1
|
Wang Q, Antone J, Alsop E, Reiman R, Funk C, Bendl J, Dudley JT, Liang WS, Karr TL, Roussos P, Bennett DA, De Jager PL, Serrano GE, Beach TG, Van Keuren-Jensen K, Mastroeni D, Reiman EM, Readhead BP. Single cell transcriptomes and multiscale networks from persons with and without Alzheimer's disease. Nat Commun 2024; 15:5815. [PMID: 38987616 PMCID: PMC11237088 DOI: 10.1038/s41467-024-49790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.
Collapse
Affiliation(s)
- Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Jerry Antone
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Eric Alsop
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Rebecca Reiman
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jaroslav Bendl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Winnie S Liang
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Timothy L Karr
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
| | - Benjamin P Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
2
|
Gabaldon-Albero A, Mayo S, Martinez F. NR4A2 as a Novel Target Gene for Developmental and Epileptic Encephalopathy: A Systematic Review of Related Disorders and Therapeutic Strategies. Int J Mol Sci 2024; 25:5198. [PMID: 38791237 PMCID: PMC11120677 DOI: 10.3390/ijms25105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The NR4A2 gene encodes an orphan transcription factor of the steroid-thyroid hormone-retinoid receptor superfamily. This review focuses on the clinical findings associated with the pathogenic variants so far reported, including three unreported cases. Also, its role in neurodegenerative diseases, such as Parkinson's or Alzheimer's disease, is examined, as well as a brief exploration on recent proposals to develop novel therapies for these neurological diseases based on small molecules that could modulate NR4A2 transcriptional activity. The main characteristic shared by all patients is mild to severe developmental delay/intellectual disability. Moderate to severe disorder of the expressive and receptive language is present in at least 42%, while neuro-psychiatric issues were reported in 53% of patients. Movement disorders, including dystonia, chorea or ataxia, are described in 37% patients, although probably underestimated because of its frequent onset in late adolescence-young adulthood. Finally, epilepsy was surprisingly present in 42% of patients, being drug-resistant in three of them. The age at onset varied widely, from five months to twenty-six years, as did the classification of epilepsy, which ranged from focal epilepsy to infantile spasms or Lennox-Gastaut syndrome. Accordingly, we propose that NR4A2 should be considered as a first-tier target gene for the genetic diagnosis of developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Alba Gabaldon-Albero
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Martinez
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
3
|
Yang Y, Seok MJ, Kim YE, Choi Y, Song JJ, Sulistio YA, Kim SH, Chang MY, Oh SJ, Nam MH, Kim YK, Kim TG, Im HI, Koh SH, Lee SH. Adeno-associated virus (AAV) 9-mediated gene delivery of Nurr1 and Foxa2 ameliorates symptoms and pathologies of Alzheimer disease model mice by suppressing neuro-inflammation and glial pathology. Mol Psychiatry 2023; 28:5359-5374. [PMID: 35902630 DOI: 10.1038/s41380-022-01693-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/30/2022] [Indexed: 12/16/2022]
Abstract
There is a compelling need to develop disease-modifying therapies for Alzheimer's disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid β and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Min-Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Ye Eun Kim
- Department of Neurology, Hanyang University Guri Hospital, Hangyang University College of Medicine, Guri, Republic of Korea
- Graduate School of Translational Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yunjung Choi
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Jin Song
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Seong-Hoon Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Med, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Innopeutics Corporation, Seoul, Republic of Korea
| | - Heh-In Im
- Convergence Research Center for Brain Science, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Med, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hangyang University College of Medicine, Guri, Republic of Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Republic of Korea.
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wang Q, Antone J, Alsop E, Reiman R, Funk C, Bendl J, Dudley JT, Liang WS, Karr TL, Roussos P, Bennett DA, De Jager PL, Serrano GE, Beach TG, Keuren-Jensen KV, Mastroeni D, Reiman EM, Readhead BP. A public resource of single cell transcriptomes and multiscale networks from persons with and without Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563319. [PMID: 37961404 PMCID: PMC10634692 DOI: 10.1101/2023.10.20.563319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The emergence of technologies that can support high-throughput profiling of single cell transcriptomes offers to revolutionize the study of brain tissue from persons with and without Alzheimer's disease (AD). Integration of these data with additional complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link observed cell subpopulations and molecular network features within a broader disease-relevant context. We report here single nucleus RNA sequencing (snRNA-seq) profiles generated from superior frontal gyrus cortical tissue samples from 101 exceptionally well characterized, aged subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in peripheral hematological lab parameters, with these observations replicated in an independent, prospective cohort study of ageing and dementia. We also observed an AD-associated CD83(+) microglial subtype with unique molecular networks that encompass many known regulators of AD-relevant microglial biology, and which are associated with immunoglobulin IgG4 production in the transverse colon. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal novel disease biology. The transcriptomic, genetic, phenotypic, and network data resources described within this study are available for access and utilization by the scientific community.
Collapse
|
5
|
García-Yagüe ÁJ, Cuadrado A. Mechanisms of NURR1 Regulation: Consequences for Its Biological Activity and Involvement in Pathology. Int J Mol Sci 2023; 24:12280. [PMID: 37569656 PMCID: PMC10419244 DOI: 10.3390/ijms241512280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
NURR1 (Nuclear receptor-related 1 protein or NR4A2) is a nuclear protein receptor transcription factor with an essential role in the development, regulation, and maintenance of dopaminergic neurons and mediates the response to stressful stimuli during the perinatal period in mammalian brain development. The dysregulation of NURR1 activity may play a role in various diseases, including the onset and progression of neurodegenerative diseases, and several other pathologies. NURR1 is regulated by multiple mechanisms, among which phosphorylation by kinases or SUMOylation are the best characterized. Both post-translational modifications can regulate the activity of NURR1, affecting its stability and transcriptional activity. Other non-post-translational regulatory mechanisms include changes in its subcellular distribution or interaction with other protein partners by heterodimerization, also affecting its transcription activity. Here, we summarize the currently known regulatory mechanisms of NURR1 and provide a brief overview of its participation in pathological alterations.
Collapse
Affiliation(s)
- Ángel Juan García-Yagüe
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
6
|
Vietor J, Gege C, Stiller T, Busch R, Schallmayer E, Kohlhof H, Höfner G, Pabel J, Marschner JA, Merk D. Development of a Potent Nurr1 Agonist Tool for In Vivo Applications. J Med Chem 2023; 66:6391-6402. [PMID: 37127285 PMCID: PMC10184128 DOI: 10.1021/acs.jmedchem.3c00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a neuroprotective transcription factor and an emerging target in neurodegenerative diseases. Despite strong evidence for a role in Parkinson's and Alzheimer's disease, pharmacological control and validation of Nurr1 are hindered by a lack of suitable ligands. We have discovered considerable Nurr1 activation by the clinically studied dihydroorotate dehydrogenase (DHODH) inhibitor vidofludimus calcium and systematically optimized this scaffold to a Nurr1 agonist with nanomolar potency, strong activation efficacy, and pronounced preference over the highly related receptors Nur77 and NOR1. The optimized compound induced Nurr1-regulated gene expression in astrocytes and exhibited favorable pharmacokinetics in rats, thus emerging as a superior chemical tool to study Nurr1 activation in vitro and in vivo.
Collapse
Affiliation(s)
- Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | | | - Tanja Stiller
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Romy Busch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Georg Höfner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232416184. [PMID: 36555826 PMCID: PMC9788636 DOI: 10.3390/ijms232416184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson's disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients' cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.
Collapse
|
8
|
Willems S, Merk D. Medicinal Chemistry and Chemical Biology of Nurr1 Modulators: An Emerging Strategy in Neurodegeneration. J Med Chem 2022; 65:9548-9563. [PMID: 35797147 DOI: 10.1021/acs.jmedchem.2c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor with neuroprotective and antineuroinflammatory properties. Observations from genetic studies and human patients support potential of Nurr1 as a therapeutic target in neurodegeneration, but due to a lack of high-quality chemical tools for pharmacological control of Nurr1, its target validation is pending. Nevertheless, considerable progress has recently been made in elucidating structural and functional characteristics of Nurr1, and several ligand scaffolds have been discovered. Here, we analyze Nurr1's structure and mechanisms compared to other nuclear receptors, summarize the known small molecule Nurr1 ligands, and discuss the available evidence for the therapeutic potential of Nurr1 in neurodegeneration.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
9
|
Abdollahi M, Fahnestock M. Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. Int J Mol Sci 2022; 23:6853. [PMID: 35743300 PMCID: PMC9224520 DOI: 10.3390/ijms23126853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and BDNF tissue specificity, the regulatory effect of Nurr1 on BDNF in different brain areas cannot be generalized. The relationship between Nurr1 and BDNF in the cortex has not been investigated previously. Therefore, we examined Nurr1-mediated BDNF regulation in cortical neurons in activity-dependent and activity-independent states. Mouse primary cortical neurons were treated with the Nurr1 agonist, amodiaquine (AQ). Membrane depolarization was induced by KCl or veratridine and reversed by nimodipine. AQ and membrane depolarization significantly increased Nurr1 (p < 0.001) and BDNF (pAQ < 0.001, pKCl < 0.01) as assessed by real-time qRT-PCR. However, Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized neurons. Accordingly, the positive correlation between Nurr1 and BDNF expression in AQ and membrane depolarization experiments does not imply co-regulation because Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized cortical neurons. Therefore, in contrast to midbrain dopaminergic neurons and cerebellar granule cells, Nurr1 does not regulate BDNF in cortical neurons.
Collapse
Affiliation(s)
- Mona Abdollahi
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
10
|
Bi A, Wang Y, Chen L, Yin Z, Luo L. γ-Glutamylcysteine attenuates amyloid-β oligomers-induced neuroinflammation in microglia via blocking NF-κB signaling pathway. Chem Biol Interact 2022; 363:110019. [PMID: 35714925 DOI: 10.1016/j.cbi.2022.110019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurogenerative disease, characterized by progressive memory loss and cognitive deficits. Intracellular neurofibrillary tangles (NFTs) and amyloid-β (Aβ)-formed neuritic plaques are major pathological features of AD. Aβ evokes activation of microglia to release inflammatory mediators and ROS to induce neurotoxicity, leading to neurodegeneration. γ-Glutamylcysteine (γ-GC), an intermediate dipeptide of the GSH-synthesis pathway and possessing anti-inflammatory and anti-oxidative properties, represents a relatively unexplored option for AD treatment. In the present study, we investigated the anti-inflammatory effect of γ-GC on Aβ oligomer (AβO)-induced neuroinflammation and the associated molecular mechanism in microglia. The results showed that γ-GC reduced AβO-induced release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and nitric oxide (NO), and the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). γ-GC decreased ROS and MDA production and increased the GSH level, GSH/GSSG ratio, and SOD activity in AβO-treated microglia. Mechanistically, γ-GC inhibited activation of nuclear factor kappa B (NF-κB), and upregulated the nuclear receptor-related 1 (Nurr1) protein expression to suppress the transcriptional effect of NF-κB on the inflammatory genes. Besides, γ-GC suppressed the AβO-induced neuroinflammation in mice. These findings suggested that γ-GC might represent a potential therapeutic agent for anti-neuroinflammation.
Collapse
Affiliation(s)
- Aijing Bi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yanan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Luyao Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, Jiangsu, China.
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
11
|
Willems S, Marschner JA, Kilu W, Faudone G, Busch R, Duensing‐Kropp S, Heering J, Merk D. Nurr1 Modulation Mediates Neuroprotective Effects of Statins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104640. [PMID: 35488520 PMCID: PMC9218776 DOI: 10.1002/advs.202104640] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/15/2022] [Indexed: 05/09/2023]
Abstract
The ligand-sensing transcription factor Nurr1 emerges as a promising therapeutic target for neurodegenerative pathologies but Nurr1 ligands for functional studies and therapeutic validation are lacking. Here pronounced Nurr1 modulation by statins for which clinically relevant neuroprotective effects are demonstrated, is reported. Several statins directly affect Nurr1 activity in cellular and cell-free settings with low micromolar to sub-micromolar potencies. Simvastatin as example exhibits anti-inflammatory effects in astrocytes, which are abrogated by Nurr1 knockdown. Differential gene expression analysis in native and Nurr1-silenced cells reveals strong proinflammatory effects of Nurr1 knockdown while simvastatin treatment induces several neuroprotective mechanisms via Nurr1 involving changes in inflammatory, metabolic and cell cycle gene expression. Further in vitro evaluation confirms reduced inflammatory response, improved glucose metabolism, and cell cycle inhibition of simvastatin-treated neuronal cells. These findings suggest Nurr1 involvement in the well-documented but mechanistically elusive neuroprotection by statins.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
| | - Julian A. Marschner
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| | - Whitney Kilu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
| | - Giuseppe Faudone
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
| | - Romy Busch
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| | - Silke Duensing‐Kropp
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 7Frankfurt60596Germany
| | - Daniel Merk
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 9Frankfurt60438Germany
- Department of PharmacyLudwig‐Maximilians‐Universität MünchenButenandtstr. 5‐13Munich81377Germany
| |
Collapse
|
12
|
Willems S, Müller M, Ohrndorf J, Heering J, Proschak E, Merk D. Scaffold Hopping from Amodiaquine to Novel Nurr1 Agonist Chemotypes via Microscale Analogue Libraries. ChemMedChem 2022; 17:e202200026. [PMID: 35132775 PMCID: PMC9305750 DOI: 10.1002/cmdc.202200026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Several lines of evidence suggest the ligand-sensing transcription factor Nurr1 as a promising target to treat neurodegenerative diseases. Nurr1 modulators to validate and exploit this therapeutic potential are rare, however. To identify novel Nurr1 agonist chemotypes, we have employed the Nurr1 activator amodiaquine as template for microscale analogue library synthesis. The first set of analogues was based on the 7-chloroquiolin-4-amine core fragment of amodiaquine and revealed superior N-substituents compared to diethylaminomethylphenol contained in the template. A second library of analogues was subsequently prepared to replace the chloroquinolineamine scaffold. The two sets of analogues enabled a full scaffold hop from amodiaquine to a novel Nurr1 agonist sharing no structural features with the lead but comprising superior potency on Nurr1. Additionally, pharmacophore modeling based on the entire set of active and inactive analogues suggested key features for Nurr1 agonists.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Marcel Müller
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Julia Ohrndorf
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor-Stern-Kai 760596FrankfurtGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
| | - Daniel Merk
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax-von-Laue-Str. 960438FrankfurtGermany
- Department of PharmacyLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
13
|
Català-Solsona J, Miñano-Molina AJ, Rodríguez-Álvarez J. Nr4a2 Transcription Factor in Hippocampal Synaptic Plasticity, Memory and Cognitive Dysfunction: A Perspective Review. Front Mol Neurosci 2021; 14:786226. [PMID: 34880728 PMCID: PMC8645690 DOI: 10.3389/fnmol.2021.786226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Long-lasting changes of synaptic efficacy are largely mediated by activity-induced gene transcription and are essential for neuronal plasticity and memory. In this scenario, transcription factors have emerged as pivotal players underlying synaptic plasticity and the modification of neural networks required for memory formation and consolidation. Hippocampal synaptic dysfunction is widely accepted to underlie the cognitive decline observed in some neurodegenerative disorders including Alzheimer’s disease. Therefore, understanding the molecular pathways regulating gene expression profiles may help to identify new synaptic therapeutic targets. The nuclear receptor 4A subfamily (Nr4a) of transcription factors has been involved in a variety of physiological processes within the hippocampus, ranging from inflammation to neuroprotection. Recent studies have also pointed out a role for the activity-dependent nuclear receptor subfamily 4, group A, member 2 (Nr4a2/Nurr1) in hippocampal synaptic plasticity and cognitive functions, although the underlying molecular mechanisms are still poorly understood. In this review, we highlight the specific effects of Nr4a2 in hippocampal synaptic plasticity and memory formation and we discuss whether the dysregulation of this transcription factor could contribute to hippocampal synaptic dysfunction, altogether suggesting the possibility that Nr4a2 may emerge as a novel synaptic therapeutic target in brain pathologies associated to cognitive dysfunctions.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alfredo J Miñano-Molina
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Álvarez
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
15
|
Zaienne D, Willems S, Schierle S, Heering J, Merk D. Development and Profiling of Inverse Agonist Tools for the Neuroprotective Transcription Factor Nurr1. J Med Chem 2021; 64:15126-15140. [PMID: 34633810 DOI: 10.1021/acs.jmedchem.1c01077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ligand-sensing transcription factor nuclear receptor related 1 (Nurr1) evolves as an appealing target to treat neurodegenerative diseases. Despite its therapeutic potential observed in various rodent models, potent modulators for Nurr1 are lacking as pharmacological tools. Here, we report the structure-activity relationship and systematic optimization of indole-based inverse Nurr1 agonists. Optimized analogues decreased the receptor's intrinsic transcriptional activity by up to more than 90% and revealed preference for inhibiting Nurr1 monomer activity. In orthogonal cell-free settings, we detected displacement of NCoRs and disruption of the Nurr1 homodimer as molecular modes of action. The inverse Nurr1 agonists reduced the expression of Nurr1-regulated genes in T98G cells, and treatment with an inverse Nurr1 agonist mimicked the effect of Nurr1 silencing on interleukin-6 release from LPS-stimulated human astrocytes. The indole-based inverse Nurr1 agonists valuably extend the toolbox of Nurr1 modulators to further probe the role of Nurr1 in neuroinflammation, cancer, and beyond.
Collapse
Affiliation(s)
- Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, D-60596 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, D-60438 Frankfurt, Germany.,Department of Pharmacy, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| |
Collapse
|
16
|
Wang Y, Li C, Zhang Y, Zha X, Zhang H, Hu Z, Wu C. Aberrant mTOR/autophagy/Nurr1 signaling is critical for TSC-associated tumor development. Biochem Cell Biol 2021; 99:570-577. [PMID: 34463540 DOI: 10.1139/bcb-2021-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC), an inherited neurocutaneous disease, is caused by mutations in either the TSC1 or TSC2 gene. This genetic disorder is characterized by the growth of benign tumors in the brain, kidneys, and other organs. As a member of the orphan nuclear receptor family, nuclear receptor related 1 (Nurr1) plays a vital role in some neuropathological diseases and several types of benign or malignant tumors. Here, we explored the potential regulatory role of TSC1/2 signaling in Nurr1 and the effect of Nurr1 in TSC-related tumors. We found that Nurr1 expression was drastically decreased by the disruption of the TSC1/2 complex in Tsc2-null cells, genetically modified mouse models of TSC, cortical tubers of TSC patients, and kidney tumor tissue obtained from a TSC patient. Deficient TSC1/2 complex downregulated Nurr1 expression in an mTOR-dependent manner. Moreover, hyperactivation of mTOR reduced Nurr1 expression via suppression of autophagy. In addition, Nurr1 overexpression inhibited cell proliferation and suppressed cell cycle progression. Therefore, TSC/mTOR/autophagy/Nurr1 signaling is partially responsible for the tumorigenesis of TSC. Taken together, Nurr1 may be a novel therapeutic target for TSC-associated tumors, and Nurr1 agonists or reagents that induce Nurr1 expression may be used for the treatment of TSC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Chunjia Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
17
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Kummari E, Guo-Ross SX, Partington HS, Nutter JM, Eells JB. Quantitative Immunohistochemistry to Measure Regional Expression of Nurr1 in the Brain and the Effect of the Nurr1 Heterozygous Genotype. Front Neuroanat 2021; 15:563854. [PMID: 33994958 PMCID: PMC8119777 DOI: 10.3389/fnana.2021.563854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/10/2021] [Indexed: 11/30/2022] Open
Abstract
The transcription factor Nurr1 is a member of the steroid hormone nuclear receptor superfamily. Ablation of Nurr1 expression arrests mesencephalic dopamine neuron differentiation while attenuation of Nurr1 in the subiculum and hippocampus impairs learning and memory. Additionally, reduced Nurr1 expression has been reported in patients with Parkinson's disease and Alzheimer's disease. In order to better understand the overall function of Nurr1 in the brain, quantitative immunohistochemistry was used to measure cellular Nurr1 protein expression, across Nurr1 immunoreactive neuronal populations. Additionally, neuronal Nurr1 expression levels were compared between different brain regions in wild-type mice (+/+) and Nurr1 heterozygous mice (+/-). Regional Nurr1 protein was also investigated at various time points after a seizure induced by pentylenetetrazol (PTZ). Nurr1 protein is expressed in various regions throughout the brain, however, a wide range of Nurr1 expression levels were observed among various neuronal populations. Neurons in the parietal and temporal cortex (secondary somatosensory, insular, auditory, and temporal association cortex) had the highest relative Nurr1 expression (100%) followed closely by the claustrum/dorsal endopiriform cortex (85%) and then subiculum (76%). Lower Nurr1 protein levels were found in neurons in the substantia nigra pars compacta and ventral tegmental area (39%) followed by CA1 (25%) and CA3 (19%) of the hippocampus. Additionally, in the parietal and temporal cortex, two distinct populations of high and medium Nurr1 expressing neurons were observed. Comparisons between +/- and +/+ mice revealed Nurr1 protein was reduced in +/- mice by 27% in the parietal/temporal cortex, 49% in the claustrum/dorsal endopiriform cortex, 25% in the subiculum, 33% in substantia nigra pars compacta, 22% in ventral tegmental area, and 21% in CA1 region of the hippocampus. Based on these data, regional mechanisms appear to exist which can compensate for a loss of a Nurr1 allele. Following a single PTZ-induced seizure, Nurr1 protein in the dentate gyrus peaked around 2 h and returned to baseline by 8 h. Since altered Nurr1 expression has been implicated in neurologic disorders and Nurr1 agonists have showed protective effects, understanding regional protein expression of Nurr1, therefore, is necessary to understand how changes in Nurr1 expression can alter brain function.
Collapse
Affiliation(s)
- Evangel Kummari
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Shirley X. Guo-Ross
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Heath S. Partington
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jennifer Makenzie Nutter
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jeffrey B. Eells
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
19
|
Activation of Nurr1 with Amodiaquine Protected Neuron and Alleviated Neuroinflammation after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6669787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background. Nurr1, a member of the nuclear receptor 4A family (NR4A), played a role in neuron protection, anti-inflammation, and antioxidative stress in multidiseases. We explored the role of Nurr1 on subarachnoid hemorrhage (SAH) progression and investigated the feasibility of its agonist (amodiaquine, AQ) as a treatment for SAH. Methods. SAH rat models were constructed by the endovascular perforation technique. AQ was administered intraperitoneally at 2 hours after SAH induction. SAH grade, mortality, weight loss, neurological performance tests, brain water content, western blot, immunofluorescence, Nissl staining, and qPCR were assessed post-SAH. In vitro, hemin was introduced into HT22 cells to develop a model of SAH. Results. Stimulation of Nurr1 with AQ improved the outcomes and attenuated brain edema. Nurr1 was mainly expressed in neuron, and administration of AQ alleviated neuron injury in vivo and enhanced the neuron viability and inhibited neuron apoptosis and necrosis in vitro. Besides, AQ reduced the amount of IL-1β+Iba-1+ cells and inhibited the mRNA level of proinflammatory cytokines (IL-1β and TNF-α) and the M1-like phenotype markers (CD68 and CD86). AQ inhibited the expression of MMP9 in HT22 cells. Furthermore, AQ reduced the expression of nuclear NF-κB and Nurr1 while increased cytoplasmic Nurr1 in vivo and in vitro. Conclusion. Pharmacological activation of Nurr1 with AQ alleviated the neuron injury and neuroinflammation. The mechanism of antineuroinflammation may be associated with the Nurr1/NF-κB/MMP9 pathway in the neuron. The data supported that AQ might be a promising treatment strategy for SAH.
Collapse
|
20
|
Potent synthetic and endogenous ligands for the adopted orphan nuclear receptor Nurr1. Exp Mol Med 2021; 53:19-29. [PMID: 33479411 PMCID: PMC8080818 DOI: 10.1038/s12276-021-00555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Until recently, Nurr1 (NR4A2) was known as an orphan nuclear receptor without a canonical ligand-binding domain, featuring instead a narrow and tight cavity for small molecular ligands to bind. In-depth characterization of its ligand-binding pocket revealed that it is highly dynamic, with its structural conformation changing more than twice on the microsecond-to-millisecond timescale. This observation suggests the possibility that certain ligands are able to squeeze into this narrow space, inducing a conformational change to create an accessible cavity. The cocrystallographic structure of Nurr1 bound to endogenous ligands such as prostaglandin E1/A1 and 5,6-dihydroxyindole contributed to clarifying the crucial roles of Nurr1 and opening new avenues for therapeutic interventions for neurodegenerative and/or inflammatory diseases related to Nurr1. This review introduces novel endogenous and synthetic Nurr1 agonists and discusses their potential effects in Nurr1-related diseases.
Collapse
|
21
|
The orphan nuclear receptor Nurr1 is responsive to non-steroidal anti-inflammatory drugs. Commun Chem 2020; 3:85. [PMID: 36703399 PMCID: PMC9814838 DOI: 10.1038/s42004-020-0331-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 01/29/2023] Open
Abstract
Nuclear receptor related 1 (Nurr1) is an orphan ligand-activated transcription factor and considered as neuroprotective transcriptional regulator with great potential as therapeutic target for neurodegenerative diseases. However, the collection of available Nurr1 modulators and mechanistic understanding of Nurr1 are limited. Here, we report the discovery of several structurally diverse non-steroidal anti-inflammatory drugs as inverse Nurr1 agonists demonstrating that Nurr1 activity can be regulated bidirectionally. As chemical tools, these ligands enable unraveling the co-regulatory network of Nurr1 and the mode of action distinguishing agonists from inverse agonists. In addition to its ability to dimerize, we observe an ability of Nurr1 to recruit several canonical nuclear receptor co-regulators in a ligand-dependent fashion. Distinct dimerization states and co-regulator interaction patterns arise as discriminating factors of Nurr1 agonists and inverse agonists. Our results contribute a valuable collection of Nurr1 modulators and relevant mechanistic insights for future Nurr1 target validation and drug discovery.
Collapse
|
22
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
23
|
Chatterjee S, Walsh EN, Yan AL, Giese KP, Safe S, Abel T. Pharmacological activation of Nr4a rescues age-associated memory decline. Neurobiol Aging 2020; 85:140-144. [PMID: 31732218 PMCID: PMC6917472 DOI: 10.1016/j.neurobiolaging.2019.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
Age-associated cognitive impairments affect an individual's quality of life and are a growing problem in society. Therefore, therapeutic strategies to treat age-related cognitive decline are needed to enhance the quality of life among the elderly. Activation of the Nr4a family of transcription factors has been closely linked to memory formation and dysregulation of these transcription factors is thought to be associated with age-related cognitive decline. Previously, we have shown that Nr4a transcription can be activated by synthetic bisindole-derived compounds (C-DIM). C-DIM compounds enhance synaptic plasticity and long-term contextual fear memory in young healthy mice. In this study, we show that activation of Nr4a2 by 1,1-bis(3'-Indolyl)-1-(p-chlorophenyl) methane (C-DIM12), enhances long-term spatial memory in young mice and rescues memory deficits in aged mice. These findings suggest that C-DIM activators of Nr4a transcription may be suitable to prevent memory deficits associated with aging.
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily N Walsh
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Yan
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
24
|
Moon H, Jeon SG, Kim JI, Kim HS, Lee S, Kim D, Park S, Moon M, Chung H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int J Mol Sci 2019; 21:E4. [PMID: 31861329 PMCID: PMC6982043 DOI: 10.3390/ijms21010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Nuclear receptor related-1 (Nurr1) protein performs a crucial role in hippocampal neural stem cell (hNSC) development as well as cognitive functions. We previously demonstrated that the pharmacological stimulation of Nurr1 by amodiaquine (AQ) promotes spatial memory by enhancing adult hippocampal neurogenesis. However, the role of Nurr1 in the cell cycle regulation of the adult hippocampus has not been investigated. This study aimed to examine changes in the cell cycle-related molecules involved in adult hippocampal neurogenesis induced by Nurr1 pharmacological stimulation. Fluorescence-activated cell sorting (FACS) analysis showed that AQ improved the progression of cell cycle from G0/G1 to S phase in a dose-dependent manner, and MEK1 or PI3K inhibitors attenuated this progression. In addition, AQ treatment increased the expression of cell proliferation markers MCM5 and PCNA, and transcription factor E2F1. Furthermore, pharmacological stimulation of Nurr1 by AQ increased the expression levels of positive cell cycle regulators such as cyclin A and cyclin-dependent kinases (CDK) 2. In contrast, levels of CDK inhibitors p27KIP1 and p57KIP2 were reduced upon treatment with AQ. Similar to the in vitro results, RT-qPCR analysis of AQ-administered mice brains revealed an increase in the levels of markers of cell cycle progression, PCNA, MCM5, and Cdc25a. Finally, AQ administration resulted in decreased p27KIP1 and increased CDK2 levels in the dentate gyrus of the mouse hippocampus, as quantified immunohistochemically. Our results demonstrate that the pharmacological stimulation of Nurr1 in adult hNSCs by AQ promotes the cell cycle by modulating cell cycle-related molecules.
Collapse
Affiliation(s)
- Haena Moon
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243, Korea;
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Sangho Lee
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Dongok Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| | - Seungjoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.G.J.); (H.s.K.)
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 134-727, Korea; (H.M.); (S.L.); (D.K.)
| |
Collapse
|
25
|
Moon M, Jung ES, Jeon SG, Cha MY, Jang Y, Kim W, Lopes C, Mook-Jung I, Kim KS. Nurr1 (NR4A2) regulates Alzheimer's disease-related pathogenesis and cognitive function in the 5XFAD mouse model. Aging Cell 2019; 18:e12866. [PMID: 30515963 PMCID: PMC6351845 DOI: 10.1111/acel.12866] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
The orphan nuclear receptor Nurr1 (also known as NR4A2) is critical for the development and maintenance of midbrain dopaminergic neurons, and is associated with Parkinson's disease. However, an association between Nurr1 and Alzheimer's disease (AD)‐related pathology has not previously been reported. Here, we provide evidence that Nurr1 is expressed in a neuron‐specific manner in AD‐related brain regions; specifically, it is selectively expressed in glutamatergic neurons in the subiculum and the cortex of both normal and AD brains. Based on Nurr1’s expression patterns, we investigated potential functional roles of Nurr1 in AD pathology. Nurr1 expression was examined in the hippocampus and cortex of AD mouse model and postmortem human AD subjects. In addition, we performed both gain‐of‐function and loss‐of‐function studies of Nurr1 and its pharmacological activation in 5XFAD mice. We found that knockdown of Nurr1 significantly aggravated AD pathology while its overexpression alleviated it, including effects on Aβ accumulation, neuroinflammation, and neurodegeneration. Importantly, 5XFAD mice treated with amodiaquine, a highly selective synthetic Nurr1 agonist, showed robust reduction in typical AD features including deposition of Aβ plaques, neuronal loss, microgliosis, and impairment of adult hippocampal neurogenesis, leading to significant improvement of cognitive impairment. These in vivo and in vitro findings suggest that Nurr1 critically regulates AD‐related pathophysiology and identify Nurr1 as a novel AD therapeutic target.
Collapse
Affiliation(s)
- Minho Moon
- Department of Biochemistry, College of Medicine; Konyang University; Daejeon Korea
- Molecular Neurobiology Laboratory, Department of Psychiatry; McLean Hospital; Harvard Medical School; Belmont Massachusetts
| | - Eun Sun Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine; Seoul National University; Seoul Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine; Konyang University; Daejeon Korea
- Molecular Neurobiology Laboratory, Department of Psychiatry; McLean Hospital; Harvard Medical School; Belmont Massachusetts
| | - Moon-Yong Cha
- Department of Biochemistry and Biomedical Sciences, College of Medicine; Seoul National University; Seoul Korea
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry; McLean Hospital; Harvard Medical School; Belmont Massachusetts
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry; McLean Hospital; Harvard Medical School; Belmont Massachusetts
| | - Claudia Lopes
- Molecular Neurobiology Laboratory, Department of Psychiatry; McLean Hospital; Harvard Medical School; Belmont Massachusetts
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine; Seoul National University; Seoul Korea
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry; McLean Hospital; Harvard Medical School; Belmont Massachusetts
- Program in Neuroscience; Harvard Medical School; Belmont Massachusetts
| |
Collapse
|
26
|
Eimerbrink M, Pendry R, Hodges S, Wiles J, Peterman J, White J, Hayes H, Chumley M, Boehm G. The α5-GABAAR inverse agonist MRK-016 upregulates hippocampal BDNF expression and prevents cognitive deficits in LPS-treated mice, despite elevations in hippocampal Aβ. Behav Brain Res 2019; 359:871-877. [DOI: 10.1016/j.bbr.2018.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022]
|
27
|
Jakaria M, Haque ME, Cho DY, Azam S, Kim IS, Choi DK. Molecular Insights into NR4A2(Nurr1): an Emerging Target for Neuroprotective Therapy Against Neuroinflammation and Neuronal Cell Death. Mol Neurobiol 2019; 56:5799-5814. [PMID: 30684217 DOI: 10.1007/s12035-019-1487-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
NR4A2 is a nuclear receptor and a transcription factor, with distinctive physiological features. In the cell nuclei of the central nervous system, it is widely expressed and identified as a crucial regulator of dopaminergic (DA) neuronal differentiation, survival, and maintenance. Importantly, it has regulated different genes crucial for dopaminergic signals, and its expression has been diminished in both aged and PD post-mortem brains and reduced in PD patients. In microglia and astrocytes, the expression of NR4A2 has been found where it can be capable of inhibiting the expression of proinflammatory mediators; hence, it protected inflammation-mediated DA neuronal death. In addition, NR4A2 plays neuroprotective role via regulating different signals. However, NR4A2 has been mainly focused on Parkinson's research, but, in recent times, it has been studied in Alzheimer's disease (AD), multiple sclerosis (MS), and stroke. Altered expression of NR4A2 is connected to AD progression, and activation of its may improve cognitive function. It is downregulated in peripheral blood mononuclear cells of MS patients; nonetheless, its role in MS has not been fully clear. miR-145-5p known as a putative regulator of NR4A2 and in a middle cerebral artery occlusion/reperfusion model, anti-miR-145-5p administration promoted neurological outcomes in rat. To date, various activators and modulators of NR4A2 have been discovered and investigated as probable therapeutic drugs in neuroinflammatory and neuronal cell death models. The NR4A2 gene and cell-based therapy are described as promising drug candidates for neurodegenerative diseases. Moreover, microRNA might have a crucial role in neurodegeneration via affecting NR4A2 expression. Herein, we present the role of NR4A2 in neuroinflammation and neuronal cell death focusing on neurodegenerative conditions and display NR4A2 as a promising therapeutic target for the therapy of neuroprotection.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Md Ezazul Haque
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Duk-Yeon Cho
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Shofiul Azam
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea. .,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea.
| |
Collapse
|
28
|
Bennett JP, Keeney PM. RNA-Sequencing Reveals Similarities and Differences in Gene Expression in Vulnerable Brain Tissues of Alzheimer's and Parkinson's Diseases. J Alzheimers Dis Rep 2018; 2:129-137. [PMID: 30480256 PMCID: PMC6159702 DOI: 10.3233/adr-180072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Neuropathological changes of Alzheimer's disease (AD) and Parkinson's disease (PD) can coexist in the same sample, suggesting possible common degenerative mechanisms. OBJECTIVE The objective of this study was to use RNA-sequencing to compare gene expression in AD and PD vulnerable brain regions and search for co-expressed genes. METHODS Total RNA was isolated from AD/CTL frontal cortex and PD/CTL ventral midbrain. Sequencing libraries were prepared, multiplex paired-end RNA sequencing was carried out, and bioinformatics analyses of gene expression used both publicly available (tophat2/bowtie2/Cufflinks) and commercial (Qlucore Omics Explorer) algorithms. RESULTS Both AD (frontal cortex, n = 10) and PD (ventral midbrain, n = 14) samples showed extensive heterogeneity of gene expression. Hierarchical clustering of heatmaps revealed two gene populations (AD, 376 genes; PD, 351 genes) that separated AD or PD from control samples at false-discovery rates (q) of <5% and fold changes of at least 1.3 (AD) or 1.5 (PD). 10,124 genes were co-expressed in our AD and PD samples. A very small group of these genes (n = 23) showed both low variances (<150; variance = standard deviation squared) and reduced expressions (>1.5-fold under-expression) in both AD and PD. Ingenuity Pathways Analyses (IPA, Qiagen) revealed loss of NAD biosynthesis and salvage as the major canonical pathway significantly altered in both AD and PD. CONCLUSIONS AD and PD in vulnerable brain regions appear to arise from and result in independent molecular genetic abnormalities, but we identified several under-expressed genes with potential to treat both diseases. NAD supplementation shows particular promise.
Collapse
Affiliation(s)
| | - Paula M. Keeney
- Neurodegeneration Therapeutics, Inc., Charlottesville, VA, USA
| |
Collapse
|
29
|
Ahn JH, Lee JS, Cho JH, Park JH, Lee TK, Song M, Kim H, Kang SH, Won MH, Lee CH. Age-dependent decrease of Nurr1 protein expression in the gerbil hippocampus. Biomed Rep 2018; 8:517-522. [PMID: 29904610 PMCID: PMC5996841 DOI: 10.3892/br.2018.1094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear receptor related-1 protein (Nurr1) serves important roles in hippocampal-dependent cognitive process. In the present study, the protein expression of Nurr1 was compared in the hippocampi of young [postnatal month 3 (PM 3)], adult (PM 12) and aged (PM 24) gerbils using western blot analysis and immunohistochemistry. Results indicated that the protein level of Nurr1 was significantly and gradually decreased in the gerbil hippocampus with increasing age. In addition, strong Nurr1 immunoreactivity was primarily observed in pyramidal neurons and granule cells of the hippocampus in the young group, which was determined to be reduced in the adult group and to a greater extent in the aged group. Collectively the data demonstrated that Nurr1 immunoreactivity was gradually and markedly decreased during normal aging. These results indicate that gradual decrease of Nurr1 expression in the hippocampus may be associated with the normal aging process and a decline in hippocampus-dependent cognitive function.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Seok Lee
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Minah Song
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyunjung Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seok Hoon Kang
- Department of Medical Education, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|
30
|
Whole transcriptome profiling of Late-Onset Alzheimer's Disease patients provides insights into the molecular changes involved in the disease. Sci Rep 2018. [PMID: 29523845 PMCID: PMC5844946 DOI: 10.1038/s41598-018-22701-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s Disease (AD) is the most common cause of dementia affecting the elderly population worldwide. We have performed a comprehensive transcriptome profiling of Late-Onset AD (LOAD) patients using second generation sequencing technologies, identifying 2,064 genes, 47 lncRNAs and 4 miRNAs whose expression is specifically deregulated in the hippocampal region of LOAD patients. Moreover, analyzing the hippocampal, temporal and frontal regions from the same LOAD patients, we identify specific sets of deregulated miRNAs for each region, and we confirm that the miR-132/212 cluster is deregulated in each of these regions in LOAD patients, consistent with these miRNAs playing a role in AD pathogenesis. Notably, a luciferase assay indicates that miR-184 is able to target the 3’UTR NR4A2 - which is known to be involved in cognitive functions and long-term memory and whose expression levels are inversely correlated with those of miR-184 in the hippocampus. Finally, RNA editing analysis reveals a general RNA editing decrease in LOAD hippocampus, with 14 recoding sites significantly and differentially edited in 11 genes. Our data underline specific transcriptional changes in LOAD brain and provide an important source of information for understanding the molecular changes characterizing LOAD progression.
Collapse
|
31
|
Hedya SA, Safar MM, Bahgat AK. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 2018; 55:7579-7587. [DOI: 10.1007/s12035-018-0923-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
32
|
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ. EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 2017; 58:1733-1755. [PMID: 28389477 PMCID: PMC5580905 DOI: 10.1194/jlr.r076315] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Indexed: 01/12/2023] Open
Abstract
Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer's disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Evangelina Avila-Munoz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | - Nicole Collins
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612.
| |
Collapse
|
33
|
Kim JI, Jeon SG, Kim KA, Kim YJ, Song EJ, Choi J, Ahn KJ, Kim CJ, Chung HY, Moon M, Chung H. The pharmacological stimulation of Nurr1 improves cognitive functions via enhancement of adult hippocampal neurogenesis. Stem Cell Res 2016; 17:534-543. [PMID: 27788475 DOI: 10.1016/j.scr.2016.09.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/12/2016] [Accepted: 09/23/2016] [Indexed: 11/26/2022] Open
Abstract
The nuclear receptor related-1 (Nurr1) protein plays an important role in both the development of neural precursor cells (NPCs) and cognitive functions. Despite its relevance, the effects of Nurr1 on adult hippocampal neurogenesis have not been thoroughly investigated. Here we used RT-PCR, western blot, and immunocytochemistry to show that adult hippocampal NPCs abundantly express Nurr1. We then examined the effect of Nurr1 activation on adult hippocampal NPCs using amodiaquine (AQ), an anti-malarial drug that was recently discovered to be a Nurr1 agonist. Cell proliferation assay showed that AQ significantly increased cell proliferation. AQ-treated NPCs showed increased levels of phosphorylation of Akt and ERK1/2 whereas AQ-treated Nurr1 siRNA-transfected NPCs showed no changes in those levels. Further immunocytochemical and immunohistochemical analyses confirmed the stimulating effect of Nurr1 agonist on the proliferation and differentiation of adult hippocampal NPCs both in vivo and in vitro. In addition to its effects on proliferation and differentiation of NPCs, AQ-treated mice showed a significant enhancement of both short- and long-term memory in the Y-maze and the novel object recognition test. These data suggest that activation of Nurr1 may enhance cognitive functions by increasing adult hippocampal neurogenesis and also indicate that Nurr1 may be used as a therapeutic target for the treatment of memory disorders and cognitive impairment observed in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Junghyun Choi
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Kyu Jeung Ahn
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Chong-Jin Kim
- Department of Cardiology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Ho Yeon Chung
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea.
| |
Collapse
|
34
|
Chen P, Li J, Huo Y, Lu J, Wan L, Li B, Gan R, Guo C. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. PeerJ 2015; 3:e1518. [PMID: 26713258 PMCID: PMC4690364 DOI: 10.7717/peerj.1518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/28/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Pengguo Chen
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China ; Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jie Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Yan Huo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Jin Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Bin Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Run Gan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai , China ; Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
35
|
Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases? Cell Mol Life Sci 2015; 72:4795-805. [PMID: 26403788 PMCID: PMC5005413 DOI: 10.1007/s00018-015-2038-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 12/14/2022]
Abstract
Systemic inflammation and infections are associated with neurodegenerative diseases. Unfortunately, the molecular bases of this link are still largely undiscovered. We, therefore, review how inflammatory processes can imbalance membrane homeostasis and theorize how this may have an effect on the aggregation behavior of the proteins implicated in such diseases. Specifically, we describe the processes that generate such imbalances at the molecular level, and try to understand how they affect protein folding and localization. Overall, current knowledge suggests that microglia pro-inflammatory mediators can generate membrane damage, which may have an impact in terms of triggering or accelerating disease manifestation.
Collapse
|