1
|
Wicander J, Gorsuch J, Chen L, Caldbeck R, Korza G, Brul S, Christie G, Setlow P. Germination of Bacillus spores by LiCl. J Bacteriol 2025; 207:e0051024. [PMID: 40013823 PMCID: PMC11925240 DOI: 10.1128/jb.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Spores of Bacillus subtilis have been found to germinate when incubated with LiCl, but not with other monovalent or divalent metal cations. Bacillus megaterium spores also germinated with LiCl, but B. cereus spores did not. In B. subtilis, the LiCl germination was via the activation of spores' GerA germinant receptor (GR), and in B. megaterium, it was the GerU GR. Notably, LiCl germination was much slower than normal physiological germinant triggered GR germination. In B. subtilis spores, rates of LiCl germination were increased in spores with a more fluid IM and decreased in spores with a less fluid IM. Analyses of the GerA germinant binding site suggested that Li+ could bind in a specific site in the B. subtilis GerAB subunit where normally a Na+ likely binds. Importantly, NaCl strongly inhibited LiCl germination of B. subtilis spores, much more so than the larger cation in KCl, although neither salt inhibited L-alanine germination via the GerA GR. These findings increase the understanding of features of mechanisms of germination of Bacillus spores.IMPORTANCEThe ability of some bacteria to form spores upon nutrient starvation confers properties of metabolic dormancy and enhanced resistance to environmental stressors that would otherwise kill vegetative cells. Since spore-forming bacteria include several notable pathogens and economically significant spoilage organisms, insight into how spores are stimulated to germinate and form new vegetative cells is important. Here, we reveal that relatively high concentrations of the inorganic salt lithium chloride trigger the germination of Bacillus subtilis and Bacillus megaterium spores by stimulating one of the spores of each species cohort of nutrient germinant receptors. This is significant since novel germinants and increased knowledge of the germination process should provide opportunities for improved control of spores in healthcare, food, and environmental sectors.
Collapse
Affiliation(s)
- James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | | | - Longjiao Chen
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, North Holland, Netherlands
| | - Rebecca Caldbeck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, North Holland, Netherlands
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Sakudo A, Furusaki K, Onishi R, Onodera T, Yoshikawa Y. A Review of CAC-717, a Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals. Microorganisms 2025; 13:507. [PMID: 40142400 PMCID: PMC11946018 DOI: 10.3390/microorganisms13030507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent studies on utilizing biological functions of natural substances that mimic the mesoscopic structures (nanoparticles of about 50 to 500 nm) found in plant growth points and coral skeletons have been reported. After the calcium hydrogen carbonate contained in materials derived from plants and coral are separated, the crystals of the mesoscopic structure can be reformed by applying a high voltage under a specific set of conditions. A suspension of these mesoscopic crystals in water (CAC-717) can be used as an effective disinfectant. CAC-717 exhibits universal virucidal activity against both enveloped and non-enveloped viruses as well as bactericidal and anti-prion activity. Moreover, in comparison to sodium hypochlorite, the potency of CAC-717 as a disinfectant is less susceptible to organic substances such as albumin. The disinfection activity of CAC-717 is maintained for at least 6 years and 4 months after storage at room temperature. CAC-717 is non-irritating and harmless to humans and animals, making it a promising biosafe disinfectant. This review explores the disinfection activity of CAC-717 as well as the potential and future uses of this material.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
| | - Koichi Furusaki
- Mineral Activation Technical Research Center, Omuta 836-0041, Fukuoka, Japan
| | - Rumiko Onishi
- Santa Mineral Co., Ltd., Minato-ku 105-0013, Tokyo, Japan
| | - Takashi Onodera
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Research Center for Food Safety, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan
| | - Yasuhiro Yoshikawa
- School of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Ehime, Japan;
- Environmental Science for Sustainable Development, The University of Tokyo, Bunkyo-ku 113-8657, Tokyo, Japan;
- Institute of Environmental Microbiology, Kyowa Kako Co., Ltd., Machida 194-0035, Tokyo, Japan
| |
Collapse
|
3
|
Vinay G, Seppen J, Setlow P, Brul S. Bile acids as germinants for Clostridioides difficile spores, evidence of adaptation to the gut? FEMS Microbiol Rev 2025; 49:fuaf005. [PMID: 39924167 PMCID: PMC11878537 DOI: 10.1093/femsre/fuaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 12/16/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025] Open
Abstract
Bacterial spores formed upon metabolic stress have minimal metabolic activity and can remain dormant for years. Nevertheless, they can sense the environment and germinate quickly upon exposure to various germinants. Germinated spores can then outgrow into vegetative cells. Germination of spores of some anaerobes, especially Clostridioides difficile, is triggered by cholic acid and taurocholic acid. Elevated levels of these bile acids are thought to correlate with a perturbed gut microbiome, which cannot efficiently convert primary bile acids into secondary bile acids. That bile acids are germination-triggers suggests these bacteria have a life cycle taking place partially in the mammalian digestive tract where bile acids are plentiful; notably bile acids can be made by all vertebrates. Thus, spores survive in the environment until taken up by a host where they encounter an environment suitable for germination and then proliferate in the largely anaerobic large intestine; some ultimately sporulate there, regenerating environmentally resistant spores in the C. difficile life cycle. This review summarizes current literature on the effects of bile acids and their metabolites on spore germination in the gut and evidence that adaptation to bile acids as germinants is a consequence of a life cycle both inside and outside the digestive tract.
Collapse
Affiliation(s)
- Gianni Vinay
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, United States
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
4
|
Singh SK, Ali MM, Mok JH, Korza G, Setlow P, Sastry SK. Mechanistic insight into roles of α/β-type small acid-soluble proteins, RecA, and inner membrane proteins during bacterial spore inactivation by ohmic heating. J Appl Microbiol 2024; 135:lxae151. [PMID: 38906847 DOI: 10.1093/jambio/lxae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
AIM Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/β-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.
Collapse
Affiliation(s)
- Shyam K Singh
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed Medhat Ali
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Jin Hong Mok
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - George Korza
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030, United States
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Pacher N, Burtscher J, Bender D, Fieseler L, Domig KJ. Aerobic spore-forming bacteria associated with ropy bread: Identification, characterization and spoilage potential assessment. Int J Food Microbiol 2024; 418:110730. [PMID: 38714095 DOI: 10.1016/j.ijfoodmicro.2024.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Aerobic spore-forming (ASF) bacteria have been reported to cause ropiness in bread. Sticky and stringy degradation, discoloration, and an odor reminiscent of rotting fruit are typical characteristics of ropy bread spoilage. In addition to economic losses, ropy bread spoilage may lead to health risks, as virulent strains of ASF bacteria are not uncommon. However, the lack of systematic approaches to quantify physicochemical spoilage characteristics makes it extremely difficult to assess rope formation in bread. To address this problem, the aim of this study was to identify, characterize and objectively assess the spoilage potential of ASF bacteria associated with ropy bread. Hence, a set of 82 ASF bacteria, including isolates from raw materials and bakery environments as well as strains from international culture collections, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and their species identity confirmed by 16S rRNA and gyrA or panC gene sequencing. A standardized approach supported by objective colorimetric measurements was developed to assess the rope-inducing potential (RIP) of a strain by inoculating autoclaved bread slices with bacterial spores. In addition, the presence of potential virulence factors such as swarming motility or hemolysis was investigated. This study adds B. velezensis, B. inaquosorum and B. spizizenii to the species potentially implicated of causing ropy bread spoilage. Most importantly, this study introduces a standardized classification protocol for assessing the RIP of a bacterial strain. Colorimetric measurements are used to objectively quantify the degree of breadcrumb discoloration. Furthermore, our results indicate that strains capable of inducing rope spoilage in bread often exhibit swarming motility and virulence factors such as hemolysis, raising important food quality considerations.
Collapse
Affiliation(s)
- Nicola Pacher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| | - Johanna Burtscher
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria.
| | - Denisse Bender
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| | - Lars Fieseler
- ZHAW Zurich University of Applied Sciences, Institute of Food and Beverage Innovation, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Konrad J Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
6
|
Ahmed H, Joshi LT. Response to comments on the tolerance to Clostridioides difficile spores to sodium hypochlorite disinfection. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001463. [PMID: 38771019 PMCID: PMC11165626 DOI: 10.1099/mic.0.001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Humaira Ahmed
- Peninsula Medical School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| | - Lovleen Tina Joshi
- Peninsula Dental School, Faculty of Health, University of Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
7
|
Juneja VK, Osoria M, Altuntas EG, Taneja NK, Thakur S, Kumar GD, Setlow P. Effects of spore purity on the wet heat resistance of Clostridium perfringens, Bacillus cereus and Bacillus subtilis spores. Food Res Int 2024; 177:113904. [PMID: 38225145 DOI: 10.1016/j.foodres.2023.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Heat resistance of spores of Clostridium perfringens 8238 (Hobbs Serotype 2), Bacillus cereus NCTC 11143 (4810/72), and Bacillus subtilis PS533, an isogenic derivative of strain PS832 (a 168 strain) was determined in ground beef at 95 °C. Spore purification was by centrifugation and washing with sterile distilled water (dH2O), followed by sonication and then Histodenz centrifugation for B. subtilis and C. perfringens, and centrifugation and washing with sterile dH2O followed by Histodenz centrifugation for B. cereus. Bags containing inoculated beef samples were submerged in a temperature-controlled water bath and held at 95 °C for predetermined lengths of time. Surviving spore populations were enumerated by plating on mannitol egg yolk polymyxin agar (MYP) agar plates for B. cereus and B. subtilis, and on tryptose-sulfite-cycloserine agar (TSC) agar plates for C. perfringens. Survivor curves were fitted to linear, linear with tail, and Weibull models using the USDA Integrated Pathogen Modeling Program (IPMP) 2013 software. The Weibull model provided a relatively better fit to the data since the root mean square error (RMSE), mean square error (MSE), sum of squared errors (SSE), and Akaike information criterion (AIC) values were lower than the values obtained using the linear or the linear with tail models. Additionally, the Weibull model accurately predicted the observed D-values at 95 °C for the three spore-formers since the accuracy factor (Af) values ranged from 1.03 to 1.08 and the bias factor (Bf) values were either 1.00 or 1.01. Times at 95 °C to achieve a 3-log reduction decreased from 206 min for C. perfringens spores purified with water washes alone to 191 min with water washes followed by sonication and Histodenz centrifugation, from 7.9 min for B. cereus spores purified with water washes alone to 1.4 min with water washes followed by Histodenz centrifugation, and from 20.6 min for B. subtilis spores purified with water washes alone to 6.7 min for water washes followed by sonication and Histodenz centrifugation. Thermal-death-time values reported in this study will assist food processors to design thermal processes to guard against bacterial spores in cooked foods. In addition, clearly spore purity is an additional factor in spore wet heat resistance, although the cause of this effect is not clear.
Collapse
Affiliation(s)
- Vijay K Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Marangeli Osoria
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Neetu K Taneja
- Department of Basics and Applied Sciences, NIFTEM, Sonipat 131028, Haryana, India
| | - Sheetal Thakur
- University Centre for Research & Development, UIBT, Chandigarh University, Gharuan-Mohali, Punjab, India
| | - Govindaraj D Kumar
- Center for Food Safety, College of Agriculture and Environmental Sciences, The University of Georgia, Griffin Campus, GA, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| |
Collapse
|
8
|
Zhu Y, Tian J, Liu S, Li M, Zhao L, Liu W, Zhao G, Liang D, Ma Y, Tu Q. Rapid capture and quantification of food-borne spores based on the double-enhanced Fe 3O 4@PEI@Ag@PEI core-shell structure SERS sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123512. [PMID: 37864975 DOI: 10.1016/j.saa.2023.123512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
To realize rapid capture and quantification of food-borne spores and prevent their potential harm, Fe3O4@PEI@Ag@PEI core-shell structure nanoparticles were combined with flower-like AgNPs for double enhancement and efficient capture of spores. The developed sensor showed excellent reproducibility and SERS enhancement factor (AEF) is 4.6 × 104. Orthogonal partial least-squares discrimination analysis and linear discriminant analysis accurately identified the three spores (Bacillus subtilis, Bacillus cereus, and Clostridium perfringens), and the qualitative identification accuracy of linear discriminant analysis was 100 %. Efficient enrichment of B. subtilis spores was realized within 5 min, with a detection limit of 3 cfu/mL. Spiked tests revealed that this sensor was effective in detecting spores in milk, orange juice, and water samples, with recovery ratio of 95.2-103.9 % and relative standard deviation of 3.1-7.7 %. Thus, the developed sensor was accurate and reliable, and could achieve rapid identification and quantitative detection of food-borne spores.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Jiuyuquan Food Co., LTD., Postdoctoral Innovation Base, Henan Province, Yuanyang 453500, PR China
| | - Jiaqi Tian
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Weijia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China; Henan Jiuyuquan Food Co., LTD., Postdoctoral Innovation Base, Henan Province, Yuanyang 453500, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qiancheng Tu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou 450002, PR China
| |
Collapse
|
9
|
Li M, Liu S, Guo S, Liang D, Li M, Zhu Y, Zhao L, Lee JH, Zhao G, Ma Y, Liu Y. Selective purification and rapid quantitative detection of spores using a "stepped" magnetic flow device. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:284-292. [PMID: 38113049 DOI: 10.1039/d3ay01956j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A study on the inactivation and germination mechanism of spores is very important in the application of spores, as such high-purity spores are the basis of related research. However, spores and vegetative cells of bacteria often coexist, and it is difficult to separate them. In this study, a magnetic flow device for the purification of spores in the culture medium system was developed based on a "stepped" structure with a magnetic force that could absorb vegetative cells with magnetic nanoparticles. The operation process was as follows: first, vancomycin functionalized nanoparticles were used to prepare Van-Fe3O4 NPs, which were then combined with vegetative cells to form a magnetic conjugate. Subsequently, the magnetic conjugate (vegetative cells) flowed through the "stepped" magnetic flow device and was adsorbed. Meanwhile, the spores moved through the channel and were collected. The achieved purity of the collected spores was more than 95%. Further, the number of the obtained spores was quickly quantified using Raman spectroscopy. The entire purification and quantitative process can be completed within 30 min and the limit of detection was 5 CFU mL-1. This study showed outstanding spore purification ability and provided a new method for purification and rapid quantitative detection of spores.
Collapse
Affiliation(s)
- Mengya Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Shiliang Guo
- Henan Shuanghui Investment & Development Co., Ltd., Luohe, 462000, P. R. China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
- International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| |
Collapse
|
10
|
Li YQ, He L, Aryal M, Wicander J, Korza G, Setlow P. Thioflavin-T does not report on electrochemical potential and memory of dormant or germinating bacterial spores. mBio 2023; 14:e0222023. [PMID: 37830807 PMCID: PMC10653816 DOI: 10.1128/mbio.02220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Bacillus and Clostridium spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores "remember" germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.
Collapse
Affiliation(s)
- Yong-qing Li
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Lin He
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Jonsmoen UL, Malyshev D, Öberg R, Dahlberg T, Aspholm ME, Andersson M. Endospore pili: Flexible, stiff, and sticky nanofibers. Biophys J 2023; 122:2696-2706. [PMID: 37218131 PMCID: PMC10397575 DOI: 10.1016/j.bpj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Species belonging to the Bacillus cereus group form endospores (spores) whose surface is decorated with micrometers-long and nanometers-wide endospore appendages (Enas). The Enas have recently been shown to represent a completely novel class of Gram-positive pili. They exhibit remarkable structural properties making them extremely resilient to proteolytic digestion and solubilization. However, little is known about their functional and biophysical properties. In this work, we apply optical tweezers to manipulate and assess how wild-type and Ena-depleted mutant spores immobilize on a glass surface. Furthermore, we utilize optical tweezers to extend S-Ena fibers to measure their flexibility and tensile stiffness. Finally, by oscillating single spores, we examine how the exosporium and Enas affect spores' hydrodynamic properties. Our results show that S-Enas (μm-long pili) are not as effective as L-Enas in immobilizing spores to glass surfaces but are involved in forming spore-to-spore connections, holding the spores together in a gel-like state. The measurements also show that S-Enas are flexible but tensile stiff fibers, which support structural data suggesting that the quaternary structure is composed of subunits arranged in a complex to produce a bendable fiber (helical turns can tilt against each other) with limited axial fiber extensibility. Finally, the results show that the hydrodynamic drag is 1.5 times higher for wild-type spores expressing S- and L-Enas compared with mutant spores expressing only L-Enas or "bald spores" lacking Ena, and 2 times higher compared with spores of the exosporium-deficient strain. This study unveils novel findings on the biophysics of S- and L-Enas, their role in spore aggregation, binding of spores to glass, and their mechanical behavior upon exposure to drag forces.
Collapse
Affiliation(s)
- Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Marina E Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
12
|
Setlow P, Christie G. New Thoughts on an Old Topic: Secrets of Bacterial Spore Resistance Slowly Being Revealed. Microbiol Mol Biol Rev 2023; 87:e0008022. [PMID: 36927044 PMCID: PMC10304885 DOI: 10.1128/mmbr.00080-22] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The quest for bacterial survival is exemplified by spores formed by some Firmicutes members. They turn up everywhere one looks, and their ubiquity reflects adaptations to the stresses bacteria face. Spores are impactful in public health, food safety, and biowarfare. Heat resistance is the hallmark of spores and is countered principally by a mineralized gel-like protoplast, termed the spore core, with reduced water which minimizes macromolecular movement/denaturation/aggregation. Dry heat, however, introduces mutations into spore DNA. Spores have countermeasures to extreme conditions that are multifactorial, but the fact that spore DNA is in a crystalline-like nucleoid in the spore core, likely due to DNA saturation with small acid-soluble spore proteins (SASPs), suggests that reduced macromolecular motion is also critical in spore dry heat resistance. SASPs are also central in the radiation resistance characteristic of spores, where the contributions of four spore features-SASP; Ca2+, with pyridine-2,6-dicarboxylic acid (CaDPA); photoproduct lyase; and low water content-minimize DNA damage. Notably, the spore environment steers UV photochemistry toward a product that germinated spores can repair without significant mutagenesis. This resistance extends to chemicals and macromolecules that could damage spores. Macromolecules are excluded by the spore coat which impedes the passage of moieties of ≥10 kDa. Additionally, damaging chemicals may be degraded or neutralized by coat enzymes/proteins. However, the principal protective mechanism here is the inner membrane, a compressed structure lacking lipid fluidity and presenting a barrier to the diffusion of chemicals into the spore core; SASP saturation of DNA also protects against genotoxic chemicals. Spores are also resistant to other stresses, including high pressure and abrasion. Regardless, overarching mechanisms associated with resistance seem to revolve around reduced molecular motion, a fine balance between rigidity and flexibility, and perhaps efficient repair.
Collapse
Affiliation(s)
- Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Monitoring of Paenibacillus larvae in Lower Austria through DNA-Based Detection without De-Sporulation: 2018 to 2022. Vet Sci 2023; 10:vetsci10030213. [PMID: 36977252 PMCID: PMC10054382 DOI: 10.3390/vetsci10030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
American foulbrood is caused by the spore-forming Paenibacillus larvae. Although the disease effects honey bee larvae, it threatens the entire colony. Clinical signs of the disease are seen at a very late stage of the disease and bee colonies are often beyond saving. Therefore, through active monitoring based on screening, an infection can be detected early and bee colonies can be protected with hygiene measures. As a result, the pressure to spread in an area remains low. The cultural and molecular biological detection of P. larvae is usually preceded by spore germination before detection. In this study, we compared the results of two methods, the culture detection and RT-PCR detection of DNA directly isolated from spores. Samples of honey and cells with honey surrounding the brood were used in a five-year voluntary monitoring program in a western part of Lower Austria. DNA-extraction from spores to speed up detection involved one chemical and two enzymatic steps before mechanical bashing-beat separation and additional lysis. The results are comparable to culture-based methods, but with a large time advantage. Within the voluntary monitoring program, the proportion of bee colonies without the detection of P. larvae was high (2018: 91.9%, 2019: 72.09%, 2020: 74.6%, 2021: 81.35%, 2022: 84.5%), and in most P. larvae-positive bee colonies, only a very low spore content was detected. Nevertheless, two bee colonies in one apiary with clinical signs of disease had to be eradicated.
Collapse
|
14
|
Korza G, DePratti S, Fairchild D, Wicander J, Kanaan J, Shames H, Nichols FC, Cowan A, Brul S, Setlow P. Expression of the 2Duf protein in wild-type Bacillus subtilis spores stabilizes inner membrane proteins and increases spore resistance to wet heat and hydrogen peroxide. J Appl Microbiol 2023; 134:lxad040. [PMID: 36841229 PMCID: PMC10035073 DOI: 10.1093/jambio/lxad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
AIMS This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- George Korza
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Sarah DePratti
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Frank C Nichols
- Division of Periodontology, UConn Health, Farmington, CT 06030-3305, USA
| | - Ann Cowan
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Science, University of Amsterdam, 1098XH Amsterdam, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, Farmington, CT 06030-3305, USA
| |
Collapse
|
15
|
Gorsuch JP, Buckman D. Meat extract casein peptone agar - A novel culture medium for the enumeration of Bacillus endospores in commercial products. J Microbiol Methods 2023; 206:106689. [PMID: 36787822 DOI: 10.1016/j.mimet.2023.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Here we propose a novel culture medium, Meat Extract Casein Peptone (MECP) agar, to support the enumeration of Bacillus endospores in commercial products. The formulation is the result of screening eight different veterinary, pharmaceutical, and industrial grade peptones for the ability to support the formation of small, well-defined Bacillus colonies on solid culture medium. The impact of agar purity, agar formulation rate, and metal cation additives were examined in prototype medium batches prepared from preferred peptone inputs. A customized plate counting assay based on the resultant MECP agar formulation was compared with standardized pour-plate and spread-plate assays (ISO 4833) and flow cytometry for the ability to accurately enumerate five Bacillus-based biostimulants and biofertilizers. Estimations of Bacillus endospore concentration generated by the customized spread-plate assay were significantly higher than those produced by ISO 4833 pour-plate and spread-plate assays for four out of the five tested products and were in better agreement with flow cytometry values; however, flow cytometry values were numerically higher than values returned by both plating methods. Both flow cytometry and plating assays based on MECP or similar culture media represent potential candidates for standardization and validation through organizations such as ISO and AOAC International for the enumeration of Bacillus-based products.
Collapse
Affiliation(s)
- John P Gorsuch
- BiOWiSH Technologies, 2717 Erie Avenue, Cincinnati, OH 45208, USA.
| | - Dana Buckman
- BioForm Solutions, 11575 Sorrento Valley Rd, San Diego, CA 92121, USA
| |
Collapse
|
16
|
Korza G, Goulet M, DeMarco A, Wicander J, Setlow P. Role of Bacillus subtilis Spore Core Water Content and pH in the Accumulation and Utilization of Spores' Large 3-Phosphoglyceric Acid Depot, and the Crucial Role of This Depot in Generating ATP Early during Spore Germination. Microorganisms 2023; 11:microorganisms11010195. [PMID: 36677488 PMCID: PMC9864370 DOI: 10.3390/microorganisms11010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The development of Bacillus spore cores involves the accumulation of 3-phosphoglycerate (3PGA) during sporulation, following core acidification to ~6.4, and before decreases in core water content occur due to Ca-dipicolinc acid (CaDPA) uptake. This core acidification inhibits phosphoglycerate mutase (PGM) at pH 6.4, allowing 3PGA accumulation, although PGM is active at pH 7.4. Spores’ 3PGA is stable for months at 4 °C and weeks at 37 °C. However, in wild-type spore germination, increases in core pH to 7.5−8 and in core water content upon CaDPA release and cortex peptidoglycan hydrolysis allow for rapid 3PGA catabolism, generating ATP; indeed, the earliest ATP generated following germination is from 3PGA catabolism. The current work found no 3PGA in those Bacillus subtilis spores that do not accumulate CaDPA during sporulation and have a core pH of ~7.4. The ATP production in the germination of 3PGA-less spores in a poor medium was minimal, and the germinated spores were >99% dead. However, the 3PGA-replete spores that germinated in the poor medium accumulated >30 times more ATP, and >70% of the germinated spores were found to be alive. These findings indicate why 3PGA accumulation during sporulation (and utilization during germination) in all the Firmicute spores studied can be crucial for spore revival due to the generation of essential ATP. The latter finding further suggests that targeting PGM activity during germination could be a novel way to minimize the damaging effects of spores.
Collapse
|
17
|
Yu B, Kanaan J, Shames H, Wicander J, Aryal M, Li Y, Korza G, Brul S, Kramer G, Li YQ, Nichols FC, Hao B, Setlow P. Identification and characterization of new proteins crucial for bacterial spore resistance and germination. Front Microbiol 2023; 14:1161604. [PMID: 37113233 PMCID: PMC10126465 DOI: 10.3389/fmicb.2023.1161604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some Bacillus species carrying a transposon with an operon termed spoVA 2mob. These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) B. subtilis spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components. The IM phospholipid compositions and core water and calcium-dipicolinic acid levels of YetF-deficient spores are similar to those of wt spores, but the deficiency could be restored by ectopic insertion of yetF, and overexpression of YetF increased wt spore resistance to wet heat. In addition, yetF and ydfS spores have decreased germination rates as individuals and populations with germinant receptor-dependent germinants and increased sensitivity to wet heat during germination, potentially due to damage to IM proteins. These data are consistent with a model in which YetF, YdfS and their homologs modify IM structure to reduce IM permeability and stabilize IM proteins against wet heat damage. Multiple yetF homologs are also present in other spore forming Bacilli and Clostridia, and even some asporogenous Firmicutes, but fewer in asporogenous species. The crystal structure of a YetF tetramer lacking the TM helices has been reported and features two distinct globular subdomains in each monomer. Sequence alignment and structure prediction suggest this fold is likely shared by other Duf421-containing proteins, including 2Duf. We have also identified naturally occurring 2duf homologs in some Bacilli and Clostridia species and in wt Bacillus cereus spores, but not in wt B. subtilis. Notably, the genomic organization around the 2duf gene in most of these species is similar to that in spoVA 2mob, suggesting that one of these species was the source of the genes on this operon in the extremely wet heat resistant spore formers.
Collapse
Affiliation(s)
- Benjamin Yu
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Hannah Shames
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, NC, United States
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety, University of Amsterdam, Amsterdam, Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, Netherlands
| | - Yong-qing Li
- Department of Physics, East Carolina University, Greenville, NC, United States
| | - Frank C. Nichols
- Division of Periodontology, UConn Health, Farmington, CT, United States
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- Bing Hao,
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- *Correspondence: Peter Setlow,
| |
Collapse
|
18
|
Milojevic T, Cramm MA, Hubert CRJ, Westall F. "Freezing" Thermophiles: From One Temperature Extreme to Another. Microorganisms 2022; 10:2417. [PMID: 36557670 PMCID: PMC9782878 DOI: 10.3390/microorganisms10122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
New detections of thermophiles in psychrobiotic (i.e., bearing cold-tolerant life forms) marine and terrestrial habitats including Arctic marine sediments, Antarctic accretion ice, permafrost, and elsewhere are continually being reported. These microorganisms present great opportunities for microbial ecologists to examine biogeographical processes for spore-formers and non-spore-formers alike, including dispersal histories connecting warm and cold biospheres. In this review, we examine different examples of thermophiles in cryobiotic locations, and highlight exploration of thermophiles at cold temperatures under laboratory conditions. The survival of thermophiles in psychrobiotic environments provokes novel considerations of physiological and molecular mechanisms underlying natural cryopreservation of microorganisms. Cultures of thermophiles maintained at low temperature may serve as a non-sporulating laboratory model for further exploration of metabolic potential of thermophiles at psychrobiotic temperatures, as well as for elucidating molecular mechanisms behind natural preservation and adaptation to psychrobiotic environments. These investigations are highly relevant for the search for life on other cold and icy planets in the Solar System, such as Mars, Europa and Enceladus.
Collapse
Affiliation(s)
- Tetyana Milojevic
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, University of Orléans, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| | - Margaret Anne Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Frances Westall
- Exobiology Group, CNRS-Centre de Biophysique Moléculaire, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France
| |
Collapse
|
19
|
Smrhova T, Jani K, Pajer P, Kapinusova G, Vylita T, Suman J, Strejcek M, Uhlik O. Prokaryotes of renowned Karlovy Vary (Carlsbad) thermal springs: phylogenetic and cultivation analysis. ENVIRONMENTAL MICROBIOME 2022; 17:48. [PMID: 36089611 PMCID: PMC9465906 DOI: 10.1186/s40793-022-00440-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/26/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The extreme conditions of thermal springs constitute a unique aquatic habitat characterized by low nutrient contents and the absence of human impacts on the microbial community composition. Thus, these springs may host phylogenetically novel microorganisms with potential use in biotechnology. With this hypothesis in mind, we examined the microbial composition of four thermal springs of the world-renowned spa town of Karlovy Vary (Carlsbad), Czechia, which differ in their temperature and chemical composition. RESULTS Microbial profiling using 16S rRNA gene sequencing revealed the presence of phylogenetically novel taxa at various taxonomic levels, spanning from genera to phyla. Many sequences belonged to novel classes within the phyla Hydrothermae, Altiarchaeota, Verrucomicrobia, and TA06. Cultivation-based methods employing oligotrophic media resulted in the isolation of 44 unique bacterial isolates. These include strains that withstand concentrations of up to 12% NaClw/v in cultivation media or survive a temperature of 100 °C, as well as hitherto uncultured bacterial species belonging to the genera Thermomonas, Paenibacillus, and Cellulomonas. These isolates harbored stress response genes that allow them to thrive in the extreme environment of thermal springs. CONCLUSIONS Our study is the first to analyze the overall microbial community composition of the renowned Karlovy Vary thermal springs. We provide insight into yet another level of uniqueness of these springs. In addition to their unique health benefits and cultural significance, we demonstrate that these springs harbor phylogenetically distinct microorganisms with unusual life strategies. Our findings open up avenues for future research with the promise of a deeper understanding of the metabolic potential of these microorganisms.
Collapse
Affiliation(s)
- Tereza Smrhova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Kunal Jani
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Petr Pajer
- Military Health Institute, Ministry of Defence of the Czech Republic, Prague, Czech Republic
| | - Gabriela Kapinusova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Tomas Vylita
- Institute of Balneology and Spa Sciences, Karlovy Vary, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
20
|
Malyshev D, Robinson NF, Öberg R, Dahlberg T, Andersson M. Reactive oxygen species generated by infrared laser light in optical tweezers inhibits the germination of bacterial spores. JOURNAL OF BIOPHOTONICS 2022; 15:e202200081. [PMID: 35538633 DOI: 10.1002/jbio.202200081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial spores are highly resistant to heat, radiation and various disinfection chemicals. The impact of these on the biophysical and physicochemical properties of spores can be studied on the single-cell level using optical tweezers. However, the effect of the trapping laser on spores' germination rate is not fully understood. In this work, we assess the impact of 1064 nm laser light on the germination of Bacillus thuringiensis spores. The results show that the germination rate of spores after laser exposure follows a sigmoid dose-response relationship, with only 15% of spores germinating after 20 J of laser light. Under anaerobic growth conditions, the percentage of germinating spores at 20 J increased to 65%. The results thereby indicate that molecular oxygen is a major contributor to the germination-inhibiting effect observed. Thus, our study highlights the risk for optical trapping of spores and ways to mitigate it.
Collapse
Affiliation(s)
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Abstract
Wastewater containing low concentrations of rare earth ions not only constitutes a waste of rare earth resources but also threatens the surrounding environment. It is therefore necessary to develop environmentally friendly methods of recovering rare earth ions. The spores produced by Bacillus are resistant to extreme environments and are effective in the bioadsorption of rare earth ions, but their adsorption behaviors and mechanisms are not well understood. In this study, the cells and spores of Bacillus subtilis PS533 and PS4150 were used as biosorbents, and their adsorption of terbium ions was compared under different conditions. The adsorption characteristics of the spores were investigated, as were the possible mechanisms of interaction between the spores and rare earth ions. The results showed that the PS4150 spores had the best adsorption effect on Tb(III), with the removal percentage reaching 95.2%. Based on a computational simulation, SEM observation, XRD, XPS, and FTIR analyses, it was suggested that the adsorption of Tb(III) by the spores conforms to the pseudo−second−order kinetics and the Langmuir adsorption isotherm model. This indicates that the adsorption process mainly consists of chemical adsorption, and that groups such as amino, hydroxyl, methyl, and phosphate, which are found on the surface of the spores, are involved in the bioadsorption process. All of these findings suggest that Bacillus subtilis spores can be used as a potential biosorbent for the recovery of rare earth ions from wastewater.
Collapse
|
22
|
Zhu Y, Liu W, Liu S, Li M, Zhao L, Xu L, Wang N, Zhao G, Yu Q. Preparation of AgNPs self-assembled solid-phase substrate via seed-mediated growth for rapid identification of different bacterial spores based on SERS. Food Res Int 2022; 160:111426. [DOI: 10.1016/j.foodres.2022.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
23
|
Pang Y, Wu R, Cui T, Zhang Z, Dong L, Chen F, Hu X. Proteomic Response of Bacillus subtilis Spores under High Pressure Combined with Moderate Temperature and Random Peptide Mixture LK Treatment. Foods 2022; 11:foods11081123. [PMID: 35454710 PMCID: PMC9030791 DOI: 10.3390/foods11081123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
In this study, a method of Bacillus subtilis spore inactivation under high pressure (P, 200 MPa) combined with moderate temperature (T, 80 °C) and the addition of antimicrobial peptide LK (102 μg/mL) was investigated. Spores presented cortex hydrolysis and inner membrane (IM) damage with an 8.16 log reduction in response to treatment with PT-LK, as observed by phase-contrast and inverted fluorescence microscopy and flow cytometry (FCM) analysis. Furthermore, a tandem mass tag (TMT) quantitative proteomics approach was utilized because Liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis data were used. After treatment with PT-LK, 17,017 polypeptides and 3166 proteins were detected from B. subtilis spores. Among them, 78 proteins showed significant differences in abundance between the PT-LK-treated and control groups, with 49 proteins being upregulated and 29 proteins being downregulated in the PT-LK-treated group. Genetic information processing, metabolism, cellular process, and environmental information processing were the main mechanisms of PT-LK-mediated spore inactivation.
Collapse
Affiliation(s)
- Yaru Pang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Ruobin Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Tianlin Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Zequn Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
- Correspondence: ; Tel.: +86-137-0102-6564
| |
Collapse
|
24
|
Fekraoui F, Ferret É, Paniel N, Auvy O, Chamontin C, André S, Simonin H, Perrier-Cornet JM. Cycling versus Continuous High Pressure treatments at moderate temperatures: Effect on bacterial spores? INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Kanaan J, Murray J, Higgins R, Nana M, DeMarco AM, Korza G, Setlow P. Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. J Appl Microbiol 2021; 132:2157-2166. [PMID: 34724311 DOI: 10.1111/jam.15345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
AIMS A protein termed 2Duf greatly increases wet heat resistance of Bacillus subtilis spores. The current work examines the effects of 2Duf on spore resistance to other sporicides, including chemicals that act on or must cross spores' inner membrane (IM), where 2Duf is likely present. The overall aim was to gain a deeper understanding of how 2Duf affects spore resistance, and of spore resistance itself. METHODS AND RESULTS 2Duf's presence increased spore resistance to chemicals that damage or must cross the IM to kill spores. Spore coat removal decreased 2Duf-spore resistance to chemicals and wet heat, and 2Duf-spores made at higher temperatures were more resistant to wet heat and chemicals. 2Duf-less spores lacking coats and Ca-dipicolinic acid were also extremely sensitive to wet heat and chemicals that transit the IM to kill spores. CONCLUSIONS The new work plus previous results lead to a number of important conclusions as follows. (1) 2Duf may influence spore resistance by decreasing the permeability of and lipid mobility in spores' IM. (2) Since wet heat-killed spores that germinate do not accumulate ATP, wet heat may inactivate some spore IM protein essential in ATP production which is stabilized in a more rigid IM. (3) Both Ca-dipicolinic acid and the spore coat play an important role in the permeability of the spore IM, and thus in many spore resistance properties. SIGNIFICANCE AND IMPACT OF THE STUDY The work in this manuscript gives a new insight into mechanisms of spore resistance to chemicals and wet heat, to the understanding of spore wet heat killing, and the role of Ca-dipicolinic acid and the coat in spore resistance.
Collapse
Affiliation(s)
- Julia Kanaan
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jillian Murray
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ryan Higgins
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Mishil Nana
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Angela M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
26
|
Liang D, Wang X, Wu X, Liao X, Chen F, Hu X. The effect of high pressure combined with moderate temperature and peptidoglycan fragments on spore inactivation. Food Res Int 2021; 148:110615. [PMID: 34507759 DOI: 10.1016/j.foodres.2021.110615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
High pressure processing (HPP) is a promising non-thermal processing method for food production. However, extremely high pressure and temperature are often required to achieve spores inactivation and commercial sterilization using HPP. In this study, the combined treatment of HPP, moderate temperature, and peptidoglycan fragments (PGF) for spore inactivation was investigated. The combined treatment of 200 MPa and 1 mg/mL PGF at 80 °C for 20 min resulted in 8.6 log inactivation of Bacillus subtilis 168 and more than 5 log reductions of Clostridium sporogenes PA3679 spores, respectively. A strong synergistic effect on spore inactivation among HPP, PGF, and temperature was observed. By comparing the effect of the treatment on the fluidity of the inner membrane and structural change of spores using fluorescence assay, a probable inactivation mechanism was proposed. It was concluded that the spores were firstly triggered to enter the Stage I of the germination process by HPP and PGF, and then immediately inactivated by the mild heat. This novel processing method could be an alternative to ensure commercial sterilization in the food industry.
Collapse
Affiliation(s)
- Dong Liang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing 100083, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
27
|
Abstract
Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores—the so called “germinate to eradicate” strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.
Collapse
|
28
|
Craft DL, Korza G, Zhang Y, Frindert J, Jäschke A, Caimano MJ, Setlow P. Analysis of 5'-NAD capping of mRNAs in dormant spores of Bacillus subtilis. FEMS Microbiol Lett 2021; 367:5895323. [PMID: 32821945 DOI: 10.1093/femsle/fnaa143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Spores of Gram-positive bacteria contain 10s-1000s of different mRNAs. However, Bacillus subtilis spores contain only ∼ 50 mRNAs at > 1 molecule/spore, almost all transcribed only in the developing spore and encoding spore proteins. However, some spore mRNAs could be stabilized to ensure they are intact in dormant spores, perhaps to direct synthesis of proteins essential for spores' conversion to a growing cell in germinated spore outgrowth. Recent work shows that some growing B. subtilis cell mRNAs contain a 5'-NAD cap. Since this cap may stabilize mRNA in vivo, its presence on spore mRNAs would suggest that maintaining some intact spore mRNAs is important, perhaps because they have a translational role in outgrowth. However, significant levels of only a few abundant spore mRNAs had a 5'-NAD cap, and these were not the most stable spore mRNAs and had likely been fragmented. Even higher levels of 5'-NAD-capping were found on a few low abundance spore mRNAs, but these mRNAs were present in only small percentages of spores, and had again been fragmented. The new data are thus consistent with spore mRNAs serving only as a reservoir of ribonucleotides in outgrowth.
Collapse
Affiliation(s)
- D Levi Craft
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - Yaqing Zhang
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld, Heidelberg University, 69120, Heidelberg, Germany
| | - Jens Frindert
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld, Heidelberg University, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld, Heidelberg University, 69120, Heidelberg, Germany
| | - Melissa J Caimano
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.,Department of Medicine, UConn Health, Farmington, CT 06030-3305, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| |
Collapse
|
29
|
Levels and Characteristics of mRNAs in Spores of Firmicute Species. J Bacteriol 2021; 203:e0001721. [PMID: 33972352 DOI: 10.1128/jb.00017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of firmicute species contain 100s of mRNAs, whose major function in Bacillus subtilis is to provide ribonucleotides for new RNA synthesis when spores germinate. To determine if this is a general phenomenon, RNA was isolated from spores of multiple firmicute species and relative mRNA levels determined by transcriptome sequencing (RNA-seq). Determination of RNA levels in single spores allowed calculation of RNA nucleotides/spore, and assuming mRNA is 3% of spore RNA indicated that only ∼6% of spore mRNAs were present at >1/spore. Bacillus subtilis, Bacillus atrophaeus, and Clostridioides difficile spores had 49, 42, and 51 mRNAs at >1/spore, and numbers of mRNAs at ≥1/spore were ∼10 to 50% higher in Geobacillus stearothermophilus and Bacillus thuringiensis Al Hakam spores and ∼4-fold higher in Bacillus megaterium spores. In all species, some to many abundant spore mRNAs (i) were transcribed by RNA polymerase with forespore-specific σ factors, (ii) encoded proteins that were homologs of those encoded by abundant B. subtilis spore mRNAs and are proteins in dormant spores, and (iii) were likely transcribed in the mother cell compartment of the sporulating cell. Analysis of the coverage of RNA-seq reads on mRNAs from all species suggested that abundant spore mRNAs were fragmented, as was confirmed by reverse transcriptase quantitative PCR (RT-qPCR) analysis of abundant B. subtilis and C. difficile spore mRNAs. These data add to evidence indicating that the function of at least the great majority of mRNAs in all firmicute spores is to be degraded to generate ribonucleotides for new RNA synthesis when spores germinate. IMPORTANCE Only ∼6% of mRNAs in spores of six firmicute species are at ≥1 molecule/spore, many abundant spore mRNAs encode proteins similar to B. subtilis spore proteins, and some abundant B. subtilis and C. difficile spore mRNAs were fragmented. Most of the abundant B. subtilis and other Bacillales spore mRNAs are transcribed under the control of the forespore-specific RNA polymerase σ factors, F or G, and these results may stimulate transcription analyses in developing spores of species other than B. subtilis. These findings, plus the absence of key nucleotide biosynthetic enzymes in spores, suggest that firmicute spores' abundant mRNAs are not translated when spores germinate but instead are degraded to generate ribonucleotides for new RNA synthesis by the germinated spore.
Collapse
|
30
|
Kubiak AM, Bailey TS, Dubois LJ, Theys J, Lambin P. Efficient Secretion of Murine IL-2 From an Attenuated Strain of Clostridium sporogenes, a Novel Delivery Vehicle for Cancer Immunotherapy. Front Microbiol 2021; 12:669488. [PMID: 34168629 PMCID: PMC8217651 DOI: 10.3389/fmicb.2021.669488] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Despite a history dating back to the 1800s, using Clostridium bacteria to treat cancer has not advanced beyond the observation that they can colonise and partially destroy solid tumours. Progress has been hampered by their inability to eradicate the viable portion of tumours, and an instinctive anxiety around injecting patients with a bacterium whose close relatives cause tetanus and botulism. However, recent advances in techniques to genetically engineer Clostridium species gives cause to revisit this concept. This paper illustrates these developments through the attenuation of C. sporogenes to enhance its clinical safety, and through the expression and secretion of an immunotherapeutic. An 8.6 kb sequence, corresponding to a haemolysin operon, was deleted from the genome and replaced with a short non-coding sequence. The resultant phenotype of this strain, named C. sporogenes-NT, showed a reduction of haemolysis to levels similar to the probiotic strain, C. butyricum M588. Comparison to the parental strain showed no change in growth or sporulation. Following injection of tumour-bearing mice with purified spores of the attenuated strain, high levels of germination were detected in all tumours. Very low levels of spores and vegetative cells were detected in the spleen and lymph nodes. The new strain was transformed with four different murine IL-2-expressing plasmids, differentiated by promoter and signal peptide sequences. Biologically active mIL-2, recovered from the extracellular fraction of bacterial cultures, was shown to stimulate proliferation of T cells. With this investigation we propose a new, safer candidate for intratumoral delivery of cancer immunotherapeutics.
Collapse
Affiliation(s)
- Aleksandra M Kubiak
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands.,Exomnis Biotech BV, Oxfordlaan, Maastricht, Netherlands
| | - Tom S Bailey
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School of Oncology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
31
|
Luo Y, Korza G, DeMarco AM, Kuipers OP, Li YQ, Setlow P. Properties of spores of Bacillus subtilis with or without a transposon that decreases spore germination and increases spore wet heat resistance. J Appl Microbiol 2021; 131:2918-2928. [PMID: 34042237 DOI: 10.1111/jam.15163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023]
Abstract
AIMS This work aimed to determine how genes on transposon Tn1546 slow Bacillus subtilis spore germination and increase wet heat resistance, and to clarify the transposon's 3 gene spoVA operon's role in spore properties, since the seven wild-type SpoVA proteins form a channel transporting Ca2+ -dipicolinic acid (DPA) in spore formation and germination. METHODS AND RESULTS Deletion of the wild-type spoVA operon from a strain with Tn1546 gave spores with slightly reduced wet heat resistance but some large decreases in germination rate. Spore water content and CaDPA analyses found no significant differences in contents of either component in spores with different Tn1546 components or lacking the wild-type spoVA operon. CONCLUSIONS This work indicates that the SpoVA channel encoded by Tn1546 functions like the wild-type SpoVA channel in CaDPA uptake into developing spores, but not as well in germination. The essentially identical CaDPA and water contents of spores with and without Tn1546 indicate that low core water content does not cause elevated wet heat resistance of spores with Tn1546. SIGNIFICANCE AND IMPACT OF THE STUDY Since wet heat resistance of spores of Bacillus species poses problems in the food industry, understanding mechanisms of spores' wet heat resistance is of significant applied interest.
Collapse
Affiliation(s)
- Y Luo
- Department of Physics, East Carolina University, Greenville, NC, USA.,Laboratory for Biomedical Photonics & Engineering, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - G Korza
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - A M DeMarco
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - O P Kuipers
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - Y-Q Li
- Department of Physics, East Carolina University, Greenville, NC, USA.,School of Electronic Engineering, Dongguan University of Technology, Dongguan, Guangdong, P.R. China
| | - P Setlow
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
DeMarco AM, Korza G, Granados MR, Mok WWK, Setlow P. Dodecylamine rapidly kills of spores of multiple Firmicute species: properties of the killed spores and the mechanism of the killing. J Appl Microbiol 2021; 131:2612-2625. [PMID: 33998749 DOI: 10.1111/jam.15137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023]
Abstract
AIMS Previous work showed that Bacillus subtilis dormant spore killing and germination by dodecylamine take place by different mechanisms. This new work aimed to optimize killing of B. subtilis and other Firmicutes spores and to determine the mechanism of the killing. METHODS AND RESULTS Spores of seven Firmicute species were killed rapidly by dodecylamine under optimal conditions and more slowly by decylamine or tetradecylamine. The killed spores were not recovered by additions to recovery media, and some of the killed spores subsequently germinated, all indicating that dodecylamine-killed spores truly are dead. Spores of two species treated with dodecylamine were more sensitive to killing by a subsequent heat treatment, and spore killing of at least one species was faster with chemically decoated spores. The cores of dodecylamine-killed spores were stained by the nucleic acid stain propidium iodide, and dodecylamine-killed wild-type and germination-deficient spores released their stores of phosphate-containing small molecules. CONCLUSIONS This work indicates that dodecylamine is likely a universal sporicide for Firmicute species, and it kills spores by damaging their inner membrane, with attendant loss of this membrane as a permeability barrier. SIGNIFICANCE AND IMPACT OF THE STUDY There is a significant need for agents that can effectively kill spores of a number of Firmicute species, especially in wide area decontamination. Dodecylamine appears to be a universal sporicide with a novel mechanism of action, and this or some comparable molecule could be useful in wide area spore decontamination.
Collapse
Affiliation(s)
- A M DeMarco
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - G Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - M R Granados
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - W W K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - P Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
33
|
Jones IA, Joshi LT. Biocide Use in the Antimicrobial Era: A Review. Molecules 2021; 26:molecules26082276. [PMID: 33919993 PMCID: PMC8071000 DOI: 10.3390/molecules26082276] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Biocides are widely used in healthcare and industry to control infections and microbial contamination. Ineffectual disinfection of surfaces and inappropriate use of biocides can result in the survival of microorganisms such as bacteria and viruses on inanimate surfaces, often contributing to the transmission of infectious agents. Biocidal disinfectants employ varying modes of action to kill microorganisms, ranging from oxidization to solubilizing lipids. This review considers the main biocides used within healthcare and industry environments and highlights their modes of action, efficacy and relevance to disinfection of pathogenic bacteria. This information is vital for rational use and development of biocides in an era where microorganisms are becoming resistant to chemical antimicrobial agents.
Collapse
|
34
|
Wajima T, Nakaminami H, Aoki S, Seyama S, Noguchi N. [Evaluation of the Antimicrobial Effects of a Novel Visible Light-driven Photocatalyst in Vitro and in the Environment]. YAKUGAKU ZASSHI 2021; 141:135-142. [PMID: 33390440 DOI: 10.1248/yakushi.20-00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Environmental microorganisms can cause several infections in humans, especially in compromised hosts. Since there are many compromised hosts in a hospital setting, it is important to control environmental pathogens in such scenarios. To disinfect the environment, photocatalysts that produce reactive oxygen in response to light have attracted attention. In the present study, the effects of a visible-light-driven antimicrobial photocatalyst, silver (I) iodide and benzalkonium complex, on bacteria, viruses, and fungi were evaluated in vitro. In addition, uncoated panels and panels coated with the photocatalyst were set up at 11 points in a university campus for 6 months, and the adherent bacteria and fungi were measured. Bacteria, bacterial spores, viruses, and fungi were completely inactivated within 45 min on the photocatalyst-coated surface exposed to approximately 700-lux fluorescent light. In the university setting, there were fewer viable adherent bacteria and fungi on the coated plates. Our findings indicate that the silver (I) iodide and benzalkonium complex photocatalyst can decrease environmental bacteria in vitro and in actual environmental settings, and thus highlight its potential in controlling and disinfecting environmental pathogens.
Collapse
Affiliation(s)
- Takeaki Wajima
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Sae Aoki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Shoji Seyama
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
35
|
Zhyvoloup A, Yu BYK, Baković J, Davis-Lunn M, Tossounian MA, Thomas N, Tsuchiya Y, Peak-Chew SY, Wigneshweraraj S, Filonenko V, Skehel M, Setlow P, Gout I. Analysis of disulphide bond linkage between CoA and protein cysteine thiols during sporulation and in spores of Bacillus species. FEMS Microbiol Lett 2020; 367:fnaa174. [PMID: 33206970 PMCID: PMC8127865 DOI: 10.1093/femsle/fnaa174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine. Significant protein CoAlation was observed during sporulation of B. megaterium, and increased largely in parallel with loss of metabolism in spores. Mass spectrometric analysis identified four CoAlated proteins in B. subtilis spores as well as one CoAlated protein in growing B. megaterium cells. All five of these proteins have been identified as moderately abundant in spores. Based on these findings and published studies, protein CoAlation might be involved in facilitating establishment of spores' metabolic dormancy, and/or protecting sensitive sulfhydryl groups of spore enzymes.
Collapse
Affiliation(s)
- Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Mathew Davis-Lunn
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Naam Thomas
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Sew Yeu Peak-Chew
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology, Faculty of Medicine and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Flowers Building, Imperial College Road, London SW7 2AZ, UK
| | - Valeriy Filonenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo St., Kyiv 03680, Ukraine
| | - Mark Skehel
- Biological Mass Spectrometry & Proteomics Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, Gower St., London WC1E 6BT, UK
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo St., Kyiv 03680, Ukraine
| |
Collapse
|
36
|
Papp S, Kimmerl K, Gatz J, Laue M, Grunow R, Kaspari O. Evaluation of Sporicidal Disinfectants for the Disinfection of Personal Protective Equipment During Biological Hazards. Health Secur 2020; 18:36-48. [PMID: 32078425 PMCID: PMC7047094 DOI: 10.1089/hs.2019.0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A fast, effective, and safe disinfection of personal protective equipment (PPE) is vitally important for emergency forces involved in biological hazards. This study aimed to investigate a broad range of disinfectants to improve the established disinfection procedure. We analyzed the efficacy of chlorine-, peracetic acid–, and oxygen-based disinfectants against Bacillus spores on PPE. Therefore, spores of different Bacillus species were exposed to disinfectants on PPE material by using a standardized procedure covering the dried spores with disinfectants and applying mechanical distribution. Efficacy of disinfectants was quantified by determining the reduction factor (log10 levels) and number of viable spores left afterward. The chlorine-based granulate Hypochlorit CA G (2% chlorine) sufficiently inactivated Bacillus spores of risk groups 1 and 2, even with temperatures ranging from −20 to 35°C. Wofasteril® SC super (1.75% peracetic acid) achieved a reliable reduction of risk groups 1 and 2 and even fully virulent Bacillus spores by ≥5 log10 levels on PPE. With this, Hypochlorit-CA G and Wofasteril® SC super proved to be promising alternatives to the previously proven and widely used peracetic acid compound Wofasteril® (2% peracetic acid) for the disinfection of PPE when bacterial spores are known to be the contaminating agent. These results will help to improve the disinfection of PPE during biological hazards by providing new data on promising alternative compounds. A fast, effective, and safe disinfection of personal protective equipment (PPE) is vitally important for emergency forces involved in biological hazards. This study aimed to investigate a broad range of disinfectants to improve the established disinfection procedure. The authors analyzed the efficacy of chlorine-, peracetic acid-, and oxygen-based disinfectants against Bacillus spores on PPE.
Collapse
Affiliation(s)
- Stefanie Papp
- Dr. Stefanie Papp, Katharina Kimmerl, Jacob Gatz, Prof. Dr. Roland Grunow, and Dr. Oliver Kaspari are with the Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2); Dr. Michael Laue is with the Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4); all are with the Robert Koch Institute, Berlin, Germany
| | - Katharina Kimmerl
- Dr. Stefanie Papp, Katharina Kimmerl, Jacob Gatz, Prof. Dr. Roland Grunow, and Dr. Oliver Kaspari are with the Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2); Dr. Michael Laue is with the Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4); all are with the Robert Koch Institute, Berlin, Germany
| | - Jacob Gatz
- Dr. Stefanie Papp, Katharina Kimmerl, Jacob Gatz, Prof. Dr. Roland Grunow, and Dr. Oliver Kaspari are with the Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2); Dr. Michael Laue is with the Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4); all are with the Robert Koch Institute, Berlin, Germany
| | - Michael Laue
- Dr. Stefanie Papp, Katharina Kimmerl, Jacob Gatz, Prof. Dr. Roland Grunow, and Dr. Oliver Kaspari are with the Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2); Dr. Michael Laue is with the Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4); all are with the Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- Dr. Stefanie Papp, Katharina Kimmerl, Jacob Gatz, Prof. Dr. Roland Grunow, and Dr. Oliver Kaspari are with the Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2); Dr. Michael Laue is with the Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4); all are with the Robert Koch Institute, Berlin, Germany
| | - Oliver Kaspari
- Dr. Stefanie Papp, Katharina Kimmerl, Jacob Gatz, Prof. Dr. Roland Grunow, and Dr. Oliver Kaspari are with the Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2); Dr. Michael Laue is with the Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy (ZBS 4); all are with the Robert Koch Institute, Berlin, Germany
| |
Collapse
|
37
|
Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life (Basel) 2020; 10:life10110264. [PMID: 33143156 PMCID: PMC7693761 DOI: 10.3390/life10110264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems. The resistance to high charge energy (HZE) particles, and helium (He) ions and iron (Fe) ions (LET at 2.2 and 200 keV/µm, respectively, until 1000 Gy), of spores from two thermophiles, Bacillushorneckiae SBP3 and Bacilluslicheniformis T14, and two psychrotolerants, Bacillus sp. A34 and A43, was investigated. Spores survived He irradiation better, whereas they were more sensitive to Fe irradiation (until 500 Gy), with spores from thermophiles being more resistant to irradiations than psychrotolerants. The survived spores showed different germination kinetics, depending on the type/dose of irradiation and the germinant used. After exposure to He 1000 Gy, D-glucose increased the lag time of thermophilic spores and induced germination of psychrotolerants, whereas L-alanine and L-valine increased the germination efficiency, except alanine for A43. FTIR spectra showed important modifications to the structural components of spores after Fe irradiation at 250 Gy, which could explain the block in spore germination, whereas minor changes were observed after He radiation that could be related to the increased permeability of the inner membranes and alterations of receptor complex structures. Our results give new insights on HZE resistance of extremophiles that are useful in different contexts, including astrobiology.
Collapse
|
38
|
Zhu Y, Zhang J, Li M, Zhao L, Ren H, Yan L, Zhao G, Zhu C. Rapid determination of spore germinability of Clostridium perfringens based on microscopic hyperspectral imaging technology and chemometrics. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Christie G, Setlow P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 2020; 74:109729. [PMID: 32721540 DOI: 10.1016/j.cellsig.2020.109729] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
How might a microbial cell that is entirely metabolically dormant - and which has the ability to remain so for extended periods of time - irreversibly commit itself to resuming vegetative growth within seconds of being exposed to certain amino acids or sugars? That this process takes place in the absence of any detectable ATP or de novo protein synthesis, and relies upon a pre-formed apparatus that is immobilised, respectively, in a semi-crystalline membrane or multi-layered proteinaceous coat, only exacerbates the challenge facing spores of Bacillales species when stimulated to germinate. Whereas the process by which spores are formed in response to nutrient starvation - sporulation - involves the orchestrated interplay between hundreds of distinct proteins, the process by which spores return to life - germination - is a much simpler affair, requiring a handful of receptor and channel proteins complemented with specialized peptidoglycan lysins. Despite this relative simplicity, and research effort spanning many decades, comprehensive understanding of key molecular and biochemical details and, in particular signal transduction mechanisms associated with spore germination, has remained elusive. In this review we provide an up to date overview of the field while identifying what we consider to be the key gaps in knowledge associated with germination of Bacillales spores, suggesting also technical approaches that may provide fresh insight to this unique biological process.
Collapse
Affiliation(s)
- Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 OAS, United Kingdom.
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA.
| |
Collapse
|
40
|
Mokashi S, Kanaan J, Craft D, Byrd B, Zenick B, Laue M, Korza G, Mok W, Setlow P. Killing of bacterial spores by dodecylamine and its effects on spore inner membrane properties. J Appl Microbiol 2020; 129:1511-1522. [DOI: 10.1111/jam.14732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Affiliation(s)
- S. Mokashi
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - J. Kanaan
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - D.L. Craft
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - B. Byrd
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - B. Zenick
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - M. Laue
- Advanced Light and Electron Microscopy (ZBS 4) Robert Koch Institute Berlin Germany
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - W.W.K. Mok
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
41
|
Zhu Y, Zhang J, Li M, Ren H, Zhu C, Yan L, Zhao G, Zhang Q. Near-infrared spectroscopy coupled with chemometrics algorithms for the quantitative determination of the germinability of Clostridium perfringens in four different matrices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:117997. [PMID: 32062401 DOI: 10.1016/j.saa.2019.117997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Clostridium perfringens (C. perfringens) has the ability to form metabolically-dormant spores that can survive food preservation processes and cause food spoilage and foodborne safety risks upon germination outgrowth. This study was conducted to investigate the effects of different AGFK concentrations (0, 50, 100, 200 mM/mL) on the spore germination of C. perfringens in four matrices, including Tris-HCl, FTG, milk, and chicken soup. C. perfringens spore germinability was investigated using near infrared spectroscopy (NIRS) combined with chemometrics. The spore germination rate (S), the OD600%, and the Ca2+-DPA% were measured using traditional spore germination methods. The results of spore germination assays showed that the optimum germination rate was obtained using 100 mM/L concentrations of AGFK in the FTG medium, and the S, OD600% and Ca2+-DPA% were 98.6%, 59.3% and 95%, respectively. The best prediction models for the S, OD600% and Ca2+-DPA% were obtained using SNV as the preprocessing method for the original spectra, with the competitive adaptive weighted resampling method (CARS) as the characteristic variables related to the selected spore germination methods from NIRS data. The results of the S showed that the optimum model was built by CARS-PLSR (RMSEV = 0.745, Rc = 0.897, RMSEP = 0.769, Rp = 0.883). For the OD600%, interval partial least squares regression (CARS-siPLS) was performed to optimize the models. The calibration yielded acceptable results (RMSEV = 0.218, Rc = 0.879, RMSEP = 0.257, Rp = 0.845). For the Ca2+-DPA%, the optimum model with CARS-siPLS yielded acceptable results (RMSEV = 44.7, Rc = 0.883, RMSEP = 50.2, Rp = 0.872). This indicated that quantitative determinations of the germinability of C. perfringens spores using NIR technology is feasible. A new method based on NIR was provided for rapid, automatic, and non-destructive determination of the germinability of C. perfringens spores.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Jiaye Zhang
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China.
| | - Hongrong Ren
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Chaozhi Zhu
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Longgnag Yan
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| | - Qiuhui Zhang
- College of Food Science and Technology, Henan Key Laboratory of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou 450000, PR China
| |
Collapse
|
42
|
Taylor W, Camilleri E, Craft DL, Korza G, Granados MR, Peterson J, Szczpaniak R, Weller SK, Moeller R, Douki T, Mok WWK, Setlow P. DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation. Appl Environ Microbiol 2020; 86:AEM.03039-19. [PMID: 32033948 PMCID: PMC7117916 DOI: 10.1128/aem.03039-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/03/2020] [Indexed: 01/16/2023] Open
Abstract
This study examined the microbicidal activity of 222-nm UV radiation (UV222), which is potentially a safer alternative to the 254-nm UV radiation (UV254) that is often used for surface decontamination. Spores and/or growing and stationary-phase cells of Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, Staphylococcus aureus, and Clostridioides difficile and a herpesvirus were all killed or inactivated by UV222 and at lower fluences than with UV254B. subtilis spores and cells lacking the major DNA repair protein RecA were more sensitive to UV222, as were spores lacking their DNA-protective proteins, the α/β-type small, acid-soluble spore proteins. The spore cores' large amount of Ca2+-dipicolinic acid (∼25% of the core dry weight) also protected B. subtilis and C. difficile spores against UV222, while spores' proteinaceous coat may have given some slight protection against UV222 Survivors among B. subtilis spores treated with UV222 acquired a large number of mutations, and this radiation generated known mutagenic photoproducts in spore and cell DNA, primarily cyclobutane-type pyrimidine dimers in growing cells and an α-thyminyl-thymine adduct termed the spore photoproduct (SP) in spores. Notably, the loss of a key SP repair protein markedly decreased spore UV222 resistance. UV222-treated B. subtilis spores germinated relatively normally, and the generation of colonies from these germinated spores was not salt sensitive. The latter two findings suggest that UV222 does not kill spores by general protein damage, and thus, the new results are consistent with the notion that DNA damage is responsible for the killing of spores and cells by UV222IMPORTANCE Spores of a variety of bacteria are resistant to common decontamination agents, and many of them are major causes of food spoilage and some serious human diseases, including anthrax caused by spores of Bacillus anthracis Consequently, there is an ongoing need for efficient methods for spore eradication, in particular methods that have minimal deleterious effects on people or the environment. UV radiation at 254 nm (UV254) is sporicidal and commonly used for surface decontamination but can cause deleterious effects in humans. Recent work, however, suggests that 222-nm UV (UV222) may be less harmful to people than UV254 yet may still kill bacteria and at lower fluences than UV254 The present work has identified the damage by UV222 that leads to the killing of growing cells and spores of some bacteria, many of which are human pathogens, and UV222 also inactivates a herpesvirus.
Collapse
Affiliation(s)
- Willie Taylor
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Emily Camilleri
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - D Levi Craft
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Maria Rocha Granados
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Jaliyah Peterson
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Renata Szczpaniak
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Thierry Douki
- Universite Grenoble Alpes, CEA, CNRS, INAC-SYMMBEST, Grenoble, France
| | - Wendy W K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
43
|
Engineering Bacillus subtilis as a Versatile and Stable Platform for Production of Nanobodies. Appl Environ Microbiol 2020; 86:AEM.02938-19. [PMID: 32060024 DOI: 10.1128/aem.02938-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing need for a highly stable system to allow the production of biologics for diagnoses and therapeutic interventions on demand that could be used in extreme environments. Among the variety of biologics, nanobodies (Nbs) derived from single-chain variable antibody fragments from camelids have attracted great attention in recent years due to their small size and great stability with translational potentials in whole-body imaging and the development of new drugs. Intracellular expression using the bacterium Escherichia coli has been the predominant system to produce Nbs, and this requires lengthy steps for releasing intracellular proteins for purification as well as removal of endotoxins. Lyophilized, translationally competent cell extracts have also been explored as offering portability and long shelf life, but such extracts may be difficult to scale up and suffer from batch-to-batch variability. To address these problems, we present a new system to do the following: (i) engineer the spore-forming bacterium Bacillus subtilis to secrete Nbs that can target small molecules or protein antigens on mammalian cells, (ii) immobilize Nbs containing a cellulose-binding domain on a cellulose matrix for long-term storage and small-molecule capturing, (iii) directly use Nb-containing bacterial supernatant fluid to perform protein detection on cell surfaces, and (iv) convert engineered B. subtilis to spores that are resistant to most environmental extremes. In summary, our work may open a new paradigm for using B. subtilis as an extremely stable microbial factory to produce Nbs with applications in extreme environments on demand.IMPORTANCE It is highly desirable to produce biologics for diagnoses and therapeutic interventions on demand that could be used in a variety of settings. Among the many biologics, Nbs have attracted attention due to their small size, thermal stability, and broad utility in diagnoses, therapies, and fundamental research. Nbs originate from antibodies found in camelids, and >10 companies have invested in Nbs as potential drugs. Here, we present a system using cells of the bacterium Bacillus subtilis as a versatile platform for production of Nbs and then antigen detection via customized affinity columns. Importantly, B. subtilis carrying engineered genes for Nbs can form spores, which survive for years in a desiccated state. However, upon rehydration and exposure to nutrients, spores rapidly transition to growing cells which secrete encoded Nbs, thus allowing their manufacture and purification.
Collapse
|
44
|
Green J, Korza G, Granados MR, Zenick B, Schlievert PM, Mok WMK, Setlow P. Lack of efficient killing of purified dormant spores of Bacillales and Clostridiales species by glycerol monolaurate in a non-aqueous gel. Lett Appl Microbiol 2020; 70:407-412. [PMID: 32133659 DOI: 10.1111/lam.13290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Inactivation of Bacillales and Clostridiales spores is of interest, since some cause food spoilage and human diseases. A recent publication (mSphere 3: e00597-1, 2018) reported that glycerol monolaurate (GML) in a non-aqueous gel (GMLg) effectively killed spores of Bacillus subtilis, Bacillus cereus and Clostridioides difficile, and Bacillus anthracis spores to a lesser extent. We now show that (i) the B. subtilis spores prepared as in the prior work were impure; (ii) if spore viability was measured by diluting spores 1/10 in GMLg, serially diluting incubations 10-fold and spotting aliquots on recovery plates, there was no colony formation from the 1/10 to 1/1000 dilutions due to GMLg carryover, although thorough ethanol washes of incubated spores eliminated this problem and (iii) GMLg did not kill highly purified spores of B. subtilis, B. cereus, Bacillus megaterium and C. difficile in 3-20 h in the conditions used in the recent publication. GMLg also gave no killing of crude B. subtilis spores prepared as in the recent publication in 5 h but gave ~1·5 log killing at 24 h. Thus, GMLg does not appear to be an effective sporicide, although the gel likely inhibits spore germination and could kill spores somewhat upon long incubations. SIGNIFICANCE AND IMPACT OF THE STUDY: Given potential deleterious effects of spores of Bacillales and Clostridiales, there is an ongoing interest in new ways of spore killing. A recent paper (mSphere 3: e00597-1, 2018) reported that glycerol monolaurate (GML) in a non-aqueous gel (GMLg) effectively killed spores of many species. We now find that (i) the Bacillus subtilis spores prepared as in the previous report were impure and (ii) GMLg gave no killing of purified spores of Bacillales and Clostridiales species in ≤5 h under the published conditions. Thus, GMLg is not an effective sporicide, though may prevent spore germination or kill germinated spores.
Collapse
Affiliation(s)
- J Green
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - G Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - M R Granados
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - B Zenick
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - P M Schlievert
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - W M K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - P Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
45
|
Customized antimicrobial efficacy tests offer superior evaluation of growth inhibitor efficacy for liquid microbial products. Heliyon 2020; 6:e03419. [PMID: 32140579 PMCID: PMC7044798 DOI: 10.1016/j.heliyon.2020.e03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/29/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial effectiveness tests are common methods used to assess the risk of microbial contamination in pharmaceuticals and cosmetics. These assays may be inappropriate for endospore-based microbial products which often carry a similar – if not greater – risk of microbial contamination. In the present study, we compared the antimicrobial efficacy assessment provided by United States Pharmacopeia Chapter <51> Antimicrobial Effectiveness Testing with a modified test which utilized a customized bacterial challenge. The customized challenge inoculum comprised an assemblage of 12 bacterial strains (both pathogens and spoilage organisms) isolated from the product's end-use geography. Results suggest that some microbial inhibitor systems which pass industry standard antimicrobial effectiveness tests may fail when challenged with a customized bacterial assemblage. In order to provide the best possible assessment of microbial inhibitor systems for liquid Bacillus products, we suggest that new antimicrobial effectiveness tests be developed for this product class which include the addition of field-relevant contaminants in addition to the industry standard pathogen challenge.
Collapse
|
46
|
Camilleri E, Korza G, Huesca‐Espita L, Setlow B, Stamatis D, Setlow P. Mechanisms of killing of
Bacillus thuringiensis
Al Hakam spores in a blast environment with and without iodic acid. J Appl Microbiol 2020; 128:1378-1389. [DOI: 10.1111/jam.14573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 11/27/2022]
Affiliation(s)
- E. Camilleri
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - G. Korza
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - L.d.C. Huesca‐Espita
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
- Departamento de Ingenieria Quimica Alimentos y Ambiental Universidad de las Americas Puebla Mexico
| | - B. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| | - D. Stamatis
- Indian Head EODTD Naval Surface Warfare Center Indian Head MD USA
| | - P. Setlow
- Department of Molecular Biology and Biophysics UConn Health Farmington CT USA
| |
Collapse
|
47
|
Accumulation and Release of Rare Earth Ions by Spores of Bacillus Species and the Location of These Ions in Spores. Appl Environ Microbiol 2019; 85:AEM.00956-19. [PMID: 31253678 DOI: 10.1128/aem.00956-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
Two rare earth ions, Tb3+ and Dy3+, were incorporated into spores of Bacillus species in ≤5 min at neutral pH to 100 to 200 nmol per mg of dry spores, which is equivalent to 2 to 3% of the spore dry weight. The uptake of these ions had, at most, minimal effects on spore wet heat resistance or germination, and the ions were all released upon germination, probably by complex formation with the huge depot of dipicolinic acid (DPA) released when spores germinate. Adsorbed Tb3+/Dy3+ were also released by exogenous DPA within a few minutes and faster than in spore germination. The accumulation of Tb3+/Dy3+ was not reduced in Bacillus subtilis spores by several types of coat defects, significant modification of the spore cortex peptidoglycan structure, specific loss of components of the outer spore crust layer, or the absence of DPA in the spore core. All of these findings are consistent with Tb3+/Dy3+ being accumulated in spores' outer layers, and this was confirmed by transmission electron microscopy. However, the identity of the outer spore components binding the Tb3+/Dy3+ is not clear. These findings provide new information on the adsorption of rare earth ions by Bacillus spores and suggest this adsorption might have applications in capturing rare earth ions from the environment.IMPORTANCE Biosorption of rare earth ions by growing cells of Bacillus species has been well studied and has attracted attention for possible hydrometallurgy applications. However, the interaction of spores from Bacillus species with rare earth ions has not been well studied. We investigated here the adsorption and/or desorption of two rare earth ions, Tb3+ and Dy3+, by Bacillus spores, the location of the adsorbed ions, and the spore properties after ion accumulation. The significant adsorption of rare earth ions on the surfaces of Bacillus spores and the ions' rapid release by a chelator could allow the development of these spores as a biosorbent to recover rare earth ions from the environment.
Collapse
|
48
|
Properties of Aged Spores of Bacillus subtilis. J Bacteriol 2019; 201:JB.00231-19. [PMID: 31061168 DOI: 10.1128/jb.00231-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Bacillus spores incubated on plates for 2 to 98 days at 37°C had identical Ca-dipicolinic acid contents, exhibited identical viability on rich- or poor-medium plates, germinated identically in liquid with all germinants tested, identically returned to vegetative growth in rich or minimal medium, and exhibited essentially identical resistance to dry heat and similar resistance to UV radiation. However, the oldest spores had a lower core water content and significantly higher wet heat and NaOCl resistance. In addition, 47- and 98-day spores had lost >98% of intact 16S and 23S rRNA and 97 to 99% of almost all mRNAs, although minimal amounts of mononucleotides were generated in 91 days. Levels of 3-phosphoglyceric acid (3PGA) also fell 30 to 60% in the oldest spores, but how the 3PGA was lost is not clear. These results indicate that (i) translation of dormant spore mRNA is not essential for completion of spore germination, nor is protein synthesis from any mRNA; (ii) in sporulation for up to 91 days at 37°C, the RNA broken down generates minimal levels of mononucleotides; and (iii) the lengths of time that spores are incubated in sporulation medium should be considered when determining conditions for spore inactivation by wet heat, in particular, in using spores to test for the efficacy of sterilization regimens.IMPORTANCE We show that spores incubated at 37°C on sporulation plates for up to 98 days have lost almost all mRNAs and rRNAs, yet the aged spores germinated and outgrew as well as 2-day spores, and all these spores had identical viability. Thus, it is unlikely that spore mRNA, rRNA, or protein synthesis is important in spore germination. Spores incubated for 47 to 98 days also had much higher wet heat resistance than 2-day spores, suggesting that spore "age" should be considered in generating spores for tests of sterilization assurance. These data are the first to show complete survival of hydrated spores for ∼100 days, complementing published data showing dry-spore survival for years.
Collapse
|
49
|
Gemein S, Gebel J, Christiansen B, Martiny H, Vossebein L, Brill FHH, Decius M, Eggers M, Koburger-Janssen T, Meckel M, Werner S, Hunsinger B, Selhorst T, Kampf G, Exner M. Interlaboratory reproducibility of a test method following 4-field test methodology to evaluate the susceptibility of Clostridium difficile spores. J Hosp Infect 2019; 103:78-84. [PMID: 31199936 DOI: 10.1016/j.jhin.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/21/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sporicidal surface disinfection is recommended to control transmission of Clostridium difficile in healthcare facilities. EN 17126 provides a method to determine the sporicidal activity in suspension and has been approved as a European standard. In addition, a sporicidal surface test has been proposed. AIM To determine the interlaboratory reproducibility of a test method for evaluating the susceptibility of a C. difficile spore preparation to a biocidal formulation following the 4-field test (EN 16615 methodology). METHODS Nine laboratories participated. C. difficile NCTC 13366 spores were used. Glutaraldehyde (1% and 6%; 15 min) and peracetic acid (PAA; 0.01% and 0.04%; 15 min) were used to determine the spores' susceptibility in suspension in triplicate. FINDINGS One-percent glutaraldehyde revealed a mean decimal log10 reduction of 1.03 with variable results in the nine laboratories (0.37-1.49) and a reproducibility of 0.38. The effect of 6% glutaraldehyde was stronger (mean: 2.05; range: 0.96-4.29; reproducibility: 0.86). PAA revealed similar results. An exemplary biocidal formulation based on 5% PAA was used at 0.5% (non-effective concentration) and 4% (effective concentration) to determine the sporicidal efficacy (4-field test) under clean conditions in triplicate with a contact time of 15 min. When used at 0.5% it demonstrated an overall log10 reduction of 2.68 (range: 2.35-3.57) and at 4% of 4.61 (range: 3.82-5.71). The residual contamination on the three primarily uncontaminated test fields was <50 cfu/25 cm2 in one out of nine laboratories (0.5%) and in seven out of nine laboratories (4%). CONCLUSION The interlaboratory reproducibility seems to be robust.
Collapse
Affiliation(s)
- S Gemein
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany; VAH Ring Trial Steering Gremium of the Association for Applied Hygiene (VAH), Bonn, Germany.
| | - J Gebel
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany; VAH Ring Trial Steering Gremium of the Association for Applied Hygiene (VAH), Bonn, Germany; Disinfectant Commission 4+4-Group of the Association for Applied Hygiene (VAH), Bonn, Germany
| | - B Christiansen
- Disinfectant Commission 4+4-Group of the Association for Applied Hygiene (VAH), Bonn, Germany; ZE Medizinaluntersuchungsamt und Hygiene, University Hospital Schleswig Holstein, Kiel, Germany
| | - H Martiny
- VAH Ring Trial Steering Gremium of the Association for Applied Hygiene (VAH), Bonn, Germany; Disinfectant Commission 4+4-Group of the Association for Applied Hygiene (VAH), Bonn, Germany
| | - L Vossebein
- Disinfectant Commission 4+4-Group of the Association for Applied Hygiene (VAH), Bonn, Germany; University of Applied Sciences Niederrhein, Mönchengladbach, Germany
| | - F H H Brill
- Dr Brill + Partner GmbH, Institut für Hygiene und Mikrobiologie, Hamburg, Germany
| | - M Decius
- ZE Medizinaluntersuchungsamt und Hygiene, University Hospital Schleswig Holstein, Kiel, Germany
| | - M Eggers
- Labor Prof. Gisela Enders MVZ GbR, Stuttgart, Germany
| | | | - M Meckel
- IKI Institut für Krankenhaushygiene und Infektionskontrolle GmbH, Gießen, Germany
| | - S Werner
- HygCen Germany GmbH, Schwerin, Germany
| | - B Hunsinger
- VAH Ring Trial Steering Gremium of the Association for Applied Hygiene (VAH), Bonn, Germany
| | - T Selhorst
- Institut für Tierwissenschaften, Präventives Gesundheitsmanagement, University Bonn, Germany
| | - G Kampf
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - M Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
50
|
Liang D, Zhang L, Wang X, Wang P, Liao X, Wu X, Chen F, Hu X. Building of Pressure-Assisted Ultra-High Temperature System and Its Inactivation of Bacterial Spores. Front Microbiol 2019; 10:1275. [PMID: 31244800 PMCID: PMC6579918 DOI: 10.3389/fmicb.2019.01275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/22/2019] [Indexed: 11/21/2022] Open
Abstract
The pressure-assisted ultra-high temperature (PAUHT) system was built by using soybean oil as pressure-transmitting medium, and the multiple regression equation of soybean oil temperature change (ΔTP ) during pressurization as a function of initial temperature (Ti ) and set pressure (P) was developed: ΔTP = -13.45 + 0.46 Ti + 0.0799 P - 0.0037T i 2 - 2.83 × 10-5 P2. The fitted model indicated that the temperature of the system would achieve ≥121°C at 600 MPa when the initial temperature of soybean oil was ≥84°C. The PAUHT system could effectively inactivate spores of Bacillus subtilis 168 and Clostridium sporogenes PA3679 (less than 1 min). Treatment of 600 MPa and 121°C with no holding time resulted in a 6.75 log reductions of B. subtilis 168 spores, while treatment of 700 MPa and 121°C with pressure holding time of 20 s achieved more than 5 log reductions of C. sporogenes PA3679 spores. By comparing the PAUHT treatment with high pressure or thermal treatment alone, and also studying the effect of compression on spore inactivation during PAUHT treatment, the inactivation mechanism was further discussed and could be concluded as follows: both B. subtilis 168 and C. sporogenes PA3679 spores were triggered to germinate firstly by high pressure, which was enhanced by increased temperature, then the germinated spores were inactivated by heat.
Collapse
Affiliation(s)
- Dong Liang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
| | - Liang Zhang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Pan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, China Agricultural University, Beijing, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|