1
|
Wang K, Zhang C, Zhao W, Zhang A, Sheng Q, Liu J. Effects of dry and wet ball milling on physicochemical properties of foxtail millet. Food Chem 2025; 483:143916. [PMID: 40215745 DOI: 10.1016/j.foodchem.2025.143916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 05/08/2025]
Abstract
As a high-quality cereal rich in various nutritional elements, the impact of different processing methods on the characteristics of foxtail millet flour has attracted widespread attention. The study aimed to investigate the physicochemical properties of foxtail millet flour after both dry and wet ball milling processes. The results revealed wet ball-milled millet flour (WMF) exhibited a reduced particle size and an increased specific surface area, while the processed foxtail millet flour demonstrated heightened whiteness and brightness. Moreover, the starch in WMF exhibited minimal damage, higher relative crystallinity, and superior oil-holding and thermal stability. Conversely, dry ball-milled millet flour (DMF) degraded the starch crystal structure, resulting in enhanced hydration, reduced pasting temperature, increased gelation capacity, and improved viscoelasticity. In summary, the most suitable ball milling technique could be chosen based on the specific production requirements. This study would contribute to improving the quality of foxtail millet flour and its food applications.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China; College of Bioscience and Engineering, Hebei University of Economics and Trade, Shijiazhuang, Hebei 050061, China
| | - Changyu Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China
| | - Qinghai Sheng
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei 050051, China.
| |
Collapse
|
2
|
Kumar A, Pramanik J, Jangra A, Prajapati B, Kumar S, Mehra R. Nourishment beyond grains: unveiling the multifaceted contributions of millets to United Nations Sustainable Development Goals. Z NATURFORSCH C 2025; 80:151-162. [PMID: 39118421 DOI: 10.1515/znc-2024-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
United Nations General Assembly declared that 2023 will be celebrated as the International Year of Millets. Millets are a group of coarse grains from the Poaceae family that offer numerous benefits that align with various United Nations Sustainable Development Goals (UN SDGs). This review explores diverse contributions of millet cultivation, consumption, and value addition with UN SDGs. The millets help in combating hunger by providing economical sources of essential nutrients and diversifying diets, improving health through mitigating malnutrition and diet-related diseases. Millet's lower water demand and resilience to climatic stress help in sustainable water management. Millets reduce the risks associated with monoculture farming and promote sustainable agricultural practices. Similarly, millet plants need few chemical fertilizers, and the ecological damage associated with these plants is minimized. Millets can prevent soil degradation and conserve biodiversity. They can adapt to diverse cropping systems and support sustainable land practices. Millet cultivation reduces inequalities by empowering smallholder farmers and maintaining economic balance. The cultivation and trading of millets promote partnerships among governments, NGOs, and businesses for sustainable development. The ability of millet to contribute to poverty reduction, hunger alleviation, health improvement, environmental sustainability, and economic development makes millet a sustainable choice for a better world.
Collapse
Affiliation(s)
- Akash Kumar
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
- Department of Food Technology, SRM University, Delhi-NCR, Sonepat 131029, India
| | - Jhilam Pramanik
- Department of Agriculture, William Carey University, Shillong 793019, India
| | - Aarzoo Jangra
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Bhupendra Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Shiv Kumar
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Rahul Mehra
- Symbiosis School of Culinary Arts and Nutritional Sciences, Symbiosis International University (SIU), Pune, 412115, India
| |
Collapse
|
3
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Rhizobacteria and Arbuscular Mycorrhizal Fungi (AMF) Community in Growth Management and Mitigating Stress in Millets: A Plant-Soil Microbe Symbiotic Relationship. Curr Microbiol 2025; 82:242. [PMID: 40220175 DOI: 10.1007/s00284-025-04230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
Millets, commonly referred to as the "future crop," provide a practical solution for addressing hunger and reducing the impact of climate change. The nutritional and physiological well-being of soil is crucial for the survival and resilience of plants while countering environmental stressors, both abiotic and biotic, that arise from the current climate change scenario. The health and production of millet are directly influenced by the soil microbial community. Millets have several plant growth-promoting rhizobacteria such as Pseudomonas, Azotobacter, Bacillus, Rhizobium, and fungi like Penicillium sp., that increase nutrient uptake, growth, and productivity and protect against abiotic and biotic stressors. Rhizobacteria enhance plant productivity by many mechanisms, including the release of plant hormones and secondary metabolic compounds, the conversion of nutrients into soluble forms, the ability to fix nitrogen, and the provision of resistance to both biotic and abiotic stresses. The microbial populations in the rhizosphere have a significant impact on the growth and production of millet such as enhancing soil fertility and plant nourishment. Additionally, arbuscular mycorrhizal fungi invade the roots of millets. The taxon Glomus is the most prevalent in association with millet plant soil, followed by Acaulospora, Funneliformis, and Rhizophagus. The symbiotic relationship between arbuscular mycorrhizal fungi and millet plants improves plant growth and nutrient absorption under diverse soil and environmental circumstances, including challenging abiotic factors like drought and salinity.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Babypriyanka S, Hepziba JS, Pushpam KA, Pillai AM, Vijayalakshmi R, Theradimani M. Exploring the bioactive components of millets for their nutraceutical potential. Food Sci Biotechnol 2025; 34:563-575. [PMID: 39958176 PMCID: PMC11822186 DOI: 10.1007/s10068-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 02/18/2025] Open
Abstract
Millets have gained significant attention in recent days due to their potential as nutritious and bioactive-rich food sources. Beyond their macronutrient content such as carbohydrates, fats, protein and minerals, possess impressive array of bioactive compounds viz., polyphenols, flavonoids and antioxidants. Ferulic acid is predominantly found among all the millets followed by caffeic acid and soluble/bound fractions of whole grains contain flavonoids. Their prebiotic properties contribute to gut health by promoting growth of beneficial gut microbiota. Phenolic compounds contribute to their antioxidant, anticancer and antiviral properties. Millets are rich in dietary fibre (15-20%), which has water absorbing and bulking property thereby increases transit time of food in the gut and helps in reducing risk of inflammatory bowel disease and acts as detoxifying agent in the body. The bioavailability of minerals is however hindered by the antinutritional factors like tannins and phytates. This review focuses on the nutraceutical potential of millets by exploring its bioactive components and its enhancement through biofortification strategies which is essential for utilizing and harnessing their health-promoting properties for the benefit of global nutrition and well-being.
Collapse
Affiliation(s)
- S. Babypriyanka
- Department of Genetics and Plant Breeding, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - Juliet S. Hepziba
- Department of Genetics and Plant Breeding, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - Kavitha A. Pushpam
- Department of Crop Physiology and Biochemistry, V.O.C Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - Arumugam M. Pillai
- Department of Genetics and Plant Breeding, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - R. Vijayalakshmi
- Department of Family Resource Management and Consumer Studies, Community Science College and Research Institute, Madurai, Tamil Nadu 625104 India
| | - M. Theradimani
- Department of Plant Pathology, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| |
Collapse
|
5
|
Chettiyam Kandy S, Singhal R, V KK, Yadav B, Jameela S, Deverakonda S, Rao BCS, Rana RK, Sreekanth N, Acharya R. Knowledge, attitude and practices of ayurvedic medicine practitioners in Kerala towards millets and millet-based diet: a prospective cross-sectional online survey study. BMJ Nutr Prev Health 2024; 7:e000960. [PMID: 39882291 PMCID: PMC11773658 DOI: 10.1136/bmjnph-2024-000960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/30/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Diet and lifestyle play pivotal roles in Ayurveda's preventive and therapeutic principles. The rich culinary heritage of Kerala harmoniously aligns with Ayurvedic dietetic principles. With the recent designation of 2023 as the International Year of Millets, there has been a surge of interest in integrating millets into dietary practices worldwide. Ayurveda physicians are poised to offer nutritional guidance to endorse health. Methods A cross-sectional online survey was conducted from 26 July to 9 August 2023 among Ayurveda practitioners in Kerala. The survey used a semi-structured questionnaire finalised through the face and content validity, comprising eight items each for knowledge, attitudes and practices (KAP) domains. A target sample size of 422 participants was determined through convenience sampling methodology. Spearman's rank correlation test was used to examine the correlations between KAP while binary logistic regression analyses were employed to identify determinants associated with favourable levels of KAP among participants. Results A total of 386 complete responses were used for analysis. The average scores for KAP items were 5.21, 6.36 and 5.34, respectively, (range 0-8). It was found that better Knowledge scores were associated with more favourable Attitudes towards the prescription of millet-based diet (MBD) (adjusted Odd's Ratio (AOR): 3.04) and even more positive responses towards Practice (AOR: 8.59). Conclusion The knowledge of Ayurveda practitioners in Kerala regarding the use of MBD is satisfactory. There is a significant relationship between Knowledge and Attitude as well as Practice. This study has underscored the importance of education and awareness in shaping favourable attitudes and practices related to MBD, aligning with Ayurvedic principles. Despite practitioners demonstrating good KAP behaviour towards MBD, gaps persist in certain aspects of contemporary knowledge and limitations in translating knowledge into practice. Addressing these gaps and barriers is essential to promote the widespread adoption and prescription of MBD.
Collapse
Affiliation(s)
| | - Richa Singhal
- Biostatistics, National Institute of Malaria Research Dwarka Sector - 8, Delhi, Indian Council of Medical Research, New Delhi, Delhi, India
| | - Krishna Kumar V
- National Ayurveda Research Institute for Panchakarma Cheruthuruthy Thrissur, Central Council for Research in Ayurvedic Sciences, Thrissur, Kerala, India
| | - Babita Yadav
- Central Ayurveda Research Institute, Punjabi Bagh, New Delhi, Central Council for Research in Ayurvedic Sciences, New Delhi, Delhi, India
| | - Sophia Jameela
- Central Council for Research in Ayurvedic Sciences, New Delhi, Delhi, India
| | - Sudhakar Deverakonda
- National Ayurveda Research Institute for Panchakarma Cheruthuruthy Thrissur, Central Council for Research in Ayurvedic Sciences, Thrissur, Kerala, India
| | | | - Rakesh Kumar Rana
- Central Council for Research in Ayurvedic Sciences, New Delhi, Delhi, India
| | | | | |
Collapse
|
6
|
Mazumder S, Bhattacharya D, Lahiri D, Moovendhan M, Sarkar T, Nag M. Harnessing the nutritional profile and health benefits of millets: a solution to global food security problems. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39434598 DOI: 10.1080/10408398.2024.2417801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
India is dealing with both nutritional and agricultural issues. The maximum area of agricultural land with irrigation capabilities has been largely utilized, while the amount of dry land is expanding. The influence is distinct on farmer's livelihoods and earnings, which ultimately affects nutritional security. In order to attain nutritional security and the goal of SDG (Sustainable Development Goals), millets are sustainable solutions, with respect to high nutritional content, bioactive and medicinal properties, and climate resilience. The nutrient profile of millet includes 60%-70% carbohydrate content, 3.5%-5.2% fat, and 7.52%-12.1% protein sources. A wide spectrum of amino acids, including cysteine, isoleucine, arginine, leucine, tryptophan, lysine, histidine, methionine, tyrosine, phenylalanine, threonine, and valine are generally present in millets. Mineral content in millets includes calcium, phosphorus, potassium, sodium, and magnesium. Additionally, millets are an excellent source of bioactive molecules such as polyphenol, phenolic acid, flavonoids, active peptides, and soluble fiber, which have a wide range of therapeutic applications, including the prevention of free radical damage, diabetes, anti-microbial, anti- biofilm, and anti-cancer effects. This review will focus on the nutritional profile and health benefits of millet considering the present-day food security problems.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| |
Collapse
|
7
|
Kumar V, Yadav M, Awala SK, Valombola JS, Saxena MS, Ahmad F, Saxena SC. Millets: a nutritional powerhouse for ensuring food security. PLANTA 2024; 260:101. [PMID: 39302511 DOI: 10.1007/s00425-024-04533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Millets are important food source to ensure global food and nutritional security and are associated with health benefits. Millets have emerged as a nutritional powerhouse with the potential to address food security challenges worldwide. These ancient grains, which come in various forms, including finger millet, proso millet, and pearl millet, among others, are essential to a balanced diet, since they provide a wide range of nutritional advantages. Millets have a well-rounded nutritional profile with a high protein, dietary fiber, vitamin, and mineral content for optimal health and wellness. In addition to their nutritional advantages, millets exhibit remarkable adaptability and durability to various agroecological conditions, making them a valuable resource for smallholder farmers functioning in resource-poor regions. Promoting the growth and use of millet can lead to several benefits that researchers and development experts may discover, including improved nutrition, increased food security, and sustainable agricultural methods. Therefore, millets are food crops, that are climate smart, nutritional, and food secured to feed the increasing global population, and everyone could have a healthier, more resilient future.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Mohini Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Simon Kamwele Awala
- Department of Crop Production and Agricultural Technologies, University of Namibia (Ogongo Campus), Oshakati, 15001, Namibia
| | - Johanna Shekupe Valombola
- Department of Intermediate and Vocational Education, University of Namibia (Hifikepunye Pohamba Campus), Oshakati, 15001, Namibia
| | - Maneesha S Saxena
- Department of Biochemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Saurabh C Saxena
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
8
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Milletomics: a metabolomics centered integrated omics approach toward genetic progression. Funct Integr Genomics 2024; 24:149. [PMID: 39218822 DOI: 10.1007/s10142-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Producing alternative staple foods like millet will be essential to feeding ten billion people by 2050. The increased demand for millet is driving researchers to improve its genetic variation. Millets include protein, dietary fiber, phenolic substances, and flavonoid components. Its climate resilience makes millet an appealing crop for agronomic sustainability. Integrative omics technologies could potentially identify and develop millets with desirable phenotypes that may have high agronomic value. Millets' salinity and drought tolerance have been enhanced using transcriptomics. In foxtail, finger, and pearl millet, proteomics has discovered salt-tolerant protein, phytohormone-focused protein, and drought tolerance. Metabolomics studies have revealed that certain metabolic pathways including those involving lignin, flavonoids, phenylpropanoid, and lysophospholipids are critical for many processes, including seed germination, photosynthesis, energy metabolism, and the synthesis of bioactive chemicals necessary for drought tolerance. Metabolomics integration with other omics revealed metabolome engineering and trait-specific metabolite creation. Integrated metabolomics and ionomics are still in the development stage, but they could potentially assist in comprehending the pathway of ionomers to control nutrient levels and biofortify millet. Epigenomic analysis has shown alterations in DNA methylation patterns and chromatin structure in foxtail and pearl millets in response to abiotic stress. Whole-genome sequencing utilizing next-generation sequencing is the most proficient method for finding stress-induced phytoconstituent genes. New genome sequencing enables novel biotechnological interventions including genome-wide association, mutation-based research, and other omics approaches. Millets can breed more effectively by employing next-generation sequencing and genotyping by sequencing, which may mitigate climate change. Millet marker-assisted breeding has advanced with high-throughput markers and combined genotyping technologies.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Kaur N, Ray B, Kalyani CV. Millets: Ancient Grains for Modern Nutrition - A Comprehensive Review. Indian J Community Med 2024; 49:665-668. [PMID: 39421505 PMCID: PMC11482393 DOI: 10.4103/ijcm.ijcm_765_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/24/2024] [Indexed: 10/19/2024] Open
Abstract
Millets are a group of small, drought-resistant grains that have been grown for more than thousands of years. They are highly nutritious, rich in essential vitamins and minerals, and have gained attention in recent years due to their potential to address global food security and environmental challenges. This review article provides an overview of millets, their nutritional benefits, environmental advantages, and their role in promoting sustainable agriculture and processing of millets. The article also discusses the various types of millets, their cultivation, and their potential to improve human health and combat malnutrition.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Child Health Nursing, Institute of Nursing Education and Research, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Bhagyasri Ray
- Department of Medical- Surgical Nursing, College of Nursing, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Chellakannan Vasantha Kalyani
- Department of Medical- Surgical Nursing, College of Nursing, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| |
Collapse
|
10
|
Ceasar SA, Prabhu S, Ebeed HT. Protein research in millets: current status and way forward. PLANTA 2024; 260:43. [PMID: 38958760 DOI: 10.1007/s00425-024-04478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India.
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India
| | - Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
11
|
Givens DI, Anitha S, Giromini C. Anaemia in India and Its Prevalence and Multifactorial Aetiology: A Narrative Review. Nutrients 2024; 16:1673. [PMID: 38892606 PMCID: PMC11174870 DOI: 10.3390/nu16111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The prevalence of anaemia in India remains high in children, especially those in rural areas, and in women of childbearing age, and its impairment of neurological development can have serious lifelong effects. It is concerning that the most recent official data (2019-21) indicate an increased prevalence compared with 2015-16. There is also considerable variability in childhood anaemia between Indian states with socioeconomic factors, such as wealth and education contributing to the risk of anaemia among adolescent women and their children. Dietary iron deficiency is often regarded as the main contributor to anaemia but increasing evidence accumulated from the authors' ongoing literature database coupled with recent literature research suggests that it has a multifactorial aetiology, some of which is not related to nutrition. This narrative review focused on these multifactorial issues, notably the contribution of vitamin B12/folate deficiency, which also has a high prevalence in India. It was also noted that the dietary intake of bioavailable iron remains an important contributor for reducing anaemia, and the role of millets as an improved iron source compared to traditional staple cereals is briefly discussed. The overall conclusion is that anaemia has a multifactorial aetiology requiring multifactorial assessment that must include assessment of vitamin B12 status.
Collapse
Affiliation(s)
- D. Ian Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 5EU, UK
| | - Seetha Anitha
- School of Applied Sciences, University of Lilongwe, Area 15, Lilongwe P.O. Box 1614, Malawi;
| | - Carlotta Giromini
- Institute for Food, Nutrition and Health, University of Reading, Reading RG6 5EU, UK
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 20122 Milano, Italy;
| |
Collapse
|
12
|
Hajri L, Lewińska A, Rzeszutek I, Oklejewicz B, Wojnarowska-Nowak R, Krogul-Sobczak A, Szpyrka E, Aires A, Ghodbane S, Ammari M, Wnuk M. Anticancer Activity of Encapsulated Pearl Millet Polyphenol-Rich Extract against Proliferating and Non-Proliferating Breast Cancer Cells In Vitro. Cancers (Basel) 2024; 16:1750. [PMID: 38730703 PMCID: PMC11083001 DOI: 10.3390/cancers16091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Plant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (Pennisetum glaucum), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells. Encapsulated polyphenolic extract induced apoptotic cell death in breast cancer cells with different receptor status, whereas it was ineffective against non-tumorigenic MCF10F cells. Encapsulated polyphenolic extract was also found to be cytotoxic against drug-resistant doxorubicin-induced senescent breast cancer cells that were accompanied by increased levels of apoptotic and necrotic markers, cell cycle inhibitor p21 and proinflammatory cytokine IL8. Furthermore, diverse responses to the stimulation with encapsulated polyphenolic extract in senescent breast cancer cells were observed, as in the encapsulated polyphenolic extract-treated non-proliferating AU565 cells, the autophagic pathway, here cytotoxic autophagy, was also induced, as judged by elevated levels of beclin-1 and LC3b. We show for the first time the anti-breast cancer activity of encapsulated polyphenolic extract of pearl millet and postulate that microencapsulation may be a useful approach for potentiating the anticancer effects of phytochemicals with limited bioavailability.
Collapse
Affiliation(s)
- Latifa Hajri
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Bizerte 7021, Tunisia; (L.H.); (S.G.); (M.A.)
| | - Anna Lewińska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Iwona Rzeszutek
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Bernadetta Oklejewicz
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Renata Wojnarowska-Nowak
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | | | - Ewa Szpyrka
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| | - Alfredo Aires
- CITAB—Centre for the Research and Technology of Agro Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Soumaya Ghodbane
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Bizerte 7021, Tunisia; (L.H.); (S.G.); (M.A.)
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, Jarzouna, Bizerte 7021, Tunisia; (L.H.); (S.G.); (M.A.)
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland; (A.L.); (I.R.); (B.O.); (E.S.)
| |
Collapse
|
13
|
Panda D, Muni P, Panda A, Lenka KC, Parida PK. Nutritional and nutraceutical richness of neglected little millet genotypes from Eastern Ghats of India: implications for breeding and food value. PLANTA 2024; 259:37. [PMID: 38217720 DOI: 10.1007/s00425-023-04314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
MAIN CONCLUSION The study provides nutritional profiling of unexploited little millets from Eastern Ghats, which has ample opportunities for future breeding programs for enhancing the food quality and holds great potential in food industry. Little millet is an important small millet native to the Indian subcontinent and their nutritional value has been underutilized compared to other cereals. It's nutritional and nutraceutical profiling is essential to integrate the plants in developmental interventions. The present study evaluated comprehensive nutritional, nutraceutical and physico-functional properties of 14 selected little millet genotypes originated from Eastern Ghats of India and compared them with an improved variety (OLM 208) of the locality. The proximate compositions (per 100 g) showed significant variations, with moisture content ranging from 4.13 to 8.48 g, ash from 1.90 to 5.15 g, fat from 2.35 to 5.74 g, protein from 10.46 to 13.83 g, carbohydrate from 70.92 to 77.89 g, fiber from 2.03 to 7.82 g and energy from 372.8 to 391.1 kcal. These little millet flours are rich in phenol 5.37-12.73 mg/g, flavonoid 1.06-8.25 µg/g, vitamin C 12.72-22.86 µg/g, antioxidants 7.22-23.17%, iron 20.38 to 61.60 mg/ kg and zinc 17.47 to 37.59 mg/ kg. The first two components of principal component analysis captures 73.0% of the total variation, which reflected huge variability among the investigated genotypes. Maximum heritability and genetic advance were recorded in flavonoid, fiber, iron, zinc, phenol and vitamin C across the populations. Taken together, some indigenous little millet genotypes such as Mami, Kalia and Bada, were exceptionally rich in fiber, protein, energy, flavonoid, vitamin C and antioxidants and are nutritionally superior compared to other varieties from the locality. These nutrition rich little millet genotypes have ample opportunities for future breeding programs to enhance the cereal quality and holds great potential in food industry for making high value functional foods.
Collapse
Affiliation(s)
- Debabrata Panda
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Sunabeda, Odisha, 763 004, India.
| | - Pramila Muni
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Sunabeda, Odisha, 763 004, India
| | - Aloukika Panda
- Department of Biodiversity and Conservation of Natural Resources, Central University of Odisha, Koraput, Sunabeda, Odisha, 763 004, India
| | - Kartik C Lenka
- MS Swaminathan Research Foundation, Koraput, Jeypore, Odisha, 764002, India
| | - Prashant K Parida
- MS Swaminathan Research Foundation, Koraput, Jeypore, Odisha, 764002, India
| |
Collapse
|
14
|
Singh S, Sharma H, Ramankutty R, Ramaswamy S. Review on Nutritional Potential of Underutilized Millets as a Miracle Grain. Curr Pharm Biotechnol 2024; 25:1082-1098. [PMID: 37861015 DOI: 10.2174/0113892010248721230921093208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
The current situation, which includes changes in eating habits, an increasing population, and the unrestricted use of natural resources, has resulted in a lack of resources that could be used to provide nourishing food to everyone. Natural plant resources are quickly being depleted, so it is necessary to consider new alternatives. In addition to the staple grains of rice and wheat, many other crops are being consumed that need to be utilized to their full potential and have the potential to replace the staple crops. Millets are one of the most important underutilized crops that have the potential to be used as a nutricereal. Millets have a high nutritional value, do not produce acids, do not contain gluten, and can contribute to a healthy diet. Due to a lack of awareness regarding the nutritional value of millets, their consumption is still restricted to the population that adheres to conventional diets and is economically disadvantaged even though millets contain a significant amount of nutrients. Millets are becoming increasingly unpopular due to a lack of processing technologies, food subsidies, and the inconvenience of preparing food with millets. Millets are a Nutricereal rich in carbohydrates, dietary fibers, energy, essential fatty acids, proteins, vitamin B, and minerals such as calcium, iron, magnesium, potassium, and zinc. These nutrients help to protect against post-translational diseases such as diabetes, cancer, cardiovascular disease, and celiac disease, among others. Millets are beneficial for controlling blood pressure, blood sugar level, and thyroid function; however, despite these functional properties, millets consumption has declined. Utilizing millets and other staple food crops to develop alternative food sources has become a new area of focus for businesses in the food industry. In addition, millet consumption can help foster immunity and health, which is essential in strengthening our fight against malnutrition in children and adolescents. In this article, the authors examine the potential of millets in terms of their nutricereal qualities.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P: 281406, India
| | | | - Sarada Ramaswamy
- Datha Ayuryoga International Health Institute, D.O.O, Podgorica, Montenegro
| |
Collapse
|
15
|
Premachandran K, Wilson Alphonse CR, Soundharapandiyan N. Nourishing the Cognition with Millets: A Comprehensive Review of Their Nutritional Impact and Potential as Cognitive Enhancers. Mol Nutr Food Res 2023; 67:e2300450. [PMID: 37899300 DOI: 10.1002/mnfr.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Indexed: 10/31/2023]
Abstract
Cognition is the mental processes and abilities involved in acquiring, storing, retrieving and using it for decision making. Cognitive decline due to aging, lifestyle factor, chronic health conditions, genetic, and environmental factors are rising global concern and propose a potential threat to the cognitive health. The nutritional imbalance has led to increase in cognitive disorders around the world. Millets can be a nutritional intervention for promoting cognitive health and preventing cognitive decline. Millets has abundant phenolic compounds, flavonoids, and antioxidants to protect against oxidative stress-induced cognitive impairment. Millets exert neuroprotective effects by modulating pathways involved in neuronal-survival, synaptic-plasticity, and release of brain-derived neurotrophic factor. Millets demonstrates anti-inflammatory properties by regulating inflammatory-pathways and suppressing cytokines associated with cognitive impairment. Millets maintain healthy gut microbiota by producing metabolites such as short-chain fatty acids, which influence brain function and cognition. However, further research is needed to elucidate the underlying mechanisms and on optimizing the proportion do exploit its potential. Implementing millet-based dietary strategies through public health initiatives and educational programs can be a practical approach to support cognitive health across populations. Harnessing the potential of millets as a nutritional intervention offers a promising avenue for promoting cognitive health and improving the quality of life.
Collapse
Affiliation(s)
| | - Carlton Ranjith Wilson Alphonse
- Neuroscience Lab, Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Nandhagopal Soundharapandiyan
- Neuroscience Lab, Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
16
|
Amoah JN, Adu-Gyamfi MO, Kwarteng AO. Effect of drought acclimation on antioxidant system and polyphenolic content of Foxtail Millet ( Setaria italica L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1577-1589. [PMID: 38076760 PMCID: PMC10709255 DOI: 10.1007/s12298-023-01366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/17/2023]
Abstract
The impact of climate change-induced drought stress on global food security and environmental sustainability is a serious concern. While previous research has highlighted the potential benefits of drought hardening in improving plants' ability to withstand drought, the exact underlying physiological mechanisms in millet plants (Setaria italica L.) have not been explored. This study aimed to investigate the impact of drought hardening on antioxidant defense and polyphenol accumulation in different millet genotypes ('PI 689680' and 'PI 662292') subjected to different treatments: control (unstressed), drought acclimation (two stress episodes with recovery), and non-acclimation (single stress episode with no recovery). The results showed that drought stress led to higher levels of polyphenols and oxidative damage, as indicated by increased phenolic, flavonoid, and anthocyanin levels. Non-acclimated (NA) plants experienced more severe oxidative damage and inhibition of enzymes associated with the ascorbate glutathione cycle compared to drought-acclimated plants. NA plants also exhibited a significant reduction in photosynthesis and tissue water content. The expression of genes related to antioxidants and polyphenol synthesis was more pronounced in non-acclimated plants. The study demonstrated that drought hardening not only prepared plants for subsequent drought stress but also mitigated damage caused by oxidative stress in plant physiology. Drought-acclimated (DA) plants displayed improved drought tolerance, as evidenced by better growth, photosynthesis, antioxidant defense, polyphenol accumulation, and gene expression related to antioxidants and polyphenol synthesis. In conclusion, the research advocates for the use of drought hardening as an effective strategy to alleviate the negative impacts of drought-induced metabolic disturbances in millet. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01366-w.
Collapse
Affiliation(s)
- Joseph N. Amoah
- Centre for Carbon, Water, and Food, University of Sydney, 380 Werombi Road, Brownlow Hill, Camden, NSW 2570 Australia
| | | | - Albert Owusu Kwarteng
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Moscow, ID USA
| |
Collapse
|
17
|
Haș IM, Vodnar DC, Bungau AF, Tarce AG, Tit DM, Teleky BE. Enhanced Elderberry Snack Bars: A Sensory, Nutritional, and Rheological Evaluation. Foods 2023; 12:3544. [PMID: 37835197 PMCID: PMC10572914 DOI: 10.3390/foods12193544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Interest in functional foods is continuously increasing, having the potential to be an ally in reducing cardiometabolic risk factors. This study focuses on developing and evaluating oat- and millet-based snack bars enriched with freeze-dried elderberry powder (FDEBP), aiming to combine great taste with enhanced nutritional value, antioxidant properties, and prebiotic potential. The research encompassed a sensory evaluation, nutritional assessment, and rheological analysis of the snack bars. A hedonic test was conducted to gauge consumer preferences and overall liking, providing insights into taste, texture, and acceptance. Sensory evaluation revealed positive feedback from participants, and acceptance rating scores ranged from 7 to 8.04, the best score recorded by one of the enhanced bars with 1% FDEBP. The rheological analysis determined the bars' dynamic storage modulus (G') and loss modulus (G″), assessing the material's elasticity and mechanical properties. Results showed that the incorporation of 0.5% and 1% FDEBP in the oat and millet snack bars significantly impacted their rheological properties, enhancing structural strength. Nutritional analysis demonstrated that the snack bars provided a complete mix of macronutrients required in a daily diet. The study sheds light on the potential of functional snack bars enriched with FDEBP, offering a delectable way to access essential nutrients and bioactive compounds in a minimally processed form, without the addition of sweeteners or additives, friendly to the gut microbiota.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (I.M.H.); (A.F.B.)
| | - Alexandra Georgiana Tarce
- Medicine Program of Study, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Bhattacharya S. Cultivating health: millets' potential in combating non-communicable diseases and future research avenues in India. Front Nutr 2023; 10:1190111. [PMID: 37810919 PMCID: PMC10551438 DOI: 10.3389/fnut.2023.1190111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Affiliation(s)
- Sudip Bhattacharya
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| |
Collapse
|
19
|
Tagade A, Sawarkar AN. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. BIORESOURCE TECHNOLOGY 2023:129335. [PMID: 37343798 DOI: 10.1016/j.biortech.2023.129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Millets are receiving increasing attention, lately, in view of their preeminent agronomic traits, nutritional significance, and renewed emphasis on highlighting their health benefits through national and international programs. As a consequence, a variety of millets are being cultivated in different parts of the world resulting in significant amount of millet agro-residues. Present study comprehends critical analysis of reported investigations on pyrolysis of different millet agro-residues encompassing (i) physico-chemical characterization (ii) kinetics and thermodynamic parameters (iii) reactors employed and (iv) relationship between the reaction conditions and characteristics of millets-derived biochar and its prospective applications. Based on the analysis of reported investigations, specific research gaps have been figured out. Finally, future directions for leveraging the energy potential of millet agro-residues are also discussed. The analysis elucidated is expected to be useful for the researchers for making further inroads pertaining to sustainable utilization of millet agro-residues in tandem with other commonly employed agro-residues.
Collapse
Affiliation(s)
- Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
20
|
Dry heat and ultrasonication treatment of pearl millet flour: effect on thermal, structural, and in-vitro digestibility properties of starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Dekka S, Paul A, Vidyalakshmi R, Mahendran R. Potential processing technologies for utilization of millets: An updated comprehensive review. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Srenuja Dekka
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | | | - R. Vidyalakshmi
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | - R. Mahendran
- Centre of Excellence in Nonthermal Processing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| |
Collapse
|
22
|
Singh V, Lee G, Son H, Amani S, Baunthiyal M, Shin JH. Anti-diabetic prospects of dietary bio-actives of millets and the significance of the gut microbiota: A case of finger millet. Front Nutr 2022; 9:1056445. [PMID: 36618686 PMCID: PMC9815516 DOI: 10.3389/fnut.2022.1056445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Finger millet (Eleusine coracana) is a staple food in several parts of the world because of its high nutritional value. In addition to its high nutrient content, finger millet contains numerous bioactive compounds, including polyphenol (10.2 mg/g TAE), flavonoid (5.54 mg/g CE), phytic acid (0.48%), and dietary fiber (15-20%). Polyphenols are known for their anti-oxidant and anti-diabetic role. Phytic acid, previously considered an anti-nutritive substance, is now regarded as a nutraceutical as it reduces carbohydrate digestibility and thus controls post-prandial glucose levels and obesity. Thus, finger millet is an attractive diet for patients with diabetes. Recent findings have revealed that the anti-oxidant activity and bio-accessibility of finger millet polyphenols increased significantly (P < 0.05) in the colon, confirming the role of the gut microbiota. The prebiotic content of finger millet was also utilized by the gut microbiota, such as Faecalibacterium, Eubacterium, and Roseburia, to generate colonic short-chain fatty acids (SCFAs), and probiotic Bifidobacterium and Lactobacillus, which are known to be anti-diabetic in nature. Notably, finger millet-induced mucus-degrading Akkermansia muciniphila can also help in alleviate diabetes by releasing propionate and Amuc_1100 protein. Various millet bio-actives effectively controlled pathogenic gut microbiota, such as Shigella and Clostridium histolyticum, to lower gut inflammation and, thus, the risk of diabetes in the host. In the current review, we have meticulously examined the role of gut microbiota in the bio-accessibility of millet compounds and their impact on diabetes.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sliti Amani
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering and Technology, Ghurdauri, India,*Correspondence: Mamta Baunthiyal,
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea,Jae-Ho Shin,
| |
Collapse
|
23
|
Selokar N, Vidyalakshmi R, Thiviya P, Sinija VRN, Hema V. Assessment of nutritional quality of
non‐conventional
millet malt enriched bar. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Nupur Selokar
- Food Processing Business Incubation Centre National Institute of Food Technology Entrepreneurship and Management, (NIFTEM‐T) Thanjavur India
| | - Rajagopal Vidyalakshmi
- Food Safety and Quality Testing National Institute of Food Technology Entrepreneurship and Management, (NIFTEM‐T) Thanjavur India
| | - Perumal Thiviya
- Food Processing Business Incubation Centre National Institute of Food Technology Entrepreneurship and Management, (NIFTEM‐T) Thanjavur India
| | | | - Vincent Hema
- Centre of Excellence in Grain Science National Institute of Food Technology Entrepreneurship and Management, (NIFTEM‐T) Thanjavur India
| |
Collapse
|
24
|
Zhang J, Wang W, Guo D, Bai B, Bo T, Fan S. Antidiabetic Effect of Millet Bran Polysaccharides Partially Mediated via Changes in Gut Microbiome. Foods 2022; 11:foods11213406. [PMID: 36360018 PMCID: PMC9654906 DOI: 10.3390/foods11213406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a type of metabolic disease associated with changes in the intestinal flora. In this study, the regulatory effect of millet bran on intestinal microbiota in a model of type 2 diabetes (T2DM) was investigated in an effort to develop new approaches to prevent and treat diabetes and its complications in patients. The effect of purified millet bran polysaccharide (MBP) with three different intragastric doses (400 mg/kg, 200 mg/kg, and 100 mg/kg) combined with a high-fat diet was determined in a streptozotocin (STZ)-induced model of T2DM. By analyzing the changes in indicators, weight, fasting blood sugar, and other bio-physiological parameters, the changes in gut microbiota were analyzed via high-throughput sequencing to establish the effect of MBP on the intestinal flora. The results showed that MBP alleviated symptoms of high-fat diet-induced T2DM. A high dosage of MBP enhanced the hypoglycemic effects compared with low and medium dosages. During gavage, the fasting blood glucose (FBG) levels of rats in the MBP group were significantly reduced (p < 0.05). The glucose tolerance of rats in the MBP group was significantly improved (p < 0.05). In diabetic mice, MBP significantly increased the activities of CAT, SOD, and GSH-Px. The inflammatory symptoms of liver cells and islet cells in the MBP group were alleviated, and the anti-inflammatory effect was partially correlated with the dose of MBP. After 4 weeks of treatment with MBP, the indices of blood lipid in the MBP group were significantly improved compared with those of the DM group (p < 0.05). Treatment with MBP (400 mg/kg) increases the levels of beneficial bacteria and decreases harmful bacteria in the intestinal tract of rats, thus altering the intestinal microbial community and antidiabetic effect on mice with T2DM by modulating gut microbiota. The findings suggest that MBP is a potential pharmaceutical supplement for preventing and treating diabetes.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Wenjing Wang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Dingyi Guo
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Sanhong Fan
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
- Correspondence:
| |
Collapse
|
25
|
Zhang J, Li P, Liu J, Wang Y, Zhang A, Zhao W, Li S, Liu Y, Liu J. Nutritional Components of Millet Porridge Cooked by Different Electric Cookers Based on Principal Component and Cluster Analyses. Foods 2022; 11:foods11182823. [PMID: 36140951 PMCID: PMC9498214 DOI: 10.3390/foods11182823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
(1) Background: In order to study the effects of different electric cookers on the nutritional components of millet porridge, five different electric cookers (No. 1–5) were selected to cook millet porridge, then sensory and nutritional components in millet porridge, millet soup, and millet grains were analyzed; (2) Methods: Using principal component and cluster analysis, a variety of nutritional components were comprehensively compared; (3) Results: The results showed that among the different cooked samples, the content of amylose and reducing sugars was the highest in the samples cooked by electric cooker No. 3. The electric cooker No. 4 samples had the highest sensory evaluation score, crude fat, and protein content. The contents of ash, fatty acids, bound amino acids, and minerals were the highest in the electric cooker No. 5 samples. The sensory evaluation score and content of crude fat, ash, reducing sugars, direct starch, and Cu were higher in millet grains than in millet soup or porridge. The content of fatty acids, protein, amino acid, Zn, Fe, Mg, Mn, and Ca was highest in millet soup. Different electric cookers produced millet porridge with varying nutritional levels; (4) Conclusions: This study provides a reference for the further development of new electric cookers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jingke Liu
- Correspondence: ; Tel.: +86-311-8726-9088
| |
Collapse
|
26
|
Shi X, Shen J, Niu B, Lam SK, Zong Y, Zhang D, Hao X, Li P. An optimistic future of C 4 crop broomcorn millet ( Panicum miliaceum L.) for food security under increasing atmospheric CO 2 concentrations. PeerJ 2022; 10:e14024. [PMID: 36097526 PMCID: PMC9463996 DOI: 10.7717/peerj.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Broomcorn millet, a C4 cereal, has better tolerance to environmental stresses. Although elevated atmospheric CO2 concentration has led to grain nutrition reduction in most staple crops, studies evaluating its effects on broomcorn millet are still scarce. The yield, nutritional quality and metabolites of broomcorn millet were investigated under ambient CO2 (aCO2, 400 µmol mol-1) and elevated CO2 (eCO2, aCO2+ 200 µmol mol-1) for three years using open-top chambers (OTC). The results showed that the yield of broomcorn millet was markedly increased under eCO2 compared with aCO2. On average, eCO2 significantly increased the concentration of Mg (27.3%), Mn (14.6%), and B (21.2%) over three years, whereas it did not affect the concentration of P, K, Fe, Ca, Cu or Zn. Protein content was significantly decreased, whereas starch and oil concentrations were not changed by eCO2. With the greater increase in grain yield, eCO2 induced increase in the grain accumulations of P (23.87%), K (29.5%), Mn (40.08%), Ca (22.58%), Mg (51.31%), Zn (40.95%), B (48.54%), starch (16.96%) and oil (28.37%) on average for three years. Flavonoids such as kaempferol, apigenin, eriodictyol, luteolin, and chrysoeriol were accumulated under eCO2. The reduction in L-glutamine and L-lysine metabolites, which were the most representative amino acid in grain proteins, led to a reduction of protein concentration under eCO2. Broomcorn millet has more desirable nutritional traits for combating hidden hunger. This may potentially be useful for breeding more nutritious plants in the era of climate change.
Collapse
Affiliation(s)
- Xinrui Shi
- Shanxi Agricultural University, Taigu, China
| | - Jie Shen
- Changzhi University, Changzhi, China
| | - Bingjie Niu
- Shanxi Agricultural University, Taigu, China
| | - Shu Kee Lam
- University of Melbourne, Melbourne, Australia
| | | | | | - Xingyu Hao
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| | - Ping Li
- Shanxi Agricultural University, Taigu, China,Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Taigu, China
| |
Collapse
|
27
|
Afzaal M, Saeed F, Hanif H, Islam F, Hussain M, Shah YA, Ikram A. Nutritional composition and functional properties of fermented product (Koozh): A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Hafsa Hanif
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Fakhar Islam
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Yasir Abbas Shah
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad‐ Pakistan
| |
Collapse
|
28
|
Differential Flavonoids and Carotenoids Profiles in Grains of Six Poaceae Crops. Foods 2022; 11:foods11142068. [PMID: 35885312 PMCID: PMC9325323 DOI: 10.3390/foods11142068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
Poaceae practically dominate staple crops for humans. In addition to the issue of sustenance, there is a growing interest in the secondary metabolites of these staple crops and their functions on health. In this study, metabolomic variations were investigated among six important species of Poaceae with a total of 17 cultivars, including wheat, maize, rice, sorghum, foxtail millet, and broomcorn millet. A total of 201 flavonoid metabolites and 29 carotenoid metabolites were identified based on the UPLC-ESI-MS/MS system. Among them, 114, 128, 101, 179, 113, and 92 flavonoids and 12, 22, 17, 15, 21, and 18 carotenoids were found in wheat, maize, rice, sorghum, foxtail millet, and broomcorn millet, respectively. Only 46 flavonoids and 8 carotenoids were shared by the six crops. Crop-specific flavonoids and carotenoids were identified. Flavone, anthocyanins, flavanone and polyphenol were the major metabolite differences, which showed species specificity. The flavonoid content of the grains from 17J1344 (sorghum), QZH and NMB (foxtail millet) and carotenoids from Mo17 (maize) were higher than the other samples. This study provides a better knowledge of the differences in flavonoid and carotenoid metabolites among Poaceae crops, as well as provides a theoretical basis for the identification of functional metabolites in these grains.
Collapse
|
29
|
Yadav GP, Dalbhagat CG, Mishra HN. Effects of extrusion process parameters on cooking characteristics and physicochemical, textural, thermal, pasting, microstructure, and nutritional properties of
millet‐based
extruded products: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gorenand Prasad Yadav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
30
|
Pradhan A, Tripathy PP. Effect of little millet
(Panicum miliare)
on physical, rheological, nutritional and microstructural properties of bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhishek Pradhan
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - P. P. Tripathy
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| |
Collapse
|
31
|
Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). J FOOD QUALITY 2022. [DOI: 10.1155/2022/1578448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kodo and little millet (Kutki) have a variety of phytochemical constituents including derivatives of hydroxybenzoic acid and hydroxycinnamic acids, myricetin, catechin, luteolin, apigenin, daidzein, naringenin, kaempferol, and quercetin with vast health benefits and thus can be utilized as functional food ingredients. Millet-based foods and their food products have physiological and health-promoting impacts, notably antidiabetic, anti-obesity, and cardiovascular disease, and based on the actions of phytochemicals, it plays a major role in the body’s immune system. However, antinutrients (tannins, oxalate, trypsin inhibitor, and phytates) present in these millets restrict their utilization since these factors bind the essential nutrients and make them unavailable. Therefore, this review suggested overcoming the effects of antinutrients in these millets, thereby opening up important applications in food industries that may promote the development of novel functional foods. Various methods were discussed to eliminate the antinutrient factors in these millets, and hence, the review holds immense significance to the food industry for effectively utilizing these millets to develop value-added RTE/RTC products/functional food/beverages.
Collapse
|
32
|
Chen S, Wang Y. Response surface optimization of millet milk fermented by
Lactobacillus kefir. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shujun Chen
- School of Life Science Shanxi University Taiyuan China
| | - Yue Wang
- School of Life Science Shanxi University Taiyuan China
| |
Collapse
|
33
|
Habiyaremye C, Ndayiramije O, D'Alpoim Guedes J, Murphy KM. Assessing the Adaptability of Quinoa and Millet in Two Agroecological Zones of Rwanda. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.850280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) and millet species (including Eleusine coracana, Panicum miliaceum, and Setaria italica) are nutritionally valuable seed crops with versatile applications in food production and consumption. Both quinoa and millet have the potential to provide drought-tolerant, nutritious complementary crops to maize that is predominantly cultivated in Rwanda. This study evaluated quinoa and millet genotypes and assessed their agronomic performance in two agroecological zones of Rwanda. Twenty quinoa and fourteen millet cultivars were evaluated for grain yield, emergence, days to heading, flowering, and maturity, and plant height in 2016 and 2017 in Musanze, a highland region (2,254 m above sea level), and Kirehe, in the Eastern lowlands of Rwanda (1,478 m above sea level). Quinoa yield ranged from 189 to 1,855 kg/ha in Musanze and from 140 to 1,259 kg/ha in Kirehe. Millet yield ranged from 16 to 1,536 kg/ha in Musanze and from 21 to 159 kg/ha in Kirehe. Mean cultivar plant height was shorter in Kirehe (μ = 73 and 58 cm for quinoa and millets, respectively), than Musanze (μ = 93 and 76 cm for quinoa and millets, respectively). There was a genotype × environment interaction for maturity in quinoa and millet in both years. Across locations, “Titicaca” and “Earlybird” (Panicum miliaceum) were the earliest maturing quinoa and millet varieties, respectively, both with an average of 91 days to maturity. The results suggest that quinoa and millet have potential as regional crops for inclusion in the traditional dryland cropping rotations in Rwanda, thereby contributing to increased cropping system diversity and food security.
Collapse
|
34
|
Gowda NAN, Siliveru K, Prasad PVV, Bhatt Y, Netravati BP, Gurikar C. Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods 2022; 11:foods11040499. [PMID: 35205975 PMCID: PMC8871339 DOI: 10.3390/foods11040499] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Globally, billions of people are experiencing food insecurity and malnutrition. The United Nations has set a global target to end hunger by 2030, but we are far from reaching it. Over the decade, climate change, population growth and economic slowdown have impacted food security. Many countries are facing the challenge of both undernutrition and over nutrition. Thus, there is a need to transform the food system to achieve food and nutrition security. One of the ways to reach closer to our goal is to provide an affordable healthy and nutritious diet to all. Millets, the nutri-cereals, have the potential to play a crucial role in the fight against food insecurity and malnutrition. Nutri-cereals are an abundant source of essential macro- and micronutrients, carbohydrates, protein, dietary fiber, lipids, and phytochemicals. The nutrient content and digestibility of millets are significantly influenced by the processing techniques. This review article highlights the nutritional characteristics and processing of Indian millets, viz. foxtail, kodo, proso, little, and pearl millets. It also envisages the effect of traditional and modern processing techniques on millet’s nutritional properties. An extensive literature review was conducted using the research and review articles related to processing techniques of millets such as fermentation, germination, dehulling, extrusion, cooking, puffing, popping, malting, milling, etc. Germination and fermentation showed a positive improvement in the overall nutritional characteristics of millets, whereas excessive dehulling, polishing, and milling resulted in reduction of the dietary fiber and micronutrients. Understanding the changes happening in the nutrient value of millets due to processing can help the food industry, researchers, and consumers select a suitable processing technique to optimize the nutrient value, increase the bioavailability of nutrients, and help combat food and nutrition security.
Collapse
Affiliation(s)
- N. A. Nanje Gowda
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, India; (Y.B.); (B.P.N.); (C.G.)
- Correspondence: (N.A.N.G.); (K.S.); Tel.: +91-9964477567 (N.A.N.G.); +1-(630)-210-2462 (K.S.)
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (N.A.N.G.); (K.S.); Tel.: +91-9964477567 (N.A.N.G.); +1-(630)-210-2462 (K.S.)
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| | - Yogita Bhatt
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, India; (Y.B.); (B.P.N.); (C.G.)
| | - B. P. Netravati
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, India; (Y.B.); (B.P.N.); (C.G.)
| | - Chennappa Gurikar
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bangalore 560054, India; (Y.B.); (B.P.N.); (C.G.)
| |
Collapse
|
35
|
Banerjee A, Roychoudhury A. Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. CHEMOSPHERE 2022; 286:131827. [PMID: 34403897 DOI: 10.1016/j.chemosphere.2021.131827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Precision farming using nanoparticles is a cutting-edge technology for safe cultivation of crop plants in marginal areas afflicted with environmental/climatic stresses like salinity, drought, extremes of temperature, ultraviolet B stress or polluted with xenobiotics like toxic heavy metals and fluoride. Major cereal crops like rice, wheat, maize, barley, sorghum and millets which provide the staple food for the entire global population are mainly glycophytes and are extremely susceptible to abiotic stress-induced oxidative injuries. Nanofertilization/exogenous spraying of beneficial nanoparticles alleviates the oxidative damages in cereals by altering the homeostasis of phytohormones like abscisic acid, gibberellins, cytokinins, auxins, salicylic acid, jasmonic acid and melatonin and by triggering the synthesis of gasotransmitter nitric oxide. Signaling cross-talks of nanoparticles with plant growth regulators enable activation of the defence machinery, comprising of antioxidants, thiol-rich compounds and glyoxalases and restrict xenobiotic mobilization by suppressing the expression of associated transporters. Accelerated nutrient uptake and grain biofortification under the influence of nanoparticles result in optimum crop productivity under sub-optimal conditions. However, over-dosing of even beneficial nanoparticles promotes severe phytotoxicity. Hence, the concentration of nanoparticles and mode of administering need to be thoroughly standardized before large-scale field applications, to ensure sustainable cereal cultivation with minimum ecological imbalance.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
36
|
Yarrakula S, Mummaleti G, Pare A, Vincent H, Saravanan S. Hot air–assisted radio frequency hybrid technology for inactivating lipase in pearl millet. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Srinivas Yarrakula
- Centre for Excellence in Non‐Thermal Processing, Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| | - Gopinath Mummaleti
- Department of Food Biotechnology Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| | - Akash Pare
- Department of Academics & Human Resource Development Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| | - Hema Vincent
- Centre for Excellence in Grain Science Food Processing Business Incubation Centre Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| | - Shanmugasundaram Saravanan
- Centre for Excellence in Non‐Thermal Processing, Planning and Monitoring Cell Indian Institute of Food Processing Technology Thanjavur Tamil Nadu India
| |
Collapse
|
37
|
Adzitey F, Yaro J, Korese JK, Jeinie MH, Huda N. The effect of raw pearl millet flour inclusion on the quality and formulation cost of beef sausages. POTRAVINARSTVO 2021. [DOI: 10.5219/1658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the sensory, nutritional, and physicochemical characteristics as well as formulation cost of beef sausages formulated with raw pearl millet flour (RaPMF) as an extender. Four treatments were formulated with 0%, 5%, 10% and 15% RaPMF. Ash, carbohydrate, fat, and protein contents of the beef sausages were not influenced (p <0.05) by the RaPMF. The calcium, magnesium, potassium, and pH contents were highest (p <0.05) in the 15% RaPMF beef sausages. Cooking loss was at least (p <0.05) for the 15% RaPMF beef sausages. Formulation of beef sausages with RaPMF did not affect (p >0.05) the sensory properties (week 1), water holding capacity, peroxide value, lightness (week 1), and yellowness (week 1). The formulation cost was least for 15% RaPMF beef sausages and highest for 0% RaPMF beef sausages. As a general conclusion, RaPMF improved the mineral composition of the beef sausages and reduced production costs without compromising its physicochemical and sensory properties.
Collapse
|
38
|
Gluten-Free Cereal Products and Beverages: A Review of Their Health Benefits in the Last Five Years. Foods 2021; 10:foods10112523. [PMID: 34828804 PMCID: PMC8618534 DOI: 10.3390/foods10112523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023] Open
Abstract
In the past decades, food products and beverages made from gluten-free cereals were initially created for certain groups of people who experience gluten-related disorders such as wheat allergies, gluten ataxia, non-celiac gluten sensitivity, and the most well-known, celiac disease. Nowadays, the consumption of gluten-free products is not only restricted to targeted groups, but it has become a food trend for normal consumers, especially in countries such as the UK, the US, and some European countries, who believe that consuming a gluten-free product is a healthier choice compared to normal gluten-containing products. However, some research studies have disapproved of this claim because the currently available gluten-free products in the market are generally known to be lower in proteins, vitamins, and minerals and to contain higher lipids, sugar, and salt compared to their gluten-containing counterparts. The use of other gluten-free cereals such as sorghum, millet, and teff as well as pseudo cereals such as buckwheat and quinoa has gained significant interest in research in terms of their various potential health benefits. Hence, this review highlights the potential health benefits of some gluten-free cereals and pseudo cereals apart from corn and rice in the last decade. The potential health benefits of gluten-free products such as bread, pasta, crackers, and cookies and the health benefits of some other non-alcoholic beverages made from gluten-free cereals and pseudo cereals are reported.
Collapse
|
39
|
Kumar A, Rani M, Mani S, Shah P, Singh DB, Kudapa H, Varshney RK. Nutritional Significance and Antioxidant-Mediated Antiaging Effects of Finger Millet: Molecular Insights and Prospects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.684318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aging is a multifaceted process that is associated with progressive, lethal, and unalterable changes like damage to different molecules (DNA, proteins, and lipids), cells, tissues, and organs. It is an inevitable process but can be delayed by both genetic and dietary interventions. Besides aging, premature death and age-associated diseases can be dealt with diet regulation and the use of compounds that inhibit the stress responsiveness or promote the damage repair signaling pathways. Natural compounds offer a repertoire of highly diverse structural scaffolds that can offer hopeful candidate chemical entities with antiaging potential. One such source of natural compounds is millets, which are minor cereals with an abundance of high fiber, methionine, calcium, iron, polyphenols, and secondary metabolites, responsible for numerous potential health benefits. The present review article elucidates the nature and significance of different phytochemicals derived from millets with a major focus on finger millet and highlights all the important studies supporting their health benefits with special emphasis on the antiaging effect of these compounds. The present article also proposes the possible mechanisms through which millets can play a significant role in the suppression of aging processes and aging-related diseases by influencing genetic repair, protein glycation, and stress-responsive pathways. We further discuss well-established natural compounds for their use as antiaging drugs and recommend raising awareness for designing novel formulations/combinations from them so that their maximum antiaging potential can be harnessed for the benefit of mankind.
Collapse
|
40
|
Zhang F, Fu Y, Liu Z, Shen Q. Comparison of the characteristics of prolamins among foxtail millet varieties with different palatability: Structural, morphological, and physicochemical properties. Int J Biol Macromol 2021; 186:194-205. [PMID: 34246670 DOI: 10.1016/j.ijbiomac.2021.07.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Recently, there are considerable interests in the influence of prolamins on eating quality of grains. To inquire the potential effect of prolamins on the palatability of foxtail millet, prolamin characteristics under its raw (PR) and post-cooked (PC) state among three typical varieties with high (Zhonggu, ZG), medium (Zhaonong, ZN), and low (Hongmiao, HM) palatability were compared. The distinctive differences in amino acid composition, molecular structure, physicochemical properties were found in PRs and PCs, especially for HM variety. HM-PR recorded the lowest hydrophobic amino acids and surface hydrophobicity while having the superior hydration properties. The lowest denaturation temperature was found in HM-PR, which also had the highest denaturation enthalpy (ΔH). Nevertheless, HM-PR exhibited irregularly spherical protein body with the largest mean diameter. Evidenced by the highest random coil and lower α-helix and β-sheet content, a less stable secondary structure of HM-PR was found, corresponding to the most intensified disulfide cross-linking and protein aggregations in HM upon cooking. Overall, HM-PR was presumed to greatly affect the hydro-thermal utilization efficiency of starch granules during cooking, given the steric-hindrance effect of prolamins on granules in endosperm. The Present study provided new insights into the role of prolamins on foxtail millet palatability.
Collapse
Affiliation(s)
- Fan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yongxia Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
41
|
Comparative Analysis of Flavonoid Metabolites in Foxtail Millet ( Setaria italica) with Different Eating Quality. Life (Basel) 2021; 11:life11060578. [PMID: 34207187 PMCID: PMC8235519 DOI: 10.3390/life11060578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Foxtail millet (Setaria italica) is an important minor cereal crop in China. The yellow color of the de-husked grain is the most direct aspect for evaluating the foxtail millet quality. The yellow pigment mainly includes carotenoids (lutein and zeaxanthin) and flavonoids. To reveal the diversity and specificity of flavonoids in foxtail millet, we chose three high eating quality and two poor eating quality varieties as research materials. A total of 116 flavonoid metabolites were identified based on Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) system. The tested varieties contained similar levels of flavonoid metabolites, but with each variety accumulating its unique flavonoid metabolites. A total of 33 flavonoid metabolites were identified as significantly discrepant between high eating quality and poor eating quality varieties, which were mainly in the flavonoid biosynthesis pathway and one of its branches, the flavone and flavonol biosynthesis pathway. These results showed the diversified components of flavonoids accumulated in foxtail millets and laid the foundation for further research on flavonoids and the breeding for high-quality foxtail millet varieties.
Collapse
|
42
|
Geisen S, Krishnaswamy K, Myers R. Physical and Structural Characterization of Underutilized Climate-Resilient Seed Grains: Millets, Sorghum, and Amaranth. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.599656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While the world is facing food and nutritional challenges leading to the multifaceted burden of malnutrition (underweight and overweight), there is a need to sustainably diversify and explore underutilized crops. Climate-resilient crops, which have the potential to withstand climate crises, have drought resistance, and provide healthy foods with essential vitamins and minerals. Ancient seed grains like amaranth, millets, and sorghum are highly nutritious seed grains that are underutilized, and there is a need for comprehensive research into their properties. This study will specifically investigate amaranth alongside barnyard, finger, kodo, little, pearl, proso millets, and sorghum. Physical and structural properties of the ancient seed grains can provide useful data for storage and food processing. The angle of repose, porosity, and water activity of the grains varied from 19.3° to 23.9°, 3.6 to 17.4%, and 0.533 to 0.660 at 25.5°C, respectively. Additionally, Scanning Electron Microscopy (SEM) was used to observe the surface characteristics and overall shape of each grain. SEM images of the millets shows the impact of dehulling on the surface morphology of the grains (little, barnyard, proso, and kodo millets). This calls for research and development of novel food processing technologies to minimize loss and damage during processing of climate-resilient crops.
Collapse
|
43
|
Numan M, Serba DD, Ligaba-Osena A. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Genes (Basel) 2021; 12:genes12050739. [PMID: 34068886 PMCID: PMC8156724 DOI: 10.3390/genes12050739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Millets are important cereal crops cultivated in arid and semiarid regions of the world, particularly Africa and southeast Asia. Climate change has triggered multiple abiotic stresses in plants that are the main causes of crop loss worldwide, reducing average yield for most crops by more than 50%. Although millets are tolerant to most abiotic stresses including drought and high temperatures, further improvement is needed to make them more resilient to unprecedented effects of climate change and associated environmental stresses. Incorporation of stress tolerance traits in millets will improve their productivity in marginal environments and will help in overcoming future food shortage due to climate change. Recently, approaches such as application of plant growth-promoting rhizobacteria (PGPRs) have been used to improve growth and development, as well as stress tolerance of crops. Moreover, with the advance of next-generation sequencing technology, genome editing, using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system are increasingly used to develop stress tolerant varieties in different crops. In this paper, the innate ability of millets to tolerate abiotic stresses and alternative approaches to boost stress resistance were thoroughly reviewed. Moreover, several stress-resistant genes were identified in related monocots such as rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), and other related species for which orthologs in millets could be manipulated by CRISPR/Cas9 and related genome-editing techniques to improve stress resilience and productivity. These cutting-edge alternative strategies are expected to bring this group of orphan crops at the forefront of scientific research for their potential contribution to global food security.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
| | - Desalegn D. Serba
- USDA-ARS, U. S. Arid-Land Agricultural Research Center, 21881 N Cardon Ln., Maricopa, AZ 85138, USA;
| | - Ayalew Ligaba-Osena
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA;
- Correspondence:
| |
Collapse
|
44
|
Sharma R, Sharma S, Dar B, Singh B. Millets as potential nutri‐cereals: a review of nutrient composition, phytochemical profile and techno‐functionality. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajan Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - Savita Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - B.N. Dar
- Department of Food Technology Islamic University of Science & Technology 1‐University Avenue Awantipora Srinagar Kashmir192122India
| | - Baljit Singh
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| |
Collapse
|
45
|
Hooper CM, Castleden IR, Aryamanesh N, Black K, Grasso SV, Millar AH. CropPAL for discovering divergence in protein subcellular location in crops to support strategies for molecular crop breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:812-827. [PMID: 32780488 DOI: 10.1111/tpj.14961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Agriculture faces increasing demand for yield, higher plant-derived protein content and diversity while facing pressure to achieve sustainability. Although the genomes of many of the important crops have been sequenced, the subcellular locations of most of the encoded proteins remain unknown or are only predicted. Protein subcellular location is crucial in determining protein function and accumulation patterns in plants, and is critical for targeted improvements in yield and resilience. Integrating location data from over 800 studies for 12 major crop species into the cropPAL2020 data collection showed that while >80% of proteins in most species are not localised by experimental data, combining species data or integrating predictions can help bridge gaps at similar accuracy. The collation and integration of over 61 505 experimental localisations and more than 6 million predictions showed that the relative sizes of the protein catalogues located in different subcellular compartments are comparable between crops and Arabidopsis. A comprehensive cross-species comparison showed that between 50% and 80% of the subcellulomes are conserved across species and that conservation only depends to some degree on the phylogenetic relationship of the species. Protein subcellular locations in major biosynthesis pathways are more often conserved than in metabolic pathways. Underlying this conservation is a clear potential for subcellular diversity in protein location between species by means of gene duplication and alternative splicing. Our cropPAL data set and search platform (https://crop-pal.org) provide a comprehensive subcellular proteomics resource to drive compartmentation-based approaches for improving yield, protein composition and resilience in future crop varieties.
Collapse
Affiliation(s)
- Cornelia M Hooper
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian R Castleden
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Nader Aryamanesh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- Robinson Research Institute and Adelaide Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Kylie Black
- University Library, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Sally V Grasso
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
46
|
Zhang F, Laraib Y, Chai X, Shen Y, Wang X, Li S, Guo E, Diao X, Shen Q. The effect of reducing agent DTT on pasting, hydration and microstructure properties of foxtail millet. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|