1
|
Au-Yeung C, Tsui YL, Choi MH, Chan KW, Wong SN, Ling YK, Lam CM, Lam KL, Mo WY. Antibiotic Abuse in Ornamental Fish: An Overlooked Reservoir for Antibiotic Resistance. Microorganisms 2025; 13:937. [PMID: 40284775 PMCID: PMC12029747 DOI: 10.3390/microorganisms13040937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Ornamental fish represent a significant aquaculture sector with notable economic value, yet their contribution to antibiotic residues and resistance remains underrecognized. This review synthesizes evidence on widespread and often unregulated antibiotic use-including tetracyclines and fluoroquinolones-in ornamental fish production, transportation, and retail, primarily targeting bacterial diseases such as aeromonosis and vibriosis. Pathogenic microorganisms including Edwardsiella, Flavobacterium, and Shewanella spp. cause diseases like hemorrhagic septicemia, fin rot, skin ulcers, and exophthalmia, impairing fish health and marketability. Prophylactic and therapeutic antibiotic applications elevate antibiotic residues in fish tissues and carriage water, thereby selecting for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). These resistant elements pose significant risks to fish health, human exposure via direct contact and bioaerosols, and environmental health through contamination pathways. We emphasize the urgent need for a holistic One Health approach, involving enhanced surveillance, stringent regulatory oversight, and adoption of alternative antimicrobial strategies, such as probiotics and advanced water treatments. Coordinated global actions are crucial to effectively mitigate antibiotic resistance within the ornamental fish industry, ensuring sustainable production, safeguarding public health, and protecting environmental integrity.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Sze-Nga Wong
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Yuk-Ki Ling
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Cheuk-Ming Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (Y.-L.T.); (M.-H.C.); (K.-W.C.); (S.-N.W.); (Y.-K.L.); (C.-M.L.); (K.-L.L.)
| |
Collapse
|
2
|
Lambert H, Elwin A, Assou D, Auliya M, Harrington LA, Hughes AC, Mookerjee A, Moorhouse T, Petrossian GA, Sun E, Warwick C, Can ÖE, D’Cruze N. Chains of Commerce: A Comprehensive Review of Animal Welfare Impacts in the International Wildlife Trade. Animals (Basel) 2025; 15:971. [PMID: 40218366 PMCID: PMC11988014 DOI: 10.3390/ani15070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
The commercial wildlife trade involves billions of animals each year, consumed for various purposes, including food, fashion, entertainment, traditional medicine, and pets. The experiences of the animals involved vary widely, with negative welfare states being commonplace. To highlight the broad scope of animal welfare impacts across the commercial wildlife trade, we present ten case studies featuring a range of species traded globally for different purposes: (1) Ball pythons captured and farmed to serve as pets; (2) Zebrafish captive bred to serve as pets; (3) African Grey Parrots taken from the wild for the pet industry; (4) Sharks de-finned for traditional medicine; (5) Pangolins hunted for traditional medicine; (6) Crickets farmed for food and feed; (7) Frogs wild-caught for the frog-leg trade; (8) Crocodilians killed for their skins; (9) Lions farmed and killed for tourism; and (10) Elephants held captive for tourism. The case studies demonstrate that wild animals commercially traded can suffer from negative welfare states ranging from chronic stress and depression to frustration and extreme hunger. The individuals involved range from hundreds to billions, and their suffering can last a lifetime. Given the welfare issues identified and the growing recognition and scientific evidence for animal sentience, we propose reducing and redirecting consumer demand for these consumptive wildlife practices that negatively impact animals.
Collapse
Affiliation(s)
- Helen Lambert
- Animal Welfare Consultancy, Newton Abbot TQ12 3BW, UK
| | - Angie Elwin
- World Animal Protection, 222 Greys Inn Road, London WC1X 8HB, UK; (A.E.); (E.S.); (N.D.)
| | - Délagnon Assou
- Laboratory of Ecology and Ecotoxicology (LaEE), University of Lomé, Lomé 01 BP 1515, Togo;
| | - Mark Auliya
- Zoological Research Museum Alexander Koenig of the Leibniz Institute for the Analysis of Biodiversity Change, 53113 Bonn, Germany;
| | - Lauren A. Harrington
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Tubney House, Tubney OX13 5QL, UK;
| | - Alice C. Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong;
| | - Aniruddha Mookerjee
- Independent Researcher, 11/4 Baherakhar, Malajkhand, Balaghat 481116, India;
| | - Tom Moorhouse
- Oxford Wildlife Research, 64 Charles Street, Oxford OX4 3AS, UK;
| | - Gohar A. Petrossian
- John Jay College of Criminal Justice, 524 West 59th Street, New York, NY 10019, USA;
| | - Evan Sun
- World Animal Protection, 222 Greys Inn Road, London WC1X 8HB, UK; (A.E.); (E.S.); (N.D.)
| | - Clifford Warwick
- Emergent Disease Foundation, 71–75 Shelton Street, Covent Garden, London WC2H 9JQ, UK;
| | - Özgün Emre Can
- Department of Biology, Ankara University, Dögol Street, Ankara 06100, Turkey;
| | - Neil D’Cruze
- World Animal Protection, 222 Greys Inn Road, London WC1X 8HB, UK; (A.E.); (E.S.); (N.D.)
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Tubney House, Tubney OX13 5QL, UK;
| |
Collapse
|
3
|
Kumaran SK, Solberg LE, Izquierdo-Gomez D, Cañon-Jones HA, Mage I, Noble C. Applying deep learning and the ecological home range concept to document the spatial distribution of Atlantic salmon parr (Salmo salar L.) in experimental tanks. Sci Rep 2025; 15:5976. [PMID: 39966514 PMCID: PMC11836443 DOI: 10.1038/s41598-025-90118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Measuring and monitoring fish welfare in aquaculture research relies on the use of outcome- (biotic) and input-based (e.g., abiotic) welfare indicators (WIs). Incorporating behavioural auditing into this toolbox can sometimes be challenging because sourcing quantitative data is often labour intensive and it can be a time-consuming process. Digitalization of this process via the use of computer vision and artificial intelligence can help automate and streamline the procedure, help gather continuous quantitative data and help process optimisation and assist in decision-making. The tool introduced in this study (1) adapts the DeepLabCut framework, based on computer vision and machine learning, to obtain pose estimation of Atlantic salmon parr under replicated experimental conditions, (2) quantifies the spatial distribution of the fish through a toolbox of metrics inspired by the ecological concepts home range and core area, and (3) applies it to inspect behavioural variability in and around feeding. This proof of concept study demonstrates the potential of our methodology for automating the analysis of fish behaviour in relation to home range and core area, including fish detection, spatial distribution and the variations within and between tanks. The impact of feeding on these patterns is also briefly outlined, using 5 days of experimental data as a demonstrative case study. This approach can provide stakeholders with valuable information on how the fish use their rearing environment in small-scale experimental settings and can be used for the further development of technologies for measuring and monitoring the behaviour of fish in research settings in future studies.
Collapse
|
4
|
Cao J, Fang D, Qiu W, Xie J. Effects of Exogenous Tryptophan in Alleviating Transport Stress in Pearl Gentian Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Animals (Basel) 2024; 14:3583. [PMID: 39765487 PMCID: PMC11672640 DOI: 10.3390/ani14243583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Live fish transportation plays a crucial role in the commercial fish trade. Consequently, mitigating stress during transportation is essential for enhancing the survival rate of fish and reducing potential financial losses. In this study, the effectiveness was evaluated of exogenous tryptophan in reducing transport stress in hybrid grouper, Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂. Firstly, the groupers were divided into the following five experimental groups: 40 mg/L MS-222 group, 30 mg/L tryptophan, 50 mg/L tryptophan, 70 mg/L tryptophan, and the control group without additives. Followed by transportation simulation, the fish samples were collected before and after transportation for the determination of antioxidant enzyme activities, apoptosis gene, and inflammatory gene expressions. The results indicated that the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) levels in all groups were significantly increased, while they were lower in the 50 mg/L Trp treated group compared to the control group (p < 0.05). Compared with the control group in the 50 mg/L Trp, 70 mg/L Trp, and 40 mg/L MS-222-treated groups, serum cortisol and blood glucose levels were significantly increased (p < 0.05), and anti-inflammatory factor (IL-10) gene expression was upregulated and pro-inflammatory factor (IL-1β) gene expression was decreased (p < 0.05). In addition, it was found that the 30 mg/L Trp, 50 mg/L Trp, and 40 mg/L MS-222 treatment groups had less green fluorescence than the control group by measuring the mitochondrial membrane potential, and 50 mg/L Trp and MS-222 showed more red fluorescence in fluorescence images than the other samples at the same sampling time. Therefore, in this study, it was demonstrated that the tryptophan could be used as a new anti-stress agent for hybrid groupers during transport, and additional research is required to identify the specific conditions that yield the best outcomes.
Collapse
Affiliation(s)
- Jie Cao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (D.F.)
| | - Dan Fang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (D.F.)
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (D.F.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (J.C.); (D.F.)
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
5
|
Siqueira MS, Povh JA, Ferreira ACV, Reges JAU, Kovalski-Dias CL, Gimênes-Junior H, Honorato CA. Tranquilizing and hepatoprotective effects of red-eye tetra (Moenkhausia Forestii) diet fed with Erythrina crista-galli. Vet Res Commun 2024; 48:3793-3801. [PMID: 39287895 DOI: 10.1007/s11259-024-10517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
This study aimed to assess the leaf aqueous extract composition of Erythrina crista-galli and the effects of its inclusion on the diet of red-eye tetra (Moenkhausia forestii), concerning enzyme content of digestive, hepatic, and oxidation metabolism and pigmentation. Fish (1.78 ± 0.54 g) were divided into groups: fasting (without feeding), control (commercial feed), and treatment (commercial feed with leaf aqueous extract of E. crista-galli) and feeding apparent satiety for 21 days, in the extracted analysis by mass spectrometry, phenolic compost, and flavonoids. The agitation degree and number of dashes, in all supplemented treatments, were lower than those in the control diet when fed for 7 or 15 days. In the digestive enzymatic activity did not differ (p > 0.05). The hepatoprotective treatment group showed lower alanine aminotransferase (ALT) and higher levels of antioxidant catalase (CAT). The results indicated that the aqueous leaf extract of Erythrina crista-galli assists in function maintenance of the liver; and stimulates CAT in red-eye tetra, suggesting that the identified compounds act on the liver and skin, showing hepatoprotective effects and stimulating tranquility.
Collapse
Affiliation(s)
- Mayara Schueroff Siqueira
- Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n - Pioneiros, Campo Grande, MS, 79070-900, Brasil.
| | - Jayme Aparecido Povh
- Universidade Federal de Mato Grosso do Sul (UFMS), Av. Costa e Silva, s/n - Pioneiros, Campo Grande, MS, 79070-900, Brasil
| | - Annye Campos Venâncio Ferreira
- Universidade Federal Da Grande Dourados (UFGD), Rua João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brasil
| | - Jéssica Amanda Ugarte Reges
- Universidade Federal Da Grande Dourados (UFGD), Rua João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brasil
| | | | - Heriberto Gimênes-Junior
- Bioparque Pantanal, Av. Afonso Pena, 6277 - Chácara Cachoeira, Campo Grande, MS, 79031-010, Brasil
| | - Claucia Aparecida Honorato
- Universidade Federal Da Grande Dourados (UFGD), Rua João Rosa Góes, 1761 - Vila Progresso, Dourados, MS, 79825-070, Brasil
| |
Collapse
|
6
|
Paredes-Trujillo A, Cano Rufino L, Hernández-Pérez A. Parasites of veterinary importance of ornamental fish commercialized in Mexico. Vet Parasitol Reg Stud Reports 2024; 56:101134. [PMID: 39550201 DOI: 10.1016/j.vprsr.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 11/18/2024]
Abstract
The wild and farm-raised ornamental fish trade is an industry that generates substantial economic profits worldwide. We report the parasitic fauna of imported marine and freshwater ornamental fish from ten aquarium wholesaler shops from two important localities in Mexico: Morelos Market in Mexico City and Merida in the state of Yucatan. Between February 2016 and March 2020, a total of 631 fish were examined for parasites, of which 66 species belong to 19 families of marine ornamental fish and 22 species from 9 families of freshwater ornamental fish. Twelve parasite species were recovered in marine fish belonging to three taxa: 7 Digenea, 3 Monogenea and 2 Nematoda. In freshwater fish, four parasite species belonging to four taxa were found: Protozoa, Digenea, Nematoda and Cestoda. Infection of individual fish species by specific parasites ranged from 0.20 to 4.55 %. The monogeneans Neobenedenia girellae and Pseudempleurosoma haywardi were the most prevalent parasites. Spearman's rank correlation test showed a significant association between various aquarium biosecurity practices, such as the absence of a quarantine area, low water exchange rates, lack of prophylactic treatments, inadequate removal of dead fish, and insufficient disinfection of water and equipment with the prevalence of N. girellae and P. haywardi. This knowledge can aid in the development of effective management strategies to promote the health of ornamental fish populations imported, minimize disease outbreaks and ensure the sustainable growth of this industry in Mexico.
Collapse
Affiliation(s)
- Amelia Paredes-Trujillo
- Laboratorio de Sanidad Acuícola, Instituto de Ecología, Pesquerías y Oceanografía (EPOMEX) de la Universidad Autónoma de Campeche, Campus 6 de investigación, Av. Héroe de Nacozari 466, C.P. 24070, Campeche, Campeche, Mexico.
| | - Luisa Cano Rufino
- Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán, C.P. 97310, Mexico
| | - Ariadne Hernández-Pérez
- Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Acuaticos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito de la Investigación Científica s/n, 04510, Mexico
| |
Collapse
|
7
|
Lin T, Li S, Zhang D, Liu X, Ren Y. Effects of Stocking Density on the Survival, Growth, and Stress Levels of the Juvenile Lined Seahorse ( Hippocampus erectus) in Recirculating Aquaculture Systems. BIOLOGY 2024; 13:807. [PMID: 39452116 PMCID: PMC11504914 DOI: 10.3390/biology13100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Seahorses are increasingly regarded as a promising farming object suitable for recirculating aquaculture systems (RASs) due to their high economic value. However, reports on the large-scale farming of seahorses in RASs are rare, and some key parameters, such as stocking densities, are still unclear. In the present study, we employed the lined seahorse (Hippocampus erectus), for which large-scale farming has been achieved, to determine the suitable stocking density for three different-sized juveniles in RASs. The three different-sized juveniles had body heights of 4.0, 7.0, and 9.0 cm, and their test density gradients were 1.0, 0.8, 0.6, and 0.4 inds/L; 0.6, 0.5, 0.4, and 0.3 inds/L; and 0.4, 0.3, 0.2, and 0.1 inds/L, respectively. The juveniles were cultivated for one month, and then their survival, growth, and plasma cortisol and brain serotonin contents (two stress-related indicators) were analyzed. The results show that, regardless of the size of the juveniles, a high density can inhibit growth and trigger stress responses. In addition, for small- (4.0 cm) and medium-sized (7.0 cm) juveniles, a high density can also exacerbate size heterogeneity and cause death. Taking into account the welfare and yield of farmed seahorses, the present study suggests that the suitable stocking densities for 4.0, 7.0, and 9.0 cm juveniles in RASs are 0.6, 0.4, and 0.2 inds/L, respectively.
Collapse
Affiliation(s)
- Tingting Lin
- Key Laboratory of Inland Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (T.L.); (S.L.); (D.Z.); (Y.R.)
- Wenchang Innovation Research Center, Fengjiawan Modern Fishery Industry Park, Wenchang 571300, China
| | - Siping Li
- Key Laboratory of Inland Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (T.L.); (S.L.); (D.Z.); (Y.R.)
- Wenchang Innovation Research Center, Fengjiawan Modern Fishery Industry Park, Wenchang 571300, China
| | - Dong Zhang
- Key Laboratory of Inland Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (T.L.); (S.L.); (D.Z.); (Y.R.)
- Wenchang Innovation Research Center, Fengjiawan Modern Fishery Industry Park, Wenchang 571300, China
| | - Xin Liu
- Key Laboratory of Inland Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (T.L.); (S.L.); (D.Z.); (Y.R.)
- Wenchang Innovation Research Center, Fengjiawan Modern Fishery Industry Park, Wenchang 571300, China
| | - Yuanhao Ren
- Key Laboratory of Inland Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (T.L.); (S.L.); (D.Z.); (Y.R.)
| |
Collapse
|
8
|
Hosseini SS, Sudaagar M, Zakariaee H, Paknejad H, Baruah K, Norouzitalab P. Evaluation of the synbiotic effects of Saccharomyces cerevisiae and mushroom extract on the growth performance, digestive enzyme activity, and immune status of zebrafish danio rerio. BMC Microbiol 2024; 24:331. [PMID: 39245724 PMCID: PMC11382455 DOI: 10.1186/s12866-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
- Department of Laboratory Sciences, Faculty of Para-medicine, Golestan University of Medical Sciences, Gorgan, 4934174515, Iran.
| | - Mohammad Sudaagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464, Iran
| | - Kartik Baruah
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| | - Parisa Norouzitalab
- Department of Applied Animal Science and Welfare, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, 7070, SE-750 07, Sweden
| |
Collapse
|
9
|
Reis TDS, Araújo DBD, Paz CAD, Santos RG, Barbosa ADS, Souza LVD, Deiga YDS, Garcia VLDO, Barbosa GB, Rocha LLD, Hamoy M. Etomidate as an anesthetic in Colossoma macropomum: Behavioral and electrophysiological data complement each other as a tool to assess anesthetic safety. PLoS One 2024; 19:e0305093. [PMID: 39106269 DOI: 10.1371/journal.pone.0305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 08/09/2024] Open
Abstract
The use of anesthetic agents in the management of fish in fish farming or ornamental fish breeding aims to minimize stress and promote animal welfare. Therefore, this study aims to investigate behavioral, electrocardiographic, and ventilatory characteristics of tambaquis exposed to anesthetic baths with etomidate. The study was conducted with juvenile tambaquis (27.38 ± 3.5g) n = 99, at etomidate concentrations of 2-4 mg.L -1, analyzing induction and anesthetic recovery behavior (experiment I), electrocardiogram (experiment II), and opercular movement (experiment III). Fish exposed to high concentrations of etomidate reached the stage of general anesthesia faster, however, the recovery time was longer, characterizing a dose-dependent relationship. Cardiorespiratory analyzes demonstrated a reduction in heart rate (69.19%) and respiratory rate (40.70%) depending on the concentration of etomidate used during anesthetic induction. During the recovery period, there was cardiorespiratory reversibility to normality. Therefore, etomidate proved to be safe as an anesthetic agent for this species at concentrations of 2 to 3 mg.L -1 for short-term anesthesia, but at higher doses the animals showed slow reversibility of anesthesia in a gradual manner and without excitability. The hemodynamic effect due to the rapid decrease in heart rate includes a negative factor of using higher concentrations of etomidate for Colossome macropomum anesthesia.
Collapse
Affiliation(s)
- Thaysa de Sousa Reis
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Daniella Bastos de Araújo
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Clarissa Araújo da Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Rodrigo Gonçalves Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Anara de Sousa Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Luana Vasconcelos de Souza
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Yris da Silva Deiga
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Vera Louzeiro de Oliveira Garcia
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Gabriela Brito Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Lucas Lima da Rocha
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
10
|
Rodrigo DCG, Udayantha HMV, Omeka WKM, Liyanage DS, Dilshan MAH, Hanchapola HACR, Kodagoda YK, Lee J, Lee S, Jeong T, Wan Q, Lee J. Molecular characterization, cytoprotective, DNA protective, and immunological assessment of peroxiredoxin-1 (Prdx1) from yellowtail clownfish (Amphiprion clarkii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105175. [PMID: 38574831 DOI: 10.1016/j.dci.2024.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.
Collapse
Affiliation(s)
- D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
11
|
Ashour M, Mabrouk MM, Mansour AIA, Abdelhamid AF, Kader MFA, Elokaby MA, El-Nawsany MM, Abdelwarith AA, Younis EM, Davies SJ, El-Haroun E, Naiel MAE. Impact of dietary administration of Arthrospira platensis free-lipid biomass on growth performance, body composition, redox status, immune responses, and some related genes of pacific whiteleg shrimp, Litopenaeus vannamei. PLoS One 2024; 19:e0300748. [PMID: 38889121 PMCID: PMC11185442 DOI: 10.1371/journal.pone.0300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/04/2024] [Indexed: 06/20/2024] Open
Abstract
The current study aimed to assess the influence of dietary inclusion of cyanobacterium Arthrospira platensis NIOF17/003 as a dry material and as a free-lipid biomass (FL) on the growth performance, body composition, redox status, immune responses, and gene expression of whiteleg shrimp, Litopenaeus vannamei postlarvae. L. vannamei were fed five different supplemented diets; the first group was fed on an un-supplemented diet as a negative control group (C-N), the second group was fed on a commercial diet supplemented with 2% of A. platensis complete biomass as a positive control group (C-P20), whereas, the three remaining groups were fed on a commercial diet supplemented with graded amounts of FL at 1%, 2%, and 3% (FL10, FL20, and FL30, respectively). The obtained results indicated that the diet containing 1% FL significantly increased the growth performance, efficiency of consumed feed, and survival percentage of L. vannamei compared to both C-N and C-P20 groups. As for the carcass analysis, diets containing A. platensis or its FL at higher levels significantly increased the protein, lipid, and ash content compared to the C-N group. Moreover, the shrimp group fed on C-P20 and FL10 gave significantly stimulated higher digestive enzyme activities compared with C-N. The shrimp fed C-P20 or FL exhibited higher innate immune responses and promoted their redox status profile. Also, the shrimp fed a low FL levels significantly upregulated the expression of both the peroxiredoxin (Prx) and prophenoloxidase (PPO1) genes than those receiving C-N. The current results recommended that dietary supplementation with 1% FL is the most effective treatment in promoting the performance and immunity of whiteleg shrimp.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed M. Mabrouk
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed F. Abdelhamid
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Marwa F. AbdEl Kader
- Department of Fish Health and Management, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research, A.R.C, Kafrelsheikh, Egypt
| | | | - Mohamed M. El-Nawsany
- Fish Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Simon J. Davies
- School of Natural Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Ehab El-Haroun
- Fish Nutrition Research Laboratory, Animal Production Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Mohammed A. E. Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Au-Yeung C, Lam KL, Choi MH, Chan KW, Cheung YS, Tsui YL, Mo WY. Impact of Prophylactic Antibiotic Use in Ornamental Fish Tanks on Microbial Communities and Pathogen Selection in Carriage Water in Hong Kong Retail Shops. Microorganisms 2024; 12:1184. [PMID: 38930567 PMCID: PMC11205468 DOI: 10.3390/microorganisms12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Antibiotics are routinely added to ornamental fish tanks for treating bacterial infection or as a prophylactic measure. However, the overuse or subtherapeutical application of antibiotics could potentially facilitate the selection of antibiotic resistance in bacteria, yet no studies have investigated antibiotic use in the retail ornamental fish sector and its impact on microbial communities. The present study analyzed the concentrations of twenty antibiotics in the carriage water (which also originates from fish tanks in retail shops) collected monthly from ten local ornamental fish shops over a duration of three months. The antibiotic concentrations were correlated with the sequenced microbial community composition, and the risk of resistance selection in bacteria was assessed. Results revealed that the detected concentrations of tetracyclines were the highest among samples, followed by fluoroquinolones and macrolides. The concentrations of oxytetracycline (44.3 to 2,262,064.2 ng L-1) detected across three months demonstrated a high risk for resistance selection at most of the sampled shops. Zoonotic pathogens (species of Rhodococcus, Legionella, and Citrobacter) were positively correlated with the concentrations of oxytetracycline, tetracycline, chlortetracycline, and enrofloxacin. This suggests that antibiotic use in retail shops may increase the likelihood of selecting for zoonotic pathogens. These findings shed light on the potential for ornamental fish retail shops to create a favorable environment for the selection of pathogens with antibiotics, thereby highlighting the urgent need for enhanced antibiotic stewardship within the industry.
Collapse
Affiliation(s)
- Chun Au-Yeung
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Kit-Ling Lam
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Man-Hay Choi
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Ka-Wai Chan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Yu-Sum Cheung
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hung Hum, Kowloon, Hong Kong;
| | - Yat-Lai Tsui
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| | - Wing-Yin Mo
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong; (C.A.-Y.); (K.-L.L.); (M.-H.C.); (K.-W.C.); (Y.-L.T.)
| |
Collapse
|
13
|
Biondo MV, Burki RP, Aguayo F, Calado R. An Updated Review of the Marine Ornamental Fish Trade in the European Union. Animals (Basel) 2024; 14:1761. [PMID: 38929380 PMCID: PMC11201242 DOI: 10.3390/ani14121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Wild-caught fish from coral reefs, one of the most threatened ecosystems on the planet, continue to supply the marine aquarium trade. Despite customs and veterinary checks during imports, comprehensive data on this global industry remain scarce. This study provides consolidated data on the largest import market by value, the European Union (EU): a 24-million-euro annual trade value, detailing the main exporting and importing countries, as well as the species and families of the 26 million specimens imported between 2014 and 2021. A watchlist alert system based on the number of specimens traded, import trends, and vulnerability index according to FishBase and the IUCN Red List conservation status is presented, providing key information on which species should require closer scrutiny by authorities. While the European TRAde Control and Expert System (TRACES) electronically monitors the movement of live animals to respond quickly to biosecurity risks, one-third of marine ornamental fish imported lack species-level information. With minor adjustments, TRACES holds the potential to significantly enhance data granularity and the monitoring of wildlife trade, with marine ornamental fish being an interesting case study to validate this approach.
Collapse
Affiliation(s)
| | | | - Francisco Aguayo
- Faculty of Higher Studies Cuautitlán, National Autonomous University of Mexico, Mexico City 54714, Mexico
| | - Ricardo Calado
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Henderson EE, Snyman H. Special section on aquatic animal health and disease. J Vet Diagn Invest 2024; 36:297-298. [PMID: 38616494 PMCID: PMC11110771 DOI: 10.1177/10406387241241331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Affiliation(s)
- Eileen E. Henderson
- California Animal Health and Food Safety Laboratory System, University of California–Davis, San Bernardino branch, CA, USA
| | - Heindrich Snyman
- Animal Health Laboratory–Kemptville, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
15
|
Chen S, Shi C, Ye Y, Li R, Song W, Song C, Mu C, Ren Z, Wang C. Comparative Transcriptome Analysis Reveals the Light Spectra Affect the Growth and Molting of Scylla paramamosain by Changing the Chitin Metabolism. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:351-363. [PMID: 38498104 DOI: 10.1007/s10126-024-10301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Light is an essential ecological factor that has been demonstrated to affect aquatic animals' behavior, growth performance, and energy metabolism. Our previous study found that the full-spectrum light and cyan light could promote growth performance and molting frequency of Scylla paramamosain while it was suppressed by violet light. Hence, the purpose of this study is to investigate the underlying molecular mechanism that influences light spectral composition on the growth performance and molting of S. paramamosain. RNA-seq analysis and qPCR were employed to assess the differentially expressed genes (DEGs) of eyestalks from S. paramamosain reared under full-spectrum light (FL), violet light (VL), and cyan light (CL) conditions after 8 weeks trial. The results showed that there are 5024 DEGs in FL vs. VL, 3398 DEGs in FL vs. CL, and 3559 DEGs in VL vs. CL observed. GO analysis showed that the DEGs enriched in the molecular function category involved in chitin binding, structural molecular activity, and structural constituent of cuticle. In addition, the DEGs in FL vs. VL were mainly enriched in the ribosome, amino sugar and nucleotide sugar metabolism, lysosome, apoptosis, and antigen processing and presentation pathways by KEGG pathway analysis. Similarly, ribosome, lysosome, and antigen processing and presentation pathways were major terms that enriched in FL vs. CL group. However, only the ribosome pathway was significantly enriched in up-regulated DEGs in VL vs. CL group. Furthermore, five genes were randomly selected from DEGs for qPCR analysis to validate the RNA-seq data, and the result showed that there was high consistency between the RNA-seq and qPCR. Taken together, violet light exposure may affect the growth performance of S. paramamosain by reducing the ability of immunity and protein biosynthesis, and chitin metabolism.
Collapse
Affiliation(s)
- Shujian Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China.
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, Ningbo University, 818 Fenghua Road, Ningbo, 315211, China.
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China.
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| | - Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, 818 Fenghua Road, Ningbo, 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo, 315211, China
| |
Collapse
|
16
|
Duman M, Satıcıoğlu IB, Janda JM. A Review of the Industrial Importance, Common Bacterial Diseases, and Zoonotic Risks of Freshwater Aquarium Fish. Vector Borne Zoonotic Dis 2024; 24:69-85. [PMID: 38133524 DOI: 10.1089/vbz.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background: The ever-increasing popularity of home aquariums, most often involving freshwater varieties, has exploded in recent years partially due to the Coronavirus pandemic and related to stay-at-home public health precautions for social distancing. With this ever-increasing popularity of aquariums as a hobby, and whether this involves freshwater or marine fish species, a number of important economic, ecological, and public health issues arise for both fish and hobbyists alike. Materials and Methods: This review highlights the history and genesis of aquariums as both a hobby and an important economic factor (industrial, commercial) for many countries on a global basis. Types of aquarium fish are described, and culture conditions leading to homeostasis in aquatic environments are detailed. When these conditions are not met and aquatic systems are out of balance, the disease can result due to stressed fish. Results: Major bacterial diseases associated with freshwater aquarium fish are reviewed, as are potential human infections related to the care and maintenance of home aquaria. Conclusion: Besides, scientific information was also combined with the false facts of hobbyists who tried to identify and treat diseases during an outbreak in the aquarium. Finally, unresolved issues and important misconceptions regarding the field are discussed.
Collapse
Affiliation(s)
- Muhammed Duman
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Izzet Burçin Satıcıoğlu
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - J Michael Janda
- Department of Public Health Services, Kern County, Bakersfield, California, USA
| |
Collapse
|
17
|
Oldfield RG, Murphy EK. Life in a fishbowl: Space and environmental enrichment affect behaviour of Betta splendens. Anim Welf 2024; 33:e1. [PMID: 38487786 PMCID: PMC10936361 DOI: 10.1017/awf.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 03/17/2024]
Abstract
The public has expressed growing concern for the well-being of fishes, including popular pet species such as the Siamese fighting fish (Betta splendens). In captivity, male Bettas behave aggressively, often causing injuries and death if housed together. As a result, they are typically isolated in small fishbowls, which has been widely criticised as cruel. To investigate the impact of keeping Bettas in these conditions, we recorded the behaviour of individual males in containers of different sizes that were either bare or enriched with gravel, large rocks, and live plants. When male Bettas were housed individually in small bowls (0.5 L) they spent less time swimming than they did when they were kept in larger aquaria (10, 38, and 208 L). Fish that were kept in enriched containers exhibited more instances of swimming. To determine if two male Bettas housed together might coexist peacefully if given enough space and cover from plants and large rocks, we quantified the behaviour of pairs of male Bettas in bare or enriched aquaria of different sizes (10, 38, 208, 378 L). Fish performed fewer approaches and aggressive displays, but not attacks, and more bouts of foraging, when in larger aquaria. This study shows that the small fishbowls typically used in pet stores suppress swimming behaviour in male Bettas and at least a 10-L aquarium is required to ensure full expression of swimming behaviour. Furthermore, even the use of very large aquaria cannot guarantee peaceful cohabitation between two males.
Collapse
Affiliation(s)
- Ronald G Oldfield
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH44106, USA
| | - Emily K Murphy
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH44106, USA
| |
Collapse
|
18
|
Valdivieso A, Caballero-Huertas M, Moraleda-Prados J, Piferrer F, Ribas L. Exploring the Effects of Rearing Densities on Epigenetic Modifications in the Zebrafish Gonads. Int J Mol Sci 2023; 24:16002. [PMID: 37958987 PMCID: PMC10647740 DOI: 10.3390/ijms242116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction, and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and 66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to 45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression in the ovaries of fish subjected to elevated density, as previously observed in other studies. We proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a potential biomarker for predicting stress originated from high densities during the early stages of development. These findings highlight the importance of rearing densities by long-lasting effects in adulthood conveying cautions for stocking protocols in fish hatcheries.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, 34090 Montpellier, France
| | - Marta Caballero-Huertas
- CIRAD, UMR ISEM, 34398 Montpellier, France;
- ISEM, Université de Montpellier, CIRAD, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Javier Moraleda-Prados
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| |
Collapse
|
19
|
Rosado D, Canada P, Marques Silva S, Ribeiro N, Diniz P, Xavier R. Disruption of the skin, gill, and gut mucosae microbiome of gilthead seabream fingerlings after bacterial infection and antibiotic treatment. FEMS MICROBES 2023; 4:xtad011. [PMID: 37389204 PMCID: PMC10306326 DOI: 10.1093/femsmc/xtad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
The activity of the microbiome of fish mucosae provides functions related to immune response, digestion, or metabolism. Several biotic and abiotic factors help maintaining microbial homeostasis, with disruptions leading to dysbiosis. Diseases and antibiotic administration are known to cause dysbiosis in farmed fish. Pathogen infections greatly affect the production of gilthead seabream, and antibiotic treatment is still frequently required. Here, we employed a 16S rRNA high-throughput metataxonomics approach to characterize changes in the gut, skin, and gill microbiomes occurring due to infection with Photobacterium damselae subsp. piscicida and subsequent antibiotic treatment with oxytetracycline (OTC), as well as during recovery. Although microbiota response differed between studied tissues, overall changes in composition, diversity, structure, and predicted function were observed in all mucosae. The skin and gill microbiomes of diseased fish became largely dominated by taxa that have been frequently linked to secondary infections, whereas in the gut the genus Vibrio, known to include pathogenic bacteria, increased with OTC treatment. The study highlights the negative impacts of disease and antibiotic treatment on the microbiome of farmed fish. Our results also suggest that fish transportation operations may have profound effects on the fish microbiome, but further studies are needed to accurately evaluate their impact.
Collapse
Affiliation(s)
- Daniela Rosado
- S2AQUA – Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Avenida Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paula Canada
- Corresponding author. Paula Canada, CIIMAR – Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208 Matosinhos, Portugal, CMC; Centro de Maricultura da Calheta, Direcção Regional do Mar, Av. D. Manuel I, nº 7, 9370-135 Calheta, Madeira, Portugal
| | - Sofia Marques Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
| | - Nuno Ribeiro
- MVAQUA – Serviços Médico Veterinários dedicados a Aquacultura, Av. do Parque de Campismo Lote 24, Fração C, 3840-264 Gafanha da Boa Hora, Portugal
| | - Pedro Diniz
- Marismar – Aquicultura Marinha, Lda, Rua do Cabrestante 28, 9000-105 Funchal, Portugal
| | - Raquel Xavier
- Raquel Xavier, CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal; E-mail:
| |
Collapse
|
20
|
Jones M, Alexander M, Lightbody S, Snellgrove D, Smith P, Bramhall S, Henriquez F, McLellan, Sloman K. Influence of social enrichment on transport stress in fish: a behavioural approach. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
21
|
Svitačová K, Slavík O, Horký P. Pigmentation potentially influences fish welfare in aquaculture. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
22
|
Impact of Dietary Administration of Seaweed Polysaccharide on Growth, Microbial Abundance, and Growth and Immune-Related Genes Expression of The Pacific Whiteleg Shrimp ( Litopenaeus vannamei). Life (Basel) 2023; 13:life13020344. [PMID: 36836701 PMCID: PMC9962296 DOI: 10.3390/life13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
This work aims to determine the impact of dietary supplementation of polysaccharide, extracted from brown seaweeds Sargassum dentifolium on growth indices, feed utilization, biochemical compositions, microbial abundance, expressions of growth and immunity-related genes, and stress genes of the Pacific Whiteleg shrimp Litopenaeus vannamei. A total of 360 post-larvae of L. vannamei were randomly distributed into a 12-glass aquarium (40 L of each) at a stocking density of 30 shrimp with an initial weight of (0.0017 ± 0.001 g). During the 90-day experiment trial, all shrimp larvae were fed their respective diets at 10% of total body weight, three times a day. Three experimental diets were prepared with different seaweed polysaccharide (SWP) levels. The basal control diet had no polysaccharide level (SWP0), while SWP1, SWP2, and SWP3 contained polysaccharides at concentrations of 1, 2, and 3 g kg-1 diet, respectively. Diets supplemented with polysaccharide levels showed significant improvements in weight gain and survival rate, compared to the control diet. Whole-body biochemical composition and the microbial abundance (the total count of heterotrophic bacteria and Vibrio spp.) of L. vannamei showed significant differences among polysaccharide-treated diets compared to the control. At the end of the feeding experiment, the dietary supplementation of polysaccharide levels enhanced the expression of growth-related genes (Insulin-like growth factors (IGF-I, IGF-II), immune-related genes (β -Glucan-binding protein (β-Bgp), Prophenoloxidase (ProPO), Lysozyme (Lys), and Crustin), and stress genes (Superoxide dismutase (SOD) and Glutathione peroxidase (GPx) in the muscle tissue of L. vannamei. However, the current study concluded that the inclusion rate of 2 g kg-1 of polysaccharide as a dietary additive administration enhanced both weight gain and survival rate of L. vannamei, while the incorporation level of 3 g kg-1 reduces the abundance of pathogenic microbes and enhances the growth-, immunity- and stress-related gene expressions of L. vannamei.
Collapse
|
23
|
Prentice PM, Houslay TM, Wilson AJ. Exploiting animal personality to reduce chronic stress in captive fish populations. Front Vet Sci 2022; 9:1046205. [PMID: 36590805 PMCID: PMC9794626 DOI: 10.3389/fvets.2022.1046205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress is a major source of welfare problems in many captive populations, including fishes. While we have long known that chronic stress effects arise from maladaptive expression of acute stress response pathways, predicting where and when problems will arise is difficult. Here we highlight how insights from animal personality research could be useful in this regard. Since behavior is the first line of organismal defense when challenged by a stressor, assays of shy-bold type personality variation can provide information about individual stress response that is expected to predict susceptibility to chronic stress. Moreover, recent demonstrations that among-individual differences in stress-related physiology and behaviors are underpinned by genetic factors means that selection on behavioral biomarkers could offer a route to genetic improvement of welfare outcomes in captive fish stocks. Here we review the evidence in support of this proposition, identify remaining empirical gaps in our understanding, and set out appropriate criteria to guide development of biomarkers. The article is largely prospective: fundamental research into fish personality shows how behavioral biomarkers could be used to achieve welfare gains in captive fish populations. However, translating potential to actual gains will require an interdisciplinary approach that integrates the expertise and viewpoints of researchers working across animal behavior, genetics, and welfare science.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Thomas M. Houslay
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alastair J. Wilson
- Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom,*Correspondence: Alastair J. Wilson
| |
Collapse
|
24
|
Borges AKM, Oliveira TPR, Alves RRN. Marine or freshwater: the role of ornamental fish keeper's preferences in the conservation of aquatic organisms in Brazil. PeerJ 2022; 10:e14387. [PMID: 36389422 PMCID: PMC9661971 DOI: 10.7717/peerj.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background The use of ornamental fish as pets has important implications for the conservation of the species used in fish keeping, particularly in relation to overexploitation. Understanding ornamental fish keepers' relationship with the hobby can provide important information for assessing the potential impacts of the activity. Here, we analyzed the profile of Brazilian ornamental fish keepers and evaluated their preferences and the implications of their choices. Methods Information was obtained by applying questionnaires to 906 ornamental fish keepers participating in fish keeping groups in a social network. The questionnaire contained questions about the species of fish kept (freshwater and marine), techniques used, socio-economic aspects, and associated conservation perspectives. Results Most ornamental fish keepers were young men (20-40 years old), with higher education and monthly income above US$ 530.00. Participants predominantly kept freshwater fish (86%), but marine fish only (5%) or both marine and freshwater hobbyists (9%) were also recorded. A total of 523 species of ornamental fish were kept, most of which comprised freshwater (76% of the total) and exotic species (73%). About a third of the fish species recorded were under national trade restrictions. In addition, about a third of ornamental fish keepers declared that they also had invertebrates. Marine aquariums require a greater financial investment, especially at the beginning, than freshwater aquariums and are also almost entirely based on exotic species. The aesthetic factor is the main motivation associated with practicing this hobby, being color and behavior key factors in choosing fish. A total of 10% of hobbyists have already released fish into the wild, highlighting concerns about potential biological invasions. There is an urgent need to enforce regulations towards restricting ornamental fish keepers' access to threatened native species and potentially invasive species, as well as measures aimed at informing and raising hobbyists' awareness of conservation measures related to the hobby.
Collapse
Affiliation(s)
- Anna Karolina Martins Borges
- Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
25
|
Mitogenome of a monotypic genus, Oliotius Kottelat, 2013 (Cypriniformes: Cyprinidae): Genomic characterization and phylogenetic position. Gene 2022; 851:147035. [DOI: 10.1016/j.gene.2022.147035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
26
|
MacAulay S, Ellison AR, Kille P, Cable J. Moving towards improved surveillance and earlier diagnosis of aquatic pathogens: From traditional methods to emerging technologies. REVIEWS IN AQUACULTURE 2022; 14:1813-1829. [PMID: 36250037 PMCID: PMC9544729 DOI: 10.1111/raq.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/16/2023]
Abstract
Early and accurate diagnosis is key to mitigating the impact of infectious diseases, along with efficient surveillance. This however is particularly challenging in aquatic environments due to hidden biodiversity and physical constraints. Traditional diagnostics, such as visual diagnosis and histopathology, are still widely used, but increasingly technological advances such as portable next generation sequencing (NGS) and artificial intelligence (AI) are being tested for early diagnosis. The most straightforward methodologies, based on visual diagnosis, rely on specialist knowledge and experience but provide a foundation for surveillance. Future computational remote sensing methods, such as AI image diagnosis and drone surveillance, will ultimately reduce labour costs whilst not compromising on sensitivity, but they require capital and infrastructural investment. Molecular techniques have advanced rapidly in the last 30 years, from standard PCR through loop-mediated isothermal amplification (LAMP) to NGS approaches, providing a range of technologies that support the currently popular eDNA diagnosis. There is now vast potential for transformative change driven by developments in human diagnostics. Here we compare current surveillance and diagnostic technologies with those that could be used or developed for use in the aquatic environment, against three gold standard ideals of high sensitivity, specificity, rapid diagnosis, and cost-effectiveness.
Collapse
Affiliation(s)
| | | | - Peter Kille
- School of Biosciences, Cardiff UniversityCardiffUK
| | - Joanne Cable
- School of Biosciences, Cardiff UniversityCardiffUK
| |
Collapse
|
27
|
Zheng T, Song Z, Tao Y, Qiang J, Ma J, Lu S, Xu P. Transport stress induces innate immunity responses through TLR and NLR signaling pathways and increases mucus cell number in gills of hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂). FISH & SHELLFISH IMMUNOLOGY 2022; 127:166-175. [PMID: 35716971 DOI: 10.1016/j.fsi.2022.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Transport stress poses a threat to most teleost fish in production, causing mass losses to the aquaculture industry. Fish gills are a mucosa-associated lymphoid tissue in direct contact with water, and they represent an ideal tissue type to study mechanisms of transport stress. In this study, hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) were exposed to simulated transport stress for 16 h and then allowed to recover for 96 h. Gill tissues and blood samples were collected at 0 h, 2 h, 4 h, 8 h, and 16 h of transport stress and after 96 h of recovery, as well as from fish in a control group at the same sampling times. The activities of alkaline phosphatase, acid phosphatase, and superoxide dismutase and the total antioxidant capacity first increased and then decreased during the 16 h transport treatment. Exposure to 16 h of transport stress resulted in decreased serum triglyceride and total cholesterol contents, increased serum glucose content, increased activities of alanine aminotransferase and aspartate transaminase, and more mucus cells, compared with the control group. Transcriptome analysis revealed differential expression of 1525 genes (803 down-regulated and 722 up-regulated) between the control and 16 h transportation groups. Functional analyses revealed that the differentially expressed genes were enriched in immune response, signal transduction, and energy metabolism pathways. We found that tlr5, tnfɑ, hsp90ɑ, il-1ß, map2k4, il12ba were clearly up-regulated and arrdc2, syngr1a were clearly down-regulated following 8 h and/or 16 h simulated transport after qRT-PCR validation. These findings suggested that Toll- and NOD-like receptor signaling pathways potentially mediate transport stress. Transport stress altered innate immunity responses and energy use in the gill tissues of hybrid yellow catfish. After 96 h of recovery, only alanine aminotransferase and alkaline phosphatase activities and the number of mucus cells had returned to control levels. We speculate that for juvenile yellow catfish to recover to a normal state, a recovery period of more than 96 h is required after 16 h of transportation. These results provide new perspectives on the immune response of yellow catfish under transport stress and theoretical support for future optimization of their transportation.
Collapse
Affiliation(s)
- Tao Zheng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Zhuo Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Yifan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Qiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Junlein Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Siqi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
28
|
Molecular characterization and expression profiling of caveolin-1 from Amphiprion clarkii and elucidation of its involvement in antiviral response and redox homeostasis. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110775. [DOI: 10.1016/j.cbpb.2022.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
|
29
|
Lambert H, Cornish A, Elwin A, D’Cruze N. A Kettle of Fish: A Review of the Scientific Literature for Evidence of Fish Sentience. Animals (Basel) 2022; 12:1182. [PMID: 35565608 PMCID: PMC9100576 DOI: 10.3390/ani12091182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Fish are traded, caught, farmed, and killed in their trillions every year around the world, yet their welfare is often neglected and their sentience regularly disregarded. In this review, we have sought to (1) catalogue the extent to which fish sentience has featured over the past 31 years in the scientific literature and (2) discuss the importance of fish sentience in relation to their commercial uses. We searched the journal database Science Direct using 42 keywords that describe traits or elements of sentience to find articles that were referring to or exploring fish sentience. Our review returned 470 results for fish sentience in 142 different species and subspecies of fish, and featured 19 different sentience keywords. The top four keywords were; 'stress' (psychological) (n = 216, 45.9% of total results), 'anxiety' (n = 144, 30.6%), 'fear' (n = 46, 9.7%), and 'pain' (n = 27, 5.7%). Our findings highlight an abundance of evidence for fish sentience in the published scientific literature. We conclude that legislation governing the treatment of fish and attitudes towards their welfare require scrutiny so that their welfare can be safeguarded across the globe.
Collapse
Affiliation(s)
- Helen Lambert
- Animal Welfare Consultancy, Kingsteignton TQ12 3BW, UK
| | - Amelia Cornish
- Independent Animal Welfare Consultant, Caulfield South 3162, Australia;
| | - Angie Elwin
- World Animal Protection, 222 Gray’s Inn Rd, London WC1X 8HB, UK; (A.E.); (N.D.)
| | - Neil D’Cruze
- World Animal Protection, 222 Gray’s Inn Rd, London WC1X 8HB, UK; (A.E.); (N.D.)
| |
Collapse
|
30
|
Emmenegger EJ, Bueren EK, Jia P, Hendrix N, Liu H. Comparative virulence of spring viremia of carp virus (SVCV) genotypes in two koi varieties. DISEASES OF AQUATIC ORGANISMS 2022; 148:95-112. [PMID: 35297379 DOI: 10.3354/dao03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spring viremia of carp virus (SVCV), is a lethal freshwater pathogen of cyprinid fish, and Cyprinus carpio koi is a primary host species. The virus was initially described in the 1960s after outbreaks occurred in Europe, but a global expansion of SVCV has been ongoing since the late 1990s. Genetic typing of SVCV isolates separates them into 4 genotypes that are correlated with geographic origin: Ia (Asia), Ib and Ic (Eastern Europe), and Id (Central Europe). We compared infectivity and virulence of 8 SVCV strains, including 4 uncharacterized Chinese Ia isolates and representatives of genotypes Ia-d in 2 morphologically distinct varieties of koi: long-fin semi-scaled Beni Kikokuryu koi and short-fin fully scaled Sanke koi. Mortality ranged from 4 to 82% in the Beni Kikokuryu koi and 0 to 94% in the Sanke koi following immersion challenge. Genotype Ia isolates of Asian origin had a wide range in virulence (0-94%). Single isolates representing the European genotypes Ib and Ic were moderately virulent (38-56%). Each virus strain produced similar levels of mortality in both koi breeds, with the exception of the SVCV Id strain that appeared to have both moderate and high virulence phenotypes (60% in Beni Kikokuryu koi vs. 87% in Sanke koi). Overall SVCV strain virulence appeared to be a dominant factor in determining disease outcomes, whereas intraspecies variation, based on koi variety, had less of an impact. This study is the first side-by-side comparison of Chinese SVCV isolates and genotype Ia-d strain virulence in a highly susceptible host.
Collapse
|
31
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|
32
|
Wood LE, Guilder J, Brennan ML, Birland NJ, Taleti V, Stinton N, Taylor NGH, Thrush MA. Biosecurity and the ornamental fish trade: A stakeholder perspective in England. JOURNAL OF FISH BIOLOGY 2022; 100:352-365. [PMID: 34699063 DOI: 10.1111/jfb.14928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The freshwater and marine ornamental fish industry is a primary route of hazard introduction and emergence, including aquatic animal diseases and non-native species. Prevention measures are key to reducing the risk of hazard incursion and establishment, but there is currently little understanding of the biosecurity practices and hazard responses implemented at post-border stages of the ornamental fish supply chain. This study addresses this knowledge gap, using questionnaires to collate information on actual biosecurity behaviours and hazard responses practised by ornamental fish retailers and hobbyist communities in England. Actual behaviours varied considerably within retailers and hobbyists, suggesting that reliance on preventative practices by individuals in the post-border stages of the ornamental fish supply chain is likely to be ineffective in minimizing the risk of hazard incursion and establishment. Resources should be allocated towards improving and enforcing robust pre- and at-border control measures, such as risk-based surveillance of ornamental fish imports at border controls. In addition, these findings should be used to implement targeted awareness-raising campaigns and help create directed training on biosecurity practices for individuals involved in the post-border stages of the ornamental supply chain.
Collapse
Affiliation(s)
- Louisa E Wood
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
- Centre for Blue Governance, Faculty of Economics and Law, University of Portsmouth, Portsmouth, UK
| | - James Guilder
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Marnie L Brennan
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Nicola J Birland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Virginia Taleti
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Nicholas Stinton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Nick G H Taylor
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Mark A Thrush
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| |
Collapse
|
33
|
Jones NAR, Webster MM, Salvanes AGV. Physical enrichment research for captive fish: Time to focus on the DETAILS. JOURNAL OF FISH BIOLOGY 2021; 99:704-725. [PMID: 33942889 DOI: 10.1111/jfb.14773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Growing research effort has shown that physical enrichment (PE) can improve fish welfare and research validity. However, the inclusion of PE does not always result in positive effects and conflicting findings have highlighted the many nuances involved. Effects are known to depend on species and life stage tested, but effects may also vary with differences in the specific items used as enrichment between and within studies. Reporting fine-scale characteristics of items used as enrichment in studies may help to reveal these factors. We conducted a survey of PE-focused studies published in the last 5 years to examine the current state of methodological reporting. The survey results suggest that some aspects of enrichment are not adequately detailed. For example, the amount and dimensions of objects used as enrichment were frequently omitted. Similarly, the ecological relevance, or other justification, for enrichment items was frequently not made explicit. Focusing on ecologically relevant aspects of PE and increasing the level of detail reported in studies may benefit future work and we propose a framework with the acronym DETAILS (Dimensions, Ecological rationale, Timing of enrichment, Amount, Inputs, Lighting and Social environment). We outline the potential importance of each of the elements of this framework with the hope it may aid in the level of reporting and standardization across studies, ultimately aiding the search for more beneficial types of PE and the development of our understanding and ability to improve the welfare of captive fish and promote more biologically relevant behaviour.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
34
|
Powell C, von Keyserlingk MAG, Franks B. Tank cleaning temporarily increases stress and decreases affiliative behavior in zebrafish. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Brandão ML, Dorigão-Guimarães F, Bolognesi MC, Gauy ACDS, Pereira AVS, Vian L, Carvalho TB, Gonçalves-de-Freitas E. Understanding behaviour to improve the welfare of an ornamental fish. JOURNAL OF FISH BIOLOGY 2021; 99:726-739. [PMID: 34076258 DOI: 10.1111/jfb.14802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Some common practices in aquaculture, ornamental trade and fish facilities may disturb the behavioural repertoire of fish and its natural adaptive value, reducing welfare and impairing fish production. Hence, it is necessary to understand fish behaviour, as well as the factors affecting it, to improve the quality of fish's life under artificial environment. Here, we reviewed the behaviour of the angelfish Pterophyllum scalare, an Amazonian cichlid used worldwide both as an ornamental fish and as a fish model in scientific research. We characterized social, reproductive and feeding behaviour, as well as the amazing cognitive ability of the angelfish. In addition, we reviewed the effects of environmental enrichment and suggested some important variables that need to be considered for rearing P. scalare. In this review, we show for the first time a synthesis on behaviour and a best practice overview to improve the welfare of angelfish as a target species. Nonetheless, most topics reviewed fit a broader set of fish species, particularly ornamental ones. This synthesis can therefore open a path for further behavioural research applied to the welfare of angelfish and bring insights to other fish species.
Collapse
Affiliation(s)
- Manuela Lombardi Brandão
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
| | - Felipe Dorigão-Guimarães
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
| | - Marcela Cesar Bolognesi
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
- Centro de Aquicultura da Universidade Estadual Paulista, Universidade Estadual Paulista, São Paulo, Brazil
| | - Ana Carolina Dos Santos Gauy
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
- Centro de Aquicultura da Universidade Estadual Paulista, Universidade Estadual Paulista, São Paulo, Brazil
| | - André Vitor Salinas Pereira
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
| | - Lethicia Vian
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
| | | | - Eliane Gonçalves-de-Freitas
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
- Centro de Aquicultura da Universidade Estadual Paulista, Universidade Estadual Paulista, São Paulo, Brazil
| |
Collapse
|
36
|
Iwata E, Masamoto K, Kuga H, Ogino M. Timing of isolation from an enriched environment determines the level of aggressive behavior and sexual maturity in Siamese fighting fish (Betta splendens). BMC ZOOL 2021; 6:15. [PMID: 37170314 PMCID: PMC10127351 DOI: 10.1186/s40850-021-00081-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Teleost fish are known to respond to environmental manipulation, which makes them an ideal model animal for testing relationships between the environment and behavior. The Siamese fighting fish, Betta splendens, is a solitary, highly territorial fish that displays fierce stereotyped aggressive behavior toward conspecifics or members of other species. Adult fish, especially males, are generally housed in isolation in captivity. Here we report evidence that an enriched rearing environment can decrease the level of aggression in bettas and enable adults to be housed in groups.
Results
B. splendens individuals were hatched in our laboratory and raised in groups in an enriched environment. At the juvenile or subadult stage, some individuals were relocated to a poor environment and kept in isolation. To evaluate aggression, a mirror-image test was conducted at the juvenile, subadult, and adult stages for each fish, and body parameters as well as plasma concentrations of 11-ketotestosterone, estradiol, and cortisol were evaluated. Male and female adult bettas raised in a group showed lower levels of aggression than other adult fish. The magnitude of threatening behavior was greater in adult bettas isolated as subadults, whereas the magnitude of fighting behavior was grater in adult bettas isolated as juveniles. The influence of rearing conditions on behavior was greater in females than in males. Plasma cortisol concentrations of adult bettas isolated as subadults after the mirror-image test were higher than those in other experimental groups. Adult males isolated as subadults had significantly higher plasma concentrations of 11-ketotestosterone than males raised in a group and isolated as juveniles. Females isolated as subadults had a higher gonadosomatic index than females raised in a group and females isolated as juveniles.
Conclusions
These results indicate that bettas can be kept in a group under enriched environments and that the timing of isolation influences the aggression and sexual maturity of bettas. Female and male bettas responded differently to environmental manipulation. Judging from their level of sexual maturity, bettas isolated as subadults show proper development.
Collapse
|
37
|
da Silva MC, Canário AVM, Hubbard PC, Gonçalves DMF. Physiology, endocrinology and chemical communication in aggressive behaviour of fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1217-1233. [PMID: 33410154 PMCID: PMC8247941 DOI: 10.1111/jfb.14667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 05/10/2023]
Abstract
Fishes show remarkably diverse aggressive behaviour. Aggression is expressed to secure resources; adjusting aggression levels according to context is key to avoid negative consequences for fitness and survival. Nonetheless, despite its importance, the physiological basis of aggression in fishes is still poorly understood. Several reports suggest hormonal modulation of aggression, particularly by androgens, but contradictory studies have been published. Studies exploring the role of chemical communication in aggressive behaviour are also scant, and the pheromones involved remain to be unequivocally characterized. This is surprising as chemical communication is the most ancient form of information exchange and plays a variety of other roles in fishes. Furthermore, the study of chemical communication and aggression is relevant at the evolutionary, ecological and economic levels. A few pioneering studies support the hypothesis that aggressive behaviour, at least in some teleosts, is modulated by "dominance pheromones" that reflect the social status of the sender, but there is little information on the identity of the compounds involved. This review aims to provide a global view of aggressive behaviour in fishes and its underlying physiological mechanisms including the involvement of chemical communication, and discusses the potential use of dominance pheromones to improve fish welfare. Methodological considerations and future research directions are also outlined.
Collapse
Affiliation(s)
- Melina Coelho da Silva
- CCMAR – Centro e Ciências do MarUniversidade do AlgarveFaroPortugal
- ISE – Institute of Science and EnvironmentUniversity of Saint JosephMacauChina
| | | | | | | |
Collapse
|
38
|
Fife-Cook I, Franks B. Koi ( Cyprinus rubrofuscus) Seek Out Tactile Interaction with Humans: General Patterns and Individual Differences. Animals (Basel) 2021; 11:706. [PMID: 33807873 PMCID: PMC7998956 DOI: 10.3390/ani11030706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/11/2023] Open
Abstract
The study of human-animal interactions has provided insights into the welfare of many species. To date, however, research has largely focused on human relationships with captive mammals, with relatively little exploration of interactions between humans and other vertebrates, despite non-mammals constituting the vast majority of animals currently living under human management. With this study, we aimed to address this gap in knowledge by investigating human-fish interactions at a community garden/aquaponics learning-center that is home to approximately 150 goldfish (Carassius auratus) and seven adult and two juvenile koi (Cyprinus rubrofuscus). After a habituation period (July-September 2019) during which time the fish were regularly provided with the opportunity to engage with the researcher's submerged hand, but were not forced to interact with the researcher, we collected video data on 10 non-consecutive study days during the month of October. This procedure produced 18~20-min interaction sessions, 10 during T1 (when the experimenter first arrived and the fish had not been fed) and eight during T2 (20-30 min after the fish had been fed to satiation; two sessions of which were lost due equipment malfunction). Interactions between the researcher and the seven adult koi were coded from video based on location (within reach, on the periphery, or out of reach from the researcher) and instances of physical, tactile interaction. Analyses revealed that overall, koi spent more time than expected within reach of the researcher during both T1 (p < 0.02) and T2 (p < 0.03). There were also substantial differences between individuals' overall propensity for being within-reach and engaging in physical interaction. These results show that koi will voluntarily interact with humans and that individual koi display unique and consistent patterns of interaction. By providing quantitative data to support anecdotal claims that such relationships exist around the world, this research contributes to the ongoing discoveries highlighting the profound dissonance between how humans think about and treat fish and who fish actually are, thereby emphasizing the necessity of stronger moral and legal protections for fishes.
Collapse
Affiliation(s)
| | - Becca Franks
- Department of Environmental Studies, New York University, New York, NY 10003, USA;
| |
Collapse
|
39
|
Stevens CH, Reed BT, Hawkins P. Enrichment for Laboratory Zebrafish-A Review of the Evidence and the Challenges. Animals (Basel) 2021; 11:ani11030698. [PMID: 33807683 PMCID: PMC8001412 DOI: 10.3390/ani11030698] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The zebrafish is one of the most commonly used animals in scientific research, but there remains a lack of consensus over good practice for zebrafish housing and care. One such area which lacks agreement is whether laboratory zebrafish should be provided with environmental enrichment—additions or modifications to the basic laboratory environment which aim to improve welfare, such as plastic plants in tanks. The need for the provision of appropriate environmental enrichment has been recognised in other laboratory animal species, but some scientists and animal care staff are hesitant to provide enrichment for zebrafish, arguing that there is little or no evidence that enrichment can benefit zebrafish welfare. This review aims to summarise the current literature on the effects of enrichment on zebrafish physiology, behaviour and welfare, and identifies some forms of enrichment which are likely to benefit zebrafish. It also considers the possible challenges that might be associated with introducing more enrichment, and how these might be addressed. Abstract Good practice for the housing and care of laboratory zebrafish Danio rerio is an increasingly discussed topic, with focus on appropriate water quality parameters, stocking densities, feeding regimes, anaesthesia and analgesia practices, methods of humane killing, and more. One area of current attention is around the provision of environmental enrichment. Enrichment is accepted as an essential requirement for meeting the behavioural needs and improving the welfare of many laboratory animal species, but in general, provision for zebrafish is minimal. Some of those involved in the care and use of zebrafish suggest there is a ‘lack of evidence’ that enrichment has welfare benefits for this species, or cite a belief that zebrafish do not ‘need’ enrichment. Concerns are also sometimes raised around the practical challenges of providing enrichments, or that they may impact on the science being undertaken. However, there is a growing body of evidence suggesting that various forms of enrichment are preferred by zebrafish over a barren tank, and that enriched conditions can improve welfare by reducing stress and anxiety. This review explores the effects that enrichment can have on zebrafish behaviour, physiology and welfare, and considers the challenges to facilities of providing more enrichment for the zebrafish they house.
Collapse
|
40
|
Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. COMPUTERS 2021. [DOI: 10.3390/computers10030026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Water quality is the most critical factor affecting fish health and performance in aquaculture production systems. Fish life is mostly dependent on the water fishes live in for all their needs. Therefore, it is essential to have a clear understanding of the water quality requirements of the fish. This research discusses the critical water parameters (temperature, pH, nitrate, phosphate, calcium, magnesium, and dissolved oxygen (DO)) for fisheries and reviews the existing sensors to detect those parameters. Moreover, this paper proposes a prospective solution for smart fisheries that will help to monitor water quality factors, make decisions based on the collected data, and adapt more quickly to changing conditions.
Collapse
|
41
|
Macario A, Darden SK, Verbruggen F, Croft DP. Intraspecific variation in inhibitory motor control in guppies, Poecilia reticulata. JOURNAL OF FISH BIOLOGY 2021; 98:317-328. [PMID: 33128393 DOI: 10.1111/jfb.14608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Inhibitory control (IC) is the ability to overcome impulsive or prepotent but ineffective responses in favour of more appropriate behaviours. The ability to inhibit internal predispositions or external temptations is vital in coping with a complex and variable world. Traditionally viewed as cognitively demanding and a main component of executive functioning and self-control, IC was historically examined in only a few species of birds and mammals but recently a number of studies has shown that a much wider range of taxa rely on IC. Furthermore, there is growing evidence that inhibitory abilities may vary within species at the population and individual levels owing to genetic and environmental factors. Here we use a detour-reaching task, a standard paradigm to measure motor inhibition in nonhuman animals, to quantify patterns of interindividual variation in IC in wild-descendant female guppies, Poecilia reticulata. We found that female guppies displayed inhibitory performances that were, on average, half as successful as the performances reported previously for other strains of guppies tested in similar experimental conditions. Moreover, we showed consistent individual variation in the ability to inhibit inappropriate behaviours. Our results contribute to the understanding of the evolution of fish cognition and suggest that IC may show considerable variation among populations within a species. Such variation in IC abilities might contribute to individual differences in other cognitive functions such as spatial learning, quantity discrimination or reversal learning.
Collapse
Affiliation(s)
- Alessandro Macario
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Safi K Darden
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Frederick Verbruggen
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Darren P Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
42
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
43
|
Nanoencapsulated Clove Oil Applied as an Anesthetic at Slaughtering Decreases Stress, Extends the Freshness, and Lengthens Shelf Life of Cultured Fish. Foods 2020; 9:foods9121750. [PMID: 33256099 PMCID: PMC7760502 DOI: 10.3390/foods9121750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
In the aquaculture industry, fish are stunned using a wide range of methods, but all of them trigger stress responses and affect the fish flesh quality. Chilled water is considered one of the most efficient methods, but even this is not a stress-free experience for the fish. Anesthetics included in the ice slurry or in water could decrease this stress and delay the loss of flesh quality. In this work, we analyze the effect of clove oil (CO) nanoencapsulated in β-cyclodextrins (β-CD) (CO + β-CD), incorporated in the stunning bath, on the stress response and the organoleptic attributes of fresh marine and freshwater fish from four economically important fish species: Atlantic salmon, European seabass, Nile tilapia, and Rainbow trout. CO + β-CD reduces the time required to induce anesthesia, independently of water salinity, habitat or water temperature. The plasmatic glucose and cortisol levels decreased in all four species, although the concentrations of CO varied between species. Moreover, plasmatic lactate level differed between the marine and freshwater fish. The use of CO + β-CD extended the shelf life of fish from all the species studied (by 3-7 days). In conclusion, using CO encapsulated in β-CD for anesthetizing fish can be regarded as an improved fish-stunning technique that reduces the anesthesia-induction time, decreases the stress response, and extends the shelf life of fresh fish.
Collapse
|
44
|
Biondo MV, Burki RP. A Systematic Review of the Ornamental Fish Trade with Emphasis on Coral Reef Fishes-An Impossible Task. Animals (Basel) 2020; 10:E2014. [PMID: 33139655 PMCID: PMC7692700 DOI: 10.3390/ani10112014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The multi-billion dollar trade in ornamental fishes has rarely been reliably monitored. Almost all coral reef fishes are wild-caught, and few scientific analyses have attempted to elicit exact quantities and identify species involved. The consequences of the removal of millions of these fishes are poorly understood. This article collates and examines available information, including scientific studies and formal publications, in order to create a more accurate picture of this commerce. We demonstrate that it is almost impossible to analyse the trade in marine ornamental fishes due to a lack of data, and that available data for marine species is frequently combined with that for freshwater species. Figures range from 15 to 30 million coral reef fishes being traded annually, but could be as high as 150 million specimens. The global value of this trade was only estimated for 1976 and 1999 between USD 28-40 million. This review highlights the urgent need to introduce a specific harmonised system tariff code and for a global monitoring system, such as the Trade Control and Expert System already in use in Europe, in order to gather accurate and timely information on the number and species of marine ornamental fishes in commerce, where specimens originated, and whether they were wild-caught or captive-bred.
Collapse
|
45
|
Masud N, Ellison A, Pope EC, Cable J. Cost of a deprived environment - increased intraspecific aggression and susceptibility to pathogen infections. J Exp Biol 2020; 223:jeb229450. [PMID: 32943580 DOI: 10.1242/jeb.229450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022]
Abstract
A lack of environmental enrichment can be severely detrimental to animal welfare. For terrestrial species, including humans, barren environments are associated with reduced cognitive function and increased stress responses and pathology. Despite a clear link between increased stress and reduced immune function, uncertainty remains on how enrichment might influence susceptibility to disease. For aquatic vertebrates, we are only now beginning to assess enrichment needs. Enrichment deprivation in fish has been linked to increased stress responses, agonistic behaviour, physiological changes and reduced survival. Limited data exist, however, on the impact of enrichment on disease resistance in fish, despite infectious diseases being a major challenge for global aquaculture. Here, using a model vertebrate host-parasite system, we investigated the impact of enrichment deprivation on susceptibility to disease, behaviour and physiology. Fish in barren tanks showed significantly higher infection burdens compared with those in enriched enclosures and they also displayed increased intraspecific aggression behaviour. Infections caused hosts to have significantly increased standard metabolic rates compared with uninfected conspecifics, but this did not differ between enriched and barren tanks. This study highlights the universal physiological cost of parasite infection and the biological cost (increased susceptibility to infection and increased aggression) of depriving captive animals of environmental enrichment.
Collapse
Affiliation(s)
- Numair Masud
- Cardiff University, School of Biosciences, Cardiff CF10 3AX, UK
| | - Amy Ellison
- Cardiff University, School of Biosciences, Cardiff CF10 3AX, UK
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK
| | - Edward C Pope
- Centre for Sustainable Aquatic Research, Swansea University, Swansea SA2 8PP, UK
| | - Jo Cable
- Cardiff University, School of Biosciences, Cardiff CF10 3AX, UK
| |
Collapse
|
46
|
Mueller M, Sternecker K, Milz S, Geist J. Assessing turbine passage effects on internal fish injury and delayed mortality using X-ray imaging. PeerJ 2020; 8:e9977. [PMID: 32995098 PMCID: PMC7501806 DOI: 10.7717/peerj.9977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022] Open
Abstract
Knowledge on the extent and mechanisms of fish damage caused by hydropower facilities is important for the conservation of fish populations. Herein, we assessed the effects of hydropower turbine passage on internal fish injuries using X-ray technology. A total of 902 specimens from seven native European fish species were screened for 36 types of internal injuries and 86 external injuries evaluated with a previously published protocol. The applied systematic visual evaluation of X-ray images successfully detected skeletal injuries, swim bladder anomalies, emphysema, free intraperitoneal gas and hemorrhages. Injuries related to handling and to impacts of different parts of the hydropower structure could be clearly distinguished applying multivariate statistics and the data often explained delayed mortality within 96 h after turbine passage. The internal injuries could clearly be assigned to specific physical impacts resulting from turbine passage such as swim bladder rupture due to abrupt pressure change or fractures of skeletal parts due to blade-strike, fluid shear or severe turbulence. Generally, internal injuries were rarely depicted by external evaluation. For example, 29% of individuals with vertebral fractures did not present externally visible signs of severe injury. A combination of the external and internal injury evaluation allows quantifying and comparing fish injuries across sites, and can help to identify the technologies and operational procedures which minimize harm to fish in the context of assessing hydropower-related fish injuries as well as in assessing fish welfare.
Collapse
Affiliation(s)
- Melanie Mueller
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Bavaria, Germany
| | | | - Stefan Milz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Bavaria, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Bavaria, Germany
| |
Collapse
|
47
|
Masud N, Hayes L, Crivelli D, Grigg S, Cable J. Noise pollution: acute noise exposure increases susceptibility to disease and chronic exposure reduces host survival. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200172. [PMID: 33047012 PMCID: PMC7540788 DOI: 10.1098/rsos.200172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/21/2020] [Indexed: 05/28/2023]
Abstract
Anthropogenic noise is a pervasive global pollutant that has been detected in every major habitat on the planet. Detrimental impacts of noise pollution on physiology, immunology and behaviour have been shown in terrestrial vertebrates and invertebrates. Equivalent research on aquatic organisms has until recently been stunted by the misnomer of a silent underwater world. In fish, however, noise pollution can lead to stress, hearing loss, behavioural changes and impacted immunity. But, the functional effects of this impacted immunity on disease resistance due to noise exposure have remained neglected. Parasites that cause transmissible disease are key drivers of ecosystem biodiversity and a significant factor limiting the sustainable expansion of the animal trade. Therefore, understanding how a pervasive stressor is impacting host-parasite interactions will have far-reaching implications for global animal health. Here, we investigated the impact of acute and chronic noise on vertebrate susceptibility to parasitic infections, using a model host-parasite system (guppy-Gyrodactylus turnbulli). Hosts experiencing acute noise suffered significantly increased parasite burden compared with those in no noise treatments. By contrast, fish experiencing chronic noise had the lowest parasite burden. However, these hosts died significantly earlier compared with those exposed to acute and no noise treatments. By revealing the detrimental impacts of acute and chronic noise on host-parasite interactions, we add to the growing body of evidence demonstrating a link between noise pollution and reduced animal health.
Collapse
Affiliation(s)
- Numair Masud
- Schools of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| | - Laura Hayes
- Schools of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| | | | - Stephen Grigg
- Engineering, Cardiff University, CF10 3AX Cardiff, UK
| | - Jo Cable
- Schools of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| |
Collapse
|
48
|
Effect of Dietary Probiotic Lactobacillus helveticus on Growth Performance, Antioxidant Levels, and Absorption of Essential Trace Elements in Goldfish (Carassius auratus). Probiotics Antimicrob Proteins 2020; 11:559-568. [PMID: 29748780 DOI: 10.1007/s12602-018-9428-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this study, we have investigated the effect of probiotic Lactobacillus helveticus CD6 supplemented into simple laboratory fish feed (LFF) and complex, multi-ingredient market fish feed (MFF) on growth performance, antioxidant levels, and essential trace element absorption in goldfish (Carassius auratus). Twenty-four healthy goldfish (average weight 3-4 g) were acclimatized and divided into four experimental diets supplemented with 3 × 107 CFU/g of probiotic (LFF + Pro, MFF + Pro) and without probiotic (LFF, MFF) for 14 weeks. Fish fed with probiotic were healthy, active, and intense orange-gold as compared to control (without probiotic). At 14 weeks, fish fed with MFF + Pro/LFF + Pro showed 91/47% weight gain as compared to 34/- 12% weight observed with MFF/LFF. The average weight gain differences recorded between probiotic and control diets were not significant. No mortality to report when fish fed with probiotic. In contrast, fish fed without probiotic showed mortalities (LFF, two fish; MFF, one fish) during the trial. DPPH activity revealed high levels of antioxidants into the intestine of probiotic-fed fish. Trace element analysis showed that probiotic colonization enhanced diet-dependent absorption of Fe and Zn. The in vitro antimicrobial activity was exhibited by probiotic L. helveticus CD6 against infected fish isolate Aeromonas spp. JA showed an ability to protect fish from infections. Moreover, complex, multi-ingredient feed had a highest impact on viability of probiotic during storage. In conclusion, L. helveticus CD6 did not significantly enhance growth performance; however, it improved health and reduced mortalities in goldfish (C. auratus) regardless of the composition of the diet.
Collapse
|
49
|
Torgersen T. Ornamental Fish and Aquaria. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Velasco Garzón JS, Gutiérrez Espinosa MC. Aspectos nutricionales de peces ornamentales de agua dulce. REVISTA POLITÉCNICA 2019. [DOI: 10.33571/rpolitec.v15n30a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
La comercialización de peces ornamentales se ha convertido en una actividad económica de gran importancia para la acuicultura a nivel mundial, destacando la participación de Singapur, España, Japón, Malasia e Indonesia en la lista de principales productores a nivel mundial. Este documento busca recopilar y destacar la importancia de algunos estudios que describen los requerimientos nutricionales en especies ornamentales con potencial productivo y sobresale una problemática local, en donde se toman dietas formuladas con requerimientos nutricionales de especies de consumo humano, para alimentación de especies con potencial ornamental. La extrapolación de los requerimientos nutricionales de especies de consumo para la formulación de dietas en especies con potencial ornamental puede comprometer el crecimiento del animal o afectar directamente la calidad del agua por excesos de nutrientes.
Collapse
|