding P. vannamei with pellets containing bacteria overproducing DnaK (approximately 60 cells g(-1) pellets) boosted P. vannamei survival twofold against V. harveyi, suggesting that DnaK plays a role in Vibrio tolerance. Pellets containing DnaK were effective in providing protection to P. vannamei for up to 2 weeks before loss of viability and that DnaK encapsulated by these bacteria enhanced shrimp resistance against Vibrio infection.
Collapse
Affiliation(s)
- S Sinnasamy
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - N Mat Noordin
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - T H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - M Ikhwanuddin Bin Abdullah
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - P Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - M E Bin Abdul Wahid
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - A Noriaki
- Agrobest Malaysia Sdn. Bhd, Pekan, Pahang, Malaysia
| | - Y Y Sung
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
- School of Fisheries and Aquaculture Sciences, University Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| |
Collapse
|
40
|
Mou C, Zhu L, Xing X, Lin J, Yang Q. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs. Antiviral Res 2016; 131:74-84. [PMID: 26988122 DOI: 10.1016/j.antiviral.2016.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Liqi Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Xianping Xing
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
41
|
Rosales-Mendoza S, Angulo C, Meza B. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles. Trends Biotechnol 2016; 34:124-136. [DOI: 10.1016/j.tibtech.2015.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|