1
|
Molinet J, Stelkens R. The evolution of thermal performance curves in response to rising temperatures across the model genus yeast. Proc Natl Acad Sci U S A 2025; 122:e2423262122. [PMID: 40392856 DOI: 10.1073/pnas.2423262122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
The maintenance of biodiversity crucially depends on the evolutionary potential of populations to adapt to environmental change. Accelerating climate change and extreme temperature events urge us to better understand and forecast evolutionary responses. Here, we harnessed the power of experimental evolution with the microbial model system yeast (Saccharomyces spp.) to measure the evolutionary potential of populations to adapt to future warming, in real-time and across the entire phylogenetic diversity of the genus. We tracked the evolution of thermal performance curves (TPCs) in populations of eight genetically and ecologically diverse species under gradually increasing temperature conditions, from 25 to 40 °C, for up to 600 generations. We found that evolving toward higher critical thermal limits generally came at a cost, causing a decrease in both thermal tolerance and maximum growth performance. The evolution of TPCs varied significantly between species with strong genotype-by-environment interactions, revealing two main trajectories: i) Warm-tolerant species showed an increase in both optimum growth temperature and thermal tolerance, consistent with the "hotter is wider" hypothesis. ii) Cold-tolerant species on the other hand evolved larger thermal breadth and higher thermal limits, but suffered from reduced maximum performance overall, consistent with the generalist or "a jack of all temperatures is a master of none" hypothesis. In addition, cold-tolerant species never reached the warm-tolerant species' upper thermal limits. Our results show that adaptive strategies to increasing temperatures are complex, highlighting the need to consider both within and between species diversity when predicting and managing the impacts of climate change on populations.
Collapse
Affiliation(s)
- Jennifer Molinet
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
2
|
Sengupta S, Leinaas HP. Phenotypic plasticity and thermal efficiency of temperature responses in two conspecific springtail populations from contrasting climates. J Therm Biol 2024; 123:103914. [PMID: 38981302 DOI: 10.1016/j.jtherbio.2024.103914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Temperature drives adaptation in life-history traits through direct effects on physiological processes. However, multiple life-history traits co-evolve as a life-history strategy. Therefore, physiological limitations constraining the evolution of trait means and phenotypic plasticity can be larger for some traits than the others. Comparisons of thermal responses across life-history traits can improve our understanding of the mechanisms determining the life-history strategies. In the present study, we focused on a soil microarthropod species abundant across the Northern Hemisphere, Folsomia quadrioculata (Collembola), with previously known effects of macroclimate. We selected an arctic and a temperate population from areas with highly contrasting climates - the arctic tundra and a coniferous forest floor, respectively - and compared them for thermal plasticity and thermal efficiency in growth, development, fecundity, and survival across four temperatures for a major part of their life cycle. We intended to understand the mechanisms by which temperature drives the evolution of life-history strategies. We found that the temperate population maximized performance at 10-15 °C, whereas the arctic population maintained its thermal efficiency across a wider temperature range (10-20 °C). Thermal plasticity varied in a trait-specific manner, and when considered together with differences in thermal efficiency, indicated that stochasticity in temperature conditions may be important in shaping the life-history strategies. Our study suggests that adopting a whole-organism approach and including physiological time considerations while analysing thermal adaptation will markedly improve our understanding of plausible links between thermal adaptation and responses to global climate change.
Collapse
Affiliation(s)
- Sagnik Sengupta
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway.
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| |
Collapse
|
3
|
von Schmalensee L, Ittonen M, Brødsgaard Shoshan A, Roberts KT, Siemers I, Süess P, Wiklund C, Gotthard K. Methodological artefacts cause counter-intuitive evolutionary conclusions in a simulation study. Ecol Lett 2024; 27:e14439. [PMID: 38863401 DOI: 10.1111/ele.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 06/13/2024]
Abstract
In their simulation study, Garcia-Costoya et al. (2023) conclude that evolutionary constraints might aid populations facing climate change. However, we are concerned that this conclusion is largely a consequence of the simulated temperature variation being too small, and, most importantly, that uneven limitations to standing variation disadvantage unconstrained populations.
Collapse
Affiliation(s)
| | - Mats Ittonen
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Philip Süess
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Kjærsgaard A, Blanckenhorn WU, Berger D, Esperk T. Weak sex-specific evolution of locomotor activity of Sepsis punctum (Diptera: Sepsidae) thermal experimental evolution lines. J Therm Biol 2023; 116:103680. [PMID: 37579518 DOI: 10.1016/j.jtherbio.2023.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Elevated temperatures are expected to rise beyond what the physiology of many organisms can tolerate. Behavioural responses facilitating microhabitat shifts may mitigate some of this increased thermal selection on physiology, but behaviours are themselves mediated by physiology, and any behavioural response may trade-off against other fitness-related activities. We investigated whether experimental evolution in different thermal regimes (Cold: 15 °C; Hot: 31 °C; Intergenerational fluctuation 15/31 °C; Control: 23 °C) resulted in genetic differentiation of standard locomotor activity in the dung fly Sepsis punctum. We assessed individual locomotor performance, an integral part of most behavioral repertoires, across eight warm temperatures from 24 °C to 45 °C using an automated device. We found no evidence for generalist-specialist trade-offs (i.e. changes in the breadth of the performance curve) for this trait. Instead, at the warmest assay temperatures hot-selected flies showed somewhat higher maximal performance than all other, especially cold-selected flies, overall more so in males than females. Yet, the flies' temperature optimum was not higher than that of the cold-selected flies, as expected under the 'hotter-is-better' hypothesis. Maximal locomotor performance merely weakly increased with body size. These results suggest that thermal performance curves are unlikely to evolve as an entity according to theory, and that locomotor activity is a trait of limited use in revealing thermal adaptation.
Collapse
Affiliation(s)
- Anders Kjærsgaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Biology, Aarhus University, Ny Munkegade 114-116, DK-8000, Aarhus, Denmark.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Sweden.
| | - Toomas Esperk
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Institute of Ecology and Earth Sciences, Tartu University, Juhan Liivi 2, 50409, Tartu, Estonia.
| |
Collapse
|
5
|
Garcia-Costoya G, Williams CE, Faske TM, Moorman JD, Logan ML. Evolutionary constraints mediate extinction risk under climate change. Ecol Lett 2023; 26:529-539. [PMID: 36756845 DOI: 10.1111/ele.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
Mounting evidence suggests that rapid evolutionary adaptation may rescue some organisms from the impacts of climate change. However, evolutionary constraints might hinder this process, especially when different aspects of environmental change generate antagonistic selection on genetically correlated traits. Here, we use individual-based simulations to explore how genetic correlations underlying the thermal physiology of ectotherms might influence their responses to the two major components of climate change-increases in mean temperature and thermal variability. We found that genetic correlations can influence population dynamics under climate change, with declines in population size varying three-fold depending on the type of correlation present. Surprisingly, populations whose thermal performance curves were constrained by genetic correlations often declined less rapidly than unconstrained populations. Our results suggest that accurate forecasts of the impact of climate change on ectotherms will require an understanding of the genetic architecture of the traits under selection.
Collapse
Affiliation(s)
| | | | | | - Jacob D Moorman
- University of California, Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
6
|
Santos MA, Antunes MA, Grandela A, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. Past history shapes evolution of reproductive success in a global warming scenario. J Therm Biol 2023; 112:103478. [PMID: 36796921 DOI: 10.1016/j.jtherbio.2023.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Adaptive evolution is critical for animal populations to thrive in the fast-changing natural environments. Ectotherms are particularly vulnerable to global warming and, although their limited coping ability has been suggested, few real-time evolution experiments have directly accessed their evolutionary potential. Here, we report a long-term experimental evolution study addressing the evolution of Drosophila thermal reaction norms, after ∼30 generations under different dynamic thermal regimes: fluctuating (daily variation between 15 and 21 °C) or warming (daily fluctuation with increases in both thermal mean and variance across generations). We analyzed the evolutionary dynamics of Drosophila subobscura populations as a function of the thermally variable environments in which they evolved and their distinct background. Our results showed clear differences between the historically differentiated populations: high latitude D. subobscura populations responded to selection, improving their reproductive success at higher temperatures whereas their low latitude counterparts did not. This suggests population variation in the amount of genetic variation available for thermal adaptation, an aspect that needs to be considered to allow for better predictions of future climate change responses. Our results highlight the complex nature of thermal responses in face of environmental heterogeneity and emphasize the importance of considering inter-population variation in thermal evolution studies.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Afonso Grandela
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Carromeu-Santos
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Quina
- CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro and Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Spain
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Malusare SP, Zilio G, Fronhofer EA. Evolution of thermal performance curves: A meta-analysis of selection experiments. J Evol Biol 2023; 36:15-28. [PMID: 36129955 PMCID: PMC10087336 DOI: 10.1111/jeb.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Temperatures are increasing due to global changes, putting biodiversity at risk. Organisms are faced with a limited set of options to cope with this situation: adapt, disperse or die. We here focus on the first possibility, more specifically, on evolutionary adaptations to temperature. Ectotherms are usually characterized by a hump-shaped relationship between fitness and temperature, a non-linear reaction norm that is referred to as thermal performance curve (TPC). To understand and predict impacts of global change, we need to know whether and how such TPCs evolve. Therefore, we performed a systematic literature search and a statistical meta-analysis focusing on experimental evolution and artificial selection studies. This focus allows us to directly quantify relative fitness responses to temperature selection by calculating fitness differences between TPCs from ancestral and derived populations after thermal selection. Out of 7561 publications screened, we found 47 studies corresponding to our search criteria representing taxa across the tree of life, from bacteria, to plants and vertebrates. We show that, independently of species identity, the studies we found report a positive response to temperature selection. Considering entire TPC shapes, adaptation to higher temperatures traded off with fitness at lower temperatures, leading to niche shifts. Effects were generally stronger in unicellular organisms. By contrast, we do not find statistical support for the often discussed "Hotter is better" hypothesis. While our meta-analysis provides evidence for adaptive potential of TPCs across organisms, it also highlights that more experimental work is needed, especially for under-represented taxa, such as plants and non-model systems.
Collapse
Affiliation(s)
- Sarthak P Malusare
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Giacomo Zilio
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Stuczyńska A, Sobczyk M, Fiałkowska E, Kocerba-Soroka W, Pajdak-Stós A, Starzycka J, Walczyńska A. Clonal thermal preferences affect the strength of the temperature-size rule. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00556-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
González-Tokman D, Bauerfeind SS, Schäfer MA, Walters RJ, Berger D, Blanckenhorn WU. Heritable responses to combined effects of heat stress and ivermectin in the yellow dung fly. CHEMOSPHERE 2022; 286:131030. [PMID: 34144808 DOI: 10.1016/j.chemosphere.2021.131030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
In current times of global change, several sources of stress such as contaminants and high temperatures may act synergistically. The extent to which organisms persist in stressful conditions will depend on the fitness consequences of multiple simultaneously acting stressors and the genetic basis of compensatory genetic responses. Ivermectin is an antiparasitic drug used in livestock that is excreted in dung of treated cattle, causing severe negative consequences on non-target fauna. We evaluated the effect of a combination of heat stress and exposure to ivermectin in the yellow dung fly, Scathophaga stercoraria (Diptera: Scathophagidae). In a first experiment we investigated the effects of high rearing temperature on susceptibility to ivermectin, and in a second experiment we assayed flies from a latitudinal gradient to assess potential effects of local thermal adaptation on ivermectin sensitivity. The combination of heat and ivermectin synergistically reduced offspring survival, revealing severe effects of the two stressors when combined. However, latitudinal populations did not systematically vary in how ivermectin affected offspring survival, body size, development time, cold and heat tolerance. We also found very low narrow-sense heritability of ivermectin sensitivity, suggesting evolutionary constraints for responses to the combination of these stressors beyond immediate maternal or plastic effects. If the revealed patterns hold also for other invertebrates, the combination of increasing climate warming and ivermectin stress may thus have severe consequences for biodiversity. More generally, our study underlines the need for quantitative genetic analyses in understanding wildlife responses to interacting stressors that act synergistically and threat biodiversity.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT. Red de Ecoetología, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351. El Haya, Xalapa, Veracruz, 91073, Mexico.
| | - Stephanie S Bauerfeind
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Department of Ecology and Genetics, Uppsala University, Sweden, Norbyvägen 18D, S-752 36, Uppsala, Sweden.
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming, predation and competition: A meta-analysis. Ecol Lett 2021; 25:541-554. [PMID: 34850533 DOI: 10.1111/ele.13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
11
|
Santos MA, Carromeu-Santos A, Quina AS, Santos M, Matos M, Simões P. No evidence for short-term evolutionary response to a warming environment in Drosophila. Evolution 2021; 75:2816-2829. [PMID: 34617283 DOI: 10.1111/evo.14366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Adaptive evolution is key in mediating responses to global warming and may sometimes be the only solution for species to survive. Such evolution will expectedly lead to changes in the populations' thermal reaction norm and improve their ability to cope with stressful conditions. Conversely, evolutionary constraints might limit the adaptive response. Here, we test these expectations by performing a real-time evolution experiment in historically differentiated Drosophila subobscura populations. We address the phenotypic change after nine generations of evolution in a daily fluctuating environment with average constant temperature, or in a warming environment with increasing average and amplitude temperature across generations. Our results showed that (1) evolution under a global warming scenario does not lead to a noticeable change in the thermal response; (2) historical background appears to be affecting responses under the warming environment, particularly at higher temperatures; and (3) thermal reaction norms are trait dependent: although lifelong exposure to low temperature decreases fecundity and productivity but not viability, high temperature causes negative transgenerational effects on productivity and viability, even with high fecundity. These findings in such an emblematic organism for thermal adaptation studies raise concerns about the short-term efficiency of adaptive responses to the current rising temperatures.
Collapse
Affiliation(s)
- Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| | - Ana Carromeu-Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal, 3810-193
| | - Ana S Quina
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,CESAM, Centre for Environmental and Marine Studies, Universidade de Aveiro, Aveiro, Portugal, 3810-193
| | - Mauro Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autònoma de Barcelona, Bellaterra, Spain, 08193
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal, 1749-016
| |
Collapse
|
12
|
Blanckenhorn WU, Berger D, Rohner PT, Schäfer MA, Akashi H, Walters RJ. Comprehensive thermal performance curves for yellow dung fly life history traits and the temperature-size-rule. J Therm Biol 2021; 100:103069. [PMID: 34503806 DOI: 10.1016/j.jtherbio.2021.103069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.
Collapse
Affiliation(s)
- Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - David Berger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Evolutionary Biology Centre, University of Uppsala, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Martin A Schäfer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hiroshi Akashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Department of Biological Science and Technology, Tokyo University of Science, Tokyo, 125-8585, Japan
| | - Richard J Walters
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Centre for Environmental and Climate Research, Lund University, Sweden
| |
Collapse
|
13
|
Laska A, Magalhães S, Lewandowski M, Puchalska E, Karpicka-Ignatowska K, Radwańska A, Meagher S, Kuczyński L, Skoracka A. A sink host allows a specialist herbivore to persist in a seasonal source. Proc Biol Sci 2021; 288:20211604. [PMID: 34465242 PMCID: PMC8437026 DOI: 10.1098/rspb.2021.1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In seasonal environments, sinks that are more persistent than sources may serve as temporal stepping stones for specialists. However, this possibility has to our knowledge, not been demonstrated to date, as such environments are thought to select for generalists, and the role of sinks, both in the field and in the laboratory, is difficult to document. Here, we used laboratory experiments to show that herbivorous arthropods associated with seasonally absent main (source) habitats can endure on a suboptimal (sink) host for several generations, albeit with a negative growth rate. Additionally, they dispersed towards this host less often than towards the main host and accepted it less often than the main host. Finally, repeated experimental evolution attempts revealed no adaptation to the suboptimal host. Nevertheless, field observations showed that arthropods are found in suboptimal habitats when the main habitat is unavailable. Together, these results show that evolutionary rescue in the suboptimal habitat is not possible. Instead, the sink habitat functions as a temporal stepping stone, allowing for the persistence of a specialist when the source habitat is gone.
Collapse
Affiliation(s)
- Alicja Laska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Sara Magalhães
- cE3c, Centre for Ecology, Evolution and Environmental changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, 1749-016 Lisboa, Portugal
| | - Mariusz Lewandowski
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Ewa Puchalska
- Section of Applied Entomology, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| | - Kamila Karpicka-Ignatowska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Radwańska
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Shawn Meagher
- Department of Biological Sciences, Western Illinois University, Macomb, IL 61455, USA
| | - Lechosław Kuczyński
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Anna Skoracka
- Population Ecology Laboratory, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Kar F, Nakagawa S, Friesen CR, Noble DWA. Individual variation in thermal plasticity and its impact on mass‐scaling. OIKOS 2021. [DOI: 10.1111/oik.08122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fonti Kar
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, Univ. of New South Wales Sydney NSW Australia
| | - Shinichi Nakagawa
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, Univ. of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division, Garvan Inst. of Medical Research, Darlinghurst Sydney NSW Australia
| | - Christopher R. Friesen
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, Univ. of Wollongong Wollongong NSW Australia
| | - Daniel W. A. Noble
- School of Biological Earth and Environmental Sciences, Ecology and Evolution Research Centre, Univ. of New South Wales Sydney NSW Australia
- Diabetes and Metabolism Division, Garvan Inst. of Medical Research, Darlinghurst Sydney NSW Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National Univ. Canberra ACT Australia
| |
Collapse
|
15
|
Fryxell DC, Hoover AN, Alvarez DA, Arnesen FJ, Benavente JN, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proc Biol Sci 2020; 287:20200608. [PMID: 32486974 PMCID: PMC7341922 DOI: 10.1098/rspb.2020.0608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish (Gambusia affinis) recently established (less than 100 years) from a common source across a strong thermal gradient (19–33°C) created by geothermal springs. Each spring is remarkably stable in temperature and is virtually closed to gene flow from other thermal environments. Field surveys show that with increasing site temperature, body size distributions become smaller and the reproductive advantage of larger body size decreases. After common rearing to reveal recently evolved trait differences, warmer-source populations expressed slowed juvenile growth rates and increased reproductive effort at small sizes. These results are consistent with an adaptive basis of the plastic temperature–size rule, and they suggest that temperature itself can drive the evolution of countergradient variation in growth rates. The rapid evolution of reduced juvenile growth rates and greater reproduction at a small size should contribute to substantial body downsizing in populations, with implications for population dynamics and for ecosystems in a warming world.
Collapse
Affiliation(s)
- David C Fryxell
- School of Environment, University of Auckland, Auckland 1010, New Zealand.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Alexander N Hoover
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Daniel A Alvarez
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Finn J Arnesen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | | | - Emma R Moffett
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - Kevin S Simon
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| |
Collapse
|
16
|
Gibert P, Debat V, Ghalambor CK. Phenotypic plasticity, global change, and the speed of adaptive evolution. CURRENT OPINION IN INSECT SCIENCE 2019; 35:34-40. [PMID: 31325807 DOI: 10.1016/j.cois.2019.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
The role phenotypic plasticity might play in adaptation to the ongoing climate changes is unclear. Plasticity allows for the production of a diversity of intra-generational responses, whose inter-generational evolutionary consequences are difficult to predict. In this article, we review theory and empirical studies addressing this question in insects by considering three scenarios. The first scenario corresponds to adaptive plasticity that should lead to slow or no evolution. The second scenario is the case of non-adaptive phenotypic plasticity to new environmental conditions that should lead either to extinction or, on the contrary, to rapid evolutionary change. The third scenario deals with how plasticity alters the variance selection acts upon. These scenarios are then discussed by highlighting examples of empirical studies on insects. We conclude that more studies are needed to better understand the relationship between phenotypic plasticity and evolutionary processes in insects.
Collapse
Affiliation(s)
- Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France.
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Khelifa R, Blanckenhorn WU, Roy J, Rohner PT, Mahdjoub H. Usefulness and limitations of thermal performance curves in predicting ectotherm development under climatic variability. J Anim Ecol 2019; 88:1901-1912. [PMID: 31365760 DOI: 10.1111/1365-2656.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
Thermal performance curves (TPCs) have been estimated in multiple ectotherm species to understand their thermal plasticity and adaptation and to predict the effect of global warming. However, TPCs are typically assessed under constant temperature regimes, so their reliability for predicting thermal responses in the wild where temperature fluctuates diurnally and seasonally remains poorly documented. Here, we use distant latitudinal populations of five species of sepsid flies (Diptera: Sepsidae) from the temperate region (Europe, North Africa, North America) to compare estimates derived from constant TPCs with observed development rate under fluctuating temperatures in laboratory and field conditions. TPCs changed across gradients in that flies originating from higher latitudes showed accelerated development at higher temperatures, an adaptive response. TPCs were then used to predict development rates observed under fluctuating temperatures; these predictions were relatively accurate in the laboratory but not the field. Interestingly, the precision of TPC predictions depended not only on the resolution of temperature data, with daily and overall temperature summing performing better than hourly temperature summing, but also on the frequency of temperatures falling below the estimated critical minimum temperature. Hourly temperature resolution most strongly underestimated actual development rates, because flies apparently either did not stop growing when temperatures dropped below this threshold, or they sped up their growth when the temperature rose again, thus most severely reflecting this error. We conclude that when flies do not encounter cold temperatures, TPC predictions based on constant temperatures can accurately reflect performance under fluctuating temperatures if adequately adjusted for nonlinearities, but when encountering cold temperatures, this method is more error-prone. Our study emphasizes the importance of the resolution of temperature data and cold temperatures in shaping thermal reaction norms.
Collapse
Affiliation(s)
- Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
van Heerwaarden B, Sgrò CM. The quantitative genetic basis of clinal divergence in phenotypic plasticity. Evolution 2017; 71:2618-2633. [PMID: 28857153 DOI: 10.1111/evo.13342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023]
Abstract
Phenotypic plasticity is thought to be an important mechanism for adapting to environmental heterogeneity. Nonetheless, the genetic basis of plasticity is still not well understood. In Drosophila melanogaster and D. simulans, body size and thermal stress resistance show clinal patterns along the east coast of Australia, and exhibit plastic responses to different developmental temperatures. The genetic basis of thermal plasticity, and whether the genetic effects underlying clinal variation in traits and their plasticity are similar, remains unknown. Here, we use line-cross analyses between a tropical and temperate population of Drosophila melanogaster and D. simulans developed at three constant temperatures (18°C, 25°C, and 29°C) to investigate the quantitative genetic basis of clinal divergence in mean thermal response (elevation) and plasticity (slope and curvature) for thermal stress and body size traits. Generally, the genetic effects underlying divergence in mean response and plasticity differed, suggesting that different genetic models may be required to understand the evolution of trait means and plasticity. Furthermore, our results suggest that nonadditive genetic effects, in particular epistasis, may commonly underlie plastic responses, indicating that current models that ignore epistasis may be insufficient to understand and predict evolutionary responses to environmental change.
Collapse
Affiliation(s)
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
19
|
Sengupta S, Ergon T, Leinaas HP. Thermal plasticity in postembryonic life history traits of a widely distributed Collembola: Effects of macroclimate and microhabitat on genotypic differences. Ecol Evol 2017; 7:8100-8112. [PMID: 29043059 PMCID: PMC5632673 DOI: 10.1002/ece3.3333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
Life history traits in many ectotherms show complex patterns of variation among conspecific populations sampled along wide latitudinal or climatic gradients. However, few studies have assessed whether these patterns can be explained better by thermal reaction norms of multiple life history traits, covering major aspects of the life cycle. In this study, we compared five populations of a Holarctic, numerically dominant soil microarthropod species, Folsomia quadrioculata, sampled from a wide latitudinal gradient (56-81°N), for growth, development, fecundity, and survival across four temperatures (10, 15, 20, and 25°C) in common garden experiments. We evaluated the extent to which macroclimate could explain differences in thermal adaptation and life history strategies among populations. The common garden experiments revealed large genotypic differences among populations in all the traits, which were little explained by latitude and macroclimate. In addition, the life history strategies (traits combined) hardly revealed any systematic difference related to latitude and macroclimate. The overall performance of the northernmost population from the most stochastic microclimate and the southernmost population, which remains active throughout the year, was least sensitive to the temperature treatments. In contrast, performance of the population from the most predictable microclimate peaked within a narrow temperature range (around 15°C). Our findings revealed limited support for macroclimate-based predictions, and indicated that local soil habitat conditions related to predictability and seasonality might have considerable influence on the evolution of life history strategies of F. quadrioculata. This study highlights the need to combine knowledge on microhabitat characteristics, and demography, with findings from common garden experiments, for identifying the key drivers of life history evolution across large spatial scales, and wide climate gradients. We believe that similar approaches may substantially improve the understanding of adaptation in many terrestrial ectotherms with low dispersal ability.
Collapse
Affiliation(s)
| | - Torbjørn Ergon
- Centre for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway
| | | |
Collapse
|
20
|
Pearce SL, Clarke DF, East PD, Elfekih S, Gordon KHJ, Jermiin LS, McGaughran A, Oakeshott JG, Papanicolaou A, Perera OP, Rane RV, Richards S, Tay WT, Walsh TK, Anderson A, Anderson CJ, Asgari S, Board PG, Bretschneider A, Campbell PM, Chertemps T, Christeller JT, Coppin CW, Downes SJ, Duan G, Farnsworth CA, Good RT, Han LB, Han YC, Hatje K, Horne I, Huang YP, Hughes DST, Jacquin-Joly E, James W, Jhangiani S, Kollmar M, Kuwar SS, Li S, Liu NY, Maibeche MT, Miller JR, Montagne N, Perry T, Qu J, Song SV, Sutton GG, Vogel H, Walenz BP, Xu W, Zhang HJ, Zou Z, Batterham P, Edwards OR, Feyereisen R, Gibbs RA, Heckel DG, McGrath A, Robin C, Scherer SE, Worley KC, Wu YD. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol 2017; 15:63. [PMID: 28756777 PMCID: PMC5535293 DOI: 10.1186/s12915-017-0402-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.
Collapse
Affiliation(s)
- S L Pearce
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - D F Clarke
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - P D East
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - S Elfekih
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - K H J Gordon
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia.
| | - L S Jermiin
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - A McGaughran
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - J G Oakeshott
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia.
| | - A Papanicolaou
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Hawksbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - O P Perera
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, USA
| | - R V Rane
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - S Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - W T Tay
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - T K Walsh
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - A Anderson
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - C J Anderson
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - S Asgari
- School of Biological Sciences, University of Queensland, Brisbane St Lucia, QLD, Australia
| | - P G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - P M Campbell
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - T Chertemps
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | | | - C W Coppin
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | | | - G Duan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - C A Farnsworth
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - R T Good
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - L B Han
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Han
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Hatje
- Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - I Horne
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - Y P Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D S T Hughes
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - E Jacquin-Joly
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - W James
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - S Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - M Kollmar
- Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - S S Kuwar
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - S Li
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - N-Y Liu
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - M T Maibeche
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - J R Miller
- J. Craig Venter Institute, Rockville, MD, USA
| | - N Montagne
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - T Perry
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - J Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - S V Song
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - G G Sutton
- J. Craig Venter Institute, Rockville, MD, USA
| | - H Vogel
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - B P Walenz
- J. Craig Venter Institute, Rockville, MD, USA
| | - W Xu
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - H-J Zhang
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Z Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - P Batterham
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | | | - R Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Denmark
| | - R A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D G Heckel
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - A McGrath
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - C Robin
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - S E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - K C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Y D Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Van Buskirk J. Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution 2017; 71:1670-1685. [DOI: 10.1111/evo.13236] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/14/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
22
|
Manenti T, Sørensen JG, Loeschcke V. Environmental heterogeneity does not affect levels of phenotypic plasticity in natural populations of three Drosophila species. Ecol Evol 2017; 7:2716-2724. [PMID: 28428862 PMCID: PMC5395443 DOI: 10.1002/ece3.2904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Adaptation of natural populations to variable environmental conditions may occur by changes in trait means and/or in the levels of plasticity. Theory predicts that environmental heterogeneity favors plasticity of adaptive traits. Here we investigated the performance in several traits of three sympatric Drosophila species freshly collected in two environments that differ in the heterogeneity of environmental conditions. Differences in trait means within species were found in several traits, indicating that populations differed in their evolutionary response to the environmental conditions of their origin. Different species showed distinct adaptation with a very different role of plasticity across species for coping with environmental changes. However, geographically distinct populations of the same species generally displayed the same levels of plasticity as induced by fluctuating thermal regimes. This indicates a weak and trait‐specific effect of environmental heterogeneity on plasticity. Furthermore, similar levels of plasticity were found in a laboratory‐adapted population of Drosophila melanogaster with a common geographic origin but adapted to the laboratory conditions for more than 100 generations. Thus, this study does not confirm theoretical predictions on the degree of adaptive plasticity among populations in relation to environmental heterogeneity but shows a very distinct role of species‐specific plasticity.
Collapse
Affiliation(s)
- Tommaso Manenti
- Section for Genetics, Ecology and Evolution Department of Bioscience Aarhus University Aarhus C Denmark
| | - Jesper G Sørensen
- Section for Genetics, Ecology and Evolution Department of Bioscience Aarhus University Aarhus C Denmark
| | - Volker Loeschcke
- Section for Genetics, Ecology and Evolution Department of Bioscience Aarhus University Aarhus C Denmark
| |
Collapse
|
23
|
Murren CJ, Diamond SE, Auld JR, Relyea RA, Steiner UK, Kingsolver JG. Evolutionary divergence of reaction norms in ecological context: a commentary. J Evol Biol 2016; 29:1909-1911. [DOI: 10.1111/jeb.12943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Affiliation(s)
- C. J. Murren
- Department of Biology; College of Charleston; Charleston SC USA
| | - S. E. Diamond
- Department of Biology; Case Western Reserve University; Cleveland OH USA
| | - J. R. Auld
- Department of Biology; West Chester University; West Chester PA USA
| | - R. A. Relyea
- Department of Biological Sciences; Rensselaer Polytech Institute; Troy NY USA
| | - U. K. Steiner
- Department of Biology; University of Southern Denmark; Max-Planck Odense Center; Odense Denmark
| | - J. G. Kingsolver
- Department of Biology; University of North Carolina; Chapel Hill NC USA
| |
Collapse
|
24
|
Sørensen JG, Kristensen TN, Overgaard J. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change? CURRENT OPINION IN INSECT SCIENCE 2016; 17:98-104. [PMID: 27720081 DOI: 10.1016/j.cois.2016.08.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 05/26/2023]
Abstract
Phenotypic plasticity of temperature tolerance (thermal acclimation) is often highlighted as an important component of the acute and evolutionary adaptation to temperatures in insects. For this reason, it is often suggested that thermal acclimation ability could be important for buffering the consequences of climate change. Based on data from Drosophila we discuss if and how phenotypic plasticity is likely to mitigate the effects of climate change. We conclude that plasticity of upper thermal limits is small in magnitude, evolves slowly and that acclimation ability is weakly correlated with latitude and environmental heterogeneity. Accordingly plasticity in upper thermal limits is unlikely to effectively buffer effects of global warming for species already close to their upper thermal boundaries.
Collapse
Affiliation(s)
- Jesper Givskov Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Section for Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Johannes Overgaard
- Department of Bioscience, Section for Zoophysiology, Aarhus University, C.F. Møllers Alle 3, Building 1131, 8000 Aarhus, Denmark
| |
Collapse
|
25
|
Johansson MP, Ermold F, Kristjánsson BK, Laurila A. Divergence of gastropod life history in contrasting thermal environments in a geothermal lake. J Evol Biol 2016; 29:2043-2053. [PMID: 27364364 DOI: 10.1111/jeb.12928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/26/2016] [Accepted: 06/27/2016] [Indexed: 01/15/2023]
Abstract
Experiments using natural populations have provided mixed support for thermal adaptation models, probably because the conditions are often confounded with additional environmental factors like seasonality. The contrasting geothermal environments within Lake Mývatn, northern Iceland, provide a unique opportunity to evaluate thermal adaptation models using closely located natural populations. We conducted laboratory common garden and field reciprocal transplant experiments to investigate how thermal origin influences the life history of Radix balthica snails originating from stable cold (6 °C), stable warm (23 °C) thermal environments or from areas with seasonal temperature variation. Supporting thermal optimality models, warm-origin snails survived poorly at 6 °C in the common garden experiment and better than cold-origin and seasonal-origin snails in the warm habitat in the reciprocal transplant experiment. Contrary to thermal adaptation models, growth rate in both experiments was highest in the warm populations irrespective of temperature, indicating cogradient variation. The optimal temperatures for growth and reproduction were similar irrespective of origin, but cold-origin snails always had the lowest performance, and seasonal-origin snails often performed at an intermediate level compared to snails originating in either stable environment. Our results indicate that central life-history traits can differ in their mode of evolution, with survival following the predictions of thermal optimality models, whereas ecological constraints have shaped the evolution of growth rates in local populations.
Collapse
Affiliation(s)
- M P Johansson
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biologu Centre, Uppsala University, Uppsala, Sweden
| | - F Ermold
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biologu Centre, Uppsala University, Uppsala, Sweden
| | - B K Kristjánsson
- Aquaculture and Fish Biology, Hólar University College, Sauðárkrókur, Iceland
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biologu Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Kelly MW, DeBiasse MB, Villela VA, Roberts HL, Cecola CF. Adaptation to climate change: trade-offs among responses to multiple stressors in an intertidal crustacean. Evol Appl 2016; 9:1147-1155. [PMID: 27695522 PMCID: PMC5039327 DOI: 10.1111/eva.12394] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/12/2016] [Indexed: 01/06/2023] Open
Abstract
Trade-offs may influence both physiological and evolutionary responses to co-occurring stressors, but their effects on both plastic and adaptive responses to climate change are poorly understood. To test for genetic and physiological trade-offs incurred in tolerating multiple stressors, we hybridized two populations of the intertidal copepod Tigriopus californicus that were divergent for both heat and salinity tolerance. Starting in the F2 generation, we selected for increased tolerance of heat, low salinity, and high salinity in replicate lines. After five generations of selection, heat-selected lines had greater heat tolerance but lower fecundity, indicating an energetic cost to tolerance. Lines selected for increased salinity tolerance did not show evidence of adaptation to their respective environments; however, hypo-osmotic selection lines showed substantial loss of tolerance to hyperosmotic stress. Neither of the salinity selection regimes resulted in diminished heat tolerance at ambient salinity; however, simultaneous exposure to heat and hypo-osmotic stress led to decreased heat tolerance, implying a physiological trade-off in tolerance to the two stressors. When we quantified the transcriptomic response to heat and salinity stress via RNA sequencing, we observed little overlap in the stress responses, suggesting the observed synergistic effects of heat and salinity stress were driven by competing energetic demands, rather than shared stress response pathways.
Collapse
Affiliation(s)
- Morgan W Kelly
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Melissa B DeBiasse
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Vidal A Villela
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Hope L Roberts
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Colleen F Cecola
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|
27
|
Esperk T, Kjaersgaard A, Walters RJ, Berger D, Blanckenhorn WU. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance? J Evol Biol 2016; 29:900-15. [PMID: 26801318 DOI: 10.1111/jeb.12832] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/15/2023]
Abstract
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.
Collapse
Affiliation(s)
- T Esperk
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - A Kjaersgaard
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - R J Walters
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,School of Biological Sciences, University of Reading, Reading, UK
| | - D Berger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - W U Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Fragata I, Lopes-Cunha M, Bárbaro M, Kellen B, Lima M, Faria GS, Seabra SG, Santos M, Simões P, Matos M. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment. Evolution 2015; 70:195-206. [PMID: 26626438 DOI: 10.1111/evo.12828] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Phenotypic plasticity may allow species to cope with environmental variation. The study of thermal plasticity and its evolution helps understanding how populations respond to variation in temperature. In the context of climate change, it is essential to realize the impact of historical differences in the ability of populations to exhibit a plastic response to thermal variation and how it evolves during colonization of new environments. We have analyzed the real-time evolution of thermal reaction norms of adult and juvenile traits in Drosophila subobscura populations from three locations of Europe in the laboratory. These populations were kept at a constant temperature of 18ºC, and were periodically assayed at three experimental temperatures (13ºC, 18ºC, and 23ºC). We found initial differentiation between populations in thermal plasticity as well as evolutionary convergence in the shape of reaction norms for some adult traits, but not for any of the juvenile traits. Contrary to theoretical expectations, an overall better performance of high latitude populations across temperatures in early generations was observed. Our study shows that the evolution of thermal plasticity is trait specific, and that a new stable environment did not limit the ability of populations to cope with environmental challenges.
Collapse
Affiliation(s)
- Inês Fragata
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Miguel Lopes-Cunha
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Margarida Bárbaro
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Bárbara Kellen
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Margarida Lima
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Gonçalo S Faria
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Sofia G Seabra
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Universitat Autonòma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pedro Simões
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Margarida Matos
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
29
|
DeBiasse MB, Kelly MW. Plastic and Evolved Responses to Global Change: What Can We Learn from Comparative Transcriptomics?: Table 1. J Hered 2015; 107:71-81. [DOI: 10.1093/jhered/esv073] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/06/2015] [Indexed: 01/02/2023] Open
|
30
|
Manenti T, Loeschcke V, Moghadam NN, Sørensen JG. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. J Evol Biol 2015; 28:2078-87. [PMID: 26299271 DOI: 10.1111/jeb.12735] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 11/30/2022]
Abstract
The selective past of populations is presumed to affect the levels of phenotypic plasticity. Experimental evolution at constant temperatures is generally expected to lead to a decreased level of plasticity due to presumed costs associated with phenotypic plasticity when not needed. In this study, we investigated the effect of experimental evolution in constant, predictable and unpredictable daily fluctuating temperature regimes on the levels of phenotype plasticity in several life history and stress resistance traits in Drosophila simulans. Contrary to the expectation, evolution in the different regimes did not affect the levels of plasticity in any of the traits investigated even though the populations from the different thermal regimes had evolved different stress resistance and fitness trait means. Although costs associated with phenotypic plasticity are known, our results suggest that the maintenance of phenotypic plasticity might come at low and negligible costs, and thus, the potential of phenotypic plasticity to evolve in populations exposed to different environmental conditions might be limited.
Collapse
Affiliation(s)
- T Manenti
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - V Loeschcke
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - N N Moghadam
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - J G Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
31
|
Kivelä SM, Svensson B, Tiwe A, Gotthard K. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways. Evolution 2015. [PMID: 26202579 DOI: 10.1111/evo.12734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polyphenism, the expression of discrete alternative phenotypes, is often a consequence of a developmental switch. Physiological changes induced by a developmental switch potentially affect reaction norms, but the evolution and existence of alternative reaction norms remains poorly understood. Here, we demonstrate that, in the butterfly Pieris napi (Lepidoptera: Pieridae), thermal reaction norms of several life history traits vary adaptively among switch-induced alternative developmental pathways of diapause and direct development. The switch was affected both by photoperiod and temperature, ambient temperature during late development having the potential to override earlier photoperiodic cues. Directly developing larvae had higher development and growth rates than diapausing ones across the studied thermal gradient. Reaction norm shapes also differed between the alternative developmental pathways, indicating pathway-specific selection on thermal sensitivity. Relative mass increments decreased linearly with increasing temperature and were higher under direct development than diapause. Contrary to predictions, population phenology did not explain trait variation or thermal sensitivity, but our experimental design probably lacks power for finding subtle phenology effects. We demonstrate adaptive differentiation in thermal reaction norms among alternative phenotypes, and suggest that the consequences of an environmentally dependent developmental switch primarily drive the evolution of alternative thermal reaction norms in P. napi.
Collapse
Affiliation(s)
- Sami M Kivelä
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden. .,Department of Ecology, University of Oulu, 90014, Oulu, Finland.
| | - Beatrice Svensson
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| | - Alma Tiwe
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
| |
Collapse
|
32
|
Roth TC, Krochmal AR, Németh Z. Thinking about Change: An Integrative Approach for Examining Cognition in a Changing World. Integr Comp Biol 2015; 55:347-53. [PMID: 26113667 DOI: 10.1093/icb/icv068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We are currently experiencing shifts in climate at rates not previously recorded. One important aspect of this change is a tendency toward extremes--extremes in temperature and moisture, both within and among years. Numerous studies focus on the physiological consequences of environmental change, especially in terms of ectothermic taxa's thermal regime and use of habitat. For many species, though, cognitive responses may be a means of response to environmental perturbation. However, the effects of environmental change on the general mechanisms of cognitive processes and their implications for larger phenomena are seldom examined. Moreover, at a larger scale, we do not fully understand the features of the environment that might select for cognitive enhancements or their mechanisms, making us unable to accurately predict which species might experience the most severe response to environmental change and in which environments. This symposium brought together scientists from numerous disciplines to examine the role of cognition in how organisms cope with changing environments. We cover topics from the perspectives of the physiological mechanisms underlying and driving cognition to the complexity of individual behavioral responses in changing environments to emergent large-scale processes influencing species' abilities to respond to such change. Our ultimate goals are to explore how animals use cognition to cope with rapid environmental change, how such coping mechanisms "scale up" to affect ecological and evolutionary patterns, and how we might determine which features of the environment have been (and will become) most important for the conservation of biodiversity.
Collapse
Affiliation(s)
- Timothy C Roth
- *Department of Psychology, Franklin and Marshall College, PO Box 3003, Lancaster, PA 17603, USA;
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD 21620, USA
| | - Zoltán Németh
- MTA-DE "Lendület" Behavioral Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
33
|
Liefting M, van Grunsven RHA, Morrissey MB, Timmermans MJTN, Ellers J. Interplay of robustness and plasticity of life-history traits drives ecotypic differentiation in thermally distinct habitats. J Evol Biol 2015; 28:1057-66. [DOI: 10.1111/jeb.12629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. Liefting
- Animal Ecology; VU University Amsterdam; Amsterdam The Netherlands
| | - R. H. A. van Grunsven
- Nature Conservation and Plant Ecology; Wageningen University and Research Centre; Wageningen The Netherlands
| | - M. B. Morrissey
- School of Biology; University of St. Andrews; St. Andrews UK
| | - M. J. T. N. Timmermans
- Department of Life Sciences; Natural History Museum; London UK
- Department of Natural Sciences; Middlesex University; Hendon Campus; London UK
- Department of Life Sciences; Imperial College London; London UK
| | - J. Ellers
- Animal Ecology; VU University Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
34
|
Latimer CAL, Foley BR, Chenoweth SF. Connecting thermal performance curve variation to the genotype: a multivariate QTL approach. J Evol Biol 2015; 28:155-68. [DOI: 10.1111/jeb.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C. A. L. Latimer
- School of Biological Sciences; University of Queensland; St. Lucia Qld Australia
| | - B. R. Foley
- School of Biological Sciences; University of Queensland; St. Lucia Qld Australia
- Department of Biological Sciences; University of Southern California; Dornsife CA USA
| | - S. F. Chenoweth
- School of Biological Sciences; University of Queensland; St. Lucia Qld Australia
| |
Collapse
|