1
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
2
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Kheirkhah A, Schachtl-Riess JF, Lamina C, Di Maio S, Koller A, Schönherr S, Coassin S, Forer L, Sekula P, Gieger C, Peters A, Köttgen A, Eckardt KU, Kronenberg F. Meta-GWAS on PCSK9 concentrations reveals associations of novel loci outside the PCSK9 locus in White populations. Atherosclerosis 2023; 386:117384. [PMID: 37989062 DOI: 10.1016/j.atherosclerosis.2023.117384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND AND AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of lipid homeostasis. A few earlier genome-wide association studies (GWAS) investigated genetic variants associated with circulating PCSK9 concentrations. However, uncertainty remains about some of the genetic loci discovered beyond the PCSK9 locus. By conducting the largest PCSK9 meta-analysis of GWAS (meta-GWAS) so far, we aimed to identify novel loci and validate the previously reported loci that regulate PCSK9 concentrations. METHODS We performed GWAS for PCSK9 concentrations in two large cohorts (GCKD (n = 4,963) and KORA F3 (n = 2,895)). These were meta-analyzed with previously published data encompassing together 20,579 individuals. We further conducted a second meta-analysis in statin-naïve individuals (n = 15,390). A genetic risk score (GRS) was constructed on PCSK9-increasing SNPs and assessed its impact on the risk for coronary artery disease (CAD) in 394,943 statin-naïve participants (17,077 with events) of the UK Biobank by performing CAD-free survival analysis. RESULTS Nine loci were genome-wide significantly associated with PCSK9 concentrations. These included the previously described PCSK9, APOB, KCNA1/KCNA5, and TM6SF2/SUGP1 loci. All imputed SNPs in the PCSK9 locus account for ∼15% of variance of PCSK9 concentrations. We further identified FADS2 as a novel locus that was also found in statin-naïve participants. All imputed SNPs within the FADS2 locus explain ∼1.2% of variance of PCSK9 concentrations. Additionally, four further loci (a region on chromosome 5, SDK1, SPATA16 and HPR) were genome-wide significant in either the main model or the statin-naïve subset. The linear increase in a PCSK9 genetic risk score was associated with 1.41-fold (95%CI 1.16-1.72, p < 0.001) higher risk for incident CAD. CONCLUSIONS We identified five novel loci (FADS2, SPATA16, SDK1, HPR and a region on chromosome 5) for PCSK9 concentrations that would require further research. Additionally, we confirm the genome-wide significant loci that were previously detected.
Collapse
Affiliation(s)
- Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Chronic Kidney Disease Study, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Matys J, Turska-Szewczuk A, Gieroba B, Kurzylewska M, Pękala-Safińska A, Sroka-Bartnicka A. Evaluation of Proteomic and Lipidomic Changes in Aeromonas-Infected Trout Kidney Tissue with the Use of FT-IR Spectroscopy and MALDI Mass Spectrometry Imaging. Int J Mol Sci 2022; 23:ijms232012551. [PMID: 36293421 PMCID: PMC9604335 DOI: 10.3390/ijms232012551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Aeromonas species are opportunistic bacteria causing a vast spectrum of human diseases, including skin and soft tissue infections, meningitis, endocarditis, peritonitis, gastroenteritis, and finally hemorrhagic septicemia. The aim of our research was to indicate the molecular alterations in proteins and lipids profiles resulting from Aeromonas sobria and A. salmonicida subsp. salmonicida infection in trout kidney tissue samples. We successfully applied FT-IR (Fourier transform infrared) spectroscopy and MALDI-MSI (matrix-assisted laser desorption/ionization mass spectrometry imaging) to monitor changes in the structure and compositions of lipids, secondary conformation of proteins, and provide useful information concerning disease progression. Our findings indicate that the following spectral bands’ absorbance ratios (spectral biomarkers) can be used to discriminate healthy tissue from pathologically altered tissue, for example, lipids (CH2/CH3), amide I/amide II, amide I/CH2 and amide I/CH3. Spectral data obtained from 10 single measurements of each specimen indicate numerous abnormalities concerning proteins, lipids, and phospholipids induced by Aeromonas infection, suggesting significant disruption of the cell membranes. Moreover, the increase in the content of lysolipids such as lysophosphosphatidylcholine was observed. The results of this study suggest the application of both methods MALDI-MSI and FT-IR as accurate methods for profiling biomolecules and identifying biochemical changes in kidney tissue during the progression of Aeromonas infection.
Collapse
Affiliation(s)
- Joanna Matys
- Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Barbara Gieroba
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Maria Kurzylewska
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Pękala-Safińska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Anna Sroka-Bartnicka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (J.M.); (A.S.-B.)
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Since the discovery of PCSK9 in 2003, this proprotein convertase was shown to target specific receptors for degradation in endosomes/lysosomes, including LDLR and other family members and hence to enhance the levels of circulating LDL-cholesterol (LDLc). Accordingly, inhibitors of PCSK9, including monoclonal antibodies blocking its circulating activity and siRNA silencers of its hepatic expression, are now used in clinics worldwide to treat hypercholesterolemia patients effectively and safely in combination with statins and/or ezetimibe. These powerful treatments reduce the incidence of atherosclerosis by at least 20%. Since 2008, novel targets of PCSK9 began to be defined, thereby expanding its roles beyond LDLc regulation into the realm of inflammation, pathogen infections and cellular proliferation in various cancers and associated metastases. RECENT FINDINGS Some pathogens such as dengue virus exploit the ability of PCSK9 to target the LDLR for degradation to enhance their ability to infect cells. Aside from increasing the degradation of the LDLR and its family members VLDLR, ApoER2 and LRP1, circulating PCSK9 also reduces the levels of other receptors such as CD36 (implicated in fatty acid uptake), oxidized LDLR receptor (that clears oxidized LDLc) as well as major histocompatibility class-I (MHC-I) receptors (implicated in the immune response to antigens). Thus, these novel targets provided links between PCSK9 and inflammation/atherosclerosis, viral infections and cancer/metastasis. The functional activities of PCSK9, accelerated the development of novel therapies to inhibit PCSK9 functions, including small molecular inhibitors, long-term vaccines, and possibly CRISPR-based silencing of hepatic expression of PCSK9. The future of inhibitors/silencers of PCSK9 function or expression looks bright, as these are expected to provide a modern armamentarium to treat various pathologies beyond hypercholesterolemia and its effects on atherosclerosis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| | - Damien Garçon
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
6
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Magnasco L, Sepulcri C, Antonello RM, Di Bella S, Labate L, Luzzati R, Giacobbe DR, Bassetti M. The role of PCSK9 in infectious diseases. Curr Med Chem 2021; 29:1000-1015. [PMID: 34269657 DOI: 10.2174/0929867328666210714160343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, many aspects of the physiological role of PCSK9 have been elucidated, particularly regarding its role in lipid metabolism, cardiovascular risk, and its role in innate immunity. Increasing evidence is available about the involvement of PCSK9 in the pathogenesis of viral infections, mainly HCV, and the regulation of host response to bacterial infections, primarily sepsis and septic shock. Moreover, the action of PCSK9 has been investigated as a crucial step in the pathogenesis of malaria infection and disease severity. OBJECTIVE This paper aims to review the available published literature on the role of PCSK9 in a wide array of infectious diseases. CONCLUSION Besides the ongoing investigation on PCSK9 inhibition among HIV-infected patients to treat HIV- and ART-related hyperlipidemia, preclinical studies indicate how PCSK9 is involved in reducing the replication of HCV. Interestingly, high plasmatic PCSK9 levels have been described in patients with sepsis. Moreover, a protective role of PCSK9 inhibition has also been proposed against dengue and SARS-CoV-2 viral infections. Finally, a loss of function in the PCSK9-encoding gene has been reported to reduce malaria infection mortality.
Collapse
Affiliation(s)
- Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Chiara Sepulcri
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | | | | | - Laura Labate
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
8
|
Grimm J, Peschel G, Müller M, Schacherer D, Wiest R, Weigand K, Buechler C. Rapid Decline of Serum Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) in Non-Cirrhotic Patients with Chronic Hepatitis C Infection Receiving Direct-Acting Antiviral Therapy. J Clin Med 2021; 10:1621. [PMID: 33920491 PMCID: PMC8069657 DOI: 10.3390/jcm10081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Direct-acting antivirals (DAAs) efficiently eradicate the hepatitis C virus (HCV). Low-density lipoprotein (LDL) levels increase rapidly upon DAA treatment. Proprotein convertase subtilisin/kexin 9 (PCSK9) induces degradation of the hepatic LDL receptor and thereby elevates serum LDL. The aim of this study was to determine serum PCSK9 concentrations during and after DAA therapy to identify associations with LDL levels. Serum PCSK9 was increased in 82 chronic HCV-infected patients compared to 55 patients not infected with HCV. Serum PCSK9 was low in HCV patients with liver cirrhosis, but patients with HCV-induced liver cirrhosis still exhibited higher serum PCSK9 than patients with non-viral liver cirrhosis. Serum PCSK9 correlated with measures of liver injury and inflammation in cirrhotic HCV patients. In patients without liver cirrhosis, a positive association of serum PCSK9 with viral load existed. Serum PCSK9 was not different between viral genotypes. Serum PCSK9 did not correlate with LDL levels in HCV patients irrespective of cirrhotic status. Serum PCSK9 was reduced, and LDL was increased at four weeks after DAA therapy start in non-cirrhotic HCV patients. Serum PCSK9 and LDL did not change upon DAA treatment in the cirrhotic group. The rapid decline of PCSK9 after the start of DAA therapy in conjunction with raised LDL levels in non-cirrhotic HCV patients shows that these changes are not functionally related.
Collapse
Affiliation(s)
- Jonathan Grimm
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Georg Peschel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Doris Schacherer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010 Bern, Switzerland;
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| |
Collapse
|
9
|
Feder S, Wiest R, Weiss TS, Aslanidis C, Schacherer D, Krautbauer S, Liebisch G, Buechler C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels are not associated with severity of liver disease and are inversely related to cholesterol in a cohort of thirty eight patients with liver cirrhosis. Lipids Health Dis 2021; 20:6. [PMID: 33461570 PMCID: PMC7814535 DOI: 10.1186/s12944-021-01431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is of particular importance in cholesterol metabolism with high levels contributing to hypercholesterolemia. Cholesterol and sphingolipids are low in patients with liver cirrhosis. Purpose of this study was to find associations of plasma PCSK9 with circulating cholesterol and sphingolipid species and measures of liver disease severity in patients with liver cirrhosis. METHODS PCSK9 protein levels were determined by ELISA in systemic vein (SVP), hepatic vein (HVP) and portal vein plasma of patients with mostly alcoholic liver cirrhosis. PCSK9 and LDL-receptor protein expression were analysed in cirrhotic and non-cirrhotic liver tissues. RESULTS Serum PCSK9 was reduced in patients with liver cirrhosis in comparison to non-cirrhotic patients. In liver cirrhosis, plasma PCSK9 was not correlated with Child-Pugh score, Model for End-Stage Liver Disease score, bilirubin or aminotransferases. A negative association of SVP PCSK9 with albumin existed. PCSK9 protein in the liver did not change with fibrosis stage and was even positively correlated with LDL-receptor protein levels. Ascites volume and variceal size were not related to PCSK9 levels. Along the same line, transjugular intrahepatic shunt to lower portal pressure did not affect PCSK9 concentrations in the three blood compartments. Serum cholesterol, sphingomyelin and ceramide levels did not correlate with PCSK9. Stratifying patients by high versus low PCSK9 levels using the median as cut-off, several cholesteryl ester species were even low in the subgroup with high PCSK9 levels. A few sphingomyelin species were also reduced in the patients with PCSK9 levels above the median. PCSK9 is highly expressed in the liver but systemic, portal and hepatic vein levels were similar. PCSK9 was not correlated with the inflammatory proteins C-reactive protein, IL-6, galectin-3, resistin or pentraxin 3. Of note, HVP PCSK9 was positively associated with HVP chemerin and negatively with HVP adiponectin levels. CONCLUSIONS In the cohort of patients with liver cirrhosis mostly secondary to alcohol consumption high PCSK9 was associated with low levels of certain cholesteryl ester and sphingomyelin species. Positive correlations of PCSK9 and LDL-receptor protein in the liver of patients with chronic liver injury are consistent with these findings.
Collapse
Affiliation(s)
- Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, Bern, Switzerland
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Doris Schacherer
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany.
| |
Collapse
|
10
|
Gorabi AM, Kiaie N, Bianconi V, Jamialahmadi T, Al-Rasadi K, Johnston TP, Pirro M, Sahebkar A. Antiviral effects of statins. Prog Lipid Res 2020; 79:101054. [PMID: 32777243 DOI: 10.1016/j.plipres.2020.101054] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Introducing statins as possible widely-available drugs for the treatment of viral infections requires an in depth review of their antiviral properties. Despite some inconsistency, a large body of literature data from experimental and clinical studies suggest that statins may have a role in the treatment of viral infections due to their immunomodulatory properties as well as their ability to inhibit viral replication. In the present review, the role that statins may play while interacting with the immune system during viral infections and the possible inhibitory effects of statins on different stages of virus cell cycle (i.e., from fusion with host cell membranes to extracellular release) and subsequent virus transmission are described. Specifically, cholesterol-dependent and cholesterol-independent mechanisms of the antiviral effects of statins are reported.
Collapse
Affiliation(s)
- Armita M Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalid Al-Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy.
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Bianconi V, Schiaroli E, Pirro M, Cardaci S, Busti C, Mannarino MR, Baldelli F, Francisci D. Effects of antiretroviral therapy on proprotein convertase subtilisin/kexin 9: focus on lipids, inflammation and immunovirological parameters. HIV Med 2020; 21:512-522. [PMID: 32496664 DOI: 10.1111/hiv.12884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), a major regulator of cholesterol metabolism, have been reported to have an increasing trend in people living with HIV (PLWH) compared with controls. We assessed the impact of different antiretroviral (ARV) regimens on plasma PCSK9 levels as well as plasma lipids, systemic inflammation and immunovirological parameters. METHODS Eighty HIV-positive ARV therapy (ART)-naïve PLWH and 40 uninfected controls were retrospectively enrolled. At baseline and 3, 6 and 12 months after ART initiation, plasma PCSK9 levels, lipids, high-sensitivity C-reactive protein (hs-CRP), HIV-1 RNA levels and CD4 T-cell count were measured. RESULTS Baseline PCSK9 levels were significantly more elevated in PLWH and were associated with HIV-1 RNA levels (P < 0.001), CD4 T-cell counts (P < 0.001), triglycerides (P < 0.001) and high-density lipoprotein (HDL) cholesterol (P < 0.001), but not with total cholesterol, low-density lipoprotein (LDL) cholesterol and lipoprotein(a) levels. The prescription of ART was paralleled by significant decreases in plasma PCSK9 and hs-CRP levels, and increases in total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides and lipoprotein(a), independent of regimen. CONCLUSIONS PCSK9 levels, along with systemic inflammation, were progressively reduced following the initiation of an effective ART. However, at the end of the study PCSK9 levels remained higher than in controls and did not correlate with any of the lipid variables.
Collapse
Affiliation(s)
- V Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - E Schiaroli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - M Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - S Cardaci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - C Busti
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - M R Mannarino
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - F Baldelli
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - D Francisci
- Unit of Infectious Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res 2020; 115:510-518. [PMID: 30629143 DOI: 10.1093/cvr/cvz003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
Since the discovery of the role of proprotein convertase subtilisin kexin 9 (PCSK9) in the regulation of low-density lipoprotein cholesterol (LDL-C) in 2003, a paradigm shift in the treatment of hypercholesterolaemia has occurred. The PCSK9 secreted into the circulation is a major downregulator of the low-density lipoprotein receptor (LDLR) protein, as it chaperones it to endosomes/lysosomes for degradation. Humans with loss-of-function of PCSK9 exhibit exceedingly low levels of LDL-C and are protected from atherosclerosis. As a consequence, innovative strategies to modulate the levels of PCSK9 have been developed. Since 2015 inhibitory monoclonal antibodies (evolocumab and alirocumab) are commercially available. When subcutaneously injected every 2-4 weeks, they trigger a ∼60% LDL-C lowering and a 15% reduction in the risk of cardiovascular events. Another promising approach consists of a liver-targetable specific PCSK9 siRNA which results in ∼50-60% LDL-C lowering that lasts up to 6 months (Phases II-III clinical trials). Other strategies under consideration include: (i) antibodies targeting the C-terminal domain of PCSK9, thereby inhibiting the trafficking of PCSK9-LDLR to lysosomes; (ii) small molecules that either prevent PCSK9 binding to the LDLR, its trafficking to lysosomes or its secretion from cells; (iii) complete silencing of PCSK9 by CRISPR-Cas9 strategies; (iv) PCSK9 vaccines that inhibit the activity of circulating PCSK9. Time will tell whether other strategies can be as potent and safe as monoclonal antibodies to lower LDL-C levels.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM; Affiliated to the University of Montreal), Montreal, QC H2W1R7, Canada
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Petrilli WL, Adam GC, Erdmann RS, Abeywickrema P, Agnani V, Ai X, Baysarowich J, Byrne N, Caldwell JP, Chang W, DiNunzio E, Feng Z, Ford R, Ha S, Huang Y, Hubbard B, Johnston JM, Kavana M, Lisnock JM, Liang R, Lu J, Lu Z, Meng J, Orth P, Palyha O, Parthasarathy G, Salowe SP, Sharma S, Shipman J, Soisson SM, Strack AM, Youm H, Zhao K, Zink DL, Zokian H, Addona GH, Akinsanya K, Tata JR, Xiong Y, Imbriglio JE. From Screening to Targeted Degradation: Strategies for the Discovery and Optimization of Small Molecule Ligands for PCSK9. Cell Chem Biol 2020; 27:32-40.e3. [DOI: 10.1016/j.chembiol.2019.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
|
14
|
Panahi Y, Ghahrodi MS, Jamshir M, Safarpour MA, Bianconi V, Pirro M, Farahani MM, Sahebkar A. PCSK9 and atherosclerosis burden in the coronary arteries of patients undergoing coronary angiography. Clin Biochem 2019; 74:12-18. [PMID: 31493378 DOI: 10.1016/j.clinbiochem.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022]
Abstract
AIMS To investigate the association between plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) concentrations, current acute coronary syndrome (ACS), coronary artery disease (CAD) presence, severity and extension and the burden of coronary calcifications in patients with suspected CAD. METHODS AND RESULTS One hundred and one patients, with or without current ACS, were recruited for this cross-sectional study. CAD presence was defined based on either the presence or absence of at least one significant (≥50%) CAD lesion (SCAD). CAD severity was classified according to the absence of coronary lesions, the presence of non-significant (<50%) CAD (MCAD) or SCAD in at least one major coronary artery. Patients with one, two or three significantly diseased major coronary arteries were defined as 1-SCAD, 2-SCAD and 3-SCAD, respectively. The cumulative length of SCAD lesions and the amount of calcifications in coronary arteries were estimated. Plasma PCSK9 concentrations were higher in patients with SCAD as compared to those without (p = .012). A significant increase in plasma PCSK9 concentrations was observed with greater CAD severity (p = .042). Higher plasma PCSK9 concentrations were found in 3-SCAD patients as compared to either 2-SCAD or 1-SCAD (p < .001). PCSK9 increased with the cumulative length of SCAD lesions and the burden of calcifications (p < .05 for both comparisons). Multivariable adjustment abolished the association between PCSK9 and either CAD presence or severity, but not the association between PCSK9 and the number of significantly diseased vessels, SCAD lesion length and the burden of coronary calcifications. ACS was associated with a borderline significant increase of plasma PCSK9 concentrations among patients not taking statins (p = .05). CONCLUSION Circulating PCSK9 concentrations discriminate patients with greater coronary atherosclerotic lesion extension and calcification, and are increased in patients with current ACS.
Collapse
Affiliation(s)
- Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah university of Medical Sciences, Tehran, Iran
| | | | - Mohsen Jamshir
- Atherosclerosis Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Reprogramming of cellular metabolic pathways by human oncogenic viruses. Curr Opin Virol 2019; 39:60-69. [PMID: 31766001 DOI: 10.1016/j.coviro.2019.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/18/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses, like all viruses, relies on host metabolism to provide the metabolites and energy needed for virus replication. Many DNA tumor viruses and retroviruses will reprogram metabolism during infection. Additionally, some viral oncogenes may alter metabolism independent of virus replication. Virus infection and cancer development share many similarities regarding metabolic reprogramming as both processes demand increased metabolic activity to produce biomass: cell proliferation in the case of cancer and virion production in the case of infection. This review discusses the parallels in metabolic reprogramming between human oncogenic viruses and oncogenesis.
Collapse
|
16
|
Liu X, Suo R, Chan CZY, Liu T, Tse G, Li G. The immune functions of PCSK9: Local and systemic perspectives. J Cell Physiol 2019; 234:19180-19188. [PMID: 30950043 DOI: 10.1002/jcp.28612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipoprotein receptor (LDLR) to trigger endocytosis and lysosome degradation in hepatocytes, regulating intracellular and plasma cholesterol levels. The discovery of PCSK9 has provided a new target for the management of hypercholesterolemia and cardiovascular risk reduction. There is emerging evidence that shows that PCSK9 may influence the activity of various cell types through either LDLR-dependent or LDLR-independent mechanisms. Changes in the circulating PCSK9 levels have been observed during infection and proinflammatory conditions. Furthermore, PCSK9 as a secreted protein has both local and systemic effects on cellular function. In this review, we summarize the roles of PCSK9 in inflammation.
Collapse
Affiliation(s)
- Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Rong Suo
- Department of Cardiology, Tianjin Hospital, Tianjin, People's Republic of China
| | - Calista Zhuo Yi Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - GuangPing Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
17
|
Jamialahmadi T, Panahi Y, Safarpour MA, Ganjali S, Chahabi M, Reiner Z, Solgi S, Vahedian-Azimi A, Kianpour P, Banach M, Sahebkar A. Association of Serum PCSK9 Levels with Antibiotic Resistance and Severity of Disease in Patients with Bacterial Infections Admitted to Intensive Care Units. J Clin Med 2019; 8:1742. [PMID: 31635200 PMCID: PMC6833014 DOI: 10.3390/jcm8101742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The results of several studies have suggested that infections and sepsis, either bacterial or viral, might be associated with elevated plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels. Since there are no data on PCSK9 levels and antibiotic resistance or the severity of disease in patients with bacterial infections in intensive care units, the aim of this study was to investigate whether any such associations exist. METHODS 100 patients (46 males, mean age 67.12 ± 1.34 years) with bacterial infections who were staying in an intensive care unit (ICU) longer than 48 h but less than 7 days and who were not receiving corticosteroids were analyzed. Their serum levels of albumin, C-reactive protein, glucose, lactate, blood urea nitrogen, prothrombin (international normalized ratio), total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, PCSK9, and procalcitonin were measured. The severity of the patients' condition was assessed by using the Glasgow Coma Scale (GCS), the Sequential Organ Failure Assessment (SOFA), and the Acute Physiology and Chronic Health Evaluation II (APACHE II) scales. RESULTS Using a hierarchical regression modeling approach, no significant association was found between PCSK9 levels and either the severity of disease (APACHE II, SOFA, and GCS) indices or resistance to antibiotics. CONCLUSION The results suggest that there is no association between PCSK9 levels and resistance to antibiotics or the condition of patients hospitalized in intensive care units.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 143591647, Iran.
| | | | - Shiva Ganjali
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Mahdi Chahabi
- Department of Biochemistry, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37515374, Iran.
| | - Zeljko Reiner
- University Hospital Center Zagreb, Department of Internal medicine, Kišpatićeva 12, 10000 Zagreb, Croatia.
| | - Saeed Solgi
- Department of Biochemistry, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37515374, Iran.
| | - Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Parisa Kianpour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran.
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90549 Lodz, Poland.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948567, Iran.
| |
Collapse
|
18
|
Reduced Proprotein convertase subtilisin/kexin 9 (PCSK9) function increases lipoteichoic acid clearance and improves outcomes in Gram positive septic shock patients. Sci Rep 2019; 9:10588. [PMID: 31332258 PMCID: PMC6646337 DOI: 10.1038/s41598-019-46745-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown lipopolysaccharide from Gram-negative bacteria is cleared from the circulation via LDL receptors on hepatocytes, which are downregulated by PCSK9. Whether clearance of Gram positive bacterial lipoteichoic acid (LTA) shows similar dependence on PCSK9, and whether this is clinically relevant in Gram positive human sepsis, is unknown. We examined survival data from three cohorts of patients who had Gram positive septic shock (n = 170, n = 130, and n = 59) and found that patients who carried a PCSK9 loss-of-function (LOF) allele had significantly higher 28-day survival (73.8%) than those with no LOF alleles (52.8%) (p = 0.000038). Plasma clearance of LTA was also found to be increased in PCSK9 knockout mice compared to wildtype control mice (p = 0.002). In addition, hepatocytes pre-treated with recombinant wildtype PCSK9 showed a dose-dependent decrease in uptake of fluorescently-labeled LTA (p < 0.01). In comparison to wildtype PCSK9, hepatocytes pre-treated with 3 different LOF variants of recombinant PCSK9 showed an increase in LTA uptake. This study shows the clearance of LTA follows a similar route as lipopolysaccharide, which is dependent on hepatic LDL receptors. This has important implications in health as strategies aimed at inhibiting PCSK9 function may be an effective treatment option for both Gram-positive and negative sepsis.
Collapse
|
19
|
Liu W, Jiang X, Liu Y, Ma Q. Bioinformatics Analysis of Quantitative PCR and Reverse Transcription PCR in Detecting HCV RNA. Curr Bioinform 2019. [DOI: 10.2174/1574893613666180703103328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:This research aimed to make comparisons of sensitivity and specificity between Quantitative real Time Polymerase Chain Reaction (Q-PCR) and Reverse Transcription PCR (RT-PCR) in detecting the ribonucleic acid (RNA) expression levels of Hepatitis C Virus (HCV).Methods:121 patients suffering from hepatitis C and 98 healthy participants with normal liver functions were identified. The venous blood collections were carried out, were subjected to detect the expression levels of HCV RNA via Q-PCR and RT-PCR. And then, the data obtained from these above two detection methods were compared, including the sensitivity and specificity.Results:In terms of Q-PCR, the positive rate of HCV RNA was 72.16%, which was significantly higher when compared with 55.26% of RT-PCR. After statistical analysis, the difference between them was statistically significant (P<0.05). Among the healthy participants, 4 cases were false positive by means of RT-PCR, there was the possibility of missed diagnosis when the samples were evaluated by Q-PCR.Conclusion:: The Q-PCR detection technology performed well in testing HCV, with pretty high sensitivity and specificity. Nevertheless, the false negative results obtained from Q-PCR could not be avoided. In clinical practice, these above two detection methods should be referred to, in order to avoid missed diagnosis.
Collapse
Affiliation(s)
- Wei Liu
- Luhe Hospital Capital Medical University, Beijing, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, Guangdong, China
| | - Yue Liu
- DAAN Gene Co., Ltd. of Sun Yat-sen University, 19 Xiangshan Road, Science Park, High & New Technology Development District, Guangzhou, Guangdong, China
| | - Qingsong Ma
- Qian'an Traditional Chinese Medicine Hospital, 66 Foshan Road, Qian'an, Hebei, China
| |
Collapse
|