1
|
Xie X, Li R, Mi F. hsa_circ_0095812 accelerates periodontitis progression by adsorbing miR-485-3p-mediated THBS1 expression. Clinics (Sao Paulo) 2025; 80:100631. [PMID: 40220480 PMCID: PMC12018572 DOI: 10.1016/j.clinsp.2025.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE To explore the role of hsa_circ_0095812 (circLRRC4C) in periodontitis and its mechanism with miR-485-3p and Thrombospondin-1 (THBS1). METHODS Periodontal tissues were collected from periodontitis patients. Periodontal Ligament Cells (PDLCs) were stimulated with Lipopolysaccharide (LPS) and transfected. Cell viability, inflammation, apoptosis, and pyroptosis were analyzed. A mouse model of periodontitis was constructed and injected with a lentiviral plasmid vector targeting circLRRC4C. Immunohistochemistry was performed on the periodontal tissue of model mice. The relevant expression level of genes was measured via real-time reverse transcriptase-polymerase chain reaction or Western blot. The relationship between circLRRC4C and THBS1 with miR-485-3p was analyzed. RESULTS CircLRRC4C was highly expressed in periodontitis tissues of patients and LPS-treated PDLCs. Downregulating circLRRC4C attenuated LPS-induced PDLC inflammation, apoptosis and pyroptosis and recovered cellular viability. CircLRRC4C acted as a sponge for miR-485-3p. CircLRRC4C affected LPS-induced PDLC apoptosis, pyroptosis and inflammation by regulating miR-485-3p. THBS1 was the target gene of miR-485-3p. Inhibition of THBS1 effectively improved LPS-induced periodontitis. CircLRRC4C aggravated LPS-induced PDLC apoptosis, pyroptosis and inflammation by regulating the miR-485-3p/THBS1 axis. Suppressing circLRRC4C effectively improved periodontitis in mice. CONCLUSION CircLRRC4C induces periodontitis progression by adsorbing miR-485-3p-mediated THBS1 expression.
Collapse
Affiliation(s)
- XiaoTing Xie
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China
| | - RuiTing Li
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China
| | - FangLin Mi
- North Sichuan Medical College, Nanchong City, Sichuan Province, PR China.
| |
Collapse
|
2
|
Liu W, Li Q, Zhu N, Zhang S, Jing J, Zhan J. Circ_0079471 Regulates the Proliferation, Migration, Invasion and Apoptosis of Osteosarcoma Cells by Mediating miR-485-3p and TRIP6. Curr Med Chem 2025; 32:1208-1222. [PMID: 38178663 DOI: 10.2174/0109298673276157231214094454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a special class of non-coding RNA molecules that show a closed circular structure and have been implicated in both tumour formation and oncogenesis. OBJECTIVE This study aimed to learn more about how circ_0079471 functions in osteosarcomas (OSs). METHODS Quantitative real-time polymerase chain reaction was used to detect the expression levels of thyroid hormone receptor-interacting protein 6 (TRIP6), miR-485-3p and circ_0079471. Methyl-thiazolyl-tetrazolium and flow cytometry were used to track cell growth and cell-cycle progression, and the research explored wound healing (migration) and invasion using Transwell plates. Western blotting was used to determine the protein expression of TRIP6, proliferating cell nuclear antigen and cyclin D1, and a dual-luciferase assay revealed the target relationship. RESULTS A xenograft experiment evaluated the in vivo effects of circ_0079471 on OS, and the results revealed the high expression of circ_0079471 in OS tissue and cells. The proliferation, cell-cycle migration and invasion of cells were reduced after circ_0079471 knockdown in OS cells; however, the effects of this knockdown were reversed when TRIP6 was overexpressed in the OS cells. The function of circ_0079471 was also achieved by in vivo miR-485-3p sponging. The upregulation of miR-485-3p and the downregulation of TRIP6 partly resulted in circ_0079471 downregulation, which subsequently inhibited OS progression. CONCLUSION According to these results, circ_0079471 influences the development of OS by regulating miR-485-3p and TRIP6.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Qingning Li
- Emergency Department, Anhui No. 2 Provincial People's Hospital, Yaohai District, North Second Ring Dangshan Road 1868, Hefei, Anhui, 230041, China
| | - Nan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Shuo Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Junfeng Zhan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| |
Collapse
|
3
|
Xie Y, Xie L, Qiu Z, He J, Jiang F, Cai M, Lin Y, Chen L. miR-485-3p targets SIRT1 in vascular smooth muscle cells mediating the occurrence of aortic dissection. J Cell Mol Med 2024; 28:e18454. [PMID: 39010253 PMCID: PMC11250145 DOI: 10.1111/jcmm.18454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024] Open
Abstract
Studies have demonstrated a close correlation between MicroRNA and the occurrence of aortic dissection (AD). However, the molecular mechanisms underlying this relationship have not been fully elucidated and further exploration is still required. In this study, we found that miR-485-3p was significantly upregulated in human aortic dissection tissues. Meanwhile, we constructed in vitro AD models in HAVSMCs, HAECs and HAFs and found that the expression of miR-485-3p was increased only in HAVSMCs. Overexpression or knockdown of miR-485-3p in HAVSMCs could regulate the expression of inflammatory cytokines IL1β, IL6, TNF-α, and NLRP3, as well as the expression of apoptosis-related proteins BAX/BCL2 and Cleaved caspase3/Caspase3. In the in vivo AD model, we have observed that miR-485-3p regulates vascular inflammation and apoptosis, thereby participating in the modulation of AD development in mice. Based on target gene prediction, we have validated that SIRT1 is a downstream target gene of miR-485-3p. Furthermore, by administering SIRT1 agonists and inhibitors to mice, we observed that the activation of SIRT1 alleviates vascular inflammation and apoptosis, subsequently reducing the incidence of AD. Additionally, functional reversal experiments revealed that overexpression of SIRT1 in HAVSMCs could reverse the cell inflammation and apoptosis mediated by miR-485-3p. Therefore, our research suggests that miR-485-3p can aggravate inflammation and apoptosis in vascular smooth muscle cells by suppressing the expression of SIRT1, thereby promoting the progression of aortic dissection.
Collapse
Affiliation(s)
- Yuling Xie
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Linfeng Xie
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Zhihuang Qiu
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Jian He
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| | - Fei Jiang
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Department of NursingFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Meiling Cai
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Department of NursingFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Yanjuan Lin
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Department of NursingFujian Medical University Union HospitalFuzhouFujianP. R. China
| | - Liangwan Chen
- Department of Cardiovascular SurgeryFujian Medical University Union HospitalFuzhouFujianP. R. China
- Key Laboratory of Cardio‐Thoracic Surgery (Fujian Medical University)Fujian Province UniversityFuzhouFujianP. R. China
| |
Collapse
|
4
|
Liang Y, Zhao B, Shen Y, Peng M, Qiao L, Liu J, Pan Y, Yang K, Liu W. Elucidating the Role of circTIAM1 in Guangling Large-Tailed Sheep Adipocyte Proliferation and Differentiation via the miR-485-3p/PLCB1 Pathway. Int J Mol Sci 2024; 25:4588. [PMID: 38731807 PMCID: PMC11083075 DOI: 10.3390/ijms25094588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
5
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
6
|
Ghafouri-Fard S, Gholipour M, Eslami S, Hussen BM, Taheri M, Samadian M, Omrani MD. Abnormal expression of MAPK14-related lncRNAs in the peripheral blood of patients with multiple sclerosis. Noncoding RNA Res 2023; 8:335-339. [PMID: 37091283 PMCID: PMC10114144 DOI: 10.1016/j.ncrna.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Contribution of MAPK14 in the pathogenesis of multiple sclerosis (MS) has been proposed by several studies. Long non-coding RNA (lncRNA) have been suggested to be functionally linked with Mitogen-activated protein kinase 14 (MAPK14). Methods Expression levels of MAPK14 and its associated lncRNAs were measured in the circulation of MS patients compared with control subjects. Results Expression levels of NORAD and RAD51-AS1 were higher in total patients compared with controls (Expression ratio (95% CI) = 1.4 (1.04-1.89), P value = 0.015 and Expression ratio (95% CI) = 1.91 (1.43-2.6), P value = 0.0001, respectively). Conversely, ZNRD1ASP was under-expressed in cases compared with controls (Expression ratio (95% CI) = 0.61 (0.41-0.8), P value = 0.0005). In spite of the observed abnormal expression levels of these lncRNAs in the circulation of MS patients, their expressions were not correlated with Expanded Disability Status Scale (EDSS) score, disease duration or age at disease onset. Conclusion To sum up, the current investigation shows dysregulation of MAPK14-related lncRNAs in MS patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Corresponding author. Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding author.
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding author.
| |
Collapse
|
7
|
Tinnirello R, Chinnici CM, Miceli V, Busà R, Bulati M, Gallo A, Zito G, Conaldi PG, Iannolo G. Two Sides of The Same Coin: Normal and Tumoral Stem Cells, The Relevance of In Vitro Models and Therapeutic Approaches: The Experience with Zika Virus in Nervous System Development and Glioblastoma Treatment. Int J Mol Sci 2023; 24:13550. [PMID: 37686355 PMCID: PMC10487988 DOI: 10.3390/ijms241713550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Neural stem cells (NSCs) were described for the first time more than two decades ago for their ability to differentiate into all neural cell lineages. The isolation of NSCs from adults and embryos was carried out by various laboratories and in different species, from mice to humans. Similarly, no more than two decades ago, cancer stem cells were described. Cancer stem cells, previously identified in hematological malignancies, have now been isolated from several solid tumors (breast, brain, and gastrointestinal compartment). Though the origin of these cells is still unknown, there is a wide consensus about their role in tumor onset, propagation and, in particular, resistance to treatments. Normal and neoplastic neural stem cells share common characteristics, and can thus be considered as two sides of the same coin. This is particularly true in the case of the Zika virus (ZIKV), which has been described as an inhibitor of neural development by specifically targeting NSCs. This understanding prompted us and other groups to evaluate ZIKV action in glioblastoma stem cells (GSCs). The results indicate an oncolytic activity of this virus vs. GSCs, opening potentially new possibilities in glioblastoma treatment.
Collapse
Affiliation(s)
- Rosaria Tinnirello
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Cinzia Maria Chinnici
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
- Regenerative Medicine and Immunotherapy Area, Fondazione Ri.MED c/o IRCCS ISMETT, 90127 Palermo, Italy
| | - Vitale Miceli
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Rosalia Busà
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Matteo Bulati
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Giovanni Zito
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; (R.T.); (C.M.C.); (V.M.); (R.B.); (M.B.); (A.G.); (G.Z.); (P.G.C.)
| |
Collapse
|
8
|
Van der Auwera S, Garvert L, Ameling S, Völzke H, Nauck M, Völker U, Grabe HJ. The interplay between micro RNAs and genetic liability to Alzheimer's Disease on memory trajectories in the general population. Psychiatry Res 2023; 323:115141. [PMID: 36905902 DOI: 10.1016/j.psychres.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
Deficits in cognitive function and memory are common early symptoms of neurodegenerative disorders, such as Alzheimer's Disease (AD). Several studies have discussed micro RNAs (miRNAs) as potential epigenetic early detection biomarkers. In a longitudinal general population sample (n = 548) from the Study of Health in Pomerania, we analyzed the associations between 167 baseline miRNA levels and changes in verbal memory scores with a mean follow-up time of 7.4 years. We additionally assessed the impact of an individual's genetic liability for AD on verbal memory scores in n = 2,334 subjects and a possible interactions between epigenetic and genetic markers. Results revealed two miRNAs associated with changes in immediate verbal memory over time. In interaction analyses between miRNAs and a polygenic risk score for AD, five miRNAs showed a significant interaction effect on changes in verbal memory. All of these miRNAs have previously been identified in the context of AD, neurodegeneration or cognition. Our study provides candidate miRNAs for a decline in verbal memory as an early symptom of neurodegeneration and AD. Further experimental studies are needed to verify the diagnostic value of these miRNA markers in the prodromal stage of AD.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany.
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Daniel P, Balušíková K, Václavíková R, Šeborová K, Ransdorfová Š, Valeriánová M, Wei L, Jelínek M, Tlapáková T, Fleischer T, Kristensen VN, Souček P, Ojima I, Kovář J. ABCB1 Amplicon Contains Cyclic AMP Response Element-Driven TRIP6 Gene in Taxane-Resistant MCF-7 Breast Cancer Sublines. Genes (Basel) 2023; 14:genes14020296. [PMID: 36833223 PMCID: PMC9957548 DOI: 10.3390/genes14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
A limited number of studies are devoted to regulating TRIP6 expression in cancer. Hence, we aimed to unveil the regulation of TRIP6 expression in MCF-7 breast cancer cells (with high TRIP6 expression) and taxane-resistant MCF-7 sublines (manifesting even higher TRIP6 expression). We found that TRIP6 transcription is regulated primarily by the cyclic AMP response element (CRE) in hypomethylated proximal promoters in both taxane-sensitive and taxane-resistant MCF-7 cells. Furthermore, in taxane-resistant MCF-7 sublines, TRIP6 co-amplification with the neighboring ABCB1 gene, as witnessed by fluorescence in situ hybridization (FISH), led to TRIP6 overexpression. Ultimately, we found high TRIP6 mRNA levels in progesterone receptor-positive breast cancer and samples resected from premenopausal women.
Collapse
Affiliation(s)
- Petr Daniel
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Marie Valeriánová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Longfei Wei
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Tereza Tlapáková
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Iwao Ojima
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-267-102-658
| |
Collapse
|
11
|
Barney TM, Vore AS, Deak T. Acute Ethanol Challenge Differentially Regulates Expression of Growth Factors and miRNA Expression Profile of Whole Tissue of the Dorsal Hippocampus. Front Neurosci 2022; 16:884197. [PMID: 35706690 PMCID: PMC9189295 DOI: 10.3389/fnins.2022.884197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 02/02/2023] Open
Abstract
Acute ethanol exposure produces rapid alterations in neuroimmune gene expression that are both time- and cytokine-dependent. Interestingly, adolescent rats, who often consume binge-like quantities of alcohol, displayed reduced neuroimmune responses to acute ethanol challenge. However, it is not known whether growth factors, a related group of signaling factors, respond to ethanol similarly in adults and adolescents. Therefore, Experiment 1 aimed to assess the growth factor response to ethanol in both adolescents and adults. To test this, adolescent (P29-P34) and adult (P70-P80) Sprague Dawley rats of both sexes were injected with either ethanol (3.5 g/kg) or saline, and brains were harvested 3 h post-injection for assessment of growth factor, cytokine, or miRNA expression. As expected, acute ethanol challenge significantly increased IL-6 and IκBα expression in the hippocampus and amygdala, replicating our prior findings. Acute ethanol significantly decreased BDNF and increased FGF2 regardless of age condition. PDGF was unresponsive to ethanol, but showed heightened expression among adolescent males. Because recent work has focused on the PDE4 inhibitor ibudilast for treatment in alcohol use disorder, Experiment 2 tested whether ibudilast would alter ethanol-evoked gene expression changes in cytokines and growth factors in the CNS. Ibudilast (9.0 mg/kg s.c.) administration 1 h prior to ethanol had no effect on ethanol-induced changes in cytokine or growth factor changes in the hippocampus or amygdala. To further explore molecular alterations evoked by acute ethanol challenge in the adult rat hippocampus, Experiment 3 tested whether acute ethanol would change the miRNA expression profile of the dorsal hippocampus using RNASeq, which revealed a rapid suppression of 12 miRNA species 3 h after acute ethanol challenge. Of the miRNA affected by ethanol, the majority were related to inflammation or cell survival and proliferation factors, including FGF2, MAPK, NFκB, and VEGF. Overall, these findings suggest that ethanol-induced, rapid alterations in neuroimmune gene expression were (i) muted among adolescents; (ii) independent of PDE4 signaling; and (iii) accompanied by changes in several growth factors (increased FGF2, decreased BDNF). In addition, ethanol decreased expression of multiple miRNA species, suggesting a dynamic molecular profile of changes in the hippocampus within a few short hours after acute ethanol challenge. Together, these findings may provide important insight into the molecular consequences of heavy drinking in humans.
Collapse
|
12
|
Zhai W, Zhao M, Zhang G, Wang Z, Wei C, Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol 2022; 13:895316. [PMID: 35592472 PMCID: PMC9110834 DOI: 10.3389/fneur.2022.895316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is a neurodegenerative disease that is recognized as the second leading cause of dementia after Alzheimer's disease (AD). The underlying pathological mechanism of VCID include crebromicrovascular dysfunction, blood-brain barrier (BBB) disruption, neuroinflammation, capillary rarefaction, and microhemorrhages, etc. Despite the high incidence of VCID, no effective therapies are currently available for preventing or delaying its progression. Recently, pathophysiological microRNAs (miRNAs) in VCID have shown promise as novel diagnostic biomarkers and therapeutic targets. Studies have revealed that miRNAs can regulate the function of the BBB, affect apoptosis and oxidative stress (OS) in the central nervous system, and modulate neuroinflammation and neurodifferentiation. Thus, this review summarizes recent findings on VCID and miRNAs, focusing on their correlation and contribution to the development of VCID pathology.
Collapse
|
13
|
Lee S, Shin YA, Cho J, Park DH, Kim C. Trabecular Bone Microarchitecture Improvement Is Associated With Skeletal Nerve Increase Following Aerobic Exercise Training in Middle-Aged Mice. Front Physiol 2022; 12:800301. [PMID: 35273515 PMCID: PMC8902445 DOI: 10.3389/fphys.2021.800301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
Advancing age is associated with bone loss and an increased risk of osteoporosis. Exercise training improves bone metabolism and peripheral nerve regeneration, and may play a critical role in osteogenesis and increase in skeletal nerve fiber density. In this study, the potential positive role of aerobic exercise training in bone metabolism and skeletal nerve regeneration was comprehensively evaluated in 14-month-old male C57BL/6 mice. The mice were divided into two groups: no exercise (non-exercise group) and 8-weeks of aerobic exercise training (exercise group), with six mice in each group. Dual-energy X-ray absorptiometry and micro-computed tomography showed that femoral and tibial bone parameters improved after aerobic exercise training. Greater skeletal nerve fiber density was also observed in the distal femoral and proximal tibial periostea, measured and analyzed by immunofluorescence staining and confocal microscopy. Pearson correlation analysis revealed a significant association between skeletal nerve densities and trabecular bone volume/total volume ratios (distal femur; R 2 = 0.82, p < 0.05, proximal tibia; R 2 = 0.59, p = 0.07) in the exercise group; while in the non-exercise group no significant correlation was found (distal femur; R 2 = 0.10, p = 0.54, proximal tibia; R 2 = 0.12, p = 0.51). Analysis of archival microarray database confirmed that aerobic exercise training changed the microRNA profiles in the mice femora. The differentially expressed microRNAs reinforce the role of aerobic exercise training in the osteogenic and neurogenic potential of femora and tibiae. In conclusion, 8-weeks of aerobic exercise training positively regulate bone metabolism, an effect that paralleled a significant increase in skeletal nerve fiber density. These findings suggest that aerobic exercise training may have dual utility, both as a direct stimulator of bone remodeling and a positive regulator of skeletal nerve regeneration.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Yun-A Shin
- Department of Exercise Prescription and Rehabilitation, College of Sports Science, Dankook University, Cheonan, South Korea
| | - Jinkyung Cho
- Department of Sport Science, Korea Institute of Sport Science, Seoul, South Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Changsun Kim
- Department of Physical Education, Dongduk Women's University, Seoul, South Korea
| |
Collapse
|
14
|
Circulating miRNAs as Potential Biomarkers Distinguishing Relapsing-Remitting from Secondary Progressive Multiple Sclerosis. A Review. Int J Mol Sci 2021; 22:ijms222111887. [PMID: 34769314 PMCID: PMC8584709 DOI: 10.3390/ijms222111887] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating neurodegenerative, highly heterogeneous disease with a variable course. The most common MS subtype is relapsing–remitting (RR), having interchanging periods of worsening and relative stabilization. After a decade, in most RR patients, it alters into the secondary progressive (SP) phase, the most debilitating one with no clear remissions, leading to progressive disability deterioration. Among the greatest challenges for clinicians is understanding disease progression molecular mechanisms, since RR is mainly characterized by inflammatory processes, while in SP, the neurodegeneration prevails. This is especially important because distinguishing RR from the SP subtype early will enable faster implementation of appropriate treatment. Currently, the MS course is not well-correlated with the biomarkers routinely used in clinical practice. Despite many studies, there are still no reliable indicators correlating with the disease stage and its activity degree. Circulating microRNAs (miRNAs) may be considered valuable molecules for the MS diagnosis and, presumably, helpful in predicting disease subtype. MiRNA expression dysregulation is commonly observed in the MS course. Moreover, knowledge of diverse miRNA panel expression between RRMS and SPMS may allow for deterring disability progression through successful treatment. Therefore, in this review, we address the current state of research on differences in miRNA panel expression between the phases.
Collapse
|
15
|
Ghafouri-Fard S, Moghadam MHB, Shoorei H, Bahroudi Z, Taheri M, Taheriazam A. The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother 2021; 142:112050. [PMID: 34426251 DOI: 10.1016/j.biopha.2021.112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation into diverse cells are two main characteristics of stem cells. These cells have important roles in development and homeostasis of different tissues and are supposed to facilitate tissue regeneration. Function of stem cells is regulated by dynamic interactions between external signaling, epigenetic factors, and molecules that regulate expression of genes. Among the highly appreciated regulators of function of stem cells are long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). Impact of miR-342-5p, miR-145, miR-1297, miR-204-5p, miR-132, miR-128-3p, hsa-miR-302, miR-26b-5p and miR-10a are among miRNAs that regulate function of stem cells. Among lncRNAs, AK141205, ANCR, MEG3, Pnky, H19, TINCR, HULC, EPB41L4A-AS1 and SNHG7 have important roles in the regulation of stem cells. In the current paper, we aimed at reviewing the importance of miRNAs and lncRNAs in differentiation of stem cells both in normal and diseased conditions. For this purpose, we searched PubMed/Medline and google scholar databases using "stem cell" AND "lncRNA", or "long non-coding RNA", or "microRNA" or "miRNA".
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Colussi C, Grassi C. Epigenetic regulation of neural stem cells: The emerging role of nucleoporins. STEM CELLS (DAYTON, OHIO) 2021; 39:1601-1614. [PMID: 34399020 PMCID: PMC9290943 DOI: 10.1002/stem.3444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Nucleoporins (Nups) are components of the nuclear pore complex that, besides regulating nucleus-cytoplasmic transport, emerged as a hub for chromatin interaction and gene expression modulation. Specifically, Nups act in a dynamic manner both at specific gene level and in the topological organization of chromatin domains. As such, they play a fundamental role during development and determination of stemness/differentiation balance in stem cells. An increasing number of reports indicate the implication of Nups in many central nervous system functions with great impact on neurogenesis, neurophysiology, and neurological disorders. Nevertheless, the role of Nup-mediated epigenetic regulation in embryonic and adult neural stem cells (NSCs) is a field largely unexplored and the comprehension of their mechanisms of action is only beginning to be unveiled. After a brief overview of epigenetic mechanisms, we will present and discuss the emerging role of Nups as new effectors of neuroepigenetics and as dynamic platform for chromatin function with specific reference to the biology of NSCs.
Collapse
Affiliation(s)
- Claudia Colussi
- Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti" (IASI)-CNR, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
17
|
Lin X, Wang R, Li R, Tao T, Zhang D, Qi Y. Diagnostic Performance of miR-485-3p in Patients with Parkinson's Disease and its Relationship with Neuroinflammation. Neuromolecular Med 2021; 24:195-201. [PMID: 34279788 DOI: 10.1007/s12017-021-08676-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/06/2021] [Indexed: 01/30/2023]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases. Some microRNAs (miRNAs) play critical roles in the development of many neurological diseases. This study aims to evaluate the clinical significance and biological function of miR-485-3p in the development and progression of PD. The expression of miR-485-3p in serum of PD patients was analyzed by quantitative real-time PCR (qRT-PCR). LPS-treated microglia BV2 cells were used to mimic neuroinflammation in the pathogenesis of PD. The levels of inflammatory cytokines, including IL-1β, IL-6 and TNF-α, were detected by enzyme-linked immunosorbent assay (ELISA). The diagnosis value of miR-485-3p was evaluated by plotting receiver operating characteristic (ROC) curves. A luciferase reporter assay was performed to demonstrate the interaction between miR-485-3p and FBXO45. The results showed that miR-485-3p was significantly up-regulated in serum of PD patients compared with that in both Alzheimer's disease (AD) and healthy cases, and had diagnostic accuracy for PD screening. The activated microglia BV2 cells induced by LPS also had elevated miR-485-3p, and the knockdown of miR-485-3p inhibited the release of pro-inflammatory cytokines. FBXO protein 45 (FBXO45) served as a potential target of miR-485-3p, which was speculated to mediate the function of miR-485-3p. Our results suggest that the up-regulated expression of miR-485-3p in PD may be a novel diagnostic biomarker for PD. Reducing the expression level of miR-485-3p can inhibit the inflammatory responses of BV2 cells, which indicated that miR-485-3p, as a regulator of neuroinflammation, may have the potential as a therapeutic target in PD.
Collapse
Affiliation(s)
- Xia Lin
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Rui Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Ran Li
- Department of Neurology, Weifang Hospital of Traditional Chinese Medicine, Weifang, 261014, Shandong, China
| | - Taotao Tao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Danhong Zhang
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Yuxiang Qi
- Department of Neurology, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying District, Dongying, 257000, Shandong, China.
| |
Collapse
|
18
|
Liu J, Jiang P, Iqbal A, Ali S, Gao Z, Pan Z, Xia L, Yin F, Zhao Z. MiR-485 targets the DTX4 gene to regulate milk fat synthesis in bovine mammary epithelial cells. Sci Rep 2021; 11:7623. [PMID: 33828164 PMCID: PMC8027660 DOI: 10.1038/s41598-021-87139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/17/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) are mRNA suppressors that regulate a variety of cellular and physiological processes, including cell proliferation, apoptosis, triglyceride synthesis, fat formation, and lipolysis, by post-transcriptional processing. In previous studies, we isolated and sequenced miRNAs from mammary epithelial cells from Chinese Holstein cows with high and low milk fat percentages. MiR-485 was one of the significantly differentially expressed miRNAs that were identified. In the present study, the relationship between the candidate target gene DTX4 and miR-485 was validated by bioinformatics and real-time fluorescent quantitative PCR (qRT-PCR) and Western blot (WB) analyses in bovine mammary epithelial cells (bMECs). The results indicated that miR-485 negatively regulated the mRNA expression of the target gene DTX4. Furthermore, an shRNA interference vector for the target gene DTX4 was constructed successfully, and it increased the triglyceride content and reduced the cholesterol content of transfected cells. These results suggest that miR-485 may affect the contents of triglycerides (TGs) and cholesterol (CHOL) by targeting the DTX4 gene. This study indicates that miR-485 has a role in regulating milk fat synthesis and that miR-485 targets the DTX4 gene to regulate lipid metabolism in bMECs. These findings contribute to the understanding of the functional significance of miR-485 in milk fat synthesis.
Collapse
Affiliation(s)
- Juan Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Shaokat Ali
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Zhen Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Ziyi Pan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Lixin Xia
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, 130062, Jilin, People's Republic of China
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Xu X, Li YC, Wu YY, Xu YC, Weng RX, Wang CL, Zhang PA, Zhang Y, Xu GY. Upregulation of spinal ASIC1 by miR-485 mediates enterodynia in adult offspring rats with prenatal maternal stress. CNS Neurosci Ther 2020; 27:244-255. [PMID: 33314662 PMCID: PMC7816206 DOI: 10.1111/cns.13542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022] Open
Abstract
Aims Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease characterized by abdominal pain. Our recent study has shown that the acid‐sensitive ion channel 1 (ASIC1) in dorsal root ganglion (DRG) is involved in stomachache of adult offspring rats subjected with prenatal maternal stress (PMS). MiR‐485 is predicted to target the expression of ASIC1. The aim of the present study was designed to determine whether miR‐485/ASIC1 signaling participates in enterodynia in the spinal dorsal horn of adult offspring rats with PMS. Methods Enterodynia was measured by colorectal distension (CRD). Western blotting, qPCR, and in situ hybridization were performed to detect the expression of ASICs and related miRNAs. Spinal synaptic transmission was also recorded by patch clamping. Results PMS offspring rats showed that spinal ASIC1 protein expression and synaptic transmission were significantly enhanced. Administration of ASICs antagonist amiloride suppressed the synaptic transmission and enterodynia. Besides, PMS induced a significant reduction in the expression of miR‐485. Upregulating the expression markedly attenuated enterodynia, reversed the increase in ASIC1 protein and synaptic transmission. Furthermore, ASIC1 and miR‐485 were co‐expressed in NeuN‐positive spinal dorsal horn neurons. Conclusions Overall, these data suggested that miR‐485 participated in enterodynia in PMS offspring, which is likely mediated by the enhanced ASIC1 activities.
Collapse
Affiliation(s)
- Xue Xu
- The People's Hospital of Suzhou New District, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yong-Chang Li
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yan Wu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu-Cheng Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui-Xia Weng
- The People's Hospital of Suzhou New District, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cai-Lin Wang
- The People's Hospital of Suzhou New District, Suzhou, China.,Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ping-An Zhang
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ying Zhang
- The People's Hospital of Suzhou New District, Suzhou, China
| | - Guang-Yin Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Yu L, Li H, Liu W, Zhang L, Tian Q, Li H, Li M. MiR-485-3p serves as a biomarker and therapeutic target of Alzheimer's disease via regulating neuronal cell viability and neuroinflammation by targeting AKT3. Mol Genet Genomic Med 2020; 9:e1548. [PMID: 33220166 PMCID: PMC7963426 DOI: 10.1002/mgg3.1548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Numerous microRNAs (miRNAs) have been identified as functional molecules in Alzheimer's disease (AD) pathogenesis. This study aimed to investigate the diagnostic value of microRNA-485-3p (miR-485-3p) in AD patients, evaluate the effect of miR-485-3p on neuronal viability and neuroinflammation, as well as the underlying molecular mechanisms. METHODS Quantitative Real-Time PCR was used to estimate expression of miR-485-3p and AKT3. A ROC analysis was used to evaluate the diagnostic value of miR-485-3p. The correlation of miR-485-3p with patients' MMSE score and inflammatory response was analyzed. Using Aβ-treated SH-SY5Y and BV2 cells models, the effects of miR-485-3p on neuronal proliferation, apoptosis, and neuroinflammation were explored. A luciferase reporter assay was used to confirm the target gene of miR-485-3p in both SH-SY5Y and BV2 cells. RESULTS Serum miR-485-3p expression was significantly upregulated in AD patients and cell models, which had a high diagnostic accuracy and correlated with MMSE score and inflammatory response in AD patients. The knockdown of miR-485-3p in SH-SY5Y and BV2 cells was found to significantly reverse the effect of Aβ treatment on neuronal viability and neuroinflammation. AKT3 was determined as a target of miR-485-3p, which might mediate the biological function of miR-485-3p in AD pathogenesis. CONCLUSION All the data indicated that increased serum miR-485-3p serves as a diagnostic biomarker in AD patients, and knockdown of miR-485-3p exerts a neuroprotective role by improving neuronal viability and weakening neuroinflammation, which may be mediated by AKT3. This study may provide a novel biomarker and therapeutic target for AD therapy.
Collapse
Affiliation(s)
- Ling Yu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Haiting Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Wenhu Liu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ligong Zhang
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Qun Tian
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Hairong Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| | - Min Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
21
|
Lai J, Xin J, Fu C, Zhang W. CircHIPK3 promotes proliferation and metastasis and inhibits apoptosis of renal cancer cells by inhibiting MiR-485-3p. Cancer Cell Int 2020; 20:248. [PMID: 32550826 PMCID: PMC7298839 DOI: 10.1186/s12935-020-01319-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/02/2020] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND The intervention of circHIPK3 in renal carcinoma (RC) has not been reported, and thus, the current study investigated the intervention and mechanism of circHIPK3 in RC. METHODS The expression of circHIPK3 in RC tissues and cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Ribonuclease R (RNase R) resistance and distribution of circHIPK3 and HIPK3 were analyzed by RNase R digestion experiments and cytoplasm/nucleus separation experiments. CircHIPK3 was knocked down in ACHN and 769-P cells. Cell counting kit-8 (CCK-8), colony formation assay, scratch assay, and Transwell assay were performed to detect cell proliferation and metastasis. CircInteractome, qRT-PCR and dual-luciferase reporter assay were used to predict the target miRNAs of circHIPK3. Furthermore, a series of rescue experiments were performed to analyze the regulatory relationship between circHIPK3 and miR-485-3p. Epithelial-mesenchymal transition (EMT) and the expressions of apoptosis-associated markers were detected by Western blot and qRT-PCR. The regulatory relationship between circHIPK3 and miR-485-3p in vivo was explored by xenograft experiments, Western blot, qRT-PCR and immunohistochemistry (Ki-67). RESULTS CircHIPK3 was mainly overexpressed in the cytoplasm of RC tissues and cells. Knocking down circHIPK3 inhibited the proliferation, migration, and invasion of RC cells. The expression of circHIPK3 was negatively related to that of its target gene miR-485-3p. Results of the rescue experiments showed that circHIPK3 overexpression could partially reverse the anti-carcinoma effect of miR-485-3p mimic. The specific mechanism of circHIPK3 was related to the effect of miR-485-3p on partially reversing the up-regulated expressions of Clever caspase-3, Bax, E-Cadherin and down-regulated expressions of Bcl-2, N-Cadherin and Vimentin. The results of in vivo experiments demonstrated that circHIPK3 promoted tumor growth and the expression of Ki-67 by down-regulating miR-485-3p. CONCLUSION CircHIPK3 promotes the proliferation and metastasis and inhibits the apoptosis of RC cells through competitively binding to miR-485-3p.
Collapse
Affiliation(s)
- Jinjin Lai
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou, 362002 Fujian Province China
| | - Jun Xin
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou, 362002 Fujian Province China
| | - Changde Fu
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou, 362002 Fujian Province China
| | - Wei Zhang
- Department of Urology, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou, 362002 Fujian Province China
| |
Collapse
|
22
|
Gu J, Shao R, Li M, Yan Q, Hu H. MiR-485-3p modulates neural stem cell differentiation and proliferation via regulating TRIP6 expression. J Cell Mol Med 2019; 24:398-404. [PMID: 31730275 PMCID: PMC6933395 DOI: 10.1111/jcmm.14743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Recent references have showed crucial roles of several miRNAs in neural stem cell differentiation and proliferation. However, the expression and role of miR‐485‐3p remains unknown. In our reference, we indicated that miR‐485‐3p expression was down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, the TRIP6 expression was up‐regulated during NSCs differentiation to neural and astrocytes cell. We carried out the dual‐luciferase reporter and found that overexpression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, we indicated that miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be one promising therapy for treating with neurodegenerative and neurogenesis diseases.
Collapse
Affiliation(s)
- Juxian Gu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Rusheng Shao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Meng Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiuyue Yan
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Hongwei Hu
- Department of Pain, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|