1
|
Chuliver M, Agnolín FL, Scanferla A, Aranciaga Rolando M, Ezcurra MD, Novas FE, Xu X. The oldest tadpole reveals evolutionary stability of the anuran life cycle. Nature 2024; 636:138-142. [PMID: 39478214 DOI: 10.1038/s41586-024-08055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/16/2024] [Indexed: 12/06/2024]
Abstract
Anurans are characterized by a biphasic life cycle, with an aquatic larval (tadpole) stage followed by an adult (frog) stage, both connected through the metamorphic period in which drastic morphological and physiological changes occur1. Extant tadpoles exhibit great morphological diversity and ecological relevance2, but their absence in the pre-Cretaceous fossil record (older than 145 million years) makes their origins and early evolution enigmatic. This contrasts with the postmetamorphic anuran fossil record that dates back to the Early Jurassic and with closely related species in the Late Triassic (around 217-213 million years ago (Ma))3. Here we report a late-stage tadpole of the stem-anuran Notobatrachus degiustoi from the Middle Jurassic of Patagonia (around 168-161 Ma). This finding has dual importance because it represents the oldest-known tadpole and, to our knowledge, the first stem-anuran larva. Its exquisite preservation, including soft tissues, shows features associated with the filter-feeding mechanism characteristic of extant tadpoles4,5. Notably, both N. degiustoi tadpole and adult reached a large size, demonstrating that tadpole gigantism occurred among stem-anurans. This new discovery reveals that a biphasic life cycle, with filter-feeding tadpoles inhabiting aquatic ephemeral environments, was already present in the early evolutionary history of stem-anurans and has remained stable for at least 161 million years.
Collapse
Affiliation(s)
- Mariana Chuliver
- Fundación de Historia Natural "Félix de Azara", Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Federico L Agnolín
- Fundación de Historia Natural "Félix de Azara", Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | - Agustín Scanferla
- Fundación de Historia Natural "Félix de Azara", Centro de Ciencias Naturales, Ambientales y Antropológicas, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mauro Aranciaga Rolando
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín D Ezcurra
- Sección Paleontología de Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Fernando E Novas
- Laboratorio de Anatomía Comparada y Evolución de los Vertebrados, CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Stewart AD, Herrick CM, Fitzgibbon TR, Wehner JM, Lev A, Venti PA, Pischedda A. Life history changes associated with over 400 generations of artificial selection on body size in Drosophila. J Evol Biol 2024; 37:851-861. [PMID: 38809925 DOI: 10.1093/jeb/voae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Body size is a trait that shapes many aspects of a species' development and evolution. Larger body size is often beneficial in animals, but it can also be associated with life history costs in natural systems. Similarly, miniaturization, the evolution of extremely small adult body size, is found in every major animal group, yet carries its own life history trade-offs. Given that these effects can depend on an animal's environment and life stage and have mainly been studied in species that are already specialized for their size, the life history changes associated with evolutionary shifts in body size warrant additional investigation. Here, we used Drosophila melanogaster populations that had undergone over 400 generations of artificial selection on body size to investigate the changes in life history traits associated with the evolution of extremely large and extremely small body sizes. Populations selected for small body size experienced strong trade-offs in multiple life history traits, including reduced female fecundity and lower juvenile viability. Although we found positively correlated changes in egg size associated with selection for both large and small body size, after adjusting for female body size, females from populations selected for large size had the lowest relative investment per egg and females from populations selected for small size had the highest relative investment per egg. Taken together, our results suggest that egg size may be a key constraint on the evolution of body size in D. melanogaster, providing insight into the broader phenomenon of body size evolution in insects.
Collapse
Affiliation(s)
- Andrew D Stewart
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Calvin M Herrick
- Department of Biology, Canisius University, Buffalo, NY, United States
| | | | - James M Wehner
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Avigayil Lev
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| | - Patricia A Venti
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Alison Pischedda
- Department of Biology, Barnard College, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Jarvis GC, Marshall DJ. Fertilization Mode Covaries with Body Size. Am Nat 2023; 202:448-457. [PMID: 37792921 DOI: 10.1086/725864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractThe evolution of internal fertilization has occurred repeatedly and independently across the tree of life. As it has evolved, internal fertilization has reshaped sexual selection and the covariances among sexual traits, such as testes size, and gamete traits. But it is unclear whether fertilization mode also shows evolutionary associations with traits other than primary sex traits. Theory predicts that fertilization mode and body size should covary, but formal tests with phylogenetic control are lacking. We used a phylogenetically controlled approach to test the covariance between fertilization mode and adult body size (while accounting for latitude, offspring size, and offspring developmental mode) among 1,232 species of marine invertebrates from three phyla. Within all phyla, external fertilizers are consistently larger than internal fertilizers: the consequences of fertilization mode extend to traits that are only indirectly related to reproduction. We suspect that other traits may also coevolve with fertilization mode in ways that remain unexplored.
Collapse
|
4
|
Data collected by citizen scientists reveal the role of climate and phylogeny on the frequency of shelter types used by frogs across the Americas. ZOOLOGY 2022; 155:126052. [PMID: 36152596 DOI: 10.1016/j.zool.2022.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Shelters are microhabitats where animals rest and hide. These microhabitats can be used from short daily periods to long-term estivation or hibernation. Environmental conditions and the phenotypical characteristics of the animal drive habitat selection in relation to shelters. Based on this, climate regions and phylogeny are expected to affect the use of different shelter types. Although shelters are yet to be described for most anuran species, a variety of microhabitats have already been reported as shelter-sites, including dense vegetation, rock crevices, and holes in the ground. In this study, we evaluated photos of frogs for sheltering behaviour from 29 countries in the Americas deposited on the popular citizen-science platform, iNaturalist. We compared the frequency of use of different shelter types identified on the photos among different climate regions and anuran families, also testing possible phylogenetic signals. We identified 11,133 photographs of 378 frog species showing individuals hiding in shelters or in a resting position. We classified observations into 10 shelter types, with live vegetation (24.7 %) being the most commonly recorded natural shelter, followed by hole in the ground (11.4 %) and tree trunk (11.1 %). The use of different shelter types varied between arid and humid climates, and also among different anuran families. We found strong phylogenetic signal for three shelter types (hole in the ground, live vegetation, and water) and the differences in shelter use among taxa suggest a relation with body characteristics. Approximately 47 % of observations of threatened and near threatened species were in hole in the ground, while artificial habitat represented only 3.6 % of the observations in this group. The daily pattern of shelter use corroborated the nocturnal activity of most species. Our findings also expanded the description of shelter sites for 330 species that had no published information on this behaviour. This study contributes to our current knowledge about animal behaviour and highlights the use of citizen science as an effective approach to understand the natural history of amphibians at a large scale.
Collapse
|
5
|
Roberts SM, Stuart‐Fox D, Medina I. The evolution of conspicuousness in frogs: When to signal toxicity? J Evol Biol 2022; 35:1455-1464. [PMID: 36129907 PMCID: PMC9825868 DOI: 10.1111/jeb.14092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023]
Abstract
Many organisms use conspicuous colour patterns to advertise their toxicity or unpalatability, a strategy known as aposematism. Despite the recognized benefits of this anti-predator tactic, not all chemically defended species exhibit warning coloration. Here, we use a comparative approach to investigate which factors predict the evolution of conspicuousness in frogs, a group in which conspicuous coloration and toxicity have evolved multiple times. We extracted colour information from dorsal and ventral photos of 594 frog species for which chemical defence information was available. Our results show that chemically defended and diurnal species have higher internal chromatic contrast, both ventrally and dorsally, than chemically undefended and/or nocturnal species. Among species that are chemically defended, conspicuous coloration is more likely to occur if species are diurnal. Our results also suggest that the evolution of conspicuous colour is more likely to occur in chemically defended prey with smaller body size. We discuss potential explanations for this association and suggest that prey profitability (related to body size) could be an important force driving the macroevolution of warning signals.
Collapse
Affiliation(s)
| | - Devi Stuart‐Fox
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Iliana Medina
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Acevedo AA, Palma RE, Olalla-Tárraga MÁ. Ecological and evolutionary trends of body size in Pristimantis frogs, the world's most diverse vertebrate genus. Sci Rep 2022; 12:18106. [PMID: 36302809 PMCID: PMC9613995 DOI: 10.1038/s41598-022-22181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/11/2022] [Indexed: 12/30/2022] Open
Abstract
Body size is a key organismal trait. However, the environmental and evolutionary factors that drive body size patterns at the interspecific level remain unclear. Here, we explored these relationships between phenotype-environment using neotropical frogs of Pristimantis, the world's most diverse vertebrate genus. We analyzed: (a) whether this group follows the Rensch's rule, a trend of sexual size dimorphism (SSD) to increase with size when males are the larger sex; (b) whether environmental constraints have influenced body size variation; and (c) how the rates of body size evolution have varied over time. Analyses were based on two information sources, the first one including body sizes of ~ 85% (495 species) of known species in the genus, and a second one incorporating molecular phylogenetic information for 257 species. Our results showed that all Pristimantis species exhibited marked SSD but did not follow Rensch's rule. We found that the models that best explained body size in males, females, and SSD contained environmental variations in temperature, precipitation, and elevation as predictors. In turn, body size has evolved toward an optimum, with a decelerating rate of evolution differentiated between the large Pristimantis clades.
Collapse
Affiliation(s)
- Aldemar A. Acevedo
- grid.7870.80000 0001 2157 0406Laboratory of Evolutionary Biology, Department of Ecology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile ,grid.443909.30000 0004 0385 4466Laboratory of Genetics and Evolution, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile ,grid.441950.d0000 0001 2107 1033Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Pamplona, Colombia
| | - R. Eduardo Palma
- grid.7870.80000 0001 2157 0406Laboratory of Evolutionary Biology, Department of Ecology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Ángel Olalla-Tárraga
- grid.28479.300000 0001 2206 5938Department of Biology and Geology, Physics & Inorganic Chemistry, Universidad Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
7
|
|
8
|
Euclydes L, De La Torre GM, Dudczak AC, Melo FTDV, Campião KM. Ecological specificity explains infection parameters of anuran parasites at different scales. Parasitology 2022:1-8. [PMID: 35195062 DOI: 10.1017/s0031182022000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding the determinants of parasite infection in different hosts is one of the main goals of disease ecology. Evaluating the relationship between parasite–host specificity and infection parameters within host communities and populations may contribute to this understanding. Here we propose two measures of specificity that encompasses phylogenetic and ecological relatedness among hosts and investigated how such metrics explain parasite infection prevalence and mean infection intensity (MII). We analysed the parasites associated with an anuran community in an area of Atlantic Forest and used the number of infected hosts and the net relatedness index to calculate the phylogenetic and ecological specificities of the parasites. These specificity measures were related to infection metrics (prevalence and MII) with generalized linear mixed models at community (all hosts) and population (infected host species) scales. Parasite prevalence was correlated with the number of infected hosts and, when considering only multi-host parasites, was positively related to parasite ecological specificity at community and population scales. Thus, parasite species have similar prevalences in ecologically closer hosts. No relationship was found for parasite MII. Incorporating ecological characteristics of hosts in parasite specificity analyses improves the detection of patterns of specificity across scales.
Collapse
Affiliation(s)
- Lorena Euclydes
- Department of Zoology, Faculty of Biological Sciences, Federal University of Paraná, Curitiba, Paraná81531-980, Brazil
| | - Gabriel M De La Torre
- Department of Zoology, Faculty of Biological Sciences, Federal University of Paraná, Curitiba, Paraná81531-980, Brazil
| | - Amanda Caroline Dudczak
- Department of Zoology, Faculty of Biological Sciences, Federal University of Paraná, Curitiba, Paraná81531-980, Brazil
| | - Francisco Tiago de Vasconcelos Melo
- Laboratory of Cell Biology and Helminthology 'Prof. Dr. Reinalda Marisa Lanfredi', Institute of Biological Sciences, Federal University of Pará, Belém, Pará66075-110, Brazil
| | - Karla Magalhães Campião
- Department of Zoology, Faculty of Biological Sciences, Federal University of Paraná, Curitiba, Paraná81531-980, Brazil
| |
Collapse
|
9
|
Furness AI, Venditti C, Capellini I. Terrestrial reproduction and parental care drive rapid evolution in the trade-off between offspring size and number across amphibians. PLoS Biol 2022; 20:e3001495. [PMID: 34982764 PMCID: PMC8726499 DOI: 10.1371/journal.pbio.3001495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/26/2021] [Indexed: 11/18/2022] Open
Abstract
The trade-off between offspring size and number is central to life history strategies. Both the evolutionary gain of parental care or more favorable habitats for offspring development are predicted to result in fewer, larger offspring. However, despite much research, it remains unclear whether and how different forms of care and habitats drive the evolution of the trade-off. Using data for over 800 amphibian species, we demonstrate that, after controlling for allometry, amphibians with direct development and those that lay eggs in terrestrial environments have larger eggs and smaller clutches, while different care behaviors and adaptations vary in their effects on the trade-off. Specifically, among the 11 care forms we considered at the egg, tadpole and juvenile stage, egg brooding, male egg attendance, and female egg attendance increase egg size; female tadpole attendance and tadpole feeding decrease egg size, while egg brooding, tadpole feeding, male tadpole attendance, and male tadpole transport decrease clutch size. Unlike egg size that shows exceptionally high rates of phenotypic change in just 19 branches of the amphibian phylogeny, clutch size has evolved at exceptionally high rates in 135 branches, indicating episodes of strong selection; egg and tadpole environment, direct development, egg brooding, tadpole feeding, male tadpole attendance, and tadpole transport explain 80% of these events. By explicitly considering diversity in parental care and offspring habitat by stage of offspring development, this study demonstrates that more favorable conditions for offspring development promote the evolution of larger offspring in smaller broods and reveals that the diversity of parental care forms influences the trade-off in more nuanced ways than previously appreciated. What selective pressures alter the tradeoff between offspring size and number? A phylogenetic comparative approach shows that amphibians with direct development and those that lay eggs in terrestrial environments have larger eggs and smaller clutches, while different care behaviours and adaptations vary in their effects on the tradeoff.
Collapse
Affiliation(s)
- Andrew I. Furness
- Department of Biological and Marine Sciences, University of Hull, Hull, United Kingdom
- Energy and Environment Institute, University of Hull, Hull, United Kingdom
- * E-mail: (AIF); (IC)
| | - Chris Venditti
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Isabella Capellini
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (AIF); (IC)
| |
Collapse
|
10
|
Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi). Heredity (Edinb) 2022; 128:33-44. [PMID: 34718332 PMCID: PMC8733028 DOI: 10.1038/s41437-021-00481-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Phenotypic and genetic divergence are shaped by the homogenizing effects of gene flow and the differentiating processes of genetic drift and local adaptation. Herein, we examined the mechanisms that underlie phenotypic (size and color) and genetic divergence in 35 populations (535 individuals) of the poison frog Epipedobates anthonyi along four elevational gradients (0-1800 m asl) in the Ecuadorian Andes. We found phenotypic divergence in size and color despite relatively low genetic divergence at neutral microsatellite loci. Genetic and phenotypic divergence were both explained by landscape resistance between sites (isolation-by-resistance, IBR), likely due to a cold and dry mountain ridge between the northern and southern elevational transects that limits dispersal and separates two color morphs. Moreover, environmental differences among sites also explained genetic and phenotypic divergence, suggesting isolation-by-environment (IBE). When northern and southern transects were analyzed separately, genetic divergence was predicted either by distance (isolation-by-distance, IBD; northern) or environmental resistance between sites (IBR; southern). In contrast, phenotypic divergence was primarily explained by environmental differences among sites, supporting the IBE hypothesis. These results indicate that although distance and geographic barriers are important drivers of population divergence, environmental variation has a two-fold effect on population divergence. On the one hand, landscape resistance between sites reduces gene flow (IBR), while on the other hand, environmental differences among sites exert divergent selective pressures on phenotypic traits (IBE). Our work highlights the importance of studying both genetic and phenotypic divergence to better understand the processes of population divergence and speciation along ecological gradients.
Collapse
|
11
|
Martínez-Gil H, Martínez-Freiría F, Perera A, Enriquez-Urzelai U, Martínez-Solano Í, Velo-Antón G, Kaliontzopoulou A. Morphological diversification of Mediterranean anurans: the roles of evolutionary history and climate. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Investigation of the ecological and evolutionary mechanisms governing the origin and diversification of species requires integrative approaches that often have to accommodate strong discordance among datasets. A common source of conflict is the combination of morphological and molecular characters with different evolutionary rates. Resolution of these discordances is crucial to assess the relative roles of different processes in generating and maintaining biodiversity. Anuran amphibians provide many examples of morphologically similar, genetically divergent lineages, posing questions about the relative roles of phylogeny and ecological factors in phenotypic evolution. We focused on three circum-Mediterranean anuran genera (Hyla, Alytes and Discoglossus), characterizing morphological and environmental disparity and comparing diversity patterns across biological levels of organization. Using a comparative phylogenetic framework, we tested how shared ancestry and climatic factors come together to shape phenotypic diversity. We found higher morphological differentiation within Hyla and Alytes than in Discoglossus. Body size and limb morphology contributed most to inter- and intraspecific morphological variation in Hyla and Alytes, but there was no strong phylogenetic signal, indicating that shared ancestry does not predict patterns of phenotypic divergence. In contrast, we uncovered a significant association between morphology and climatic descriptors, supporting the hypothesis that morphological disparity between species results from adaptive evolution.
Collapse
Affiliation(s)
- Helena Martínez-Gil
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Ana Perera
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Urtzi Enriquez-Urzelai
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60365 Brno, Czech Republic
| | - Íñigo Martínez-Solano
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, C/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Guillermo Velo-Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97), E-36310, Vigo, Spain
| | - Antigoni Kaliontzopoulou
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio), Universitat de Barcelona, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
James LS, Taylor RC, Hunter KL, Ryan MJ. Evolutionary and Allometric Insights into Anuran Auditory Sensitivity and Morphology. BRAIN, BEHAVIOR AND EVOLUTION 2021; 97:140-150. [PMID: 34864726 DOI: 10.1159/000521309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
As species change through evolutionary time, the neurological and morphological structures that underlie behavioral systems typically remain coordinated. This is especially important for communication systems, in which these structures must remain coordinated both within and between senders and receivers for successful information transfer. The acoustic communication of anurans ("frogs") offers an excellent system to ask when and how such coordination is maintained, and to allow researchers to dissociate allometric effects from independent correlated evolution. Anurans constitute one of the most speciose groups of vocalizing vertebrates, and females typically rely on vocalizations to localize males for reproduction. Here, we compile and compare data on various aspects of auditory morphology, hearing sensitivity, and call-dominant frequency across 81 species of anurans. We find robust, phylogenetically independent scaling effects of body size for all features measured. Furthermore, after accounting for body size, we find preliminary evidence that morphological evolution beyond allometry can correlate with hearing sensitivity and dominant frequency. These data provide foundational results regarding constraints imposed by body size on communication systems and motivate further data collection and analysis using comparative approaches across the numerous anuran species.
Collapse
Affiliation(s)
- Logan S James
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Ryan C Taylor
- Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Kimberly L Hunter
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland, USA
| | - Michael J Ryan
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA,
- Smithsonian Tropical Research Institute, Balboa, Panama,
| |
Collapse
|
13
|
Zumel D, Buckley D, Ron SR. The Pristimantis trachyblepharis species group, a clade of miniaturized frogs: description of four new species and insights into the evolution of body size in the genus. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Abstract
Species richness in the genus Pristimantis is underestimated due to the existence of morphologically cryptic species. This is worsened by the low sampling effort and the lack of studies using genetic markers. Here, we use molecular and morphological data to determine the phylogenetic relationships of a clade of Pristimantis distributed throughout montane tropical forests in the eastern Andes, from central Ecuador to northern Perú. We name this clade the Pristimantis trachyblepharis species group. Our results show that it comprises nine species, of which four are formally described and five are new. Four of these undescribed species are formally described here. The group is composed of miniaturized species, such as Pristimantis nanus sp. nov., currently the smallest known species of the genus and the smallest vertebrate in Ecuador. As a first approach to understanding the evolutionary origin and implications of body-size reduction in Pristimantis, we here study the phylogenetic signal and evolutionary trends of body size within the genus. We also provide the first record of P. aquilonaris in Ecuador and we show, for the first time, the phylogenetic position of P. albujai, P. aquilonaris, P. minimus and P. trachyblepharis, which are also members of the P. trachyblepharis species group.
Collapse
Affiliation(s)
- Daniel Zumel
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo. 17-01-2184, Quito, Ecuador
- Real Jardín Botánico (RJB-CSIC). Plaza de Murillo, 2. 28014 Madrid, Spain
| | - David Buckley
- Departamento de Biología (Genética). Facultad de Ciencias (Ed. Biología), Universidad Autónoma de Madrid (UAM)., c/ Darwin 2, 28049, Madrid, Spain
- Centro de Investigaciones en Biodiversidad y Cambio Global (CIBC-UAM). Edificio de Biología, Universidad Autónoma de Madrid., c/ Darwin 2, 28049, Madrid, Spain
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre y Roca, Aptdo. 17-01-2184, Quito, Ecuador
| |
Collapse
|
14
|
Neira-Salamea K, Ofori-Boateng C, Kouam NG, Blackburn DC, Segniagbeto GH, Hillers A, Barej MF, Leach AD, Rödel MO. A new critically endangered slippery frog (Amphibia, Conrauidae, Conraua) from the Atewa Range, central Ghana. Zootaxa 2021; 4995:71-95. [PMID: 34186816 DOI: 10.11646/zootaxa.4995.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 11/04/2022]
Abstract
Forty-nine years after the last description of a slippery frog, we describe a seventh species of the genus Conraua. The new Conraua is endemic to the Atewa Range Forest Reserve, central Ghana, and is described based on genetic, bioacoustics, and morphological evidence. Recent molecular phylogenetic and species delimitation analyses support this population as distinct from nominotypical C. derooi in eastern Ghana and adjacent Togo. The new species is sister to C. derooi, from which it differs ~4% in the DNA sequence for mitochondrial ribosomal 16S. Genetic divergences in 16S to other species of Conraua range from 412%. The new species is distinguished morphologically from its congeners, including C. derooi, by the combination of the following characters: medium body size, robust limbs, lateral dermal fringing along edges of fingers, cream ventral color with brown mottling, the presence of a lateral line system, indistinct tympanum, the presence of inner, outer, and middle palmar tubercles, and two subarticular tubercles on fingers III and IV. We compare the advertisement calls of the new species with the calls from C. derooi and find that they differ by duration, frequency modulation, and dominant frequency. We discuss two potential drivers of speciation between C. derooi and the new species, including river barriers and fragmentation of previously more widespread forests in West Africa. Finally, we highlight the importance of the Atewa Range Forest Reserve as a critical conservation area within the Upper Guinean biodiversity hotspot.
Collapse
Affiliation(s)
- Karla Neira-Salamea
- Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, German .
| | - Caleb Ofori-Boateng
- CSIR-Forestry Research Institute of Ghana, P. O. Box 63, Fumesua, Kumasi, Ghana. EDGE of Existence Programme, Zoological Society of London, Regent's Park, London NW1 4RY, UK..
| | - N'goran G Kouam
- Université Jean Lorougnon Guédé, UFR Environnement, Laboratoire de Biodiversité et Ecologie Tropicale, Daloa, BP 150, Côte d´Ivoire.
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA .
| | - Gabriel H Segniagbeto
- Laboratory of Ecology and Ecotoxicology, Faculty of Sciences, University of Lomé, BP 6057 Lomé, Togo .
| | - Annika Hillers
- Wild Chimpanzee Foundation (WCF), Liberia Office, FDA Compound, Whein Town, Mount Barclay, Montserrado County, Liberia .
| | - Michael F Barej
- Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, German.
| | - Adam D Leach
- Department of Biology Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA .
| | - Mark-Oliver Rödel
- Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, German.
| |
Collapse
|
15
|
Paluh DJ, Riddell K, Early CM, Hantak MM, Jongsma GFM, Keeffe RM, Magalhães Silva F, Nielsen SV, Vallejo-Pareja MC, Stanley EL, Blackburn DC. Rampant tooth loss across 200 million years of frog evolution. eLife 2021; 10:e66926. [PMID: 34060471 PMCID: PMC8169120 DOI: 10.7554/elife.66926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023] Open
Abstract
Teeth are present in most clades of vertebrates but have been lost completely several times in actinopterygian fishes and amniotes. Using phenotypic data collected from over 500 genera via micro-computed tomography, we provide the first rigorous assessment of the evolutionary history of dentition across all major lineages of amphibians. We demonstrate that dentition is invariably present in caecilians and salamanders, but teeth have been lost completely more than 20 times in frogs, a much higher occurrence of edentulism than in any other vertebrate group. The repeated loss of teeth in anurans is associated with a specialized diet of small invertebrate prey as well as shortening of the lower jaw, but it is not correlated with a reduction in body size. Frogs provide an unparalleled opportunity for investigating the molecular and developmental mechanisms of convergent tooth loss on a large phylogenetic scale.
Collapse
Affiliation(s)
- Daniel J Paluh
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Department of Biology, University of FloridaGainesvilleUnited States
| | - Karina Riddell
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - Catherine M Early
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Biology Department, Science Museum of MinnesotaSaint PaulUnited States
| | - Maggie M Hantak
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - Gregory FM Jongsma
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - Rachel M Keeffe
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Department of Biology, University of FloridaGainesvilleUnited States
| | - Fernanda Magalhães Silva
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Programa de Pós Graduação em Zoologia, Universidade Federal do Pará, Museu Paraense Emilio GoeldiBelémBrazil
| | - Stuart V Nielsen
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - María Camila Vallejo-Pareja
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
- Department of Biology, University of FloridaGainesvilleUnited States
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of FloridaGainesvilleUnited States
| |
Collapse
|
16
|
Sugai LSM, Llusia D, Siqueira T, Silva TSF. Revisiting the drivers of acoustic similarities in tropical anuran assemblages. Ecology 2021; 102:e03380. [PMID: 33937979 DOI: 10.1002/ecy.3380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023]
Abstract
Acoustic signaling is key in mediating mate choice, which directly impacts individual fitness. Because background noise and habitat structure can impair signal transmission, the acoustic space of mixed-species assemblages has long been hypothesized to reflect selective pressures against signal interference and degradation. However, other potential drivers that received far less attention can drive similar outputs on the acoustic space. Phylogenetic niche conservatism and allometric constraints may also modulate species acoustic features, and the acoustic space of communities could be a side-effect of ecological assembly processes involving other traits (e.g., environmental filtering). Additionally, the acoustic space can also reflect the sorting of species relying on public information through extended communication networks. Using an integrative approach, we revisit the potential drivers of the acoustic space by addressing the distribution of acoustic traits, body size, and phylogenetic relatedness in tropical anuran assemblages across gradients of environmental heterogeneity in the Pantanal wetlands. We found the overall acoustic space to be aggregated compared with null expectations, even when accounting for confounding effects of body size. Across assemblages, acoustic and phylogenetic differences were positively related, while acoustic and body size similarities were negatively related, although to a minor extent. We suggest that acoustic partitioning, acoustic adaptation, and allometric constraints play a minor role in shaping the acoustic output of tropical anuran assemblages and that phylogenetic niche conservatism and public information use would influence between-assemblage variation. Our findings highlight an overlooked multivariate nature of the acoustic dimension and underscore the importance of including the ecological context of communities to understand drivers of the acoustic space.
Collapse
Affiliation(s)
- Larissa Sayuri Moreira Sugai
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, São Paulo, 13506-900, Brazil.,Terrestrial Ecology Group (TEG), Departamento de Ecología, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 2, Edificio de Biología, C-211, Madrid, 28049, Spain
| | - Diego Llusia
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 2, Edificio de Biología, C-211, Madrid, 28049, Spain.,Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, CEP, 74001-970, Brazil.,Centro de Investigación en Biodiversidad y Cambio Global, Ciudad Universitaria de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, Madrid, E-28049, Spain
| | - Tadeu Siqueira
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, São Paulo, 13506-900, Brazil
| | - Thiago S F Silva
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, São Paulo, 13506-900, Brazil.,Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
17
|
Jiménez-Vargas GM, Atehortua-Vallejo MA, Arcila-Pérez LF, Carvajal-Castro JD, Vargas-Salinas F. Does abiotic noise promote segregation of functional diversity in Neotropical anuran assemblages? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The abiotic noise of streams can mask the acoustic signals of anurans with a large body size calling at low frequencies, but not the signals emitted by anurans with a small body size calling at high frequencies. As a consequence, the body size of species in assemblages alongside streams is, on average, lower and less variable than that of assemblages away from streams. Given that the body size in anurans is frequently related to life-history traits, it is expected that functional diversity (FD) will be lower in anuran assemblages alongside streams than in assemblages away from streams. We calculated and compared FD, based on six functional traits, for anuran species in seven localities in different biogeographical regions in the Neotropics. In five lowland localities, FD was lower in assemblages alongside streams than in assemblages away from streams. However, the reverse trend was found in two Andean localities. Noise from streams, acting as an environmental filter, could promote low FD because taxa whose phenotype differs from an optimal type (high call frequency, small body size and associated traits) are excluded from riparian places. However, such habitat filtering could be stronger and affect more anurans in lowland assemblages than in those at medium elevation.
Collapse
Affiliation(s)
- Gina Marcela Jiménez-Vargas
- Evolución, Ecología y Conservación (EECO), Facultad de Ciencias Básicas y Nuevas Tecnologías, Programa de Biología, Universidad del Quindío, Carrera 15 Calle 12N Armenia, Quindío, Colombia
| | - Michelle Andrea Atehortua-Vallejo
- Evolución, Ecología y Conservación (EECO), Facultad de Ciencias Básicas y Nuevas Tecnologías, Programa de Biología, Universidad del Quindío, Carrera 15 Calle 12N Armenia, Quindío, Colombia
| | - Luisa F Arcila-Pérez
- Evolución, Ecología y Conservación (EECO), Facultad de Ciencias Básicas y Nuevas Tecnologías, Programa de Biología, Universidad del Quindío, Carrera 15 Calle 12N Armenia, Quindío, Colombia
| | - Juan D Carvajal-Castro
- Evolución, Ecología y Conservación (EECO), Facultad de Ciencias Básicas y Nuevas Tecnologías, Programa de Biología, Universidad del Quindío, Carrera 15 Calle 12N Armenia, Quindío, Colombia
| | - Fernando Vargas-Salinas
- Evolución, Ecología y Conservación (EECO), Facultad de Ciencias Básicas y Nuevas Tecnologías, Programa de Biología, Universidad del Quindío, Carrera 15 Calle 12N Armenia, Quindío, Colombia
| |
Collapse
|
18
|
Baxter-Gilbert J, Riley JL, Wagener C, Mohanty NP, Measey J. Shrinking before our isles: the rapid expression of insular dwarfism in two invasive populations of guttural toad ( Sclerophrys gutturalis). Biol Lett 2020; 16:20200651. [PMID: 33202183 DOI: 10.1098/rsbl.2020.0651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Island ecosystems have traditionally been hailed as natural laboratories for examining phenotypic change, including dramatic shifts in body size. Similarly, biological invasions can drive rapid localized adaptations within modern timeframes. Here, we compare the morphology of two invasive guttural toad (Sclerophrys gutturalis) populations in Mauritius and Réunion with their source population from South Africa. We found that female toads on both islands were significantly smaller than mainland counterparts (33.9% and 25.9% reduction, respectively), as were males in Mauritius (22.4%). We also discovered a significant reduction in the relative hindlimb length of both sexes, on both islands, compared with mainland toads (ranging from 3.4 to 9.0%). If our findings are a result of natural selection, then this would suggest that the dramatic reshaping of an amphibian's morphology-leading to insular dwarfism-can result in less than 100 years; however, further research is required to elucidate the mechanism driving this change (e.g. heritable adaptation, phenotypic plasticity, or an interaction between them).
Collapse
Affiliation(s)
- James Baxter-Gilbert
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Julia L Riley
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Carla Wagener
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Nitya P Mohanty
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - John Measey
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| |
Collapse
|