1
|
Dai J, Chen H, Fang J, Wu S, Jia Z. Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension. Int J Mol Sci 2025; 26:4265. [PMID: 40362501 PMCID: PMC12072204 DOI: 10.3390/ijms26094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Pulmonary hypertension (PH) is a serious cardiovascular disease caused by a variety of pathogenic factors, which is characterized by increased pulmonary vascular resistance (PVR) and progressive elevation of mean pulmonary artery pressure (mPAP). This disease can lead to right ventricular hypertrophy and, in severe cases, right heart failure and even death. Vascular remodeling-a pathological modification involving aberrant vasoconstriction, cell proliferation, apoptosis resistance, and inflammation in the pulmonary vascular system-is a significant pathological hallmark of PH and a critical process in its progression. Recent studies have found that vascular remodeling involves the participation of a diversity of cellular pathological alterations, such as the dysfunction of pulmonary artery endothelial cells (PAECs), the proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), the phenotypic differentiation of pulmonary artery fibroblasts, the inflammatory response of immune cells, and pericyte proliferation. This review focuses on the mechanisms and the intercellular crosstalk of these cells in the PH process, emphasizing recent advances in knowledge regarding cellular signaling pathways, inflammatory responses, apoptosis, and proliferation. To develop better treatments, a list of possible therapeutic approaches meant to slow down certain biological functions is provided, with the aim of providing new insights into the treatment of PH by simplifying the intricacies of these complex connections. In this review, comprehensive academic databases such as PubMed, Embase, Web of Science, and Google Scholar were systematically searched to discuss studies relevant to human and animal PH, with a focus on vascular remodeling in PH.
Collapse
Affiliation(s)
- Jinjin Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Hongyang Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Jindong Fang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Shiguo Wu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (J.D.); (H.C.); (J.F.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
2
|
Mwase C, Deng W, Kim HJ, Mitchel J, Phung TK, O'Sullivan MJ, Mathews JA, Crosby J, Turner C, Haber A, Park JA. Hic-5 transduces mechanical force that drives a vicious cycle of bronchoconstriction. RESEARCH SQUARE 2025:rs.3.rs-6498980. [PMID: 40343342 PMCID: PMC12060975 DOI: 10.21203/rs.3.rs-6498980/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Mechanical forces are essential for the function of key organs, including the bladder, bowel, heart, and lung<1/sup>. These organs often encounter excessive or dysregulated mechanical forces, which are associated with pathological conditions. However, the key regulators of mechanotransduction remain poorly understood. As an example of how excessive mechanical force imposed on airway epithelia could lead to mechanotransduction<2/sup> that alters the transcriptome<3/sup> and secretome<4/sup> and induces cell death<5/sup>, all of which contribute to disease progression<6,7/sup>, we used human airway epithelial cells in air-liquid interface culture to mimic bronchoconstriction. We show that Hic-5, a focal adhesion adaptor protein, functions as a key regulator of mechanoresponses in the airway. Hic-5 expression is significantly induced in airway basal cells following mechanical compression or bronchoconstriction. Hic-5 knockdown using antisense oligonucleotides protects against stress fiber formation and abolishes approximately 70% of transcripts differentially regulated by mechanical compression. Moreover, Hic-5 deficiency attenuates secretion of ET-1, a potent bronchoconstrictor. Our data show that during an asthma exacerbation, Hic-5 reinforces a vicious cycle of bronchoconstriction through the secretion of ET-1. We establish Hic-5 as a critical link between mechanical stress and epithelial activation in human disease, implicating dysregulated mechanical forces as active drivers of disease progression with therapeutic relevance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Adam Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | | |
Collapse
|
3
|
Holland AM, Jehoul R, Vranken J, Wohl SG, Boesmans W. MicroRNA regulation of enteric nervous system development and disease. Trends Neurosci 2025; 48:268-282. [PMID: 40089421 PMCID: PMC11981837 DOI: 10.1016/j.tins.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The enteric nervous system (ENS), an elaborate network of neurons and glia woven through the gastrointestinal tract, is integral for digestive physiology and broader human health. Commensurate with its importance, ENS dysfunction is linked to a range of debilitating gastrointestinal disorders. MicroRNAs (miRNAs), with their pleiotropic roles in post-transcriptional gene regulation, serve as key developmental effectors within the ENS. Herein, we review the regulatory dynamics of miRNAs in ENS ontogeny, showcasing specific miRNAs implicated in both congenital and acquired enteric neuropathies, such as Hirschsprung's disease (HSCR), achalasia, intestinal neuronal dysplasia (IND), chronic intestinal pseudo-obstruction (CIPO), and slow transit constipation (STC). By delineating miRNA-mediated mechanisms in these diseases, we underscore their importance for ENS homeostasis and highlight their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amy Marie Holland
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reindert Jehoul
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jorunn Vranken
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Stefanie Gabriele Wohl
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, USA
| | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
5
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
6
|
Hao S, Zuo F, Zhang H, Wang Y, Huang L, Ma F, Song T, Zhang T, Ren X, Wang N. LncRNA RP11-301G19.1 is required for the maintenance of vascular smooth muscle cell contractile phenotype via sponging miR-17-5P/ATOH8 axis. IUBMB Life 2024; 76:731-744. [PMID: 38651683 DOI: 10.1002/iub.2824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Long noncoding RNAs (LncRNAs) play essential roles in regulating gene expression in various biological processes. However, the function of lncRNAs in vascular smooth muscle cell (VSMC) transformation remains to be explained. In this work, we discover that a new bone marrow protein (BMP) signaling target, lncRNA RP11-301G19.1, is significantly induced in BMP7-treated VSMCs through lncRNA microarray analysis. Addition of BMP signaling inhibitor LDN-193189 attenuates the expression of ACTA2 and SM-22α, as well as the mRNA level of RP11-301G19.1. Furthermore, lncRNA RP11-301G19.1 is critical to the VSMC differentiation and is directly activated by SMAD1/9. Mechanistically, knocking down of RP11-301G19.1 leads to the decrease of ATOH8, another BMP target, while the forced expression of RP11-301G19.1 reactivates ATOH8. In addition, miR-17-5p, a miRNA negatively regulated by BMP-7, contains predicted binding sites for lncRNA RP11-301G19.1 and ATOH8 3'UTR. Accordingly, overexpression of miR-17-5p decreases the levels of them. Together, our results revealed the role of lncRNA RP11-301G19.1 as a miRNA sponge to upregulate ATOH8 in VSMC phenotype transformation.
Collapse
Affiliation(s)
- Shuning Hao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Feifei Zuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Hongmin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Liwen Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Fenghui Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Tiefeng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Xuejun Ren
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| |
Collapse
|
7
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460 DOI: 10.5483/bmbrep.2023-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 04/03/2024] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
8
|
Zhou D, Ha HC, Yang G, Jang JM, Park BK, Fu Z, Shin IC, Kim DK. Hyaluronic acid and proteoglycan link protein 1 suppresses platelet‑derived growth factor-BB-induced proliferation, migration, and phenotypic switching of vascular smooth muscle cells. BMB Rep 2023; 56:445-450. [PMID: 37401239 PMCID: PMC10471460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The development of atherosclerotic cardiovascular disease is associated with the phenotypic switching of vascular smooth muscle cells (SMCs) from a contractile to a synthetic state, leading to cell migration and proliferation. Platelet‑derived growth factor‑BB (PDGF‑BB) modulates this de-differentiation by initiating a number of biological processes. In this study, we show that gene expression of hyaluronic acid (HA) and proteoglycan link protein 1 (HAPLN1) was upregulated during differentiation of human aortic SMCs (HASMCs) into a contractile state, but downregulated upon during PDGF-BB-induced dedifferentiation. This is the first study showing that the treatment of HASMCs with full-length recombinant human HAPLN1 (rhHAPLN1) significantly reversed PDGF-BB-induced decrease in the protein levels of contractile markers (SM22α, α-SMA, calponin, and SM-MHC), and inhibited the proliferation and migration of HASMCs induced by PDGF-BB. Furthermore, our results show that rhHAPLN1 significantly inhibited the phosphorylation of FAK, AKT, STAT3, p38 MAPK and Raf mediated by the binding of PDGF-BB to PDGFRβ. Together, these results indicated that rhHAPLN1 can suppress the PDGF-BB-stimulated phenotypic switching and subsequent de-differentiation of HASMCs, highlighting its potential as a novel therapeutic target for atherosclerosis and other vascular diseases. [BMB Reports 2023; 56(8): 445-450].
Collapse
Affiliation(s)
- Dan Zhou
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Goowon Yang
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Bo Kyung Park
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
- HaplnScience Research Institute, HaplnScience Inc., Seongnam 13494, Korea
| |
Collapse
|
9
|
Bai Y, Zhang L, Zheng B, Zhang X, Zhang H, Zhao A, Yu J, Yang Z, Wen J. circACTA2 inhibits NLRP3 inflammasome-mediated inflammation via interacting with NF-κB in vascular smooth muscle cells. Cell Mol Life Sci 2023; 80:229. [PMID: 37498354 PMCID: PMC10374705 DOI: 10.1007/s00018-023-04840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023]
Abstract
circACTA2 derived from the smooth muscle α-actin gene plays an important role in the regulation of vascular smooth muscle cell (VSMC) phenotype. The activation of NLRP3 inflammasome is involved in VSMC phenotypic switching. However, the mechanistic relationship between circACTA2 and NLRP3 inflammasome during vascular remodeling remains poorly understood. Here, we showed that circACTA2 was down-regulated in human intimal hyperplasia. circACTA2 overexpression in circACTA2 transgenic mice significantly decreased the neointimal hyperplasia induced by vascular injury, which is concomitant with a decrease in IL-18, IL-1β, TNF-α, and IL-6 levels. Gain- and loss-of-function studies revealed that circACTA2 alleviated VSMC inflammation by suppressing the activation of NLRP3 inflammasome. Mechanistically, circACTA2 inhibited the expression of NF-κB p65 and p50 subunits and interacted with p50, which impedes the formation of the p50/p65 heterodimer and nuclear translocation induced by TNF-α, thus resulting in the suppression of NLRP3 gene transcription and inflammasome activation. Furthermore, circACTA2 overexpression mitigated inflammation via repressing NLRP3 inflammasome-mediated VSMC pyroptosis. Importantly, employing a decoy oligonucleotide to compete with circACTA2 for binding to p50 could attenuate the expression of NLRP3, ASC, and caspase-1. These findings provide a novel insight into the functional roles of circACTA2 in VSMCs, and targeting the circACTA2-NF-κB-NLRP3 axis represents a promising therapeutic strategy for vascular remodeling.
Collapse
Affiliation(s)
- Yang Bai
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Long Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
- Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Hong Zhang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Anning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jing Yu
- Department of Respiratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| |
Collapse
|
10
|
Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S, Ebrahimzade M. Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol 2023; 212:115572. [PMID: 37127247 DOI: 10.1016/j.bcp.2023.115572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Atherosclerosis is an LDL-driven and inflammatory disorder of the sub-endothelial space. Available data have proposed that various factors could affect atherosclerosis pathogenesis, including inflammation, oxidation of LDL particles, endothelial dysfunction, foam cell formation, proliferation, and migration of vascular smooth muscle cells (VSMCs). In addition, other research indicated that the crosstalk among atherosclerosis-induced cells is a crucial factor in modulating atherosclerosis. Extracellular vesicles arenanoparticleswith sizes ranging from 30-150 nm, playing an important role in various pathophysiological situations. Exosomes, asa form of extracellular vesicles, could affect the crosstalk between sub-endothelial cells. They can transport bioactive components like proteins, lipids, RNA, and DNA. As an important cargo in exosomes, noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs could modulate cellular functions by regulating the transcription, epigenetic alteration, and translation. The current work aimed to investigate the underlying molecular mechanisms of exosomal ncRNA as well as their potential as a diagnostic biomarker and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mahdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sarrafha
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Zhang Q, Pan RR, Wu YT, Wei YM. MicroRNA-146a Promotes Embryonic Stem Cell Differentiation towards Vascular Smooth Muscle Cells through Regulation of Kruppel-like Factor 4. Curr Med Sci 2023; 43:223-231. [PMID: 37072613 PMCID: PMC10112997 DOI: 10.1007/s11596-023-2736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Vascular smooth muscle cell (VSMC) differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension, atherosclerosis, and restenosis. MicroRNA-146a (miR-146a) has been proven to be involved in cell proliferation, migration, and tumor metabolism. However, little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells (ESCs). This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs. METHODS Mouse ESCs were differentiated into VSMCs, and the cell extracts were analyzed by Western blotting and RT-qPCR. In addition, luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed. Finally, C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs, and immunohistochemistry, Western blotting, and RT-qPCR assays were carried out on tissue samples from these mice. RESULTS miR-146a was significantly upregulated during VSMC differentiation, accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin (SMαA), smooth muscle 22 (SM22), smooth muscle myosin heavy chain (SMMHC), and h1-calponin. Furthermore, overexpression of miR-146a enhanced the differentiation process in vitro and in vivo. Concurrently, the expression of Kruppel-like factor 4 (KLF4), predicted as one of the top targets of miR-146a, was sharply decreased in miR-146a-overexpressing ESCs. Importantly, inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs. In addition, miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors, including serum response factor (SRF) and myocyte enhancer factor 2c (MEF-2c). CONCLUSION Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong-Rong Pan
- Department of Cardiology, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Yu-Tao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yu-Miao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
O’Morain VL, Chen J, Plummer SF, Michael DR, Ramji DP. Anti-Atherogenic Actions of the Lab4b Consortium of Probiotics In Vitro. Int J Mol Sci 2023; 24:ijms24043639. [PMID: 36835055 PMCID: PMC9964490 DOI: 10.3390/ijms24043639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Probiotic bacteria have many protective effects against inflammatory disorders, though the mechanisms underlying their actions are poorly understood. The Lab4b consortium of probiotics contains four strains of lactic acid bacteria and bifidobacteria that are reflective of the gut of newborn babies and infants. The effect of Lab4b on atherosclerosis, an inflammatory disorder of the vasculature, has not yet been determined and was investigated on key processes associated with this disease in human monocytes/macrophages and vascular smooth muscle cells in vitro. The Lab4b conditioned medium (CM) attenuated chemokine-driven monocytic migration, monocyte/macrophage proliferation, uptake of modified LDL and macropinocytosis in macrophages together with the proliferation and platelet-derived growth factor-induced migration of vascular smooth muscle cells. The Lab4b CM also induced phagocytosis in macrophages and cholesterol efflux from macrophage-derived foam cells. The effect of Lab4b CM on macrophage foam cell formation was associated with a decrease in the expression of several key genes implicated in the uptake of modified LDL and induced expression of those involved in cholesterol efflux. These studies reveal, for the first time, several anti-atherogenic actions of Lab4b and strongly implicate further studies in mouse models of the disease in vivo and in clinical trials.
Collapse
Affiliation(s)
- Victoria L. O’Morain
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Jing Chen
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Sue F. Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Daryn R. Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Dipak P. Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
- Correspondence: ; Tel.: +44-(0)29-20876753
| |
Collapse
|
13
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
14
|
Huang N, Wang D, Zhu TT, Ge XY, Liu H, Yao MZ, Guo YZ, Peng J, Wang Q, Zhang Z, Hu CP. Plasma exosomes confer hypoxic pulmonary hypertension by transferring LOX-1 cargo to trigger phenotypic switching of pulmonary artery smooth muscle cells. Biochem Pharmacol 2023; 207:115350. [PMID: 36435201 DOI: 10.1016/j.bcp.2022.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022]
Abstract
The pulmonary vascular remodeling (PVR), the pathological basis of pulmonary hypertension (PH), entails pulmonary artery smooth muscle cells (PASMCs) phenotypic switching, but appreciation of the underlying mechanisms is incomplete. Exosomes, a novel transfer machinery enabling delivery of its cargos to recipient cells, have been recently implicated in cardiovascular diseases including PH. The two critical questions of whether plasma-derived exosomes drive PASMCs phenotypic switching and what cargo the exosomes transport, however, remain unclear. Herein, by means of transmission electron microscopy and protein detection, we for the first time, characterized lectin like oxidized low-density lipoprotein receptor-1 (LOX-1) as a novel cargo of plasma-derived exosomes in PH. With LOX-1 knockout (Olr1-/-) rats-derived exosomes, we demonstrated that exosomal LOX-1 could be transferred into PASMCs and thus elicited cell phenotypic switching. Of importance, Olr1-/- rats exhibited no cell phenotypic switching and developed less severe PH, but administration of wild type rather than Olr1-/- exosomes to Olr1-/- rats recapitulated the phenotype of PH with robust PASMCs phenotypic switching. We also revealed that exosomal LOX-1 triggered PASMCs phenotypic switching, PVR and ultimately PH via ERK1/2-KLF4 signaling axis. This study has generated proof that plasma-derived exosomes confer PH by delivering LOX-1 into PASMCs. Hence, exosomal LOX-1 represents a novel exploitable target for PH prevention and treatment.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Henan 450052, China
| | - Di Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Tian-Tian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453000, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan 453000, China
| | - Xiao-Yue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hong Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Mao-Zhong Yao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Yan-Zi Guo
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China
| | - Qing Wang
- The Interventional Radiology & Vascular Surgery Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
15
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
16
|
Masbuchin AN, Widodo, Rohman MS, Liu PY. The two facets of receptor tyrosine kinase in cardiovascular calcification-can tyrosine kinase inhibitors benefit cardiovascular system? Front Cardiovasc Med 2022; 9:986570. [PMID: 36237897 PMCID: PMC9552878 DOI: 10.3389/fcvm.2022.986570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are widely used in cancer treatment due to their effectiveness in cancer cell killing. However, an off-target of this agent limits its success. Cardiotoxicity-associated TKIs have been widely reported. Tyrosine kinase is involved in many regulatory processes in a cell, and it is involved in cancer formation. Recent evidence suggests the role of tyrosine kinase in cardiovascular calcification, specifically, the calcification of heart vessels and valves. Herein, we summarized the accumulating evidence of the crucial role of receptor tyrosine kinase (RTK) in cardiovascular calcification and provided the potential clinical implication of TKIs-related ectopic calcification. We found that RTKs, depending on the ligand and tissue, can induce or suppress cardiovascular calcification. Therefore, RTKs may have varying effects on ectopic calcification. Additionally, in the context of cardiovascular calcification, TKIs do not always relate to an unfavored outcome-they might offer benefits in some cases.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Gogiraju R, Gachkar S, Velmeden D, Bochenek ML, Zifkos K, Hubert A, Münzel T, Offermanns S, Schäfer K. Protein Tyrosine Phosphatase 1B Deficiency in Vascular Smooth Muscle Cells Promotes Perivascular Fibrosis following Arterial Injury. Thromb Haemost 2022; 122:1814-1826. [PMID: 36075234 PMCID: PMC9512587 DOI: 10.1055/s-0042-1755329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background
Smooth muscle cell (SMC) phenotype switching plays a central role during vascular remodeling. Growth factor receptors are negatively regulated by protein tyrosine phosphatases (PTPs), including its prototype PTP1B. Here, we examine how reduction of PTP1B in SMCs affects the vascular remodeling response to injury.
Methods
Mice with inducible PTP1B deletion in SMCs (SMC.PTP1B-KO) were generated by crossing mice expressing Cre.ER
T2
recombinase under the
Myh11
promoter with PTP1B
flox/flox
mice and subjected to FeCl
3
carotid artery injury.
Results
Genetic deletion of PTP1B in SMCs resulted in adventitia enlargement, perivascular SMA
+
and PDGFRβ
+
myofibroblast expansion, and collagen accumulation following vascular injury. Lineage tracing confirmed the appearance of
Myh11
-Cre reporter cells in the remodeling adventitia, and SCA1
+
CD45
-
vascular progenitor cells increased. Elevated mRNA expression of transforming growth factor β (TGFβ) signaling components or enzymes involved in extracellular matrix remodeling and TGFβ liberation was seen in injured SMC.PTP1B-KO mouse carotid arteries, and mRNA transcript levels of contractile SMC marker genes were reduced already at baseline. Mechanistically, Cre recombinase (mice) or siRNA (cells)-mediated downregulation of PTP1B or inhibition of ERK1/2 signaling in SMCs resulted in nuclear accumulation of KLF4, a central transcriptional repressor of SMC differentiation, whereas phosphorylation and nuclear translocation of SMAD2 and SMAD3 were reduced. SMAD2 siRNA transfection increased protein levels of PDGFRβ and MYH10 while reducing ERK1/2 phosphorylation, thus phenocopying genetic PTP1B deletion.
Conclusion
Chronic reduction of PTP1B in SMCs promotes dedifferentiation, perivascular fibrosis, and adverse remodeling following vascular injury by mechanisms involving an ERK1/2 phosphorylation-driven shift from SMAD2 to KLF4-regulated gene transcription.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Sogol Gachkar
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - David Velmeden
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Astrid Hubert
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Mainz, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, JW Goethe University Frankfurt, Frankfurt, Germany.,Cardiopulmonary Institute (CPI), Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK e.V.), Rhine-Main Site, Frankfurt and Bad Nauheim, Germany
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Rhine-Main Site, Mainz, Germany
| |
Collapse
|
18
|
Wei W, Zhou YJ, Shen JL, Lu L, Lv XR, Lu TT, Xu PT, Xue XH. The Compatibility of Alisma and Atractylodes Affects the Biological Behaviours of VSMCs by Inhibiting the miR-128-5p/p21 Gene. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7617258. [PMID: 35845581 PMCID: PMC9283034 DOI: 10.1155/2022/7617258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Objective The compatibility of Alisma and Atractylodes (AA) has been estimated to exhibit antiatherosclerotic effects, but the mechanism remains unclear. This study aimed to identify the role of AA in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cell (VSMC) behaviours and to explore the effects of microRNAs (miRNAs). Methods A scratch wound-healing assay was used to detect the migration of VSMCs, and immunocytochemistry and western blotting for SM22ɑ were used to evaluate phenotypic transformation. Bromodeoxyuridine (BrdU) immunocytochemistry and flow cytometry were applied to detect the proliferation of VSMCs. miRNA microarray profiling was performed using Lianchuan biological small RNA sequencing analysis. VSMCs were transfected with the miR-128-5p mimic and inhibitor, and the migration, phenotypic modulation, and proliferation of VSMCs were investigated. The 3'UTR-binding sequence site of miR-128-5p on the p21 gene was predicted and assessed by luciferase assays. Result AA and the extracellular regulated protein kinase 1/2 (ERK1/2) blocker U0126 markedly inhibited migration, elevated smooth muscle 22α (SM22α) expression, repressed VSMC proliferation, elevated miR-466f-3p and miR-425-3p expression, and suppressed miR-27a-5p and miR-128-5p expression in ox-LDL-induced VSMCs. miR-128-5p targets the tissue inhibitor of metalloproteinases (TIMPs), silent information regulator 2 (SIRT2), peroxisome proliferator-activated receptor (PPAR), and p21 genes, which are linked to the behaviours of VSMCs. The miR-128-5p mimic promoted the migration and proliferation of VSMCs and suppressed p21, p27, and SM22ɑ expression. The inhibitor increased p21, p27, and SM22ɑ expression and repressed the migration, phenotypic transformation, and proliferation of VSMCs. miR-128-5p directly targeted the 3'UTR-binding sequences of the p21 gene, negatively regulated p21 expression, and supported the proliferation of VSMCs. Conclusion Our research showed that the migration, phenotypic transformation, and proliferation of ox-LDL-induced VSMCs were repressed by AA through inhibiting miR-128-5p by targeting the p21 gene, which may provide an effective option for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Wei Wei
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yang Jie Zhou
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ju Lian Shen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lu Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Ru Lv
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tao Tao Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pei Tao Xu
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xie Hua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Provincial Rehabilitation Industrial Institution, Fujian Provincial Key Laboratory of Rehabilitation Technology, Fujian Provincial Key Laboratory of Cognitive Rehabilitation, Fuzhou, China
| |
Collapse
|
19
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
20
|
Zhao Z, Zhang G, Yang J, Lu R, Hu H. DLEU2 modulates proliferation, migration and invasion of platelet-derived growth factor-BB (PDGF-BB)-induced vascular smooth muscle cells (VSMCs) via miR-212-5p/YWHAZ axis. Cell Cycle 2022; 21:2013-2026. [PMID: 35775826 DOI: 10.1080/15384101.2022.2079175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
DLEU2 has been proved to act as an oncogene in a variety of cancers, but its role in cardiovascular diseases is dearth of research. Thus, this study mainly discussed the effect and possible mechanism of DLEU2 on platelet-derived growth factor-BB (PDGF-BB)-triggered vascular smooth muscle cell (VSMC) injury. To obtain authentic results, the expressions of target genes in atherosclerosis serum were determined by reverse transcription quantitative PCR (RT-qPCR) and the protein levels were evaluated by Western blot. PDGF-BB was used to simply simulate the biological characteristics of VSMCs in vitro. The effect of DLEU2 on the biological behavior of PDGF-BB-induced VSMCs was analyzed by gain- and loss-of-function assays. Bioinformatics analysis, dual luciferase reporter assay, and Pearson correlation method were conducted to determine the relationship between target genes. The role of DLEU2/miR-212-5p/ YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta) axis in PDGF-BB-induced VSMCs was verified by rescue experiments. As a result, DLEU2 and YWHAZ were up-regulated, and miR-212-5p was down-regulated in atherosclerosis serum. Overexpressed DLEU2 facilitated the biological behavior of PDGF-BB-induced VSMCs, whilst siDLEU2 did the opposite. Moreover, overexpressed DLEU2 promoted proliferating cell nuclear antigen (PCNA) expression but repressed α-smooth muscle actin (α-SMA) and Calponin expressions, while it also enhanced YWHAZ expression via suppressing miR-212-5p. MiR-212-5p mimic and siYWHAZ reversed the effects of overexpressed DLEU2 on above biological characteristics and protein expressions in PDGF-BB-induced VSMCs, while the regulatory effect of miR-212-5p mimic was partially offset by overexpressed YWHAZ. Collectively, DLEU2 modulates PDGF-BB-induced VSMC injury via miR-212-5p/YWHAZ axis in atherosclerosis.
Collapse
Affiliation(s)
- Zhiying Zhao
- Department of Pharmacology, School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Guangming Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jing Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Rui Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Haijuan Hu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
21
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
22
|
Leng Q, Ding J, Dai M, Liu L, Fang Q, Wang DW, Wu L, Wang Y. Insights Into Platelet-Derived MicroRNAs in Cardiovascular and Oncologic Diseases: Potential Predictor and Therapeutic Target. Front Cardiovasc Med 2022; 9:879351. [PMID: 35757325 PMCID: PMC9218259 DOI: 10.3389/fcvm.2022.879351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Non-communicable diseases (NCDs), represented by cardiovascular diseases and cancer, have been the leading cause of death globally. Improvements in mortality from cardiovascular (CV) diseases (decrease of 14%/100,000, United States) or cancers (increase 7.5%/100,000, United States) seem unsatisfactory during the past two decades, and so the search for innovative and accurate biomarkers of early diagnosis and prevention, and novel treatment strategies is a valuable clinical and economic endeavor. Both tumors and cardiovascular system are rich in angiological systems that maintain material exchange, signal transduction and distant regulation. This pattern determines that they are strongly influenced by circulating substances, such as glycolipid metabolism, inflammatory homeostasis and cyclic non-coding RNA and so forth. Platelets, a group of small anucleated cells, inherit many mature proteins, mRNAs, and non-coding RNAs from their parent megakaryocytes during gradual formation and manifest important roles in inflammation, angiogenesis, atherosclerosis, stroke, myocardial infarction, diabetes, cancer, and many other diseases apart from its classical function in hemostasis. MicroRNAs (miRNAs) are a class of non-coding RNAs containing ∼22 nucleotides that participate in many key cellular processes by pairing with mRNAs at partially complementary binding sites for post-transcriptional regulation of gene expression. Platelets contain fully functional miRNA processors in their microvesicles and are able to transport their miRNAs to neighboring cells and regulate their gene expression. Therefore, the importance of platelet-derived miRNAs for the human health is of increasing interest. Here, we will elaborate systematically the roles of platelet-derived miRNAs in cardiovascular disease and cancer in the hope of providing clinicians with new ideas for early diagnosis and therapeutic strategies.
Collapse
|
23
|
Huang JG, Tang X, Wang JJ, Liu J, Chen P, Sun Y. A circular RNA, circUSP36, accelerates endothelial cell dysfunction in atherosclerosis by adsorbing miR-637 to enhance WNT4 expression. Bioengineered 2021; 12:6759-6770. [PMID: 34519627 PMCID: PMC8806706 DOI: 10.1080/21655979.2021.1964891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a fatal disorder that is fundamental to various cardiovascular diseases and severely threatens people’s health worldwide. Several studies have demonstrated the role of circular RNAs (circRNAs) in the pathogenesis of atherosclerosis. circUSP36 acts as a key modulator in the progression of atherosclerosis, but the molecular mechanism underlying this role is as yet unclear. This study aimed to elucidate the mechanism by which circUSP36 exerts its function in an in vitro cell model of endothelial cell dysfunction, which is one of pathological features of atherosclerosis. The circRNA traits of circUSP36 were confirmed, and we observed high expression of circUSP36 in endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL). Functional assays revealed that overexpression of circUSP36 suppressed proliferation and migration of ox-LDL-treated endothelial cells. In terms of its mechanism, circUSP36 adsorbed miR-637 by acting as an miRNA sponge. Moreover, enhanced expression of miR-637 abated the impact of circUSP36 on ox-LDL-treated endothelial cell dysregulation. Subsequently, the targeting relationship between miR-637 and WNT4 was predicted using bioinformatics tools and was confirmed via luciferase reporter and RNA pull-down assays. Notably, depletion of WNT4 rescued circUSP36-mediated inhibition of endothelial cell proliferation and migration. In conclusion, circUSP36 regulated WNT4 to aggravate endothelial cell injury caused by ox-LDL by competitively binding to miR-637; this finding indicates circUSP36 to be a promising biomarker for the diagnosis and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Jian-Guo Huang
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Xia Tang
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Jiang-Jie Wang
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Jia Liu
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Ping Chen
- Department of Vascular Surgery, Linyi Central Hospital, Linyi, Shandong Province, China
| | - Yan Sun
- Department of Mental Health, Yishui People's Hospital, Linyi, Shandong Province, China
| |
Collapse
|
24
|
Wang H, He F, Liang B, Jing Y, Zhang P, Liu W, Zhao H. p53-Dependent LincRNA-p21 Protects Against Proliferation and Anti-apoptosis of Vascular Smooth Muscle Cells in Atherosclerosis by Upregulating SIRT7 via MicroRNA-17-5p. J Cardiovasc Transl Res 2021; 14:426-440. [PMID: 33169349 DOI: 10.1007/s12265-020-10074-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
This study investigated the functional role of p53-lincRNA-p21 in atherosclerosis (AS) by mediating the microRNA-17-5p (miR-17-5p)/SIRT7 axis. Peripheral blood was collected from AS patients, and an ApoE-/- mouse model of AS (AS-M) was induced by high-fat diet. The relationship among p53, lincRNA-p21, miR-17-5p, and SIRT7 was validated, and their effects on AS progression and vascular smooth muscle cell (VSMC) functions were analyzed using gain- and loss-of-function experiments in AS mice and human and mouse VSMCs. p53, lincRNA-p21, and SIRT7 were downregulated, and miR-17-5p was upregulated in AS-M and peripheral blood of AS patients. p53 positively regulated lincRNA-p21, while miR-17-5p, reversely targeted by lincRNA-p21, could target SIRT7. Overexpressing p53, lincRNA-p21, or SIRT7 contributed to impaired proliferation and promoted apoptosis of VSMCs in vitro as well as reducing the vulnerable plaque and lipid accumulation in AS mice. Collectively, p53-dependent lincRNA-p21 expression downregulated miR-17-5p, which consequently protecting against AS progression via SIRT7 elevation. Graphical abstract Collectively, p53-dependent lincRNA-p21 expression downregulated miR-17-5p, whichconsequently protecting against AS progression via SIRT7 elevation.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Case-Control Studies
- Cell Proliferation
- Disease Models, Animal
- Female
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Sirtuins/genetics
- Sirtuins/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Haojie Wang
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Fei He
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Bing Liang
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Yuanhu Jing
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Pei Zhang
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Weichao Liu
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Hui Zhao
- Department of Thoracic & Cardiovascular Surgery, Huaihe Hospital of Henan University, No. 8, Baobei Road, Kaifeng, 475000, Henan Province, People's Republic of China.
| |
Collapse
|
25
|
Therapies Targeted at Non-Coding RNAs in Prevention and Limitation of Myocardial Infarction and Subsequent Cardiac Remodeling-Current Experience and Perspectives. Int J Mol Sci 2021; 22:ijms22115718. [PMID: 34071976 PMCID: PMC8198996 DOI: 10.3390/ijms22115718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.
Collapse
|
26
|
LOXL1-AS1/miR-515-5p/STAT3 Positive Feedback Loop Facilitates Cell Proliferation and Migration in Atherosclerosis. J Cardiovasc Pharmacol 2021; 76:151-158. [PMID: 32453072 DOI: 10.1097/fjc.0000000000000853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Existing research has elucidated the critical role of long noncoding RNAs (lncRNAs) in the progression of multiple human cardiovascular diseases, including atherosclerosis (AS). Nonetheless, whether long noncoding RNA LOXL1 antisense RNA 1 (LOXL1-AS1) regulates the biological functions in AS is exceedingly limited. In this research, we detected through reverse transcription-quantitative polymerase chain reaction that LOXL1-AS1 expression was markedly upregulated in patients with AS. The role of LOXL1-AS1 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs) was unmasked by functional assays. Moreover, knockdown of LOXL1-AS1 exerted suppressive effect on proliferation and migration whereas accelerated apoptosis in VSMCs and HUVECs. Molecular mechanism assays revealed that signal transducer and activator of transcription 3 (STAT3) functioned as a transcription activator of LOXL1-AS1 in VSMCs and HUVECs. In addition, miR-515-5p was manifested to bind with LOXL1-AS1 (or STAT3) in VSMCs and HUVECs. Furthermore, LOXL1-AS1 could elevate STAT3 expression by sponging miR-515-5p in VSMCs and HUVECs. More importantly, rescue assays delineated that inhibited expression of miR-515-5p or elevated expression of STAT3 could reverse the restraining effect of LOXL1-AS1 depletion on the progression of AS in HUVECs. All these findings revealed the role of a LOXL1-AS1/miR-515-5p/STAT3 positive feedback loop in AS.
Collapse
|
27
|
Hu DJ, Li ZY, Zhu YT, Li CC. Overexpression of long noncoding RNA ANRIL inhibits phenotypic switching of vascular smooth muscle cells to prevent atherosclerotic plaque development in vivo. Aging (Albany NY) 2020; 13:4299-4316. [PMID: 33411680 PMCID: PMC7906209 DOI: 10.18632/aging.202392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023]
Abstract
Background: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. Long noncoding RNA ANRIL (lncRNA-ANRIL) is critical in vascular homeostasis. Metformin produces multiple beneficial effects in atherosclerosis. However, the underlying mechanisms need to be elucidated. Methods and Results: Metformin increased lncRNA-ANRIL expression and AMPK activity in cultured VSMCs, and inhibited the phenotypic switching of VSMCs to the synthetic phenotype induced by platelet-derived growth factor (PDGF). Overexpression of lncRNA-ANRIL inhibited phenotypic switching and reversed the reduction of AMPK activity in PDGF-treated VSMCs. While, gene knockdown of lncRNA-ANRIL by adenovirus or silence of AMPKγ through siRNA abolished AMPK activation induced by metformin in VSMCs. RNA-immunoprecipitation analysis indicated that the affinity of lncRNA-ANRIL to AMPKγ subunit was increased by metformin. In vivo, administration of metformin increased the levels of lncRNA-ANRIL, suppressed VSMC phenotypic switching, and prevented the development of atherosclerotic plaque in Apoe-/- mice fed with western diet. These protective effects of metformin were abolished by infecting Apoe-/- mice with adenovirus expressing lncRNA-ANRIL shRNA. The levels of AMPK phosphorylation, AMPK activity, and lncRNA-ANRIL expression were decreased in human atherosclerotic lesions. Conclusion: Metformin activates AMPK to suppress the formation of atherosclerotic plaque through upregulation of lncRNA-ANRIL.
Collapse
Affiliation(s)
- Da-Jun Hu
- Department of Cardiology, The First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Zhen-Yu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan-Ting Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
28
|
Aalkjær C, Nilsson H, De Mey JGR. Sympathetic and Sensory-Motor Nerves in Peripheral Small Arteries. Physiol Rev 2020; 101:495-544. [PMID: 33270533 DOI: 10.1152/physrev.00007.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.
Collapse
Affiliation(s)
| | - Holger Nilsson
- Department Physiology, Gothenburg University, Gothenburg, Sweden
| | - Jo G R De Mey
- Deptartment Pharmacology and Personalized Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
29
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
30
|
Yang C, Xiao X, Huang L, Zhou F, Chen LH, Zhao YY, Qu SL, Zhang C. Role of Kruppel-like factor 4 in atherosclerosis. Clin Chim Acta 2020; 512:135-141. [PMID: 33181148 DOI: 10.1016/j.cca.2020.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is one of the chronic progressive diseases, which is caused by vascular injury and promoted by the interaction of various inflammatory factors and inflammatory cells. In recent years, kruppel-like factor 4 (KLF4), a significant transcription factor that participated in cell growth, differentiation and proliferation, has been proved to cause substantial impacts on regulating cardiovascular disease. This paper will give a comprehensive summary to highlight KLF4 as a crucial regulator of foam cell formation, vascular smooth muscle cells (VSMCs) phenotypic transformation, macrophage polarization, endothelial cells inflammation, lymphocyte differentiation and cell proliferation in the process of atherosclerosis. Recent studies show that KLF4 may be an important "molecular switch" in the process of improving vascular injury and inflammation under harmful stimulation, suggesting that KLF4 is a latent disease biomarker for the therapeutic target of atherosclerosis and vascular disease.
Collapse
Affiliation(s)
- Chen Yang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Fan Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
31
|
Song W, Gao K, Huang P, Tang Z, Nie F, Jia S, Guo R. Bazedoxifene inhibits PDGF-BB induced VSMC phenotypic switch via regulating the autophagy level. Life Sci 2020; 259:118397. [DOI: 10.1016/j.lfs.2020.118397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023]
|
32
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
33
|
Zhang X, Li H, Guo X, Hu J, Li B. Long Noncoding RNA Hypoxia-Inducible Factor-1 Alpha-Antisense RNA 1 Regulates Vascular Smooth Muscle Cells to Promote the Development of Thoracic Aortic Aneurysm by Modulating Apoptotic Protease-Activating Factor 1 and Targeting let-7g. J Surg Res 2020; 255:602-611. [PMID: 32653692 DOI: 10.1016/j.jss.2020.05.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a severe threat that is characterized by the increased aortic diameter. The dysfunction of vascular smooth muscle cells (VSMCs) contributes to the formation of TAA. Previous research indicated that long noncoding RNAs (lncRNAs) were involved in the development of TAA. This article aimed to explore the role of lncRNA hypoxia-inducible factor-1 alpha-antisense RNA 1 (HIF1A-AS1) and potential action mechanisms in VSMCs. METHODS The expression of HIF1A-AS1, collagen I, collagen III, microRNA let-7g (let-7g) and apoptotic protease-activating factor 1 (APAF1) was detected by quantitative real-time polymerase chain reaction. Cell proliferation and cell apoptosis were assessed by Cell Counting Kit-8 and flow cytometry assays, respectively. The protein levels of proliferating cell nuclear antigen, Cleaved caspase-3 (Cleaved-cas3), B cell lymphoma/leukemia-2 (Bcl-2), Collagen I, Collagen III, and APAF1 were quantified by Western blot. The relationship between let-7g and HIF1A-AS1 or APAF1 was predicted by the online bioinformatics tool and verified by dual-luciferase reporter assay and RNA pull-down assay. RESULTS HIF1A-AS1 was upregulated in TAA tissues and was a valuable diagnostic marker of TAA. HIF1A-AS1 overexpression suppressed proliferation, induced apoptosis, and reduced the expression of extracellular matrix proteins in VSMCs. let-7 g was a target of HIF1A-AS1, and its inhibition functioned the same role as HIF1A-AS1 overexpression. APAF1 was a target of let-7g, and its knockdown played the opposite role with HIF1A-AS1 overexpression. The reintroduction of let-7g or APAF1 knockdown reversed the effects of HIF1A-AS1 overexpression in VSMCs. CONCLUSIONS HIF1A-AS1 regulated the proliferation, apoptosis ,and the activity of extracellular matrix proteins in VSMCs through modulating APAF1 by targeting let-7g, leading to the development of TAA.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Hongwei Li
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaofeng Guo
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Jiting Hu
- Department of Neonatal Intensive Care Unit, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Bin Li
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China.
| |
Collapse
|
34
|
LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis 2020; 11:435. [PMID: 32513988 PMCID: PMC7280314 DOI: 10.1038/s41419-020-2645-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Many studies have shown that long-noncoding RNA (lncRNA) is associated with cardiovascular disease, but its molecular mechanism is still unclear. In this study, we explored the role of lncRNA ANRIL in ox-LDL-induced phenotypic transition of human aortic smooth muscle cells (HASMC). The results of quantitative fluorescence PCR showed that the expression of ANRIL in patients with coronary atherosclerotic heart disease (CAD) was significantly higher than that in normal subjects. RNA-FISH detection showed that the ANRIL expression increased in HASMC treated by ox-LDL. Ox-LDL could upregulate the expression of ANRIL and ROS and promote the phenotypic transition of HASMC. After downregulation of ANRIL by siRNA, ROS level decreased and HASMC phenotypic transition alleviated. ANRIL could act as a molecular scaffold to promote the binding of WDR5 and HDAC3 to form WDR5 and HDAC3 complexes, they regulated target genes such as NOX1 expression by histone modification, upregulated ROS level and promote HASMC phenotype transition. Therefore, we found a new epigenetic regulatory mechanism for phenotype transition of VSMC, ANRIL was a treatment target of occlusive vascular diseases.
Collapse
|
35
|
Mazzone A, Strege PR, Gibbons SJ, Alcaino C, Joshi V, Haak AJ, Tschumperlin DJ, Bernard CE, Cima RR, Larson DW, Chua HK, Graham RP, El Refaey M, Mohler PJ, Hayashi Y, Ordog T, Calder S, Du P, Farrugia G, Beyder A. microRNA overexpression in slow transit constipation leads to reduced Na V1.5 current and altered smooth muscle contractility. Gut 2020; 69:868-876. [PMID: 31757880 PMCID: PMC7147984 DOI: 10.1136/gutjnl-2019-318747] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study was designed to evaluate the roles of microRNAs (miRNAs) in slow transit constipation (STC). DESIGN All human tissue samples were from the muscularis externa of the colon. Expression of 372 miRNAs was examined in a discovery cohort of four patients with STC versus three age/sex-matched controls by a quantitative PCR array. Upregulated miRNAs were examined by quantitative reverse transcription qPCR (RT-qPCR) in a validation cohort of seven patients with STC and age/sex-matched controls. The effect of a highly differentially expressed miRNA on a custom human smooth muscle cell line was examined in vitro by RT-qPCR, electrophysiology, traction force microscopy, and ex vivo by lentiviral transduction in rat muscularis externa organotypic cultures. RESULTS The expression of 13 miRNAs was increased in STC samples. Of those miRNAs, four were predicted to target SCN5A, the gene that encodes the Na+ channel NaV1.5. The expression of SCN5A mRNA was decreased in STC samples. Let-7f significantly decreased Na+ current density in vitro in human smooth muscle cells. In rat muscularis externa organotypic cultures, overexpression of let-7f resulted in reduced frequency and amplitude of contraction. CONCLUSIONS A small group of miRNAs is upregulated in STC, and many of these miRNAs target the SCN5A-encoded Na+ channel NaV1.5. Within this set, a novel NaV1.5 regulator, let-7f, resulted in decreased NaV1.5 expression, current density and reduced motility of GI smooth muscle. These results suggest NaV1.5 and miRNAs as novel diagnostic and potential therapeutic targets in STC.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Constanza Alcaino
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Vikram Joshi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl E Bernard
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert R Cima
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David W Larson
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Heidi K Chua
- Department of Colon and Rectal Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mona El Refaey
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA,Department of Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J Mohler
- Departments of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yujiro Hayashi
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stefan Calder
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peng Du
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Gianrico Farrugia
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur Beyder
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA .,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Liu H, Wang H, Yang S, Qian D. Downregulation of miR-542-3p promotes osteogenic transition of vascular smooth muscle cells in the aging rat by targeting BMP7. Hum Genomics 2019; 13:67. [PMID: 31829291 PMCID: PMC6907335 DOI: 10.1186/s40246-019-0245-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/17/2019] [Indexed: 02/01/2023] Open
Abstract
Background Aging is believed to have a close association with cardiovascular diseases, resulting in various pathological alterations in blood vessels, including vascular cell phenotypic shifts. In aging vessels, the microRNA(miRNA)-mediated mechanism regulating the vascular smooth muscle cell (VSMC) phenotype remains unclarified. MiRNA microarray was used to compare the expressions of miRNAs in VSMCs from old rats (oVSMCs) and young rats (yVSMCs). Quantitative reverse transcription real-time PCR (qRT-PCR) and small RNA transfection were used to explore the miR-542-3p expression in oVSMCs and yVSMCs in vitro. Calcification induction of yVSMCs was conducted by the treatment of β-glycerophosphate (β-GP). Alizarin red staining was used to detect calcium deposition. Western blot and qRT-PCR were used to investigate the expression of the smooth muscle markers, smooth muscle 22α (SM22α) and calponin, and the osteogenic markers, osteopontin (OPN), and runt-related transcription factor 2 (Runx2). Lentivirus was used to overexpress miR-542-3p and bone morphogenetic protein 7 (BMP7) in yVMSCs. Luciferase reporter assay was conducted to identify the target of miR-542-3p. Results Compared with yVSMCs, 28 downregulated and 34 upregulated miRNAs were identified in oVSMCs. It was confirmed by qRT-PCR that oVSMC expressed four times lower miR-542-3p than yVSMCs. Overexpressing miR-542-3p in yVSMCs suppressed the osteogenic differentiation induced by β-GP. Moreover, miR-542-3p targets BMP7 and overexpressing BMP7 in miR-542-3p–expressing yVSMCs reverses miR-542-3p’s inhibition of osteogenic differentiation. Conclusions miR-542-3p regulates osteogenic differentiation of VSMCs through targeting BMP7, suggesting that the downregulation of miR-542-3p in oVSMCs plays a crucial role in osteogenic transition in the aging rat.
Collapse
Affiliation(s)
- Huan Liu
- The Precision Medicine Institute, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510150, Guangdong, China.,Department of Orthopaedics, The Second Affiliated Hospital of Southwest Medical University, Lu Zhou, 646000, Sichuan, China
| | - Hongwei Wang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang, 110016, Liaoning, China
| | - Sijin Yang
- Department of Cardiology and Neurology, The Second Affiliated Hospital of Southwest Medical University, 184 Chunhui Street, Lu Zhou, 646000, Sichuan, China.
| | - Dehui Qian
- Department of Cardiology, Second Hospital Affiliated to the Army Medical University, Xinqiao Hospital, Chongqing, 400037, China.
| |
Collapse
|
37
|
Ma W, Xu J, Zhang Y, Zhang H, Zhang Z, Zhou L, Wang X, Liu H, Chen Y, Du P, Min N, Liu Z, Yin Y. Matrine pre-treatment suppresses AGEs- induced HCSMCs fibrotic responses by regulating Poldip2/mTOR pathway. Eur J Pharmacol 2019; 865:172746. [DOI: 10.1016/j.ejphar.2019.172746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022]
|
38
|
Wei M, Liu Y, Zheng M, Wang L, Ma F, Qi Y, Liu G. Upregulation of Protease-Activated Receptor 2 Promotes Proliferation and Migration of Human Vascular Smooth Muscle Cells (VSMCs). Med Sci Monit 2019; 25:8854-8862. [PMID: 31756174 PMCID: PMC6883764 DOI: 10.12659/msm.917865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Protease-Activated Receptor 2 (PAR2), a G-protein-coupled receptor, has been proved to be enhanced in human coronary atherosclerosis lesions. We aimed to investigate whether PAR2 actively participates in the atherosclerosis process. Material/Methods PAR2 expression was assessed in blood samples by RT-qPCR from healthy controls and patients with atherosclerosis. Human vascular smooth muscle cells (VSMCs) were treated with oxidative low-density lipoprotein (ox-LDL). After PAR2 overexpression by transfection, cell proliferation was determined by CCK-8, and cell migration was evaluated by Transwell assay. The protein expressions associated with cell growth and migration were measured by Western blot. The distribution of α-SMA in VSMCs was evaluated by immunofluorescence. Results Expression of PAR2 was higher in patients with atherosclerosis compared with normal controls. PAR2 mRNA and protein expression was increased in ox-LDL-treated VSMCs compared with control cells. Induced overexpression of PAR2 in VSMCs led to a reduction in α-SMA expression compared to controls. In addition, PAR2 overexpression caused increased migration compared to normal controls, and upregulated MMP9 and MMP14 expression. PAR-2 overexpression promoted cell proliferation compared to control cells, and increased expression levels of CDK2, and CyclinE1, but reduced levels of p27. We preliminary explored the potential mechanism of PAR2, and results showed that overexpression of PAR2 increased expression levels of VEGFA and Angiopoietin 2 compared to controls. Moreover, overexpression of PAR2 enhanced production of tissue factor and IL-8 compared to normal controls. Conclusions PAR2 promotes cell proliferation and disrupts the quiescent condition of VSMCs, which may be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Mei Wei
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yongsheng Liu
- Department of General Family Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mingqi Zheng
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Le Wang
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Fangfang Ma
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanchao Qi
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
39
|
Kasprzyk-Pawelec A, Wojciechowska A, Kuc M, Zielinski J, Parulski A, Kusmierczyk M, Lutynska A, Kozar-Kaminska K. microRNA expression profile in Smooth Muscle Cells isolated from thoracic aortic aneurysm samples. Adv Med Sci 2019; 64:331-337. [PMID: 31022558 DOI: 10.1016/j.advms.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Thoracic aortic aneurysm (TAA) is a cardiovascular disease characterized by increased aortic diameter, treated with surgery and endovascular therapy in order to avoid aortic dissection or rupture. The mechanism of TAA formation has not been thoroughly studied and many factors have been proposed to drive its progression; however strong focus is attributed to modification of smooth muscle cells (SMCs). Latest research indicates, that microRNAs (miRNAs) may play a significant role in TAA development - these are multifunctional molecules consisting of 19-24 nucleotides involved in regulation of the gene expression level related to many biological processes, i.e. cardiovascular disease pathophysiology, immunity or inflammation. MATERIALS AND METHODS Primary SMCs were isolated from aortic scraps of TAA patients and age- and sex-matched healthy controls. Purity of isolated SMCs was determined by flow cytometry using specific markers: α-SMA, CALP, MHC and VIM. Real-time polymerase chain reaction (RT-PCR) was conducted for miRNA analysis. RESULTS We established an isolation protocol and investigated the miRNA expression level in SMCs isolated from aneurysmal and non-aneurysmal aortic samples. We identified that let-7 g (0.71-fold, p = 0.01), miR-130a (0.40-fold, p = 0.04), and miR-221 (0.49-fold, p = 0.05) significantly differed between TAA patients and healthy controls. CONCLUSIONS Further studies are required to improve our understanding of the pathophysiology underlying TAA, which may aid the development of novel, targeted therapies. The pivotal role of miRNAs in the cardiovascular system provides a new perspective on the pathophysiology of thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Kasprzyk-Pawelec
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Anna Wojciechowska
- Department of Medical Biology, Immunology Laboratory, Institute of Cardiology, Warsaw, Poland
| | - Mateusz Kuc
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Jakub Zielinski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Adam Parulski
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Mariusz Kusmierczyk
- Department of Cardiac Surgery and Transplantology, Institute of Cardiology, Warsaw, Poland
| | - Anna Lutynska
- Department of Medical Biology, Institute of Cardiology, Warsaw, Poland
| | | |
Collapse
|
40
|
Zhang J, Gao F, Ni T, Lu W, Lin N, Zhang C, Sun Z, Guo H, Chi J. Linc-POU3F3 is overexpressed in in-stent restenosis patients and induces VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway. Am J Transl Res 2019; 11:4481-4490. [PMID: 31396351 PMCID: PMC6684896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND With the extensive application of stent implantation in patients undergoing percutaneous coronary interventions (PCI), there are chances that in-stent restenosis (ISR)-a major vascular complication caused by vascular smooth muscle cell (VSMC) phenotypic transformation-might occur. OBJECTIVES This study sought to evaluate the role of lincRNA-POU3F3 on VSMC phenotypic transformation and the underlying mechanism. METHODS VSMCs were used in our research. We first constructed a gene delivery system through an assembly of lipofectamine and a functional plasmid DNA (pDNA) encoding lincRNA-POU3F3 or MicroRNA-449a, and then, transfected it to VSMCs. Moreover, lentivirus-mediated KLF4 inhibitor (KLF4 siRNA) was also used in these cells. Expression of relevant proteins, such as smooth muscle myosin heavy chain (SM-MHC), alpha smooth muscle actin (α-SMA), osteopontin (OPN), and kruppel-like factor 4 (KLF4), was examined by western blot or immunofluorescence (IF) assay. CCK-8 and wound healing assays were performed to assess the growth and migration of VSMCs. qRT-PCR was used to assess linc-POU3F3 and miR-449a levels. Luciferase reporter assay was also performed. RESULTS POU3F3 levels were significantly higher in ISR patients compared to controls. We observed that linc-POU3F3 promoted VSMC proliferation and migration, and induced VSMC phenotypic transformation via POU3F3/miR-449a/KLF4 signaling pathway. CONCLUSION Linc-POU3F3 promotes phenotypic transformation of VSMCs via POU3F3/miR-449a/KLF4 pathway. It may provide a theoretical basis to attenuate ISR via pharmacological inhibition of this biomarker or at least serve as a predictor of diagnosis or prognosis of patients with restenosis.
Collapse
Affiliation(s)
- Jie Zhang
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Wenqiang Lu
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Na Lin
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Chuanjing Zhang
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Zhenzhu Sun
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| | - Jufang Chi
- The First Clinical Medical College, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
- Department of Cardiology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang UniversityShaoxing 312000, Zhejiang, China
| |
Collapse
|
41
|
Tang Y, Huang Q, Liu C, Ou H, Huang D, Peng F, Liu C, Mo Z. p22phox promotes Ang-II-induced vascular smooth muscle cell phenotypic switch by regulating KLF4 expression. Biochem Biophys Res Commun 2019; 514:280-286. [PMID: 31030942 DOI: 10.1016/j.bbrc.2019.04.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
NADPH oxidase (Nox) is the main source of reactive oxygen species in vascular diseases, which have been implicated in promoting VSMCs phenotypic switch. P22phox, the indispensable component of the complex Nox, is required for their activity and stability. Krüppel-like factor 4 (KLF4) is an important transcriptional regulator of VSMCs phenotypic switch. Both KLF4 and p22phox are involved in the proliferation, migration and differentiation of VSMC. This study aims to determine whether and how p22phox regulates KLF4 expression in phenotypic switching of VSMCs. In cultured primary rat VSMCs, we noticed that the expression of P22phox was significantly increased in combination with VSMCs phenotypic switch and up-regulated KLF4 expression in Ang-II-treated cells. Ang-II-induced VSMC dedifferentiation, proliferation, migration, KLF4 expression, H2O2 production and the phosphorylation of AKT, ERK1/2 were all inhibited by knockdown of P22phox. Furthermore, H2O2 treatment effectively enhanced the phosphorylation of AKT, ERK1/2 and the expression of KLF4, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) significantly attenuated the H2O2-induced up-regulation of KLF4. In conclusion, these results demonstrated that p22phox promotes Ang-II-induced VSMC phenotypic switch via the H2O2-ERK1/2/AKT-KLF4 signaling pathway.
Collapse
Affiliation(s)
- Yixin Tang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chaoyan Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongji Ou
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Huang
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengling Peng
- Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Changhui Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
42
|
Wang M, Liu Y, Li C, Zhang Y, Zhou X, Lu C. Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. Am J Transl Res 2019; 11:1827-1834. [PMID: 30972206 PMCID: PMC6456540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
An increasing amount of research is demonstrating the role of long noncoding RNAs (lncRNAs) in human cardiovascular disease, and in particular, atherosclerosis. To date, the mechanism through which lncRNA OIP5-AS1 regulates the oxidative low-density lipoprotein (ox-LDL)-mediated endothelial cell apoptosis is still unclear. Results from this study found that lncRNA OIP5-AS1 was significantly over-expressed in the human umbilical vein endothelial cells (HUVECs) administered with ox-LDL. The silencing of OIP5-AS1 inhibited apoptosis and promoted proliferation via inducing G0/G1 cycle arrest. Chromatin immunoprecipitate (ChIP) revealed that lncRNA OIP5-AS1 reduced GSK-3β expression through recruiting EZH2, a critical element of the Polycomb Repressive Complex 2 (PRC2) complex that directly bind with the GSK-3β promoter region. Rescue experiments validated that GSK-3β could eliminate the effect of OIP5-AS1 on HUVECs. Overall, these findings suggest that lncRNA OIP5-AS1 accelerates ox-LDL mediated vascular endothelial cell apoptosis through targeting GSK-3β via recruiting EZH2, providing potential therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjin Medical UniversityTianjin 300070, China
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| | - Yujie Liu
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| | - Chao Li
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| | - Ying Zhang
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| | - Xiujun Zhou
- Department of Cardiology, Tianjin Chest HospitalTianjin 300222, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center HospitalTianjin 300192, China
| |
Collapse
|
43
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
44
|
The microRNAs Regulating Vascular Smooth Muscle Cell Proliferation: A Minireview. Int J Mol Sci 2019; 20:ijms20020324. [PMID: 30646627 PMCID: PMC6359109 DOI: 10.3390/ijms20020324] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation plays a critical role in atherosclerosis. At the beginning of the pathologic process of atherosclerosis, irregular VSMC proliferation promotes plaque formation, but in advanced plaques VSMCs are beneficial, promoting the stability and preventing rupture of the fibrous cap. Recent studies have demonstrated that microRNAs (miRNAs) expressed in the vascular system are involved in the control of VSMC proliferation. This review summarizes recent findings on the miRNAs in the regulation of VSMC proliferation, including miRNAs that exhibit the inhibition or promotion of VSMC proliferation, and their targets mediating the regulation of VSMC proliferation. Up to now, most of the studies were performed only in cultured VSMC. While the modulation of miRNAs is emerging as a promising strategy for the regulation of VSMC proliferation, most of the effects of miRNAs and their targets in vivo require further investigation.
Collapse
|
45
|
Zhao F, Yan J, Zhao J, Shi B, Ye M, Huang X, Yu B, Lv B, Huang W. Effect of platelet-derived growth factor-BB on gap junction and connexin43 in rat penile corpus cavernosum smooth muscle cells. Andrologia 2018; 51:e13200. [PMID: 30467872 DOI: 10.1111/and.13200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
We explored whether platelet-derived growth factor (PDGF)-BB regulates corpus cavernosum smooth muscle cell gap junctions and can ameliorate erectile dysfunction and how it modulates connexin43 (CX43) after bilateral cavernous neurectomy. Primary cultured rat corpus cavernosum smooth muscle cells were treated with PDGF-BB with or without a PDGFR inhibitor, Akt siRNA or the depletion or promotion of β-catenin. PDGF-BB improved CCSMCs gap junction coupling and increased CX43 and PDGFRβ expression; inhibition of PDGFR activity down-regulated CX43 and decreased Akt and nuclear β-catenin. Knockdown or promotion of β-catenin down-regulated and up-regulated CX43 expression respectively. Moreover, β-catenin activation induced CX43 nuclear accumulation, which impeded CX43 down-regulation induced by PDGFR inhibition, suggesting that CX43 expression is positively correlated with nuclear β-catenin expression. Furthermore, CX43 promoter luciferase and chromatin immunoprecipitation assays indicated that β-catenin regulates CX43 transcription by directly interacting with its promoter. Male rats underwent bilateral cavernous neurectomy. After 12 weeks, they were injected with PDGF-BB, CX43 and PDGFRβ expression was significantly lower than in the control group, which was reversed by PDGF-BB injection. These results suggested that PDGF-BB contributed to the improvement of gap junction intracellular communication among corpus cavernosum smooth muscle cells, increased CX43 through PDGFRβ/Akt/nuclear β-catenin signalling, and ameliorated cavernous nerve injury-induced erectile dysfunction.
Collapse
Affiliation(s)
- Fan Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfeng Yan
- Department of Urology, Zhejiang Hospital, Hangzhou, China
| | - Jianfeng Zhao
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Shi
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Miaoyong Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojun Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yu
- Technology and Development Center for TCM of China, Beijing, China
| | - Bodong Lv
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
| | - Wenjie Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Sun QR, Zhang X, Fang K. Phenotype of Vascular Smooth Muscle Cells (VSMCs) Is Regulated by miR-29b by Targeting Sirtuin 1. Med Sci Monit 2018; 24:6599-6607. [PMID: 30231015 PMCID: PMC6354642 DOI: 10.12659/msm.910068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Phenotypic switch of vascular smooth muscle cells (VSMCs) participates in the etiology of various vascular diseases. It has been proved that microRNAs (miRNAs) serve as crucial regulators of functions of VSMCs. This study aimed to discover how miR-29b regulates the transformation of VSMCs phenotypes in mice. Material/Methods Primary VSMCs of aorta in mice were cultured in DMEM medium. A series of experiments involving transfection of oligonucleotides in cultured VSMCs, quantitative reverse transcription PCR (qRT-PCR), luciferase reporter assay, and Western blotting analysis were performed in this study. Results We found that in VSMCs cultured in presence of stimulator, platelet-derived growth factor-BB (PDGF-BB), miR-29b was upregulated significantly and expressions of VSMC-phenotype-related genes (α-SMA, calponin, and SM-MHC) were regulated by miR-29b. Moreover, through downregulation of sirtuin 1 (SIRT1), miR-29b affects phenotypic transformation of VSMCs. Luciferase report assay identified a significant increase of SIRT1 3′-UTR activity in treatment with miR-29b inhibitor, which, however, was reversed in the presence of miR-29b mimic. Suppression of miR-29b reversed the activation of NF-κB induced by PDGF-BB in VSMCs. Conclusions We concluded that miR-29b is an important regulator in the PDGF-BB-mediated VSMC phenotypic transition by targeting SIRT1. Interventions aimed at miR-29b may be promising in treating numerous proliferative vascular disorders.
Collapse
Affiliation(s)
- Qian-Ru Sun
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China (mainland)
| | - Xiong Zhang
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (mainland)
| | - Kun Fang
- Department of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China (mainland)
| |
Collapse
|
47
|
Jiang F, Zhang DL, Jia M, Hao WH, Li YJ. Mangiferin inhibits high-fat diet induced vascular injury via regulation of PTEN/AKT/eNOS pathway. J Pharmacol Sci 2018; 137:265-273. [DOI: 10.1016/j.jphs.2018.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/22/2018] [Accepted: 06/27/2018] [Indexed: 02/09/2023] Open
|
48
|
Tong L, Qi G. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch. Mol Med Rep 2018; 17:7595-7602. [PMID: 29620234 PMCID: PMC5983945 DOI: 10.3892/mmr.2018.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet-derived growth factor-BB (PDGF-BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF-BB-induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF-BB-induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit-8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF-BB-induced VSMCs proliferation compared with the PDGF-BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF-BB-induced increase in contractile protein α-smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF-BB-induced Janus kinase (JAK)-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK)/Kruppel-like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF-BB-induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF-BB-induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Lijian Tong
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
49
|
Lim YH, Kwon DH, Kim J, Park WJ, Kook H, Kim YK. Identification of long noncoding RNAs involved in muscle differentiation. PLoS One 2018; 13:e0193898. [PMID: 29499054 PMCID: PMC5834194 DOI: 10.1371/journal.pone.0193898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a large class of regulatory RNAs with diverse roles in cellular processes. Thousands of lncRNAs have been discovered; however, their roles in the regulation of muscle differentiation are unclear because no comprehensive analysis of lncRNAs during this process has been performed. In the present study, by combining diverse RNA sequencing datasets obtained from public database, we discovered lncRNAs that could behave as regulators in the differentiation of smooth or skeletal muscle cells. These analyses confirmed the roles of previously reported lncRNAs in this process. Moreover, we discovered dozens of novel lncRNAs whose expression patterns suggested their possible involvement in the phenotypic switch of vascular smooth muscle cells. The comparison of lncRNA expression change suggested that many lncRNAs have common roles during the differentiation of smooth and skeletal muscles, while some lncRNAs may have opposite roles in this process. The expression change of lncRNAs was highly correlated with that of their neighboring genes, suggesting that they may function as cis-acting lncRNAs. Furthermore, within the lncRNA sequences, there were binding sites for miRNAs with expression levels inversely correlated with the expression of corresponding lncRNAs during differentiation, suggesting a possible role of these lncRNAs as competing endogenous RNAs. The lncRNAs identified in this study will be a useful resource for future studies of gene regulation during muscle differentiation.
Collapse
Affiliation(s)
- Yeong-Hwan Lim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| | - Duk-Hwa Kwon
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Jaetaek Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Woo Jin Park
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- College of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
- Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Cardiac Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
- * E-mail:
| |
Collapse
|