1
|
Asfandyar, Rao Y, Ishaq AR, Zhang Y, Zhang R, Cai D, He P, Chen S. Cell membrane engineering of Bacillus licheniformis for the enhancement of heterologous protein production. Int J Biol Macromol 2025; 305:141178. [PMID: 39965702 DOI: 10.1016/j.ijbiomac.2025.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Heterologous expression is crucial to produce various recombinants proteins, yet consistently achieving high yields poses a significant challenge. The main objective of our research was to engineer the cell membrane components of Bacillus licheniformis for improving heterologous proteins production. This engineering strategy was achieved by overexpressing genes bkdR, plsY, plsC, and deleting pssA and clsA, which significantly increased the production of nattokinase, α-amylase and keratinase. Furthermore, a combined engineered strain was constructed by integrating all these approaches into a single strain (DW2-RYCAS) which led to an increase in the negative charge and permeability of the cell membrane by 41.11 % and 57.62 %, respectively, and reduced cell membrane integrity by 81.45 % compared to the control strain DW2. Ultimately, the production of nattokinase, α-amylase, and keratinase in DW2-RYCAS were 406.02 ± 8.17 FU/mL, 526.80 ± 14.77 U/mL, and 18.27 ± 0.70 KU/mL, respectively, which increased by 493.59 %, 273.40 %, and 213.91 % compared to the control strain DW2. These results represent the highest production of nattokinase, α-amylase, and keratinase in shake flasks reported to date. Our research illustrated the promising application of cell membrane engineering in B. licheniformis, creating an excellent platform for the biosynthesis of heterologous proteins.
Collapse
Affiliation(s)
- Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruibin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
2
|
Zhang Y, He P, Hu S, Zhang R, Asfandyar, Chen S. Overexpressing Endopeptidase Inhibitor IseA Enhances Biomass and Biochemical Production of Bacillus licheniformis. Curr Microbiol 2025; 82:116. [PMID: 39903300 DOI: 10.1007/s00284-025-04096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Cell autolysis could lead to a decrease in both cell viability and the production of biochemicals, presenting one of the significant challenges during fermentation. Bacillus licheniformis, a gram-positive bacterium widely used in the production of various biologic products, also confronts the limitation caused by cell autolysis. In this study, we investigated the impact of peptidoglycan hydrolases (LytC, LytD, LytE, CwlC), endopeptidase inhibitor IseA, and prophage gene xpf on cell growth and biochemical synthesis in B. licheniformis DW2. The results showed that the deletion of xpf and overexpression of iseA could significantly increase cell survival. Then, xpf was deleted on iseA overexpressed strain PP43UTR12iseA to construct engineered strain PP43UTR12iseAΔxpf, which further enhanced viable cells. The results of cell autolysis showed that PP43UTR12iseA could reduce cell autolysis significantly compared to the wild-type, but PP43UTR12iseAΔxpf did not further decrease cell autolysis. Furthermore, the production of bacitracin was 792.23 U/mL in the iseA overexpressed strain, which increased by 13.82% compared with the wild-type, but PP43UTR12iseAΔxpf did not further increase bacitracin production. Through detecting intracellular metabolites, we observed that iseA overexpression did not affect intracellular metabolism, but the precursors of bacitracin synthesis in PP43UTR12iseAΔxpf were lower than that of wild-type and PP43UTR12iseA. Finally, we found that the overexpression of iseA could also significantly improve the production of γ-PGA. In general, the overexpression of iseA could enhance the biomass and cell survival by reducing cell lysis without affecting the intracellular metabolites, which provided a potential strategy to improve production of biochemical.
Collapse
Affiliation(s)
- Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ruibin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Asfandyar
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China.
| |
Collapse
|
3
|
Jain A, Anand PK, Kaur J. Site-directed mutagenesis of nattokinase: Unveiling structure-function relationship for enhanced functionality. Biochimie 2025; 229:1-8. [PMID: 39341330 DOI: 10.1016/j.biochi.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Site-directed mutagenesis was employed to investigate the structure-function relationship of nattokinase (NK) and its effect on the enzymatic activity, thermostability, pH tolerance, and fibrinolytic properties of NK. Specific mutations (T270S, V271I, E262D, and A259T) were introduced within the nk gene, targeting regions predicted to be involved in substrate binding. The NK(E262D) mutant exhibited a significant increase in enzymatic activity (2-fold) and catalytic efficiency (2.2-fold) as assessed by N-Succinyl-Ala-Ala-Pro-Phe p-nitroanilide (Suc-AAPF-pNA) hydrolysis, compared to the wild type. In silico analysis supported these findings, demonstrating lower binding energy for the NK(E262D) mutant, suggesting stronger fibrin affinity. Thermostability assays revealed that NK(E262D) and NK(A259T) displayed exceptional stability, retaining enzyme activity at 60 °C. All mutants exhibited a broader pH tolerance range (pH 5.0-10.0) compared to the wild-type NK. The fibrinolytic activity assay revealed that the E262D mutant possessed the highest fibrinolytic activity (2414 U/mg), surpassing the wild-type. This study reported an NK variant with improved enzymatic activity, thermostability, and fibrinolytic properties.
Collapse
Affiliation(s)
- Ankush Jain
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
4
|
Li X, Dong A, Yang J, Zhu J, Zhan Y, Ma X, Cai D, Chen S. Metabolic engineering of Bacillus licheniformis DW2 for ectoine production. World J Microbiol Biotechnol 2025; 41:23. [PMID: 39743645 DOI: 10.1007/s11274-024-04238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABCHs expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.55 g/L. Furthermore, subsequent introduction of exogenous phosphoenolpyruvate carboxylase PPCEC and down-regulated expression of phosphoenolpyruvate carboxykinase PCK optimized the carbon flux through C4 anaplerotic pathway, and further benefited ectoine synthesis. Furthermore, the carbon flux towards aspartic acid accumulation was increased through optimization of glyoxylate and TCA cycles, accompanied with introducing lysCT311ICg and asdCg, and blocking by-products pathways, ectoine titer produced by B. licheniformis ECT12 was 2.00 g/L. Moreover, NADPH supply was enhanced by overexpression of exogenous NADH kinase Pos5Sc, and ectoine transportation was improved by introducing compatible solute transporter ProP from Escherichia coli, and the resulting B. licheniformis ECT14 was able to produce 2.60 g/L ectoine. Last but not the least, the ectoine yield of 3.29 g/L was attained in a 5-L fermenter. Taken together, this study not only established B. licheniformis as a framework for sustainable production of ectoine, but also paved the way for achieving the industrial production of ectoine and aspartic acid derivatives in the future.
Collapse
Affiliation(s)
- Xujie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China
| | - Aoying Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China
| | - Junru Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.
| |
Collapse
|
5
|
Ji Y, Li J, Liang Y, Li L, Wang Y, Pi L, Xing P, Nomura CT, Chen S, Zhu C, Wang Q. Engineering the Tat-secretion pathway of Bacillus licheniformis for the secretion of cytoplasmic enzyme arginase. Appl Microbiol Biotechnol 2024; 108:89. [PMID: 38194145 DOI: 10.1007/s00253-023-12917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/10/2024]
Abstract
The industrial bacterium Bacillus licheniformis has long been used as a microbial factory for the production of enzymes due to its ability to secrete copious amounts of native extracellular proteins and its generally regarded as safe (GRAS) status. However, most attempts to use B. licheniformis to produce heterologous and cytoplasmic enzymes primarily via the general secretory (Sec) pathway have had limited success. The twin-arginine transport (Tat) pathway offers a promising alternative for the extracellular export of Sec-incompatible proteins because it transports full, correctly folded proteins. However, compared to the Sec pathway, the yields of the Tat pathway have historically been too low for commercial use. To improve the export efficiency of the Tat pathway, we identified the optimal Tat-dependent signal peptides and increased the abundance of the Tat translocases, the signal peptidase (SPase), and the intracellular chaperones. These strategic modifications significantly improved the Tat-dependent secretion of the cytoplasmic enzyme arginase into the culture medium using B. licheniformis. The extracellular enzymatic activity of arginase showed a 5.2-fold increase after these modifications. Moreover, compared to the start strain B. licheniformis 0F3, the production of extracellular GFP was improved by 3.8 times using the strategic modified strain B. licheniformis 0F13, and the extracellular enzymatic activity of SOX had a 1.3-fold increase using the strain B. licheniformis 0F14. This Tat-based production chassis has the potential for enhanced production of Sec-incompatible enzymes, therefore expanding the capability of B. licheniformis as an efficient cellular factory for the production of high-value proteins. KEY POINTS: • Systematic genetic modification of Tat-pathway in B. licheniformis. • Significant enhancement of the secretion capacity of Tat pathway for delivery the cytoplasmic enzyme arginase. • A new platform for efficient extracellular production of Sec-incompatible enzymes.
Collapse
Affiliation(s)
- Yi Ji
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Junliang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yonglin Liang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Liang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yajun Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Li Pi
- Wuhan Grand Hoyo Co., Ltd, Wuhan, 430075, People's Republic of China
| | - Panpan Xing
- Wuhan Grand Hoyo Co., Ltd, Wuhan, 430075, People's Republic of China
| | - Christopher T Nomura
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Chengjun Zhu
- Wuhan Grand Hoyo Co., Ltd, Wuhan, 430075, People's Republic of China.
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
6
|
Xiao F, Zhang Y, Zhang L, Li S, Chen W, Shi G, Li Y. Advancing Bacillus licheniformis as a Superior Expression Platform through Promoter Engineering. Microorganisms 2024; 12:1693. [PMID: 39203534 PMCID: PMC11356801 DOI: 10.3390/microorganisms12081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus licheniformis is recognised as an exceptional expression platform in biomanufacturing due to its ability to produce high-value products. Consequently, metabolic engineering of B. licheniformis is increasingly pursued to enhance its utility as a biomanufacturing vehicle. Effective B. licheniformis cell factories require promoters that enable regulated expression of target genes. This review discusses recent advancements in the characterisation, synthesis, and engineering of B. licheniformis promoters. We highlight the application of constitutive promoters, quorum sensing promoters, and inducible promoters in protein and chemical synthesis. Additionally, we summarise efforts to expand the promoter toolbox through hybrid promoter engineering, transcription factor-based inducible promoter engineering, and ribosome binding site (RBS) engineering.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lihuan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Siyu Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (F.X.); (Y.Z.); (L.Z.); (S.L.); (G.S.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li D, Cai Y, Guo J, Liu Y, Lu F, Li Q, Liu Y, Li Y. Screening signal peptidase based on split-GFP assembly technology to promote the secretion of alkaline protease AprE in Bacillus amyloliquefaciens. Int J Biol Macromol 2024; 269:132166. [PMID: 38723822 DOI: 10.1016/j.ijbiomac.2024.132166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Improving the ability of bacteria to secrete protein is essential for large-scale production of food enzymes. However, due to the lack of effective tracking technology for target proteins, the optimization of the secretory system is facing many problems. In this study, we utilized the split-GFP system to achieve self-assembly into mature GFP in Bacillus amyloliquefaciens and successfully tracked the alkaline protease AprE. The split-GFP system was employed to assess the signal peptidases, a crucial component in the secretory system, and signal peptidase sipA was identified as playing a role in the secretion of AprE. Deletion of sipA resulted in a higher accumulation of the precursor protein of AprE compared to other signal peptidase deletion strains. To explore the mechanism of signal peptidase on signal peptide, molecular docking and calculation of free energy were performed. The action strength of the signal peptidase is determined by its binding affinity with the tripeptides at the C-terminal of the signal peptide. The functions of signal peptides YdbK and NucB rely on sipA, and overexpression of sipA by integrating it into genome of B. amyloliquefaciens increased the activity of extracellular AprE by 19.9 %. These findings provide insights into enhancing the secretion efficiency of chassis strains.
Collapse
Affiliation(s)
- Dengke Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yian Cai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiejie Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Qinggang Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yexue Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
8
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
9
|
Dong X, Yu J, Ye C, Liu D, Zou D, Han Z, Yu Q, Huang K, Li H, Wei X. Control of tobacco-specific nitrosamines by the Bacillus siamensis: Strain isolation, genome sequencing, mechanism analysis and genetic engineering. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133877. [PMID: 38452666 DOI: 10.1016/j.jhazmat.2024.133877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation. Subsequently, whole genome sequencing of B. siamensis WD-32 was carried out to excavate important genes and enzymes involved, and the possible reduction mechanism of TSNAs was explored. More importantly, the reduction of TSNAs by B. siamensis was significantly promoted by knockout of narG gene. During the practical agricultural fermentation process of the cigar tobacco leaves, the treatment by the WD-32∆narG cells resulted in a 60% reduction of the total TSNAs content compared with the control, and the concentrations of the NNN and NNK were decreased by 69% and 59%, respectively. In summary, this study offers efficient strains for reduction of the TSNAs in cigar tobacco, and provides new insights into the reduction mechanism of TSNAs, which will promote the application of microbial methods in control of TSNAs and nitrite.
Collapse
Affiliation(s)
- Xinyu Dong
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China; State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China.
| | - Dandan Liu
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingru Yu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan 430062, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
11
|
Rao X, Li D, Su Z, Nomura CT, Chen S, Wang Q. A smart RBS library and its prediction model for robust and accurate fine-tuning of gene expression in Bacillus species. Metab Eng 2024; 81:1-9. [PMID: 37951459 DOI: 10.1016/j.ymben.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, are important industrial bacteria. However, there is a lack of standardized and predictable genetic tools for convenient and reproducible assembly of genetic modules in Bacillus species to realize their full potential. In this study, we constructed a Ribosome Binding Site (RBS) library in B. licheniformis, which provides incremental regulation of expression levels over a 104-fold range. Additionally, we developed a model to quantify the resulting translation rates. We successfully demonstrated the robust expression of various target genes using the RBS library and showed that the model accurately predicts the translation rates of arbitrary coding genes. Importantly, we also extended the use of the RBS library and prediction model to B. subtilis, B. thuringiensis, and B. amyloliquefacie. The versatility of the RBS library and its prediction model enables quantification of biological behavior, facilitating reliable forward engineering of gene expression.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Dian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | | | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China.
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
12
|
Wu J, Lan G, He N, He L, Li C, Wang X, Zeng X. Purification of fibrinolytic enzyme from Bacillus amyloliquefaciens GUTU06 and properties of the enzyme. Food Chem X 2023; 20:100896. [PMID: 38144793 PMCID: PMC10740062 DOI: 10.1016/j.fochx.2023.100896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
A producing-fibrinolytic enzyme strain was isolated with high yield. The strain was identified as Bacillus amyloliquefaciens. B. amyloliquefaciens GUTU06 fibrinolytic enzyme was purified by acetone precipitation and reverse micelle. Acetone precipitation condition and reverse micelle condition were examined. Results showed that the total reverse micelle extraction efficiency was 64.49 % ± 1.6 %. The purification fold of the entire process reached 13.38. The optimum pH of purified enzyme is 5, and the optimum temperature is 45 °C. Fe3+ and K+ can enhance the fibrinolytic activity of the enzyme. Compared to commercial fibrinolytic enzymes such as urokinase and lumbrukinase, GUTU06 fibrinolytic enzymes have a lower pH optimal range and higher temperature stability. The molecular weight of the enzyme was approximately 28 kDa. Reverse micelle extraction with cetyl trimethylammonium bromide as a surfactant combined with acetone precipitation is suitable for separating and purifying fibrinolytic enzymes and a promising technique for obtaining active proteins.
Collapse
Affiliation(s)
- Jialin Wu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guangqun Lan
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Na He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
- Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
13
|
Sheng Y, Yang J, Wang C, Sun X, Yan L. Microbial nattokinase: from synthesis to potential application. Food Funct 2023; 14:2568-2585. [PMID: 36857725 DOI: 10.1039/d2fo03389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.
Collapse
Affiliation(s)
- Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Jiani Yang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Xindi Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Lei Yan
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
14
|
Zhang Z, He P, Hu S, Yu Y, Wang X, Ishaq AR, Chen S. Promoting cell growth for bio-chemicals production via boosting the synthesis of L/D-alanine and D-alanyl-D-alanine in Bacillus licheniformis. World J Microbiol Biotechnol 2023; 39:115. [PMID: 36918439 DOI: 10.1007/s11274-023-03560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Metabolic engineering is a substantial approach for escalating the production of biochemical products. Cell biomass is lowered by system constraints and toxication carried on by the aggregation of metabolites that serve as inhibitors of product synthesis. In order to increase the production of biochemical products, it is important to trace the relationship between alanine metabolism and biomass. According to our investigation, the appropriate concentration of additional L/D-alanine (0.1 g/L) raised the cell biomass (OD600) in Bacillus licheniformis in contrast to the control strain. Remarkably, it was also determined that high levels of intracellular L/D-alanine and D-alanyl-D-alanine were induced by the overexpression of the ald, dal, and ddl genes to accelerate cell proliferation. Our findings clearly revealed that 0.2 g/L of L-alanine and D-alanine substantially elevated the titer of poly-γ-glutamic acid (γ-PGA) by 14.89% and 6.19%, correspondingly. And the levels of γ-PGA titer were hastened by the overexpression of the ald, dal, and ddl genes by 19.72%, 15.91%, and 16.64%, respectively. Furthermore, overexpression of ald, dal, and ddl genes decreased the by-products (acetoin, 2,3-butanediol, acetic acid and lactic acid) formation by about 14.10%, 8.77%, and 8.84% for augmenting the γ-PGA production. Our results also demonstrated that overexpression of ald gene amplified the production of lichenysin, pulcherrimin and nattokinase by about 18.71%, 19.82% and 21.49%, respectively. This work delineated the importance of the L/D-alanine and D-alanyl-D-alanine synthesis to the cell growth and the high production of bio-products, and provided an effective strategy for producing bio-products.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Yanqing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Xiaoting Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 430062, Wuhan, China. .,, 368 Youyi Avenue, Wuchang District, 430062, Wuhan, Hubei, PR China.
| |
Collapse
|
15
|
Liao Y, Xiong M, Miao Z, Ishaq AR, Zhang M, Li B, Zhan Y, Cai D, Yang Z, Chen J, Chen S. Modular Engineering to Enhance Keratinase Production for Biotransformation of Discarded Feathers. Appl Biochem Biotechnol 2023; 195:1752-1769. [PMID: 36394712 DOI: 10.1007/s12010-022-04206-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Biotransformation of wasted feathers via feather-degrading enzyme has gained immense popularity, low conversion efficiency hinders its scale application, and the main purpose of this study is to improve feather-degrading enzyme production in Bacillus licheniformis. Firstly, keratinase from Bacillus amyloliquefaciens K11 was attained with the best performance for feather hydrolysis, via screening several extracellular proteases from Bacillus; also, feather powder was proven as the most suitable substrate for determination of feather-degrading enzyme activity. Then, expression elements, including signal peptides and promoters, were optimized, and the combination of signal peptide SPSacC with promoter Pdual3 owned the best performance, keratinase activity aggrandized by 6.21-fold. According to amino acid compositions of keratinase and feeding assays, Ala, Val, and Ser were proven as critical precursors, and strengthening these precursors' supplies via metabolic pathway optimization resulted in a 33.59% increase in the keratinase activity. Furthermore, keratinase activity reached 2210.66 U/mL, up to 56.74-fold from the original activity under the optimized fermentation condition in 3-L fermentor. Finally, the biotransformation process of discarded feathers by the fermented keratinase was optimized, and our results indicated that 90.94% of discarded feathers (16%, w/v) were decomposed in 12 h. Our results suggested that strengthening precursor amino acids' supplies was an efficient strategy for enhanced production of keratinase, and this research provided an efficient strain as well as the biotransformation process for discarded feather re-utilization.
Collapse
Affiliation(s)
- Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Min Xiong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhaoqi Miao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Ali Raza Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Min Zhang
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Bichan Li
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Jun Chen
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
- Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan, 354300, People's Republic of China.
| |
Collapse
|
16
|
Modi A, Raval I, Doshi P, Joshi M, Joshi C, Patel AK. Heterologous expression of recombinant nattokinase in Escherichia coli BL21(DE3) and media optimization for overproduction of nattokinase using RSM. Protein Expr Purif 2023; 203:106198. [PMID: 36379347 DOI: 10.1016/j.pep.2022.106198] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/14/2022]
Abstract
Nattokinase, a serine protease, was discovered in Bacillus subtilis during the fermentation of a soybean byproduct. Nattokinase is essential for the lysis of blood clots and the treatment of cardiac diseases including atherosclerosis, thrombosis, high blood pressure, and stroke. The demand for thrombolytic drugs rises as the prevalence of cardiovascular disease rises, and nattokinase is particularly effective for the treatment of cardiovascular diseases due to its long duration of action. In this study, we cloned the nattokinase gene from the Bacillus subtilis strain into the pET32a vector and expressed the protein in the E. coli BL21(DE3) strain. The active recombinant nattokinase was purified using Ni-NTA affinity chromatography and then evaluated for fibrinolytic and blood clot lysis activity. Physiological parameters for optimizing protein production at optimal pH, temperature, IPTG concentration, and incubation time were investigated. A statistical technique was used to optimize media components for nattokinase overproduction, and Central Composite Design-Response Surface Methodology-based optimization was used to select significant components for protein production. The optimized media produced 1805.50 mg/L of expressed nattokinase and 42.80 gm/L of bacterial mass. The fibrinolytic activity obtained from refolded native protein was 58FU/mg, which was five times higher than the available orokinase drug (11FU/mg). The efficiency with which a statistical technique for media optimization was implemented improved recombinant nattokinase production and provides new information for scale - up nattokinase toward industrial applications.
Collapse
Affiliation(s)
- Akhilesh Modi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Ishan Raval
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Pooja Doshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India
| | - Amrutlal K Patel
- Gujarat Biotechnology Research Centre, Sector 11, Gandhinagar, 382010, Gujarat, India.
| |
Collapse
|
17
|
Jamali N, Vahedi F, Soltani Fard E, Taheri-Anganeh M, Taghvimi S, Khatami SH, Ghasemi H, Movahedpour A. Nattokinase: Structure, applications and sources. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yuan L, Liangqi C, Xiyu T, Jinyao L. Biotechnology, Bioengineering and Applications of Bacillus Nattokinase. Biomolecules 2022; 12:biom12070980. [PMID: 35883536 PMCID: PMC9312984 DOI: 10.3390/biom12070980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Thrombosis has threatened human health in past decades. Bacillus nattokinase is a potential low-cost thrombolytic drug without side-effects and has been introduced into the consumer market as a functional food or dietary supplement. This review firstly summarizes the biodiversity of sources and the fermentation process of nattokinase, and systematically elucidates the structure, catalytic mechanism and enzymatic properties of nattokinase. In view of the problems of low fermentation yield, insufficient activity and stability of nattokinase, this review discusses the heterologous expression of nattokinase in different microbial hosts and summarizes the protein and genetic engineering progress of nattokinase-producing strains. Finally, this review summarizes the clinical applications of nattokinase.
Collapse
Affiliation(s)
- Li Yuan
- Department of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Chen Liangqi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
| | - Tang Xiyu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
| | - Li Jinyao
- Department of Materia Medica, Xinjiang University, Urumqi 830017, China;
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (C.L.); (T.X.)
- Correspondence: ; Tel.: +86-130-0968-6488
| |
Collapse
|
19
|
Niu J, Yan R, Shen J, Zhu X, Meng F, Lu Z, Lu F. Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. Int J Mol Sci 2022; 23:ijms23126588. [PMID: 35743032 PMCID: PMC9224341 DOI: 10.3390/ijms23126588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Type I L-asparaginase from Bacillus licheniformis Z-1 (BlAase) was efficiently produced and secreted in Bacillus subtilis RIK 1285, but its low yield made it unsuitable for industrial use. Thus, a combined method was used in this study to boost BlAase synthesis in B. subtilis. First, fifteen single strong promoters were chosen to replace the original promoter P43, with PyvyD achieving the greatest BlAase activity (436.28 U/mL). Second, dual-promoter systems were built using four promoters (PyvyD, P43, PaprE, and PspoVG) with relatively high BlAase expression levels to boost BlAase output, with the engine of promoter PaprE-PyvyD reaching 502.11 U/mL. The activity of BlAase was also increased (568.59 U/mL) by modifying key portions of the PaprE-PyvyD promoter. Third, when the ribosome binding site (RBS) sequence of promoter PyvyD was replaced, BlAase activity reached 790.1 U/mL, which was 2.27 times greater than the original promoter P43 strain. After 36 h of cultivation, the BlAase expression level in a 10 L fermenter reached 2163.09 U/mL, which was 6.2 times greater than the initial strain using promoter P43. Moreover, the application potential of BlAase on acrylamide migration in potato chips was evaluated. Results showed that 89.50% of acrylamide in fried potato chips could be removed when combined with blanching and BlAase treatment. These findings revealed that combining transcription and translation techniques are effective strategies to boost recombinant protein output, and BlAase can be a great candidate for controlling acrylamide in food processing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengxia Lu
- Correspondence: ; Tel.: +86-25-8439-5963
| |
Collapse
|
20
|
Zhang Q, Chen Y, Gao L, Chen J, Ma X, Cai D, Wang D, Chen S. Enhanced production of poly-γ-glutamic acid via optimizing the expression cassette of Vitreoscilla hemoglobin in Bacillus licheniformis. Synth Syst Biotechnol 2022; 7:567-573. [PMID: 35155838 PMCID: PMC8801620 DOI: 10.1016/j.synbio.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/16/2023] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is a natural polymer with various applications, and its high-viscosity hinders oxygen transmission and improvement of synthesis level. Vitreoscilla hemoglobin (VHB) has been introduced into various hosts as oxygen carrier, however, its expression strength and contact efficiency with oxygen hindered efficient oxygen transfer and metabolite synthesis. Here, we want to optimize the expression cassette of VHB for γ-PGA production. Firstly, our results implied that γ-PGA yields were enhanced when introducing twin-arginine translocation (Tat) signal peptides (SPYwbN, SPPhoD and SPTorA) into VHB expression cassette, and the best performance was attained by SPYwbN from Bacillus subtilis, the γ-PGA yield of which was 18.53% higher than that of control strain, and intracellular ATP content and oxygen transfer coefficient (KLa) were increased by 29.71% and 73.12%, respectively, indicating that VHB mediated by SPYwbN benefited oxygen transfer and ATP generation for γ-PGA synthesis. Furthermore, four promoters were screened, and Pvgb was proven as the more suitable promoter for VHB expression and γ-PGA synthesis, and γ-PGA yield of attaining strain WX/pPvgb-YwbN-Vgb was further increased to 40.59 g/L by 10.18%. Finally, WX/pPvgb-YwbN-Vgb was cultivated in 3 L fermentor for fed-batch fermentation, and 46.39 g/L γ-PGA was attained by glucose feeding, increased by 49.26% compared with the initial yield (31.01 g/L). Taken together, this study has attained an efficient VHB expression cassette for oxygen transfer and γ-PGA synthesis, which could also be applied in the production of other metabolites.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yaozhong Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jian'gang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Wuhan Junan Biotechnology Co. Ltd., Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
21
|
Peng C, Guo Y, Ren S, Li C, Liu F, Lu F. SPSED: A Signal Peptide Secretion Efficiency Database. Front Bioeng Biotechnol 2022; 9:819789. [PMID: 35118058 PMCID: PMC8804277 DOI: 10.3389/fbioe.2021.819789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chong Peng
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes (NELIE), Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yixue Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Shaodong Ren
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Cen Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes (NELIE), Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes (NELIE), Tianjin, China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
22
|
Parveen A, Devika R. Fibrinolytic Enzyme - An Overview. Curr Pharm Biotechnol 2022; 23:1336-1345. [PMID: 34983344 DOI: 10.2174/1389201023666220104143113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases, like coronary heart disease or artery disorders (arteriosclerosis, including artery solidification), heart failure (myocardial infarction), arrhythmias, congestive heart condition, stroke, elevated vital signs (hypertension), rheumatic heart disorder, and other circulatory system dysfunctions are the most common causes of death worldwide. Cardiovascular disorders are treated with stenting, coronary bypass surgery grafting, anticoagulants, antiplatelet agents, and other pharmacological and surgical procedures; however, these have limitations due to their adverse effects. Fibrinolytic agents degrade fibrin through enzymatic and biochemical processes. There are various enzymes that are currently used as a treatment for CVDs, like Streptokinase, Nattokinase, Staphylokinase, Urokinase, etc. These enzymes are derived from various sources like bacteria, fungi, algae, marine organisms, plants, snakes, and other organisms. This review deals with the fibrinolytic enzymes, their mechanisms, sources, and their therapeutic potential.
Collapse
Affiliation(s)
- Parveen A
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| | - Devika R
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| |
Collapse
|
23
|
Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: A review. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Heterologous expression of nattokinase from B. subtilis natto using Pichia pastoris GS115 and assessment of its thrombolytic activity. BMC Biotechnol 2021; 21:49. [PMID: 34372833 PMCID: PMC8353737 DOI: 10.1186/s12896-021-00708-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nattokinase is a fibrinolytic enzyme that has huge market value as a nutritional supplement for health promotion. In order to increase nattokinase yields, fermentation conditions, strains, cultivation media, and feeding strategies have been optimized. Nattokinase has been expressed using several heterologous expression systems. Pichia pastoris heterologous expression system was the alternative. Results This report aimed to express high levels of nattokinase from B. subtilis natto (NK-Bs) using a Pichia pastoris heterologous expression system and assess its fibrinolytic activity in vivo. Multicopy expression strains bearing 1–7 copies of the aprN gene were constructed. The expression level of the target protein reached a maximum at five copies of the target gene. However, multicopy expression strains were not stable in shake-flask or high-density fermentation, causing significant differences in the yield of the target protein among batches. Therefore, P. pastoris bearing a single copy of aprN was used in shake-flask and high-density fermentation. Target protein yield was 320 mg/L in shake-flask fermentation and approximately 9.5 g/L in high-density fermentation. The recombinant nattokinase showed high thermo- and pH-stability. The present study also demonstrated that recombinant NK-Bs had obvious thrombolytic activity. Conclusions This study suggests that the P. pastoris expression system is an ideal platform for the large-scale, low-cost preparation of nattokinase. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00708-4.
Collapse
|
25
|
Long J, Zhang X, Gao Z, Yang Y, Tian X, Lu M, He L, Li C, Zeng X. Isolation of Bacillus spp. with High Fibrinolytic Activity and Performance Evaluation in Fermented Douchi. J Food Prot 2021; 84:717-727. [PMID: 33232445 DOI: 10.4315/jfp-20-307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/23/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Fibrinolytic enzymes are effective and highly safe in treating cardiovascular and cerebrovascular diseases. Therefore, screening fibrinolytic enzyme-producing microbial strains with excellent fermentation performance is of great value to industrial applications. The fibrin plate method was used in screening strains with high yields of fibrinolytic enzymes from different fermented food products, and the screened strains were preliminarily identified using molecular biology. Then, the strains were used for solid-state fermentation of soybeans. Moreover, the fermentation product douchi was subjected to fibrinolytic activity measurement, sensory evaluation, and biogenic amine content determination. The fermentation performance of each strain was comprehensively evaluated through principal component analysis. Finally, the target strain was identified based on strain morphology, physiological and biochemical characteristics, 16S rDNA sequence, and phylogenetic analysis results. A total of 15 Bacillus species with high fibrinolysin activity were selected. Their fibrinolytic enzyme-producing activity levels were higher than 5,500 IU/g. Through molecular biology analysis, we found 4 strains of Bacillus subtilis, 10 strains of Bacillus amyloliquefaciens, and 1 strain of Bacillus velezensis. The principal component analysis results showed that SN-14 had the best fermentation performance and reduced the accumulation of histamine and total amine, the fibrinolytic activity of fermented douchi reached 5,920.5 ± 107.7 IU/g, and the sensory score was 4.6 ± 0.3 (out of 5 points). Finally, the combined results of physiological and biochemical analyses showed SN-14 was Bacillus velezensis. The high-yield fibrinolytic and excellent fermentation performance strain Bacillus velezensis SN-14 has potential industrial application. HIGHLIGHTS
Collapse
Affiliation(s)
- Jia Long
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xin Zhang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China.,College of Artificial Intelligence and Electrical Engineering, GuiZhou Institute of Technology, Guiyang 550003, People's Republic of China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Yun Yang
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xueyi Tian
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storation & Processing of Guizhou Province (ORCID: https://orcid.org/0000-0002-3523-0872 [L.H.]).,College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, People's Republic of China
| |
Collapse
|
26
|
Lu M, Gao Z, Xing S, Long J, Li C, He L, Wang X. Purification, characterization, and chemical modification of Bacillus velezensis SN-14 fibrinolytic enzyme. Int J Biol Macromol 2021; 177:601-609. [PMID: 33636270 DOI: 10.1016/j.ijbiomac.2021.02.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
Fermented bean foods are a crucial source of fibrinolytic enzymes. The presented study aimed to purify, characterize, and chemically modify Bacillus velezensis SN-14 fibrinolytic enzyme. The fibrinolytic enzyme was purified using CTAB/isooctane/hexyl alcohol/n-butyl alcohol reverse micellar system, and the purified enzyme was chemically modified to improve its enzymatic activity and stability. Enzyme activity recovery and the purification fold for this enzyme were 44.5 ± 1.9% and 4.93 ± 0.05 fold, respectively. SDS-PAGE results showed that the molecular weight of the purified fibrinolytic enzyme was around 28 kDa. Besides, the optimum temperature and pH of the purified fibrinolytic enzyme were 37 °C and 8-9, respectively. Fe2+, mPEG5000, and pepsin were used for chemical modification and for improving the activity and stability of the purified enzyme. Thermal and acid-base stability of chemically modified enzymes increased significantly, whereas enzymatic activity increased by 7.3 times. After 30 d of frozen storage, the modified enzyme's activity was remarkably lower (33.2%) than the unmodified enzyme (60.6%). The current study on B. velezensis SN-14 fibrinolytic enzyme and chemical modification method using Fe2+, mPEG5000, and pepsin provide a reference for developing fibrinolytic drugs and foods.
Collapse
Affiliation(s)
- Mingyuan Lu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Zexin Gao
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jia Long
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China; College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
27
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
28
|
Zou D, Li L, Min Y, Ji A, Liu Y, Wei X, Wang J, Wen Z. Biosynthesis of a Novel Bioactive Metabolite of Spermidine from Bacillus amyloliquefaciens: Gene Mining, Sequence Analysis, and Combined Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:267-274. [PMID: 33356220 DOI: 10.1021/acs.jafc.0c07143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spermidine is a biologically active polyamine with extensive application potential in functional foods. However, previously reported spermidine titers by biosynthesis methods are relatively low, which hinders its industrial application. To improve the spermidine titer, key genes affecting the spermidine production were mined to modify Bacillus amyloliquefaciens. Genes of S-adenosylmethionine decarboxylase (speD) and spermidine synthase (speE) from different microorganisms were expressed and compared in B. amyloliquefaciens. Therein, the speD from Escherichia coli and speE from Saccharomyces cerevisiae were confirmed to be optimal for spermidine synthesis, respectively. Gene and amino acid sequence analysis further confirmed the function of speD and speE. Then, these two genes were co-expressed to generate a recombinant strain B. amyloliquefaciens HSAM2(PDspeD-SspeE) with a spermidine titer of 105.2 mg/L, improving by 11.0-fold compared with the control (HSAM2). Through optimization of the fermentation medium, the spermidine titer was increased to 227.4 mg/L, which was the highest titer among present reports. Moreover, the consumption of the substrate S-adenosylmethionine was consistent with the accumulation of spermidine, which contributed to understanding its synthesis pattern. In conclusion, two critical genes for spermidine synthesis were obtained, and an engineering B. amyloliquefaciens strain was constructed for enhanced spermidine production.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
29
|
Napiorkowska M, Pestalozzi L, Panke S, Held M, Schmitt S. High-Throughput Optimization of Recombinant Protein Production in Microfluidic Gel Beads. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005523. [PMID: 33325637 DOI: 10.1002/smll.202005523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Efficient production hosts are a key requirement for bringing biopharmaceutical and biotechnological innovations to the market. In this work, a truly universal high-throughput platform for optimization of microbial protein production is described. Using droplet microfluidics, large genetic libraries of strains are encapsulated into biocompatible gel beads that are engineered to selectively retain any protein of interest. Bead-retained products are then fluorescently labeled and strains with superior production titers are isolated using flow cytometry. The broad applicability of the platform is demonstrated by successfully culturing several industrially relevant bacterial and yeast strains and detecting peptides or proteins of interest that are secreted or released from the cell via autolysis. Lastly, the platform is applied to optimize cutinase secretion in Komagataella phaffii (Pichia pastoris) and a strain with 5.7-fold improvement is isolated. The platform permits the analysis of >106 genotypes per day and is readily applicable to any protein that can be equipped with a His6 -tag. It is envisioned that the platform will be useful for large screening campaigns that aim to identify improved hosts for large-scale production of biotechnologically relevant proteins, thereby accelerating the costly and time-consuming process of strain engineering.
Collapse
Affiliation(s)
- Marta Napiorkowska
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Luzius Pestalozzi
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
30
|
Wang D, Wang H, Zhan Y, Xu Y, Deng J, Chen J, Cai D, Wang Q, Sheng F, Chen S. Engineering Expression Cassette of pgdS for Efficient Production of Poly-γ-Glutamic Acids With Specific Molecular Weights in Bacillus licheniformis. Front Bioeng Biotechnol 2020; 8:728. [PMID: 32754581 PMCID: PMC7381323 DOI: 10.3389/fbioe.2020.00728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA) is an emerging biopolymer with various applications and γ-PGAs with different molecular weights exhibit distinctive properties. However, studies on the controllable molecular weights of biopolymers are limited. The purpose of this study is to achieve production of γ-PGAs with a wide range of molecular weights through manipulating the expression of γ-PGA depolymerase (PgdS) in Bacillus licheniformis WX-02. Firstly, the expression and secretion of PgdS were regulated through engineering its expression elements (four promoters and eight signal peptides), which generated γ-PGAs with molecular weights ranging from 6.82 × 104 to 1.78 × 106 Da. Subsequently, through combination of promoters with signal peptides, the production of γ-PGAs with a specific molecular weight could be efficiently obtained. Interestingly, the γ-PGA yield increased with the reduced molecular weight in flask cultures (Pearson correlation coefficient of −0.968, P < 0.01). Finally, in batch fermentation, the highest yield of γ-PGA with a weight-average molecular weight of 7.80 × 104 Da reached 39.13 g/L under glutamate-free medium. Collectively, we developed an efficient strategy for one-step production of γ-PGAs with specific molecular weights, which have potential application for industrial production of desirable γ-PGAs.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Huan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Yong Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Jie Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | | | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| |
Collapse
|
31
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol 2020; 312:1-10. [DOI: 10.1016/j.jbiotec.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
33
|
Mo F, Cai D, He P, Yang F, Chen Y, Ma X, Chen S. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis. ACTA ACUST UNITED AC 2019; 46:1745-1755. [DOI: 10.1007/s10295-019-02229-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Abstract
Cell surface engineering was proven as the efficient strategy for enhanced production of target metabolites. In this study, we want to improve the yield of target protein by engineering cell surface in Bacillus licheniformis. First, our results confirmed that deletions of d-alanyl-lipoteichoic acid synthetase gene dltD, cardiolipin synthase gene clsA and CDP-diacylglycerol-serine O-phosphatidyltransferase gene pssA were not conducive to cell growth, and the biomass of gene deletion strains were, respectively, decreased by 10.54 ± 1.43%, 14.17 ± 1.51%, and 17.55 ± 1.28%, while the concentrations of total extracellular proteins were improved, due to the increases of cell surface net negative charge and cell membrane permeability. In addition, the activities of target proteins, nattokinase, and α-amylase were also improved significantly in gene deletion strains. Furthermore, the triplicate gene (dltD, clsA, and pssA) deletion strain was constructed, which further led to the 45.71 ± 2.43% increase of cell surface net negative charge and 26.45 ± 2.31% increase of cell membrane permeability, and the activities of nattokinase and α-amylase reached 37.15 ± 0.89 FU/mL and 305.3 ± 8.4 U/mL, increased by 46.09 ± 3.51% and 96.34 ± 7.24%, respectively. Taken together, our results confirmed that cell surface engineering via deleting dltD, clsA, and pssA is an efficient strategy for enhanced production of target proteins, and this research provided a promising host strain of B. licheniformis for efficient protein expression.
Collapse
Affiliation(s)
- Fei Mo
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Dongbo Cai
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Penghui He
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Fan Yang
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Yaozhong Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Xin Ma
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| | - Shouwen Chen
- grid.34418.3a 0000 0001 0727 9022 State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences Hubei University 368 Youyi Avenue, Wuchang District 430062 Wuhan Hubei People’s Republic of China
| |
Collapse
|
34
|
Song X, Shao C, Guo Y, Wang Y, Cai J. Improved the expression level of active transglutaminase by directional increasing copy of mtg gene in Pichia pastoris. BMC Biotechnol 2019; 19:54. [PMID: 31362722 PMCID: PMC6668168 DOI: 10.1186/s12896-019-0542-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 07/05/2019] [Indexed: 12/31/2022] Open
Abstract
Background The microbial transglutaminase (MTG) is inactive when only the mature sequence is expressed in Pichia pastoris. Although co-expression of MTG and its N-terminal pro-peptide can obtain the active MTG, the enzyme activity was still low. One of the basic steps for strain improvement is to ensure a sufficient level of transcription of the heterologous gene, based on promoter strength and gene copy number. To date, high-copy-number recombinants of P. pastoris are achievable only by cloning of gene concatemers, so methods for rapid and reliable multicopy strains are therefore desirable. Results The coexpression strains harboring different copies mtg were obtained successfully by stepwise increasing Zeocin concentration based on the rDNA sequence of P. pastoris. The genome of coexpression strains with the highest enzyme activity was analyzed by real-time fluorescence quantitative PCR, and three copies of mtg gene (mtg-3c) was calculated according to the standard curve of gap and mtg genes (gap is regarded as the single-copy reference gene). The maximum enzyme activity of mtg-3c was up to 1.41 U/mL after being inducted for 72 h in 1 L flask under optimal culture conditions, and two protein bands were observed at the expected molecular weights (40 kDa and 5 kDa) by Western blot. Furthermore, among the strains detected, compared with mtg-2c, mtg-6c or mtg-8c, mtg-3c is the highest expression level and enzyme activity, implying that mtg-3c is the most suitable for co-expression pro-peptide and MTG. Conclusions This study provides an effective strategy for improving the expression level of active MTG by directional increasing of mtg copies in P. pastoris. Electronic supplementary material The online version of this article (10.1186/s12896-019-0542-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Pharmacy, Anhui Medical College, Hefei, 230061, China. .,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, 230022, China.
| | - Changsheng Shao
- Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, 230022, China
| | - Yugang Guo
- Institute of advanced technology, University of Science and Technology of China, Hefei, 230031, China.,Anhui Engineering Research Center of Recombinant Protein Pharmaceutical Biotechnology, Hefei, 230022, China
| | - Yajie Wang
- Department of Pharmacy, Anhui Medical College, Hefei, 230061, China
| | - Jingjing Cai
- Department of Pharmacy, Anhui Medical College, Hefei, 230061, China
| |
Collapse
|
35
|
Peng C, Shi C, Cao X, Li Y, Liu F, Lu F. Factors Influencing Recombinant Protein Secretion Efficiency in Gram-Positive Bacteria: Signal Peptide and Beyond. Front Bioeng Biotechnol 2019; 7:139. [PMID: 31245367 PMCID: PMC6579943 DOI: 10.3389/fbioe.2019.00139] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
Signal peptides are short peptides directing newly synthesized proteins toward the secretory pathway. These N-terminal signal sequences are ubiquitous to all prokaryotes and eukaryotes. Signal peptides play a significant role in recombinant protein production. Previous studies have demonstrated that the secretion amount of a given target protein varies significantly depending on the signal peptide that is fused to the protein. Signal peptide selection and signal peptide modification are the two main methods for the optimization of a recombinant protein secretion. However, the highly efficient signal peptide for a target protein with a specific bacterial expression host is not predictable so far. In this article, we collect several signal peptides that have previously performed well for recombinant protein secretion in gram-positive bacteria. We also discuss several factors influencing recombinant protein secretion efficiency in gram-positive bacteria. Signal peptides with a higher charge/length ratio in n-region, more consensus residues at the-3 and-1positions in c-region and a much higher proportion of coils are more likely to perform well in the secretion of recombinant proteins. These summaries can be utilized to the selection and directed modification of signal peptides for a given recombinant protein.
Collapse
Affiliation(s)
- Chong Peng
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Chaoshuo Shi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xue Cao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Education Ministry of China, Tianjin, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
36
|
Cai D, Zhang B, Rao Y, Li L, Zhu J, Li J, Ma X, Chen S. Improving the utilization rate of soybean meal for efficient production of bacitracin and heterologous proteins in the aprA-deficient strain of Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 103:4789-4799. [PMID: 31025072 DOI: 10.1007/s00253-019-09804-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
Abstract
Soybean meal is commonly applied as the raw material in the bio-fermentation industry, and bacitracin is a widely used feed additive in the feed industry. In this study, we investigated the influence of subtilisin enhancement on soybean meal utilization and bacitracin production in Bacillus licheniformis DW2, an industrial strain for bacitracin production. Firstly, blocking sRNA aprA expression benefited bacitracin synthesis, and the bacitracin yield produced by aprA-deficient strain DW2△PaprA reached 931.43 U/mL, 18.92% higher than that of DW2 (783.25 U/mL). The bacitracin yield was reduced by 14.27% in the aprA overexpression strain. Furthermore, our results showed that deficiency of aprA led to a 6.54-fold increase of the aprE transcriptional level and a 1.84-fold increase of subtilisin activity, respectively, which led to the increases of soybean meal utilization rate (28.86%) and precursor amino acid supplies for bacitracin synthesis. Additionally, strengthening the utilization rate of soybean meal also benefited heterologous protein production, and the α-amylase and nattokinase activities were respectively enhanced by 59.81% and 50.53% in aprA-deficient strains. Collectively, this research demonstrated that strengthening subtilisin production could improve the utilization rate of soybean meal and thereby enhance bacitracin and target protein production; also, this strategy would be useful for the improvement of protein/peptide production using soybean meal as the main nitrogen source in the fermentation process.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Lingfeng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
37
|
Mahipant G, Kato J, Kataoka N, Vangnai AS. An alternative genome-integrated method for undomesticated Bacillus subtilis and related species. J GEN APPL MICROBIOL 2019; 65:96-105. [PMID: 30487367 DOI: 10.2323/jgam.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given their applicability in genetic engineering, undomesticated Bacillus strains are extensively used as non-natural hosts for chemical production due to their high tolerance of toxic substrates or products. However, they are difficult to genomically modify due to their low transformation efficiencies. In this study, the Bacillus-E. coli shuttle vector pHY300PLK, which is widely used in gram-positive bacteria, was adopted for genome integration in organic solvent-tolerant Bacillus isolates. The Bacillus-replicative vector was used to deliver homologous recombinant DNA and propagate itself inside the host cell, increasing the likelihood of genome integration of the recombinant DNA. Then, the unintegrated vectors were cured by cell cultivation in antibiotic-free medium with facilitation of nickel ions. The developed protocol was successfully demonstrated and validated by the disruption of amyE gene in B. subtilis 168. With an improved clonal selection protocol, the probability of clonal selection of the amyE::cat genome-integrated mutants was increased up to 42.0 ± 10.2%. Genome integration in undomesticated, organic solvent tolerant Bacillus strains was also successfully demonstrated with amyE as well as proB gene creating the gene-disrupted mutants with the corresponding phenotype and genotype. Not only was this technique effectively applied to several strains of undomesticated B. subtilis, but it was also successfully applied to B. cereus. This study validates the possibility of the application of Bacillus-replicative vector as well as the developed protocol in a variety of genome modification of undomesticated Bacillus species.
Collapse
Affiliation(s)
- Gumpanat Mahipant
- Biological Sciences Program, Faculty of Science, Chulalongkorn University.,Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University
| | - Naoya Kataoka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University
| | - Alisa S Vangnai
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University.,Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University
| |
Collapse
|
38
|
Cai D, Zhu J, Zhu S, Lu Y, Zhang B, Lu K, Li J, Ma X, Chen S. Metabolic Engineering of Main Transcription Factors in Carbon, Nitrogen, and Phosphorus Metabolisms for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synth Biol 2019; 8:866-875. [PMID: 30865822 DOI: 10.1021/acssynbio.9b00005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary metabolism plays a key role in the synthesis of secondary metabolite. In this study, the main transcription factors in carbon, nitrogen, and phosphorus metabolisms (CcpA, CcpC, CcpN, CodY, TnrA, GlnR, and PhoP) were engineered to improve bacitracin yield in Bacillus licheniformis DW2, an industrial strain for bacitracin production. First, our results demonstrated that deletions of ccpC and ccpN improved ATP and NADPH supplies, and the bacitracin yields were respectively increased by 14.02% and 16.06% compared with that of DW2, while it was decreased significantly in ccpA deficient strain DW2ΔccpA. Second, excessive branched chain amino acids (BCAAs) were accumulated in codY, tnrA, and glnR deletion strains DW2ΔcodY, DW2ΔtnrA, and DW2ΔglnR, which resulted in the nitrogen catabolite repressions and reductions of bacitracin yields. Moreover, overexpression of these regulators improved intracellular BCAA supplies, and further enhanced bacitracin yields by 14.17%, 12.98%, and 16.20%, respectively. Furthermore, our results confirmed that phosphate addition reduced bacitracin synthesis capability, and bacitracin yield was improved by 15.71% in gene phop deletion strain. On the contrary, overexpression of PhoP led to a 19.40% decrease of bacitracin yield. Finally, a combinatorial engineering of these above metabolic manipulations was applied, and bacitracin yield produced by the final strain DW2-CNCTGP (Simultaneously deleting ccpC, ccpN, phop and overexpressing glnR, codY, and tnrA in DW2) reached 1014.38 U/mL, increased by 35.72% compared to DW2, and this yield was the highest bacitracin yield currently reported. Taken together, this study implied that metabolic engineering of carbon, nitrogen, and phosphorus metabolism regulators is an efficient strategy to enhance bacitracin production, and provided a promising B. licheniformis strain for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shan Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Kai Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping 353400, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
39
|
Liu Z, Zhao H, Han L, Cui W, Zhou L, Zhou Z. Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite‐directed mutagenesis. Biotechnol Bioeng 2019; 116:1833-1843. [DOI: 10.1002/bit.26983] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
| | - Han Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
| |
Collapse
|
40
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
41
|
Abstract
Signal peptidases are the membrane bound enzymes that cleave off the amino-terminal signal peptide from secretory preproteins . There are two types of bacterial signal peptidases . Type I signal peptidase utilizes a serine/lysine catalytic dyad mechanism and is the major signal peptidase in most bacteria. Type II signal peptidase is an aspartic protease specific for prolipoproteins. This chapter will review what is known about the structure, function and mechanism of these unique enzymes.
Collapse
Affiliation(s)
- Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
42
|
Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. ACTA ACUST UNITED AC 2019; 46:113-123. [DOI: 10.1007/s10295-018-2089-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
Abstract
Bacillus amyloliquefaciens K11 is a hyperproducer of extracellular neutral protease, which can produce recombinant homologous protein steadily and is amenable to scale up to high-cell density fermentation. The present study aims to genetically modify strain K11 as a highly efficient secretory expression system for high-level production of heterologous proteins. Using B. amyloliquefaciens K11 and alkaline protease gene BcaprE as the expression host and model gene, the gene expression levels mediated by combinations of promoters PamyQ, PaprE and Pnpr and signal peptides SPamyQ, SPaprE and SPnpr were assessed on shake flask level. The PamyQ-SPaprE was found to be the best secretory expression cassette, giving the highest enzyme activities of extracellular BcaprE (13,800 ± 308 U/mL). Using the same expression system, the maltogenic α-amylase Gs-MAase and neutral protease BaNPR were successfully produced with the enzyme activities of 19. ± 0.2 U/mL and 17,495 ± 417 U/mL, respectively. After knocking out the endogenous neutral protease-encoding gene Banpr, the enzyme activities of BcaprE and Gs-MAase were further improved by 25.4% and 19.4%, respectively. Moreover, the enzyme activities of BcaprE were further improved to 30,200 ± 312 U/mL in a 15 L fermenter following optimization of the fermentation conditions. In the present study, the genetically engineered B. amyloliquefaciens strain 7-6 containing PamyQ-SPaprE as the secretory expression cassette was developed. This efficient expression system shows general applicability and represents an excellent industrial strain for the production of heterologous proteins.
Collapse
|
43
|
Zhan Y, Sheng B, Wang H, Shi J, Cai D, Yi L, Yang S, Wen Z, Ma X, Chen S. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Bacillus licheniformis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:306. [PMID: 30455735 PMCID: PMC6225680 DOI: 10.1186/s13068-018-1311-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Poly-γ-glutamic acid (γ-PGA) is a natural polymer with great potential applications in areas of agriculture, industry, and pharmaceutical. The biodiesel-derived glycerol can be used as an attractive feedstock for γ-PGA production due to its availability and low price; however, insufficient production of γ-PGA from glycerol is limitation. RESULTS The metabolic pathway of Bacillus licheniformis WX-02 was rewired to improve the efficiency of glycerol assimilation and the supply of NADPH for γ-PGA synthesis. GlpK, GlpX, Zwf, and Tkt1 were found to be the key enzymes for γ-PGA synthesis using glycerol as a feedstock. Through combinational expression of these key enzymes, the γ-PGA titer increased to 19.20 ± 1.57 g/L, which was 1.50-fold of that of the wild-type strain. Then, we studied the flux distributions, gene expression, and intracellular metabolites in WX-02 and the recombinant strain BC4 (over-expression of the above quadruple enzymes). Our results indicated that over-expression of the quadruple enzymes redistributed metabolic flux to γ-PGA synthesis. Furthermore, using crude glycerol as carbon source, the BC4 strain showed a high productivity of 0.38 g/L/h, and produced 18.41 g/L γ-PGA, with a high yield of 0.46 g γ-PGA/g glycerol. CONCLUSIONS The approach to rewiring of metabolic pathways enables B. licheniformis to efficiently synthesize γ-PGA from glycerol. The γ-PGA productivity reported in this work is the highest obtained in glutamate-free medium. The present study demonstrates that the recombinant B. licheniformis strain shows significant potential to produce valuable compounds from crude glycerol.
Collapse
Affiliation(s)
- Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Bojie Sheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Jiao Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011 USA
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, 430062 Hubei People’s Republic of China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
44
|
Kalbarczyk KZ, Mazeau EJ, Rapp KM, Marchand N, Koffas MAG, Collins CH. Engineering Bacillus megaterium Strains To Secrete Cellulases for Synergistic Cellulose Degradation in a Microbial Community. ACS Synth Biol 2018; 7:2413-2422. [PMID: 30226981 DOI: 10.1021/acssynbio.8b00186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent environmental concerns have intensified the need to develop systems to degrade waste biomass for use as an inexpensive carbon source for microbial chemical production. Current approaches to biomass utilization rely on pretreatment processes that include expensive enzymatic purification steps for the requisite cellulases. We aimed to engineer a synthetic microbial community to synergistically degrade cellulose by compartmentalizing the system with multiple specialized Bacillus megaterium strains. EGI1, an endoglucanase, and Cel9AT, a multimodular cellulase, were targeted for secretion from B. megaterium. A small library of signal peptides (SPs) with five amino acid linkers was selected to tag each cellulase for secretion from B. megaterium. Cellulase activity against amorphous cellulose was confirmed through a series of bioassays, and the most active SP constructs were identified as EGI1 with the LipA SP and Cel9AT with the YngK SP. The activity of the optimized cellulase secretion strains was characterized individually and in tandem to assess synergistic cellulolytic activity. The combination of EGI1 and Cel9AT yielded higher activity than either single cellulase. A coculture of EGI1 and Cel9AT secreting B. megaterium strains demonstrated synergistic behavior with higher activity than either monoculture. This cellulose degradation module can be further integrated with bioproduct synthesis modules to build complex systems for the production of high value molecules.
Collapse
Affiliation(s)
- Karolina Z. Kalbarczyk
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Emily J. Mazeau
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kent M. Rapp
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Nicholas Marchand
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Cynthia H. Collins
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
45
|
Chen Y, Cai D, He P, Mo F, Zhang Q, Ma X, Chen S. Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid. World J Microbiol Biotechnol 2018; 34:135. [DOI: 10.1007/s11274-018-2520-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
|
46
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
47
|
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact 2018; 17:52. [PMID: 29598818 PMCID: PMC5875014 DOI: 10.1186/s12934-018-0901-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
The secretion of biotechnologically or pharmaceutically relevant recombinant proteins into the culture supernatant of a bacterial expression host greatly facilitates their downstream processing and significantly reduces the production costs. The first step during the secretion of a desired target protein into the growth medium is its transport across the cytoplasmic membrane. In bacteria, two major export pathways, the general secretion or Sec pathway and the twin-arginine translocation or Tat pathway, exist for the transport of proteins across the plasma membrane. The routing into one of these alternative protein export systems requires the fusion of a Sec- or Tat-specific signal peptide to the amino-terminal end of the desired target protein. Since signal peptides, besides being required for the targeting to and membrane translocation by the respective protein translocases, also have additional influences on the biosynthesis, the folding kinetics, and the stability of the respective target proteins, it is not possible so far to predict in advance which signal peptide will perform best in the context of a given target protein and a given bacterial expression host. As outlined in this review, the most promising way to find the optimal signal peptide for a desired protein is to screen the largest possible diversity of signal peptides, either generated by signal peptide variation using large signal peptide libraries or, alternatively, by optimization of a given signal peptide using site-directed or random mutagenesis strategies.
Collapse
Affiliation(s)
- Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
48
|
Cai D, Hu S, Chen Y, Liu L, Yang S, Ma X, Chen S. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Appl Biochem Biotechnol 2018; 185:958-970. [PMID: 29388009 DOI: 10.1007/s12010-018-2693-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Poly-γ-glutamic acid is a multi-functional biopolymer with various applications. ATP supply plays an important role in poly-γ-glutamic acid (γ-PGA) synthesis. Global anaerobic regulator Fnr plays a key role in anaerobic adaptation and nitrate respiration, which might affect ATP generation during γ-PGA synthesis. In this study, we have improved γ-PGA production by overexpression of Fnr in Bacillus licheniformis WX-02. First, the gene fnr was knocked out in WX-02, and the γ-PGA yields have no significant differences between WX-02 and the fnr-deficient strain WXΔfnr in the medium without nitrate (BFC medium). However, the γ-PGA yield of 8.95 g/L, which was produced by WXΔfnr in the medium with nitrate addition (BFCN medium), decreased by 74% compared to WX-02 (34.53 g/L). Then, the fnr complementation strain WXΔfnr/pHY-fnr restored the γ-PGA synthesis capability, and γ-PGA yield was increased by 13% in the Fnr overexpression strain WX/pHY-fnr (39.96 g/L) in BFCN medium, compared to WX/pHY300 (35.41 g/L). Furthermore, the transcriptional levels of narK, narG, and hmp were increased by 5.41-, 4.93-, and 3.93-fold in WX/pHY-fnr, respectively, which led to the increases of nitrate consumption rate and ATP supply for γ-PGA synthesis. Collectively, Fnr affects γ-PGA synthesis mainly through manipulating the expression level of nitrate metabolism, and this study provides a novel strategy to improve γ-PGA production by overexpression of Fnr.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shiying Hu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shihui Yang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
49
|
Wang J, Liu S, Li Y, Wang H, Xiao S, Li C, Liu B. Central carbon metabolism influences cellulase production in Bacillus licheniformis. Lett Appl Microbiol 2017; 66:49-54. [PMID: 29063629 DOI: 10.1111/lam.12813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/18/2017] [Accepted: 10/17/2017] [Indexed: 01/19/2023]
Abstract
Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. SIGNIFICANCE AND IMPACT OF THE STUDY Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering.
Collapse
Affiliation(s)
- J Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - S Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Y Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - H Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - S Xiao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - C Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - B Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
50
|
Nie G, Liu N, Zhang E, Zhao R, Zhang X, Zhu X, Li H, Nie Z, Yue W. Preparation of a novel mixed milk with nattokinase produced by Bacillus subtilis
(natto). J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangjun Nie
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Ning Liu
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Erwei Zhang
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Rui Zhao
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Xiao Zhang
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Xiangxiang Zhu
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Hao Li
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Zhijie Nie
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| | - Wenjin Yue
- College of biochemical engineering, Anhui polytechnic University; Wuhu Anhui 241000 China
| |
Collapse
|