1
|
Wang H, Xiang L, Zhang Z, Li G, Li P, Chen W, Fang Y, Lin X, Lin S. Elucidating the interaction mechanism of rutin with β-casein and β-lactoglobulin: A comprehensive analysis using multi-spectroscopy, molecular docking, and molecular dynamic simulations. Food Chem 2025; 476:143411. [PMID: 39987803 DOI: 10.1016/j.foodchem.2025.143411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Polyphenol-protein interactions are crucial for food processing, nutrition, and functional properties. This study investigates the interaction between rutin and β-casein (β-CAS) or β-lactoglobulin (β-LG) using multispectral analysis, molecular docking, and molecular dynamics (MD) simulations. Fluorescence spectroscopy reveals that rutin binds spontaneously (ΔG < 0) to β-CAS and β-LG, forming complexes with binding constants (Ka) at 298 K of 42.500 × 103 and 2.101 × 103 L·mol-1, respectively, and at 308 K of 5.814 × 103 and 4.350 × 103 L·mol-1. Multispectral analysis and microscopy reveal complex formation and changes in the proteins' secondary, crystalline, and microstructures. Molecular docking and MD simulations verify complex stability, showing heightened binding affinity between rutin and β-CAS. These results validate hydrophobic interactions and hydrogen bonding as the main forces between rutin and the two proteins. These findings offer insights for using milk proteins as rutin carriers and support potential food industry application.
Collapse
Affiliation(s)
- Hailin Wang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Leiwen Xiang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Zhuangwei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Guoqiang Li
- School of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhe Jiang Institute of Tianjin University, Shaoxing, Zhejiang, China.
| | - Peng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Wentao Chen
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China; Fujian Province-Indonesia Marine Food Joint Research and Development Center, College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Yu Fang
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Xinyan Lin
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| | - Shufen Lin
- College of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, Fujian, China
| |
Collapse
|
2
|
Li Z, Zhang W, Abubaker MA, Shu Q, Liu Y. In silico identification and experimental validation of two types of angiotensin-converting enzyme (ACE) and xanthine oxidase (XO) milk inhibitory peptides. Food Chem 2025; 464:141864. [PMID: 39504900 DOI: 10.1016/j.foodchem.2024.141864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Bioactive peptides have received significant attention due to their natural origin, low toxicity, and targeting specificity in the past decade. This study identified highly active ACE/XO inhibitors using molecular simulation and online databases and validated their in vitro antioxidant activity and the mechanisms of molecular interactions. According to computer predictions, Asp-Gly-Gly (DGG) and Asp-Gly-Met (DGGM) were identified as potential hydrolysates of common gastrointestinal peptidases with well water-soluble, non-toxic, and non-allergenic. Fourier transform infrared spectroscopy showed that the two peptides altered the enzyme's secondary structure, decreasing α-helix content by about 13 %, along with increasing β-sheet, randam coli, and β-turns content. Molecular docking and molecular dynamics simulations showed that hydrogen bonding and electrostatic interactions caused DGG and DGGM to form stable and dense complexes with the two enzymes. This study provides a new way for economical and efficient screening of new ACE and XO inhibitory peptides from natural proteins.
Collapse
Affiliation(s)
- Zekun Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Wenhua Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Qin Shu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
3
|
Huang P, Wang Z, Zhao X, Cui C. Green synthesis of N-succinyl-L-tyrosine: Decoding its taste-enhancing effects and mechanisms via sensory evaluation and molecular simulation. Food Res Int 2025; 202:115755. [PMID: 39967071 DOI: 10.1016/j.foodres.2025.115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/01/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Amid escalating global public health concerns linked to dietary habits, the reduction of salt, monosodium glutamate, and sugar is increasingly recognized as a prevailing trend. This study explored the green synthesis of a novel taste enhancer, N-succinyl-L-tyrosine (N-Suc-Tyr), alongside its mechanisms of taste enhancement. N-Suc-Tyr was synthesized through an enzymatic process utilizing food-grade enzymes within an aqueous environment. Sensory evaluations revealed that the addition of N-Suc-Tyr at a concentration of 2 mg/L markedly enhanced the intensities and durations of umami, saltiness, sweetness, and kokumi tastes. Sigmoid curve analysis further confirmed the synergistic effects of N-Suc-Tyr on enhancing these taste sensations. Through molecular docking and dynamic simulations, it was demonstrated that N-Suc-Tyr bound tightly and stably to various taste receptors, thus enhancing the sensations of umami, sweetness, saltiness, and kokumi. These results provided a comprehensive understanding of the potential and mechanisms through which enzymatically synthesized N-Suc-Tyr could enhance tastes, thereby contributing to the advancement of the high-grade condiment industry.
Collapse
Affiliation(s)
- Pimiao Huang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Zhirong Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xu Zhao
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, 510640 Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Pant R, Kumar R, Sharma S, Karuppasamy R, Veerappapillai S. Exploring the potential of Halalkalibacterium halodurans laccase for endosulfan and chlorophacinone degradation: insights from molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:742-756. [PMID: 37990551 DOI: 10.1080/07391102.2023.2283165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Pesticides are widely used in agriculture but at the same time, a majority of them are known to cause serious harm to health and the environment. In the recent past, laccases have been reported as key enzymes having the ability to degrade pollutants by converting them into less toxic forms. In this investigation, laccase from polyextremophilic bacterium Halalkalibacterium halodurans C-125 was analyzed for its structural, physicochemical, and functional characterization using in silico approaches. The 3D model of the said enzyme is unknown; therefore, the model was generated by template-independent modeling using ROBETTA, I-TASSER, and Alphafold server. The best-generated model from Alphafold with a confidence of 0.95 was validated from ERRAT and Verify 3D scores of 89.95 and 91.80%, respectively. The Ramachandran plot generated using the PROCHECK server further predicted the accuracy of the model with 93.7% and 5.9% of residues present in most favored and additional allowed regions of the plot respectively. The active sites, ion binding sites, and subcellular localization of laccase were also predicted. The generated model was docked with 121 pollutants (pesticides, insecticides, herbicides, fungicides, and rodenticides) for its degradation potential towards these pollutants. Two ligands chlorophacinone (based on the highest binding energy) and endosulfan (based on agricultural uses) were selected for molecular dynamic simulation studies. Endosulfan as a pesticide is banned but in some countries governments allow its use for special purposes which need serious consideration on developing bioremediation approaches for endosulfan degradation. MD simulation studies revealed that both chlorophacinone and endosulfan form hydrogen bonds and hydrophobic bonds with the active site of laccase and chlorophacinone-laccase complex were more stable in comparison to endosulfan. The present investigation provides insight into the structural features of laccase and its potential for the degradation of pesticides which can be further validated by experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajat Pant
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Ravi Kumar
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
- Department of Biological Sciences and Engineering, Netaji Subhas Institute of Technology (University of Delhi), New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Modanwal S, Mishra A, Mishra N. Exploration of rutin derivatives as potential inhibitors of prostate cancer signaling pathways: A comprehensive in-silico study. Biochem Biophys Res Commun 2025; 746:151279. [PMID: 39754971 DOI: 10.1016/j.bbrc.2024.151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Prostate cancer is a widespread health issue that affects men worldwide. It is one of the most common forms of cancer, and its development is influenced by a combination of hereditary, epigenetic, environmental, age, and lifestyle factors. Given that it is the second most common cause of cancer-related deaths in men, it is crucial to comprehend its complex facets. Present research especially targets the 3-kinase/protein kinase B, Epidermal Growth Factor Receptor, and extracellular signal-related kinase pathways, which are known to be significantly involved in prostate cancer progression. Here, Rutin derivatives were screened against selected prostate cancer targets. Molecular docking was performed to identify favorable interactions and the most promising compound. Further, Density functional theory, pharmacokinetics, Molecular dynamics simulation, principal component analysis, free energy landscape analysis, and Molecular Mechanics Poisson-Boltzmann Surface Area provided additional insights into selecting the best drug candidate. Among all the selected rutin derivatives, RU4b1 has potent inhibitory action. We also performed predictive analysis to identify the distinct metabolic sites within the structure of RU4b1. RU4b1 also exhibits drug-like properties and potent antioxidant activity. The findings were also compared with standard drugs and reference molecules of the respective proteins, and it is noteworthy that RU4b1 exhibited superior action compared to the standard drugs and reference molecules. This study aims to contribute valuable insights into developing targeted therapies for prostate cancer, emphasizing the potential of rutin derivatives as effective anti-cancer agents.
Collapse
Affiliation(s)
- Shristi Modanwal
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh, 211012, India
| | - Ashutosh Mishra
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh, 211012, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, Uttar Pradesh, 211012, India.
| |
Collapse
|
6
|
Yadav K, Patel K, Mani A, Yadav S, Yadav D. Elucidating the potential of bioactive of Trichoderma sp.. in combating pathogenesis by Fusarium sp.. by targeting pectin lyases: a bioinformatics approach. Biochem Biophys Res Commun 2025; 742:151111. [PMID: 39644607 DOI: 10.1016/j.bbrc.2024.151111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Pectin lyase is an industrially important enzyme, predominately used in fruit juice clarification and retting of fibers. It also promotes pathogenesis via the degradation of the pectin. The phytopathogen, Fusarium infects various crops and causes several diseases. Trichoderma sp. is a promising biocontrol agent that is vital in maintaining plant health and disease prevention. In the current study, a computational approach utilizing structure prediction, molecular docking, molecular dynamics, and MM-PBSA analysis was used to analyze the potential role of bioactive compounds secreted by Trichoderma sp. in inhibiting the pectin lyase enzyme from Fusarium proliferatum, F. fujikuroi, F. graminearum, F. oxysporum and F. verticillioides. Molecular docking with secondary metabolites revealed that Viridiofungin A secreted by Trichoderma harzianum and Virone secreted by T. virens are bioactive compounds with immense potential to inhibit PNLs of Fusarium species. Further, the rigidity of the structure and stability of the docked complex were confirmed via Molecular dynamic simulations assessed through multiple parameters from the simulation trajectory data. Dual culture assay of T. harzianum and T. virens with F. proliferatum, F. fujikuroi, F. graminearum, F. oxysporum, and F. verticillioides showed variable mycelial inhibition. The research provides insight into the potential of the bioactive compounds secreted by Trichoderma species as an effective agent for the inhibition of pectin lyases produced by phytopathogens, especially Fusarium species. The proposed research can be used to develop bioformulations that function as biopesticides, offering a sustainable replacement for chemical products.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, 211004, Uttar Pradesh, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, 211004, Uttar Pradesh, India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India.
| |
Collapse
|
7
|
Vlasiou MC. Vet informatics and the future of drug discovery in veterinary medicine. Front Vet Sci 2024; 11:1494242. [PMID: 39664897 PMCID: PMC11631842 DOI: 10.3389/fvets.2024.1494242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Manos C. Vlasiou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, Nicosia, Cyprus
| |
Collapse
|
8
|
Sun H, Yao J, Long Z, Luo R, Wang J, Liu SS, Tang L, Wu M. A new parameter for quantitatively characterizing antibiotic hormesis: QSAR construction and joint toxic action judgment. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135767. [PMID: 39255662 DOI: 10.1016/j.jhazmat.2024.135767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Antibiotics usually induce the hormetic effects on bacteria, featured by low-dose stimulation and high-dose inhibition, which challenges the central belief in toxicity assessment and environmental risk assessment of antibiotics. However, there are currently no ideal parameters to quantitatively characterize hormesis. In this study, an effective area in hormesis (AH) was developed to quantify the biphasic dose-responses of single antibiotics (sulfonamides (SAs), sulfonamides potentiators (SAPs), and tetracyclines (TCs)) and binary mixtures (SAs-SAPs, SAs-TCs, and SAs-SAs) to the bioluminescence of Aliivibrio fischeri. Using Ebind (the lowest interaction energy between antibiotic and target protein) and Kow (octanol-water partition coefficient) as the structural descriptors, the reliable quantitative structure-activity relationship (QSAR) models were constructed for the AH values of test antibiotics and mixtures. Furthermore, a novel method based on AH was established to judge the joint toxic actions of binary antibiotics, which mainly exhibited synergism. The results also indicated that SAPs (or TCs) contributed more than SAs in the hormetic effects of antibiotic mixtures. This study proposes a new quantitative parameter for characterizing and predicting antibiotic hormesis, and considers hormesis as an integrated whole to reveal the combined effects of antibiotics, which will promote the development of risk evaluation for antibiotics and their mixtures.
Collapse
Affiliation(s)
- Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhenheng Long
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruijia Luo
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiajun Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
9
|
de Almeida CC, Baião DDS, da Silva DVT, da Trindade LR, Pereira PR, Conte-Junior CA, Paschoalin VMF. Dairy and nondairy proteins as nano-architecture structures for delivering phenolic compounds: Unraveling their molecular interactions to maximize health benefits. Compr Rev Food Sci Food Saf 2024; 23:e70053. [PMID: 39530635 DOI: 10.1111/1541-4337.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Phenolic compounds are recognized for their benefits against degenerative diseases. Clinical and nutritional applications are limited by their low solubility, stability, and bioavailability, compromising their efficacy. Natural macromolecules, such as lipids, polysaccharides, and proteins, employed as delivery systems can efficiently overcome these limitations. In this sense, proteins are attractive due to their biocompatibility and dynamic structure properties, functional adaptability and self-assembly capabilities, offering stability, efficient encapsulation, and controlled release. This review explores the potential use of dairy proteins, caseins, and whey proteins, and, alternatively, nondairy proteins, gelatin, human serum albumin, maize zein, and soybean proteins, in building wall materials for the delivery of phenolic compounds. To optimize performance, aspects, such as protein-phenolic affinity and complex stability/activity, should be considered when designing particle nano-architecture. Molecular interactions between protein-phenolic compound complexes are, thus, further discussed, as well as the effects of temperature and pH and strategies to stabilize and preserve nano-architecture and retain phenolic compound activity. All proteins harbor one or more putative binding sites, shared or not, depending on the phenolic compound. Preservation techniques are still a case-to-case study, as no behavior patterns among different complexes are noted. Safety aspects necessary for the marketing of nanoproducts, such as characterization, toxicity assessments, and post-market monitoring as defined by the European Food Safety Authority and the Food and Drug Administration, are discussed, evidencing the need for a unified regulation. This review broadens our understanding and opens new opportunities for the development of novel protein-based nanocarriers to obtain more effective and stable products, enhancing phenolic compound delivery and health benefits.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Diego Dos Santos Baião
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Lucileno Rodrigues da Trindade
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Patricia Ribeiro Pereira
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
- Center for Food Analysis, Technological Development Support Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vania Margaret Flosi Paschoalin
- Department of Biochemistry, Chemistry Institute, Graduate Studies in Food Science, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemistry, Graduate Studies in Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Zhao C, Liu X, Tian H, Li Z. Integrated characterization of arabica coffee husk tea using flavoromics, targeted screening, and in silico approaches. Food Chem X 2024; 23:101556. [PMID: 39007118 PMCID: PMC11245994 DOI: 10.1016/j.fochx.2024.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
This study aimed to identify the key volatile compounds in two types of processed arabica coffee husk tea, elucidate their olfactory characteristics, and investigate their antioxidant and anti-inflammatory activities. Sensory evaluation indicated differences between the two groups. A total of 64 and 99 compounds were identified in the C and FC groups, respectively, with 5 identified as key aroma compounds (ROAV≥1). Molecular simulations indicated that four common key aroma compounds were successfully docked with OR1A1 and OR5M3 receptors, forming stable complexes. Furthermore, 14 volatile compounds interacted with 140 targets associated with oxidation and inflammation, linking to 919 gene ontology (GO) terms and 135 kyoto encyclopedia of genes and genomes (KEGG) pathways. Molecular simulations revealed that these volatile components showed antioxidant and anti-inflammatory effects by interacting with core receptors through several forces, including van der Waals, Pi-alkyl, and Pi-cation interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiuwei Liu
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Hao Tian
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Zelin Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
11
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
12
|
Yu D, Li H, Liu Y, Yang X, Yang W, Fu Y, Zuo YA, Huang X. Application of the molecular dynamics simulation GROMACS in food science. Food Res Int 2024; 190:114653. [PMID: 38945587 DOI: 10.1016/j.foodres.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Food comprises proteins, lipids, sugars and various other molecules that constitute a multicomponent biological system. It is challenging to investigate microscopic changes in food systems solely by performing conventional experiments. Molecular dynamics (MD) simulation serves as a crucial bridge in addressing this research gap. The Groningen Machine for Chemical Simulations (GROMACS) is an open-source, high-performing molecular dynamics simulation software that plays a significant role in food science research owing to its high flexibility and powerful functionality; it has been used to explore the molecular conformations and the mechanisms of interaction between food molecules at the microcosmic level and to analyze their properties and functions. This review presents the workflow of the GROMACS software and emphasizes the recent developments and achievements in its applications in food science research, thus providing important theoretical guidance and technical support for obtaining an in-depth understanding of the properties and functions of food.
Collapse
Affiliation(s)
- Dongping Yu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Haiping Li
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yuzi Liu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingqun Yang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Yang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yiran Fu
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yi-Ao Zuo
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xianya Huang
- Tianjin Key Laboratory of Food Biotechnology, Faculty of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| |
Collapse
|
13
|
Zhu Y, Chen C, Dai Z, Wang H, Zhang Y, Zhao Q, Xue Y, Shen Q. Identification, screening and molecular mechanisms of natural stable angiotensin-converting enzyme (ACE) inhibitory peptides from foxtail millet protein hydrolysates: a combined in silico and in vitro study. Food Funct 2024; 15:7782-7793. [PMID: 38967438 DOI: 10.1039/d4fo01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The stability of bioactive peptides under various food processing conditions is the basis for their use in industrial manufacturing. This study aimed to identify natural ACE inhibitors with excellent stability and investigate their physicochemical properties and putative molecular mechanisms. Five novel ACE inhibitory peptides (QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ) were isolated and identified using RP-HPLC and Nano LC-MS/MS with foxtail millet protein hydrolysates as the raw material. These peptides are non-toxic and exhibit strong ACE inhibitory activity in vitro (IC50 values between 0.13 mg mL-1 and 0.56 mg mL-1). In addition to QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ have excellent human intestinal absorption. Compared to FPGVSPF and SPAQLLPF, the stable helical structure of LVPYRP and WYWPQ allows them to maintain high stability under conditions that mimic gastrointestinal digestion and various food processing (temperatures, pH, sucrose, NaCl, citric acid, sodium benzoate, Cu2+, Zn2+, K+, Mg2+, Ca2+). The results of molecular docking and molecular dynamics simulation suggest that LVPYRP has greater stability and binding capacity to ACE than WYWPQ. LVPYRP might attach to the active pockets (S1, S2, and S1') of ACE via hydrogen bonds and hydrophobic interactions, then compete with Zn2+ in ACE to demonstrate its ACE inhibitory activity. The binding of LVPYRP to ACE enhances the rearrangement of ACE's active structural domains, with electrostatic and polar solvation energy contributing the most energy to the binding. Our findings suggested that LVPYRP derived from foxtail millet protein hydrolysates has the potential to be incorporated into functional foods to provide antihypertensive benefits.
Collapse
Affiliation(s)
- Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Changyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Yiyun Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China.
| |
Collapse
|
14
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
15
|
Chen Y, Forster L, Wang K, Gupta HS, Li X, Huang J, Rui Y. Investigation of collagen reconstruction mechanism in skin wound through dual-beam laser welding: Insights from multi-spectroscopy, molecular dynamics simulation, and finite element multiphysics simulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112927. [PMID: 38701631 DOI: 10.1016/j.jphotobiol.2024.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Since the mechanism underlying real-time acquisition of mechanical strength during laser-induced skin wound fusion remains unclear, and collagen is the primary constituent of skin tissue, this study investigates the structural and mechanical alterations in collagen at temperatures ranging from 40 °C to 60 °C using various spectroscopic techniques and molecular dynamics calculations. The COMSOL Multiphysics coupling is employed to simulate the three-dimensional temperature field, stress-strain relationship, and light intensity distribution in the laser thermal affected zone of skin wounds during dual-beam laser welding process. Raman spectroscopy, synchronous fluorescence spectroscopy and circular dichroism measurement results confirm that laser energy activates biological activity in residues, leading to a transformation in the originally fractured structure of collagen protein for enhanced mechanical strength. Molecular dynamics simulations reveal that stable hydrogen bonds form at amino acid residues within the central region of collagen protein when the overall temperature peak around the wound reaches 60 °C, thereby providing stability to previously fractured skin incisions and imparting instantaneous strength. However, under a 55 °C system, Type I collagen ensures macrostructural stability while activating biological properties at amino acid bases to promote wound healing function; this finding aligns with experimental analysis results. The COMSOL simulation outcomes also correspond well with macroscopic morphology after laser welding samples, confirming that by maintaining temperatures between 55 °C-60 °C during laser welding of skin incisions not only can certain instantaneous mechanical strength be achieved but irreversible thermal damage can also be effectively controlled. It is anticipated that these findings will provide valuable insights into understanding the healing mechanism for laser-welded skin wounds.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, UK.
| | - Laura Forster
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, UK
| | - Kehong Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Himadri S Gupta
- Institute of Bioengineering and School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, UK
| | - Xiaopeng Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jun Huang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunfeng Rui
- Clinical Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
16
|
Long Z, Yao J, Wu M, Liu SS, Tang L, Lei B, Wang J, Sun H. Acute toxicity of binary mixtures for quorum sensing inhibitors and sulfonamides against Aliivibrio fischeri: QSAR investigations and joint toxic actions. Curr Res Toxicol 2024; 6:100172. [PMID: 38803613 PMCID: PMC11128832 DOI: 10.1016/j.crtox.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Quorum sensing inhibitors (QSIs), as a kind of ideal antibiotic substitutes, have been recommended to be used in combination with traditional antibiotics in medical and aquaculture fields. Due to the co-existence of QSIs and antibiotics in environmental media, it is necessary to evaluate their joint risk. However, there is little information about the acute toxicity of mixtures for QSIs and antibiotics. In this study, 10 QSIs and 3 sulfonamides (SAs, as the representatives for traditional antibiotics) were selected as the test chemicals, and their acute toxic effects were determined using the bioluminescence of Aliivibrio fischeri (A. fischeri) as the endpoint. The results indicated that SAs and QSIs all induced S-shaped dose-responses in A. fischeri bioluminescence. Furthermore, SAs possessed greater acute toxicity than QSIs, and luciferase (Luc) might be the target protein of test chemicals. Based on the median effective concentration (EC50) for each test chemical, QSI-SA mixtures were designed according to equitoxic (EC50(QSI):EC50(SA) = 1:1) and non-equitoxic ratios (EC50(QSI):EC50(SA) = 1:10, 1:5, 1:0.2, and 1:0.1). It could be observed that with the increase of QSI proportion, the acute toxicity of QSI-SA mixtures enhanced while the corresponding TU values decreased. Furthermore, QSIs contributed more to the acute toxicity of test binary mixtures. The joint toxic actions of QSIs and SAs were synergism for 23 mixtures, antagonism for 12 mixtures, and addition for 1 mixture. Quantitative structure-activity relationship (QSAR) models for the acute toxicity QSIs, SAs, and their binary mixtures were then constructed based on the lowest CDOCKER interaction energy (Ebind-Luc) between Luc and each chemical and the component proportion in the mixture. These models exhibited good robustness and predictive ability in evaluating the toxicity data and joint toxic actions of QSIs and SAs. This study provides reference data and applicable QSAR models for the environmental risk assessment of QSIs, and gives a new perspective for exploring the joint effects of QSI-antibiotic mixtures.
Collapse
Affiliation(s)
- Zhenheng Long
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingyi Yao
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shu-shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Bo Lei
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiajun Wang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
17
|
Wang X, Jia L, Xie Y, He T, Wang S, Jin X, Xie F. Deciphering the interaction mechanism between soy protein isolate and fat-soluble anthocyanin on experiments and molecular simulations. Int J Biol Macromol 2024; 266:131308. [PMID: 38569996 DOI: 10.1016/j.ijbiomac.2024.131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
In this work, the acylated anthocyanin (Ca-An) was prepared by enzymatic modification of black rice anthocyanin with caffeic acid, and the binding mechanism of Ca-An to soybean protein isolate (SPI) was investigated by experiments and computer simulation to expand the potential application of anthocyanin in food industry. Multi-spectroscopic studies revealed that the stable binding of Ca-An to SPI induced the folding of protein polypeptide chain, which transformed the secondary structure of SPI trended to be flexible. The microenvironment of protein was transformed from hydrophobic to hydrophilic, while tyrosine played dominant role in quenching process. The binding sites and forces of the complexes were determined by computer simulation for further explored. The protein conformation of the 7S and 11S binding regions to Ca-An changed, and the amino acid microenvironment shifted to hydrophilic after binding. The results showed that more non-polar amino acids existed in the binding sites, while in binding process van der Waals forces and hydrogen bonding played a major role hydrophobicity played a minor role. Based on MM-PBSA analysis, the binding constants of 7S-Ca-An and 11S-Ca-An were 0.518 × 106 mol-1 and 5.437 × 10-3 mol-1, respectively. This information provides theoretical guidance for further studying the interaction between modified anthocyanins and biomacromolecules.
Collapse
Affiliation(s)
- Xinhui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lingyue Jia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuqi Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shijiao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoyu Jin
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
18
|
Filgueiras LA, de Andrade FDCP, Iwao Horita S, Shirsat SD, Achal V, Rai M, Henriques-Pons A, Mendes AN. Analysis of SIKVAV's receptor affinity, pharmacokinetics, and pharmacological characteristics: a matrikine with potent biological function. J Biomol Struct Dyn 2024:1-23. [PMID: 38345036 DOI: 10.1080/07391102.2024.2313709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/27/2024] [Indexed: 03/08/2025]
Abstract
Matrikines are biologically active peptides generated from fragments fragmentation of extracellular matrix components (ECM) that are functionally distinct from the original full-length molecule. The active matricryptic sites can be unmasked by ECM components enzymatic degradation or multimerization, heterotypic binding, adsorption to other molecules, cell-mediated mechanical forces, exposure to reactive oxygen species, ECM denaturation, and others. Laminin α1-derived peptide (SIKVAV) is a bioactive peptide derived from laminin-111 that participates in tumor development, cell proliferation, angiogenesis in various cell types. SIKVAV has also a potential pharmaceutical activity that may be used for tissue regeneration and bioengineering in Alzheimer's disease and muscular dystrophies. In this work, we made computational analyzes of SIKVAV regarding the ADMET panel, that stands for Administration, Distribution, Metabolism, Excretion, and Toxicity. Docking analyzes using the α3β1 and α6β1 integrin receptors were performed to fill in the gaps in the SIKVAV's signaling pathway and coupling tests showed that SIKVAV can interact with both receptors. Moreover, there is no indication of cytotoxicity, mutagenic or carcinogenic activity, skin or oral sensitivity. Our analysis suggests that SIKVAV has a high probability of interacting with peroxisome proliferator-activated receptor-gamma (NR-PPAR-γ), which has anti-inflammatory activity. The results of bioinformatics can help understand the participation of SIKVAV in homeostasis and influence the understanding of how this peptide can act as a biological asset in the control of dystrophies, neurodegenerative diseases, and tissue engineering.
Collapse
Affiliation(s)
- Livia Alves Filgueiras
- Laboratory of Innovation in Science and Technology - LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | | | - Samuel Iwao Horita
- Laboratory of Innovation in Therapies, Education, and Bioproducts - LITEB, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Shubhangi D Shirsat
- Laboratory of Innovation in Therapies, Education, and Bioproducts - LITEB, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Varenyam Achal
- Environmental Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
- Technion - Israel Institute of Technology, Haifa, Israel
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Andrea Henriques-Pons
- Laboratory of Innovation in Therapies, Education, and Bioproducts - LITEB, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Anderson Nogueira Mendes
- Laboratory of Innovation in Science and Technology - LACITEC, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
19
|
Zhao S, Ma S, Zhang Y, Gao M, Luo Z, Cai S. Combining molecular docking and molecular dynamics simulation to discover four novel umami peptides from tuna skeletal myosin with sensory evaluation validation. Food Chem 2024; 433:137331. [PMID: 37678119 DOI: 10.1016/j.foodchem.2023.137331] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Umami peptides are an important component of food flavoring agents and have high nutritional value. This work aimed to identify umami peptides from tuna skeletal myosin using a new model method of computer simulation, explore their umami mechanism, and further validate the umami tastes with sensory evaluation. Umami peptides LADW, MEIDD, VAEQE, and EEAEGT were discovered, and all of them bound to taste type 1 receptor 1 and receptor 3 via hydrogen bonds and van der Waals forces to form stable complexes. LADW exhibited the best affinity energy and binding capability. Sensory evaluation and electronic tongue confirmed that all peptides possessed an umami taste, and LADW exhibited the strongest umami intensity. This study not only explored four novel umami peptides to improve the value of tuna skeletal myosin but also provided a new method for the rapid discovery of umami peptides.
Collapse
Affiliation(s)
- Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Shuang Ma
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Yuanyue Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Ming Gao
- China National Research Institute of Food & Fermentation Industries CO., LTD, Beijing, People's Republic of China, 100048
| | - Zhenyu Luo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, People's Republic of China, 650500.
| |
Collapse
|
20
|
Zhao S, Cai S, Ding L, Yi J, Zhou L, Liu Z, Chu C. Exploring the Blood Glucose-Lowering Potential of the Umami Peptides LADW and EEAEGT Derived from Tuna Skeletal Myosin: Perspectives from α-Glucosidase Inhibition and Starch Interaction. Foods 2024; 13:294. [PMID: 38254595 PMCID: PMC10815170 DOI: 10.3390/foods13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to explore the potential of umami peptides for lowering blood glucose. Molecular docking results showed that the peptides LADW and EEAEGT bound to the active amino acid residues of α-glucosidase via hydrogen bonds and Van der Waals forces, a finding supported by an independent gradient model (IGM). Molecular dynamics (MD) simulations demonstrated that the peptides LADW and EEAEGT can decelerate the outward expansion of α-glucosidase and reduce amino acid fluctuations at the active site. In vitro findings indicated that the peptides LADW and EEAEGT showed potent inhibitory activity against α-glucosidase, with IC50 values of 4.40 ± 0.04 and 6.46 ± 0.22 mM, respectively. Furthermore, MD simulation and morphological observation results also revealed that LADW and EEAEGT alter starch structure and form weak interactions with starch through intermolecular hydrogen bonding, leading to the inhibition of starch hydrolysis. Peptides inhibit the ability of starch to produce reducing sugars after simulated gastrointestinal digestion, providing additional evidence of the inhibition of starch hydrolysis by the added peptides. Taken together, these findings suggest that consuming the umami peptides LADW and EEAEGT may alleviate postprandial blood glucose elevations via inhibiting α-glucosidase and starch hydrolysis.
Collapse
Affiliation(s)
- Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (S.Z.); (S.C.); (L.D.); (J.Y.); (L.Z.); (Z.L.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
- Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| |
Collapse
|
21
|
Zang Z, Tian J, Chou S, Lang Y, Tang S, Yang S, Yang Y, Jin Z, Chen W, Liu X, Huang W, Li B. Investigation on the interaction mechanisms for stability of preheated whey protein isolate with anthocyanins from blueberry. Int J Biol Macromol 2024; 255:127880. [PMID: 37944731 DOI: 10.1016/j.ijbiomac.2023.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Proteins and anthocyanins coexist in complex food systems. This research mainly studied the steady-state protective design and mechanism of the preheated protein against anthocyanins. Multispectral and molecular dynamics are utilized to illustrate the interaction mechanism between preheated whey protein isolate (pre-WPI) and anthocyanins. The pre-WPI could effectively protect the stability of anthocyanins, and the effect was better than that of the natural whey protein isolate (NW). Among them, NW after preheating treatment at 55 °C showed better protection against anthocyanin stability. Fluorescence studies indicated that pre-WPI there existed a solid binding affinity and static quenching for malvidin-3-galactoside (M3G). Multispectral data showed a significant variation in the secondary structure of pre-WPI. Furthermore, molecular dynamics simulation selects AMBER18 as the protein force field, and the results showed that hydrogen bonding participated as an applied force. Compared with NW, pre-WPI could better wrap anthocyanins and avoid damage to the external environment due to tightening of the pockets. Protein protects anthocyanins from degradation, and this protective effect is influenced by the preheating temperature of protein and the structure of protein. On the basis of the above results, it is possible to pinpoint the interaction mechanism between preheated proteins and anthocyanins.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Liu
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Wuyang Huang
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
22
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
23
|
Yu H, Zhao S, Yi J, Du M, Liu J, Liu Y, Cai S. Identification of Novel Umami Peptides in Termitornyces albuminosus (Berk) Heim Soup by In Silico Analyses Combined with Sensory Evaluation: Discovering Potential Mechanism of Umami Taste Formation with Molecular Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37917560 DOI: 10.1021/acs.jafc.3c04281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In this study, 24 peptides were identified in Termitornyces albuminosus (Berk) Heim soup, 12 of which were predicted to possess an umami taste based on the BIOPEP-UWM or Umami-MRNN databases. Among these 12 peptides, four peptides (i.e., QNDF, QGGDF, EPVTLT, and EVNYDFGGK) exhibited the lowest affinity energy with the umami receptor type 1 member 1 (T1R1) subunit. Molecular docking and molecular dynamics simulation further confirmed the strong binding of these four umami peptides to the umami receptor T1R1/T1R3, with the EVNYDFGGK forming the most stable complex. After synthesizing the four peptides, their umami taste was validated through sensory and electronic tongue analyses with recognition thresholds ranging from 0.0938 to 0.3750 mmol/L. Notably, the EVNYDFGGK peptide displayed the strongest umami taste (recognition threshold, 0.0938 mmol/L). This study may contribute to the industrial development of T. albuminosus by providing a new understanding of the mechanism of its umami formation.
Collapse
Affiliation(s)
- Haixia Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Ming Du
- Faculty of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, People's Republic of China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., LTD, Beijing 100015, People's Republic of China
| | - Yifeng Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., LTD, Beijing 100015, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
24
|
Yuan Y, Pan F, Zhu Z, Yang Z, Wang O, Li Q, Zhao L, Zhao L. Construction of a QSAR Model Based on Flavonoids and Screening of Natural Pancreatic Lipase Inhibitors. Nutrients 2023; 15:3489. [PMID: 37571426 PMCID: PMC10421515 DOI: 10.3390/nu15153489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic lipase (PL) is a key hydrolase in lipid metabolism. Inhibition of PL activity can intervene in obesity, a global sub-health disease. The natural product is considered a good alternative to chemically synthesized drugs due to its advantages, such as low side effects. However, traditional experimental screening methods are labor-intensive and cost-consuming, and there is an urgent need to develop high-throughput screening methods for the discovery of anti-PL natural products. In this study, a high-throughput virtual screening process for anti-PL natural products is provided. Firstly, a predictable anti-PL natural product QSAR model (R2train = 0.9444, R2test = 0.8962) were developed using the artificial intelligence drug design software MolAIcal based on genetic algorithms and their conformational relationships. 1068 highly similar (FS > 0.8) natural products were rapidly enriched based on the structure-activity similarity principle, combined with the QSAR model and the ADMET model, for rapid prediction of a total of five potentially efficient anti-PL natural products (IC50pre < 2 μM). Subsequently, molecular docking, molecular dynamics simulation, and MMGBSA free energy calculation were performed to not only reveal the interaction of candidate novel natural products with the amino acid residues of PL but also to validate the stability of these novel natural compounds bound to PL. In conclusion, this study greatly simplifies the screening and discovery of anti-PL natural products and accelerates the development of novel anti-obesity functional foods.
Collapse
Affiliation(s)
- Yutong Yuan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Pan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Zehui Zhu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Zichen Yang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Qing Li
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| |
Collapse
|
25
|
Xing C, Chen P, Zhang L. Computational insight into stability-enhanced systems of anthocyanin with protein/peptide. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100168. [PMID: 36923156 PMCID: PMC10009195 DOI: 10.1016/j.fochms.2023.100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Anthocyanins, which belong to the flavonoid group, are commonly found in the organs of plants native to South and Central America. However, these pigments are unstable under conditions of varying pH, heat, etc., which limits their potential applications. One method for preserving the stability of anthocyanins is through encapsulation using proteins or peptides. Nevertheless, the complex and diverse structure of these molecules, as well as the limitation of experimental technologies, have hindered a comprehensive understanding of the encapsulation processes and the mechanisms by which stability is enhanced. To address these challenges, computational methods, such as molecular docking and molecular dynamics simulation have been used to study the binding affinity and dynamics of interactions between proteins/peptides and anthocyanins. This review summarizes the mechanisms of interaction between these systems, based on computational approaches, and highlights the role of proteins and peptides in the stability enhancement of anthocyanins. It also discusses the current limitations of these methods and suggests possible solutions.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- School of Science, Beijing Jiaotong University, 100044 Beijing, China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
26
|
Identification of novel α-glucosidase inhibitory peptides in rice wine and their antioxidant activities using in silico and in vitro analyses. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
27
|
Zhao M, Li B, He H, Hou T. Preparation, identification, computational analysis of antioxidative peptides derived from Lumbricus protein and prevention of UV-B radiation-induced skin damaged. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
28
|
Kou X, Zhang Y, Su D, Wang H, Huang X, Niu Y, Ke Q, Xiao Z, Meng Q. Study on host-guest interaction of aroma compounds/γ-cyclodextrin inclusion complexes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
29
|
Li J, Pan F, Yun Y, Tian J, Zhou L. Gelation behavior and mechanism of Nicandra physalodes (Linn.) Gaertn. seeds pectin induced by Glucono-delta-lactone. Carbohydr Polym 2023; 299:120151. [PMID: 36876778 DOI: 10.1016/j.carbpol.2022.120151] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
In this study, the physicochemical properties of pectin from Nicandra physalodes (Linn.) Gaertn. seeds (NPGSP) were analysed firstly, and the rheological behavior, microstructure and gelation mechanism of NPGSP gels induced by Glucono-delta-lactone (GDL) were investigated. The hardness of NPGSP gels was increased from 26.27 g to 226.77 g when increasing GDL concentration from 0 % (pH = 4.0) to 1.35 % (pH = 3.0), and the thermal stability was improved. The peak around 1617 cm-1 was decreased as the adsorption peak of the free carboxyl groups was attenuated with addition of GDL. GDL increased the crystalline degree of NPGSP gels, and its microstructure exhibited more smaller spores. Molecular dynamics was performed on systems of pectin and gluconic acid (GDL hydrolysis product), indicating that inter-molecular hydrogen bonds and van der Waals forces were the main interactions to promote gels formation. Overall, NPGSP has the potential commercial value for developing as a thickener in food processing.
Collapse
Affiliation(s)
- Jian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Fei Pan
- Beijing Technology and Business University, Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Yurou Yun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| |
Collapse
|
30
|
Ma S, Zheng X, Zhang Y, Zhao S, Yi J, Cai S. Exploring the Promotive Effects and Mechanisms of Different Polyphenolic Extracts from Prinsepia utilis Royle Seed Shell on Tyrosinase. Foods 2022; 11:foods11244015. [PMID: 36553757 PMCID: PMC9777575 DOI: 10.3390/foods11244015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Prinsepia utilis Royle (P. utilis) is commonly used as a food ingredient and herbal medicine according to folk records, yet little research has been done on the seed shell, a processing waste. The aim of this study was to investigate the distribution of polyphenolic components and the tyrosinase activation activity of different extracts from the seed shell by UHPLC-ESI-HRMS/MS, in vitro tyrosinase activity assay, molecular docking and molecular dynamics. A total of 16 phytochemicals were identified, of which (+)-catechin and (-)-epicatechin were the major polyphenolic compounds. Both the esterified and insoluble bound polyphenols exhibited tyrosinase activation activity, and the esterified polyphenols showed better tyrosinase activation activity. (+)-Catechin and (-)-epicatechin might be the main activators of tyrosinase, both of which may act as substrate to affect tyrosinase activity. By molecular docking and molecular dynamics simulation studies, (+)-catechin and (-)-epicatechin can be efficiently and stably bound to the tyrosinase active site through hydrogen bonds, van der Waals forces and π-bonds. The results of this study may not only provide a scientific basis for exploring P. utilis seed shell as a potential activator of tyrosinase, but also contribute to the high value utilization of P. utilis processing by-products.
Collapse
|
31
|
Pathak RK, Kim JM. Vetinformatics from functional genomics to drug discovery: Insights into decoding complex molecular mechanisms of livestock systems in veterinary science. Front Vet Sci 2022; 9:1008728. [PMID: 36439342 PMCID: PMC9691653 DOI: 10.3389/fvets.2022.1008728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/31/2022] [Indexed: 09/28/2023] Open
Abstract
Having played important roles in human growth and development, livestock animals are regarded as integral parts of society. However, industrialization has depleted natural resources and exacerbated climate change worldwide, spurring the emergence of various diseases that reduce livestock productivity. Meanwhile, a growing human population demands sufficient food to meet their needs, necessitating innovations in veterinary sciences that increase productivity both quantitatively and qualitatively. We have been able to address various challenges facing veterinary and farm systems with new scientific and technological advances, which might open new opportunities for research. Recent breakthroughs in multi-omics platforms have produced a wealth of genetic and genomic data for livestock that must be converted into knowledge for breeding, disease prevention and management, productivity, and sustainability. Vetinformatics is regarded as a new bioinformatics research concept or approach that is revolutionizing the field of veterinary science. It employs an interdisciplinary approach to understand the complex molecular mechanisms of animal systems in order to expedite veterinary research, ensuring food and nutritional security. This review article highlights the background, recent advances, challenges, opportunities, and application of vetinformatics for quality veterinary services.
Collapse
Affiliation(s)
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, South Korea
| |
Collapse
|
32
|
Hu X, Zeng Z, Zhang J, Wu D, Li H, Geng F. Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chem 2022; 405:134824. [DOI: 10.1016/j.foodchem.2022.134824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
33
|
Zheng X, Pan F, Zhao S, Zhao L, Yi J, Cai S. Phenolic characterization, antioxidant and α-glycosidase inhibitory activities of different fractions from Prinsepia utilis Royle seed shell using in vitro and in silico analyses. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Li X, Pan F, Yang Z, Gao F, Li J, Zhang F, Wang T. Construction of QSAR model based on cysteine‐containing dipeptides and screening of natural tyrosinase inhibitors. J Food Biochem 2022; 46:e14338. [DOI: 10.1111/jfbc.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofang Li
- Biomedical Nanocenter, School of Life Science Inner Mongolia Agricultural University Hohhot China
- Pharmacy Laboratory Inner Mongolia International Mongolian Hospital Hohhot China
| | - Fei Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Zichen Yang
- Beijing Engineering and Technology Research Center of Food Additives Beijing Technology and Business University Beijing China
| | - Feng Gao
- Biomedical Nanocenter, School of Life Science Inner Mongolia Agricultural University Hohhot China
| | - Jiawei Li
- Pharmacy Laboratory Inner Mongolia International Mongolian Hospital Hohhot China
| | - Feng Zhang
- Pharmacy Laboratory Inner Mongolia International Mongolian Hospital Hohhot China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences Guangzhou Medical University Guangzhou China
| | - Tegexibaiyin Wang
- Pharmacy Laboratory Inner Mongolia International Mongolian Hospital Hohhot China
| |
Collapse
|
35
|
Zhu L, Song X, Li X, Geng X, Zheng F, Li H, Sun J, Huang M, Sun B. Interactions between kafirin and pickle-like odorants in soy sauce flavor Baijiu: Aroma profile change and binding mechanism. Food Chem 2022; 400:133854. [DOI: 10.1016/j.foodchem.2022.133854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/09/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
36
|
Wang S, Zhang X, Ai J, Yue Z, Wang Y, Bao B, Tian L, Bai W. Interaction between black mulberry pectin-rich fractions and cyanidin-3-O-glucoside under in vitro digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Qie X, Chen W, Wu R, Wang Z, Zeng M, Chen J, Douglas Goff H, He Z. The effects of β-lactoglobulin on cyanidin-3-O-glucoside antioxidant activity and bioaccessibility after heat treatment. Food Res Int 2022; 157:111494. [PMID: 35761714 DOI: 10.1016/j.foodres.2022.111494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
The impact of heat treatment at different temperatures on the interaction of β-lactoglobulin (β-Lg) and anthocyanin-3-O-glucoside (C3G) was studied. Heat treatment and the addition of C3G changed the secondary structure of β-Lg with decreasing β-sheets and increasing random coils. Interactions between C3G and β-Lg were mainly via hydrogen bonds and van der Waals forces at 25 °C. The elevated temperature promoted hydrophobic interactions between C3G and β-Lg due to an increase in the hydrophobic groups and amino groups on the surface of β-Lg molecules. The addition of β-Lg to the C3G eliminated heat-induced thermal degradation of C3G. The β-Lg-C3G interactions accompanied with increased particle size and constant zeta potential could increase the antioxidant capacity of C3G approximately by 4% to 10% and protect the colour of C3G from degradation under heat treatment. The C3G bioaccessibility with β-Lg addition increased by 26.08%, 33.45%, 83.09%, 72.27%, and 354.62% compared with C-25, C-60, C-85, C-100, and C-121, respectively. The protective effect of the non-covalent interactions on C3G at high temperatures (85 °C to 121 °C) was significantly stronger than at 25 °C and 60 °C. The application of β-Lg in foodstuffs could enhance the antioxidant activity and bioaccessibility of C3G.
Collapse
Affiliation(s)
- Xuejiao Qie
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenpu Chen
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Renyi Wu
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Zhiyong He
- State Key Laboratory of Food Science and Technoloy, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Zhou N, Pan F, Ai X, Tuersuntuoheti T, Zhao L, Zhao L, Wang Y. Preparation, characterization and antioxidant activity of sinapic acid grafted chitosan and its application with casein as a nanoscale delivery system for black rice anthocyanins. Int J Biol Macromol 2022; 210:33-43. [PMID: 35526769 DOI: 10.1016/j.ijbiomac.2022.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Anthocyanins (ACNs) have attracted considerable research attention because of their excellent health benefits, but their low stability and bioavailability limit their applications. In this study, sinapic acid-grafted-chitosan (SA-g-CS) conjugate was synthesized by grafting SA onto CS via a free radical mediated method. Nanoparticles were prepared using casein (CA) together with SA-g-CS to improve the performance and sustained release of black rice anthocyanins (BRA). The results of UV-Vis, FTIR and 1H NMR spectra for SA-g-CS conjugates demonstrated the successful grafting of SA onto CS. The results of DPPH, ABTS and ferric ion reducing antioxidant power assays showed that the SA-g-CS conjugates had strong antioxidant capacities, and the higher the pH of the grafting reaction system, the stronger the antioxidant capacity of the conjugates. X-ray diffraction and scanning electron microscopy analyses showed that the crystallographic property and microstructure of CS were improved by the grafting of SA. Compared with BRA loaded nanoparticles prepared with CA alone or the combination of CS and CA, the BRA loaded nanoparticles constructed by SA-g-CS and CA have smaller particle size, better dispersion, encapsulation efficiency and sustained-release property. These results provided great potential for the application of phenolic acid grafted CS in stabilizing ACNs.
Collapse
Affiliation(s)
- Na Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
40
|
Scavenging of ROS After Eugenol Treatment as Mechanism of Slowing Down Membrane Lipid Metabolism to Maintain the Surface Color of Fresh-Cut Yam. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02833-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, Jouyaeian P, Mokaberi P, Yazdyani H, Amiri-Tehranizadeh Z, Reza Saberi M, Chamani J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119042] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Fu Y, Pan F, Zhao L, Zhao S, Yi J, Cai S. Interfering effects on the bioactivities of several key proteins of COVID-19/variants in diabetes by compounds from Lianqiao leaves: In silico and in vitro analyses. Int J Biol Macromol 2022; 207:715-729. [PMID: 35346677 PMCID: PMC8957317 DOI: 10.1016/j.ijbiomac.2022.03.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022]
Abstract
Diabetes is considered to be one of the diseases most associated with COVID-19. In this study, interfering effects and potential mechanisms of several compounds from Lianqiao (Forsythia suspensa (Thunb.) Vahl) leaves on the bioactivities of some key proteins of COVID-19 and its variants, as well as diabetic endothelial dysfunctions were illuminated through in vitro and in silico analyses. Results showed that, among the main ingredients in the leaves, forsythoside A showed the strongest docking affinities with the proteins SARS-CoV-2-RBD-hACE2 of COVID-19 and its variants (Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617)), as well as neuropilin-1 (NRP1), and SARS-CoV-2 main protease (MPro) to interfere coronavirus entering into the human body. Moreover, forsythoside A was the most stable in binding to receptors in Delta (B.1.617) system. It also has good antiviral activities and drug properties and has the strongest binding force to the RBD domain of COVID-19. In addition, forsythoside A reduced ROS production in AGEs-induced EA.hy926 cells, maintained endothelial integrity, and bound closely to protein profilin-1 (PFN1) receptor. This work may provide useful knowledge for further understanding the interfering effects and potential mechanisms of compounds, especially forsythoside A, from Lianqiao leaves on the bioactivities of key proteins of COVID-19/variants in diabetes.
Collapse
Affiliation(s)
- Yishan Fu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
43
|
Mehmood A, Pan F, Ai X, Tang X, Cai S, Soliman MM, Albogami S, Usman M, Murtaza MA, Nie Y, Zhao L. Novel angiotensin-converting enzyme (ACE) inhibitory mechanism of peptides from Macadamia integrifolia antimicrobial protein 2 (MiAMP2). J Food Biochem 2022; 46:e14168. [PMID: 35393673 DOI: 10.1111/jfbc.14168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
Abstract
This work aimed to identify novel angiotensin-converting-enzyme (ACE) inhibitory peptides from Macadamia integrifolia antimicrobial protein 2 (MiAMP2). The MiAMP2 protein was hydrolyzed through in silico digestion, and the generated peptides were screened for ACE inhibitory activity. The in silico enzyme digestion results revealed that 18 unreported peptides were obtained using AHTPDB and BIOPEP-UWM, and none were thought to be toxic based on absorption, distribution, metabolism, and excretion (ADMET) prediction. PGPR, RPLY, MNPQR, and AAPR were predicted to exhibit good biological activity. The molecular docking results revealed that the four peptides tightly bound to the active pocket of ACE via hydrogen bonds and hydrophobic interactions, among which RPLY and MNPQR bound to ACE more strongly. The in vitro assay results confirmed that RPLY and MNPQR peptides inhibited ACE via competitive manner. These results provide theoretical guidance for the development of novel foodborne antihypertensive peptides from Macadamia nut proteins. PRACTICAL APPLICATIONS: This study provides new insight on the inhibitory potential of Macadamia nut peptides against ACE, which may be further applied to the development of antihypertensive peptides in the medical industry.
Collapse
Affiliation(s)
- Arshad Mehmood
- Yunnan Forestry and Grassland Technology Extension Center, Kunming City, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xin Ai
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Muhammad Usman
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China.,Department of Food Science and Technology, Riphah International University Faisalabad, Punjab, Pakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Yanli Nie
- Yunnan Forestry and Grassland Technology Extension Center, Kunming City, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
44
|
Huang F, Pan F, Wang L, Xiao Z, He J, Yan M, Wang J, Qiu W, Liu M, Dong H. The interaction between citronellol and bovine serum albumin: Spectroscopic, computational and thermal imaging studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Ma Z, Cheng J, Jiao S, Jing P. Interaction of mulberry anthocyanins with soybean protein isolate: Effect on the stability of anthocyanins and protein
in vitro
digestion characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Jing Cheng
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
46
|
Ren S, Jiménez-Flores R, Giusti MM. The interactions between anthocyanin and whey protein: A review. Compr Rev Food Sci Food Saf 2021; 20:5992-6011. [PMID: 34622535 DOI: 10.1111/1541-4337.12854] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACN) are natural pigments that produce bright red, blue, and purple colors in plants and can be used to color food products. However, ACN sensitivity to different factors limits their applications in the food industry. Whey protein (WP), a functional nutritional additive, has been shown to interact with ACN and improve the color, stability, antioxidant capacity, bioavailability, and other functional properties of the ACN-WP complex. The WP's secondary structure is expected to unfold due to heat treatment, which may increase its binding affinity with ACN. Different ACN structures will also have different binding affinity with WP and their interaction mechanism may also be different. Circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy show that the WP secondary structure changes after binding with ACN. Fluorescence spectroscopy shows that the WP maximum fluorescence emission wavelength shifts, and the fluorescence intensity decreases after interaction with ACN. Moreover, thermodynamic analysis suggests that the ACN-WP binding forces are mainly hydrophobic interactions, although there is also evidence of electrostatic interactions and hydrogen bonding between ACN and WP. In this review, we summarize the information available on ACN-WP interactions under different conditions and discuss the impact of different ACN chemical structures and of WP conformation changes on the affinity between ACN and WP. This summary helps improve our understanding of WP protection of ACN against color degradation, thus providing new tools to improve ACN color stability and expanding the applications of ACN and WP in the food and pharmacy industries.
Collapse
Affiliation(s)
- Shuai Ren
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Rafael Jiménez-Flores
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Maria Monica Giusti
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| |
Collapse
|
47
|
Qian J, Ma L, Yan W, Zhuang H, Huang M, Zhang J, Wang J. Inactivation kinetics and cell envelope damages of foodborne pathogens Listeria monocytogenes and Salmonella Enteritidis treated with cold plasma. Food Microbiol 2021; 101:103891. [PMID: 34579851 DOI: 10.1016/j.fm.2021.103891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
In recent years, more attention has been paid to the application of cold plasma (CP) in eliminating foodborne pathogenic bacteria. This work investigated CP effects on inactivation kinetics and cell envelopes of Listeria monocytogenes (L. monocytogenes) and Salmonella Enteritidis (S. Enteritidis). Bacterial suspensions were treated with dielectric barrier discharge atmospheric CP at 75 kV for different treatment time. Three regression models were tested for estimating inactivation kinetics. Reactive species generated in plasma, the appearance and integrity of bacterial cells, the activity and secondary structure of enzymes in the cell envelope, and molecular docking, were measured for evaluating the envelope damages. Results indicated that Log-linear model was suitable for L. monocytogenes and the Weibull model was suitable for S. Enteritidis. S. Enteritidis was more sensitive to short-lived reactive species (such as OH radicals) in plasma than L. monocytogenes, and the cell envelope of S. Enteritidis was more severely damaged (the increased membrane permeability and leakage of intracellular substances) after plasma treatment. Interestingly, compared with S. Enteritidis, the decrease in the activity of enzymes existing in the cell envelope of L. monocytogenes did not contribute significantly to the death of bacteria. Molecular docking further suggested that the decrease in the enzyme activity might be due to the modification of the enzyme, by the interaction between reactive species in plasma (H2O2) and amino acid residues of the enzyme through the hydrogen bond.
Collapse
Affiliation(s)
- Jing Qian
- National Center of Meat Quality & Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangjun Ma
- National Center of Meat Quality & Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Road, Athens, GA, 30605, United States
| | - Mingming Huang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jianhao Zhang
- National Center of Meat Quality & Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiamei Wang
- College of Food Science and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|
48
|
Zhao L, Zhang M, Pan F, Li J, Dou R, Wang X, Wang Y, He Y, Wang S, Cai S. In silico analysis of novel dipeptidyl peptidase-IV inhibitory peptides released from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and the possible pathways involved in diabetes protection. Curr Res Food Sci 2021; 4:603-611. [PMID: 34522898 PMCID: PMC8424447 DOI: 10.1016/j.crfs.2021.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to screen novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and evaluate the potential antidiabetic targets and involved signaling pathways using in silico approaches. In silico digestion of MiAMP2 with pepsin, trypsin and chymotrypsin was performed with ExPASy PeptideCutter and the generated peptides were subjected to BIOPEP-UWM, iDrug, INNOVAGEN and Autodock Vina for further analyses. Six novel peptides EQVR, EQVK, AESE, EEDNK, EECK, and EVEE were predicted to possess good DPP-IV inhibitory potentials, water solubility, and absorption, distribution, metabolism, excretion, and toxicity properties. Molecular dynamic simulation and molecular docking displayed that AESE was the most potent DPP-IV inhibitory peptide and can bind with the active sites of DPP-IV through hydrogen bonding and van der Waals forces. The potential antidiabetic targets of AESE were retrieved from SwissTargetPrediction and GeneCards databases. Protein-protein interaction analysis identified BIRC2, CASP3, MMP7 and BIRC3 to be the hub targets. Moreover, the KEGG pathway enrichment analysis showed that AESE prevented diabetes through the apoptosis and TNF signaling pathways. These results will provide new insights into utilization of MiAMP2 as functional food ingredients for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Fei Pan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ran Dou
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyi Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Yangyang Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Yumeng He
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Shaoxuan Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Shengbao Cai
- Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
49
|
Li X, Guo J, Lian J, Gao F, Khan AJ, Wang T, Zhang F. Molecular Simulation Study on the Interaction between Tyrosinase and Flavonoids from Sea Buckthorn. ACS OMEGA 2021; 6:21579-21585. [PMID: 34471761 PMCID: PMC8388101 DOI: 10.1021/acsomega.1c02593] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Isorhamnetin, kaempferol, myricetin, and quercetin are four kinds of secondary metabolites in sea buckthorn, which have a wide range of biological activities. Investigating their interactions with tyrosinase at the atomic level can improve the bioavailability of sea buckthorn. Both molecular docking and molecular dynamics simulation methods were employed to study the interactions of these ligands with tyrosinase. The results of molecular docking indicated that these four small molecules such as isorhamnetin, kaempferol, myricetin, and quercetin can all dock into the active center of tyrosinase, and by occupying the active site, they can prevent substrate binding, thereby reducing the catalytic activity of tyrosinase. Molecular dynamics simulation trajectory analysis showed that all tyrosinase-ligand complexes reach an equilibrium within 100 ns. In addition, quercetin has the lowest binding energy among these four ligands, and the complex with tyrosinase is the most stable. This study not only provides valuable information for improving the bioavailability of sea buckthorn but also contributes to the discovery of effective natural inhibitors of tyrosinase.
Collapse
Affiliation(s)
- Xiaofang Li
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Jun Guo
- Terahertz
Technology Innovation Research Institute, Shanghai Key Laboratory
of Modern Optical System, Terahertz Science Cooperative Innovation
Center, University of Shanghai for Science
and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiaqi Lian
- Wenzhou
Institute, University of Chinese Academy
of Sciences, 16 Xinsan Road, Wenzhou 325001, China
| | - Feng Gao
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Abdul Jamil Khan
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
| | - Tegexibaiyin Wang
- Pharmacy
Laboratory, Inner Mongolia International
Mongolian Hospital, 83 Daxuedong Road, Hohhot 010065, China
| | - Feng Zhang
- Biomedical
Nanocenter, School of Life Science, Inner
Mongolia Agricultural University, 29 East Erdos Street, Hohhot 010011, China
- Terahertz
Technology Innovation Research Institute, Shanghai Key Laboratory
of Modern Optical System, Terahertz Science Cooperative Innovation
Center, University of Shanghai for Science
and Technology, 516 Jungong Road, Shanghai 200093, China
- Wenzhou
Institute, University of Chinese Academy
of Sciences, 16 Xinsan Road, Wenzhou 325001, China
- Pharmacy
Laboratory, Inner Mongolia International
Mongolian Hospital, 83 Daxuedong Road, Hohhot 010065, China
- State
Key Laboratory of Respiratory Disease, Guangzhou Institute of Oral
Disease, Stomatology Hospital, Department of Biomedical Engineering,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, China
| |
Collapse
|
50
|
Pan F, Zhao L, Cai S, Tang X, Mehmood A, Alnadari F, Tuersuntuoheti T, Zhou N, Ai X. Prediction and evaluation of the 3D structure of Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and its interaction with palmitoleic acid or oleic acid: An integrated computational approach. Food Chem 2021; 367:130677. [PMID: 34343803 DOI: 10.1016/j.foodchem.2021.130677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
This study investigated the physicochemical properties and 3D structure of Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and its interaction with palmitoleic acid (POA) or oleic acid (OA) in macadamia oil. The 3D structure of MiAMP2 was constructed for the first time by ab initio modelling using the TrRosetta server. The results showed that MiAMP2 was highly hydrophilic and had seven disulfide bonds and higher α-helix and β-sheet/turn contents. Molecular simulation showed that the hydrophobic pocket of MiAMP2 created a favourable environment for the binding of POA and OA. Free energy landscape and independent gradient model (IGM) analyses revealed that hydrogen bonds and van der Waals forces were the major driving forces stabilizing complexes formed by MiAMP2 and POA or OA. The present study provides a theoretical basis and new insight for the future development and utilization of macadamia nut protein in the food industry.
Collapse
Affiliation(s)
- Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shengbao Cai
- Faculty of Agriculture and Food, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Fawze Alnadari
- Department of Food Science and Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tuohetisayipu Tuersuntuoheti
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Na Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|