1
|
Kastner-Blasczyk AR, Hester SW, Reasons SE, Scofield MD, Woodward JJ. Effect of an astrocyte calcium exporter on orbitofrontal cortex neuron excitability, astrocyte-synaptic interaction, and alcohol consumption. Neuropharmacology 2025; 269:110365. [PMID: 39952350 PMCID: PMC11995387 DOI: 10.1016/j.neuropharm.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Previous electrophysiology studies show that acute ethanol inhibits firing of orbitofrontal (OFC) cortex neurons while chronic intermittent ethanol (CIE) exposure increases firing accompanied by enhanced ethanol drinking. The acute ethanol inhibition of OFC neuronal firing is mediated by inhibitory glycine receptors and is reduced by expressing a plasma membrane calcium ATPase (PMCA) in OFC astrocytes. In this study, we tested the effects of astrocyte PMCA on CIE-induced increases in excitability and alcohol consumption and the physical interaction between OFC astrocytes and neurons. CIE increased neuronal firing in male mice as compared to Air controls while PMCA itself increased firing in Air control male mice. In contrast, PMCA reduced CIE-mediated hyperexcitability of firing in females. CIE did not affect OFC astrocyte size in control or PMCA male mice but increased astrocyte size in female mice. Similar to spiking, PMCA and CIE both increased the number of GluA1 containing synapses within the vicinity of virally labeled astrocytes in male mice but had differential effects in females. The astrocytic interaction with GluA1 labeled synapses was not affected by CIE treatment in male or female control mice, but there was a treatment-dependent effect of PMCA in male mice. CIE increased alcohol consumption in control but not PMCA male mice and had no effect on drinking in female mice. Lastly, OFC astrocyte PMCA expression had no effect on behavioral measures of locomotion, anxiety, spontaneous alternation, or spatial memory. These findings reveal important sex-dependent differences in the physiological, structural and behavioral actions of OFC astrocytes.
Collapse
Affiliation(s)
- A R Kastner-Blasczyk
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - S W Hester
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - S E Reasons
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - M D Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - J J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
2
|
Oladapo A, Kannan M, Deshetty UM, Singh S, Buch S, Periyasamy P. Methamphetamine-mediated astrocytic pyroptosis and neuroinflammation involves miR-152-NLRP6 inflammasome signaling axis. Redox Biol 2025; 80:103517. [PMID: 39879739 PMCID: PMC11810843 DOI: 10.1016/j.redox.2025.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025] Open
Abstract
Methamphetamine is a widely abused drug associated with significant neuroinflammation and neurodegeneration, mainly through the activation of glial cells and neurons in the central nervous system. This study investigates the role of the astrocyte-specific NOD-like receptor family pyrin domain-containing protein 6 (NLRP6) inflammasome in methamphetamine-induced astrocytic pyroptosis and neuroinflammation. Our findings demonstrate that methamphetamine exposure induces NLRP6-dependent pyroptosis, astrocyte activation, and the release of proinflammatory cytokines in mouse primary astrocytes. Gene silencing of NLRP6 reduces methamphetamine-induced pyroptosis and proinflammatory cytokines release. We also identified miR-152 as a critical upstream regulator of NLRP6, which is downregulated in methamphetamine-exposed astrocytes. Overexpression of miR-152 decreases NLRP6 expression, mitigating methamphetamine-induced pyroptosis and inflammation. In vivo and ex vivo studies in methamphetamine-exposed mice confirmed these results and showed that methamphetamine induces anxiety-like, cognitive impairment, and depression-like behavior, further linking astrocyte-specific NLRP6 signaling to methamphetamine-induced neuroinflammation. This study highlights the potential of targeting the NLRP6 inflammasome in astrocytes as a therapeutic approach to alleviate methamphetamine-induced central nervous system pathology. Further research is warranted to explore clinical applications and identify therapeutic targets for methamphetamine-related neurological disorders.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
3
|
Tastan B, Heneka MT. The impact of neuroinflammation on neuronal integrity. Immunol Rev 2024; 327:8-32. [PMID: 39470038 DOI: 10.1111/imr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration. Thus, this review aims to provide a comprehensive overview of the multifaceted interactions among neurons and key inflammatory players, exploring mechanisms through which inflammation influences neuronal functionality and structural integrity in the CNS. Further, it will discuss how these inflammatory mechanisms lead to impairment in neuronal functions and architecture and highlight the consequences caused by dysregulated neuronal functions, such as cognitive dysfunction and mood disorders. By integrating insights from recent research findings, this review will enhance our understanding of the neuroinflammatory landscape and set the stage for future interventions that could transform current approaches to preserve neuronal integrity and function in CNS-related inflammatory conditions.
Collapse
Affiliation(s)
- Bora Tastan
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Erdos T, Masuda M, Venketaraman V. Glutathione in HIV-Associated Neurocognitive Disorders. Curr Issues Mol Biol 2024; 46:5530-5549. [PMID: 38921002 PMCID: PMC11202908 DOI: 10.3390/cimb46060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (T.E.); (M.M.)
| |
Collapse
|
5
|
Villanelo F, Minogue PJ, Maripillán J, Reyna-Jeldes M, Jensen-Flores J, García IE, Beyer EC, Pérez-Acle T, Berthoud VM, Martínez AD. Connexin channels and hemichannels are modulated differently by charge reversal at residues forming the intracellular pocket. Biol Res 2024; 57:31. [PMID: 38783330 PMCID: PMC11112876 DOI: 10.1186/s40659-024-00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Members of the β-subfamily of connexins contain an intracellular pocket surrounded by amino acid residues from the four transmembrane helices. The presence of this pocket has not previously been investigated in members of the α-, γ-, δ-, and ε-subfamilies. We studied connexin50 (Cx50) as a representative of the α-subfamily, because its structure has been determined and mutations of Cx50 are among the most common genetic causes of congenital cataracts. METHODS To investigate the presence and function of the intracellular pocket in Cx50 we used molecular dynamics simulation, site-directed mutagenesis, gap junction tracer intercellular transfer, and hemichannel activity detected by electrophysiology and by permeation of charged molecules. RESULTS Employing molecular dynamics, we determined the presence of the intracellular pocket in Cx50 hemichannels and identified the amino acids participating in its formation. We utilized site-directed mutagenesis to alter a salt-bridge interaction that supports the intracellular pocket and occurs between two residues highly conserved in the connexin family, R33 and E162. Substitution of opposite charges at either position decreased formation of gap junctional plaques and cell-cell communication and modestly reduced hemichannel currents. Simultaneous charge reversal at these positions produced plaque-forming non-functional gap junction channels with highly active hemichannels. CONCLUSIONS These results show that interactions within the intracellular pocket influence both gap junction channel and hemichannel functions. Disruption of these interactions may be responsible for diseases associated with mutations at these positions.
Collapse
Affiliation(s)
- Felipe Villanelo
- Computational Biology Lab, Centro Basal Ciencia & Vida, Santiago, 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Jaime Maripillán
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio Reyna-Jeldes
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Joaquin Jensen-Flores
- Computational Biology Lab, Centro Basal Ciencia & Vida, Santiago, 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile
| | - Isaac E García
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Tomás Pérez-Acle
- Computational Biology Lab, Centro Basal Ciencia & Vida, Santiago, 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA.
| | - Agustín D Martínez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
6
|
Harder EV, Franklin JP, VanRyzin JW, Reissner KJ. Astrocyte-Neuron Interactions in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 39:165-191. [PMID: 39190075 DOI: 10.1007/978-3-031-64839-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.
Collapse
Affiliation(s)
- Eden V Harder
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Janay P Franklin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan W VanRyzin
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn J Reissner
- Department of Psychology & Neuroscience, Neuroscience Center, UNC Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Xu J, Zhu Z, Jin Y, Wei C, Wang Y, Li X. Effect of aerobic exercise on brain metabolite profiles in the mouse models of methamphetamine addiction: LC-MS-based metabolomics study. BMC Psychiatry 2023; 23:852. [PMID: 37978352 PMCID: PMC10655403 DOI: 10.1186/s12888-023-05351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Methamphetamine (MA) abuse is recognized as a brain disorder, and physical activity has clear benefits for MA use disorders. The specific mechanisms by which physical activity alleviates MA use disorders are currently not fully understood. Based on this, the present study used untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) to analyze the metabolic changes induced by MA in the brains of mice by exercise intervention. It was found that after 2 weeks of treadmill training, aerobic exercise modulated MA-induced brain metabolic disorders, in which 129 metabolites existed that were significantly differentiated in response to MA induction, and 32 metabolites were significantly affected by exercise. These differential metabolites were mainly enriched in glycerophospholipid metabolism, steroid hormone biosynthesis and degradation, and renin-angiotensin system pathways. To our knowledge, this study is the first to use LC-MS to investigate the effects of aerobic exercise on MA-induced brain metabolic profiling. The findings of this study provide new insights into exercise therapy using MA.
Collapse
Affiliation(s)
- Jisheng Xu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Zhicheng Zhu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Yu Jin
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Changling Wei
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xue Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, P. R. China.
| |
Collapse
|
8
|
Darvishmolla M, Saeedi N, Tavassoli Z, Heysieattalab S, Janahmadi M, Hosseinmardi N. Maladaptive plasticity induced by morphine is mediated by hippocampal astrocytic Connexin-43. Life Sci 2023; 330:121969. [PMID: 37541575 DOI: 10.1016/j.lfs.2023.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
AIMS Drug addiction is an aberrant learning process that involves the recruitment of memory systems. We have previously demonstrated that morphine exposure causes maladaptive synaptic plasticity which involved hippocampal glial cells, especially astrocytes. Morphine addiction has been associated with astrocytic connexin 43 (Cx43), which plays a role in synaptic homeostasis. This study aimed to examine the role of hippocampal astrocytic Cx43 in morphine-induced maladaptive plasticity as a mechanism of addiction. MAIN METHODS Male rats were injected with morphine (10 mg/kg) subcutaneously every 12 h for nine days to induce dependence. Cx43 was inhibited by TAT-Gap19 (1 μl/1 nmol) microinjection in the CA1 region of the hippocampus 30 min before each morning morphine injection. Field potential recordings were used to assess synaptic plasticity. fEPSP was recorded from the CA1 area following CA3 stimulation. KEY FINDINGS Electrophysiological results showed that morphine treatment altered baseline synaptic responses. It also appears that morphine treatment augmented long-term potentiation (LTP) compared with the control group. Hippocampal astrocytic Cx43 inhibition, with the TAT-Gap19, undermines these effects of morphine on baseline synaptic responses and LTP. Despite this, long-term depression (LTD) did not differ significantly between the groups. Additionally, in the morphine-receiving group, inhibition of Cx43 significantly reduced the paired-pulse index at an 80-millisecond inter-pulse interval when assessing short-term plasticity. SIGNIFICANCE The results of this study demonstrated that inhibiting Cx43 reduced synaptic plasticity induced by morphine. It can be concluded that hippocampal astrocytes through Cx43 are involved in morphine-induced metaplasticity.
Collapse
Affiliation(s)
- Mahgol Darvishmolla
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Saeedi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mahyar Janahmadi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lewandowski SI, Hodebourg R, Wood SK, Carter JS, Nelson KH, Kalivas PW, Reichel CM. Matrix metalloproteinase activity during methamphetamine cued relapse. Addict Biol 2023; 28:e13279. [PMID: 37186441 PMCID: PMC10506177 DOI: 10.1111/adb.13279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Relapse to drug seeking involves transient synaptic remodelling that occurs in response to drug-associated cues. This remodelling includes activation of matrix metalloproteinases (MMPs) to initiate catalytic signalling in the extracellular matrix in the nucleus accumbens core (NAcore). We hypothesized that MMP activity would be increased in the NAcore during cue-induced methamphetamine (meth) seeking in a rat model of meth use and relapse. Male and female rats had indwelling jugular catheters and bilateral intracranial cannula targeting the NAcore surgically implanted. Following recovery, rats underwent meth or saline self-administration (6 h/day for 15 days) in which active lever responding was paired with a light + tone stimulus complex, followed by home cage abstinence. Testing occurred after 7 or 30 days of abstinence. On test day, rats were microinjected with a fluorescein isothiocyanate (FITC)-quenched gelatin substrate that fluoresces following cleavage by MMP-2,9, allowing for the quantification of gelatinase activity during cued-relapse testing. MMP-2,9 activity was significantly increased in the NAcore by meth cues presentation after 7 and 30 days of abstinence, indicating that remodelling by MMPs occurs during presentation of meth associated cues. Surprisingly, although cue-induced seeking increased between Days 7 and 30, MMP-2,9 activity did not increase. These findings indicate that although MMP activation is elicited during meth cue-induced seeking, MMP activation did not parallel the meth seeking that occurs during extended drug abstinence.
Collapse
Affiliation(s)
- Stacia I. Lewandowski
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Samuel K. Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Jordan S. Carter
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Katherine H. Nelson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| | - Carmela M. Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
10
|
Lee HH, Carmichael DJ, Ríbeiro V, Parisi DN, Munzen ME, Charles-Niño CL, Hamed MF, Kaur E, Mishra A, Patel J, Rooklin RB, Sher A, Carrillo-Sepulveda MA, Eugenin EA, Dores MR, Martinez LR. Glucuronoxylomannan intranasal challenge prior to Cryptococcus neoformans pulmonary infection enhances cerebral cryptococcosis in rodents. PLoS Pathog 2023; 19:e1010941. [PMID: 37115795 PMCID: PMC10171644 DOI: 10.1371/journal.ppat.1010941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis, with the highest rate of disease in patients with AIDS or immunosuppression. This microbe enters the human body via inhalation of infectious particles. C. neoformans capsular polysaccharide, in which the major component is glucuronoxylomannan (GXM), extensively accumulates in tissues and compromises host immune responses. C. neoformans travels from the lungs to the bloodstream and crosses to the brain via transcytosis, paracytosis, or inside of phagocytes using a "Trojan horse" mechanism. The fungus causes life-threatening meningoencephalitis with high mortality rates. Hence, we investigated the impact of intranasal exogenous GXM administration on C. neoformans infection in C57BL/6 mice. GXM enhances cryptococcal pulmonary infection and facilitates fungal systemic dissemination and brain invasion. Pre-challenge of GXM results in detection of the polysaccharide in lungs, serum, and surprisingly brain, the latter likely reached through the nasal cavity. GXM significantly alters endothelial cell tight junction protein expression in vivo, suggesting significant implications for the C. neoformans mechanisms of brain invasion. Using a microtiter transwell system, we showed that GXM disrupts the trans-endothelial electrical resistance, weakening human brain endothelial cell monolayers co-cultured with pericytes, supportive cells of blood vessels/capillaries found in the blood-brain barrier (BBB) to promote C. neoformans BBB penetration. Our findings should be considered in the development of therapeutics to combat the devastating complications of cryptococcosis that results in an estimated ~200,000 deaths worldwide each year.
Collapse
Affiliation(s)
- Hiu Ham Lee
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, United States of America
| | - Dylan J Carmichael
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, United States of America
| | - Victoria Ríbeiro
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dana N Parisi
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, United States of America
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, United States of America
| | - Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Claudia L Charles-Niño
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Mohamed F Hamed
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ettiman Kaur
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Ayush Mishra
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Jiya Patel
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Rikki B Rooklin
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Amina Sher
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Maria A Carrillo-Sepulveda
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, United States of America
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael R Dores
- Department of Biology, Hofstra University, Hempstead, New York, United States of America
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, New York, United States of America
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, United States of America
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, United States of America
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
11
|
Jin S, Campbell EJ, Ip CK, Layfield S, Bathgate RAD, Herzog H, Lawrence AJ. Molecular Profiling of VGluT1 AND VGluT2 Ventral Subiculum to Nucleus Accumbens Shell Projections. Neurochem Res 2023:10.1007/s11064-023-03921-z. [PMID: 37017888 DOI: 10.1007/s11064-023-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
The nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell. We then used circuit-directed translating ribosome affinity purification to examine the molecular characteristics of distinct glutamatergic (VGluT1, VGluT2-Slc17a6) ventral subiculum to nucleus accumbens shell projections. We immunoprecipitated translating ribosomes from this population of projection neurons and analysed molecular connectomic information using RNA sequencing. We found differential gene enrichment across both glutamatergic projection neuron subtypes. In VGluT1 projections, we found enrichment of Pfkl, a gene involved in glucose metabolism. In VGluT2 projections, we found a depletion of Sparcl1 and Dlg1, genes known to play a role in depression- and addiction-related behaviours. These findings highlight potential glutamatergic neuronal-projection-specific differences in ventral subiculum to nucleus accumbens shell projections. Together these data advance our understanding of the phenotype of a defined brain circuit.
Collapse
Affiliation(s)
- Shubo Jin
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sharon Layfield
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
12
|
Yang Q, Jiang M, Xu S, Yang L, Yang P, Song Y, Zhu H, Wang Y, Sun Y, Yan C, Yuan Z, Liu X, Bai Z. Mirror image pain mediated by D2 receptor regulation of astrocytic Cx43 phosphorylation and channel opening. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166657. [PMID: 36716897 DOI: 10.1016/j.bbadis.2023.166657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Mirror image pain (MIP), a clinical syndrome of contralateral pain hypersensitivity caused by unilateral injury, has been identified in various neuropathological conditions. Gap junctional protein Connexin 43 (Cx43), its phosphorylation levels and dopamine D2 receptor (DRD2) play key integrating roles in pain processing. We presume D2DR activity may affect Cx43 hemichannel opening via Cx43 phosphorylation levels to regulate MIP. This study shows that spinal astrocytic Cx43 directly interacts with DRD2 to mediate MIP. DRD2 and Cx43 expression levels were asymmetrically elevated in bilateral spinal during MIP, and DRD2 modulated the opening of primary astrocytic Cx43 hemichannels. Furthermore, Cx43 phosphorylation at Ser373 was increased during MIP, but decreased in DRD2 knockout (KO) mice. Finally, activation of spinal protein kinase A (PKA) altered the expression of Cx43 and its phosphorylation bilaterally, thus reversing the analgesic effect in DRD2 KO mice. Together, these data reveal that spinal Cx43 phosphorylation and channel opening are regulated by DRD2 via PKA activation, and that spinal Cx43 and DRD2 are key molecular sensors mediating mirror image pain.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China
| | - Pan Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yutian Song
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Hongni Zhu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yu Wang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China.
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological Resources, Yanan University, Yanan 716000, China; Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan 716000, China; Yanan Key Laboratory for Neural Immuno-Tumor and Stem Cell, Yanan 716000, China.
| |
Collapse
|
13
|
Lafuente JV, Sharma A, Feng L, Muresanu DF, Nozari A, Tian ZR, Buzoianu AD, Sjöquist PO, Wiklund L, Sharma HS. Nanowired Delivery of Mesenchymal Stem Cells with Antioxidant Compound H-290/51 Reduces Exacerbation of Methamphetamine Neurotoxicity in Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:317-352. [PMID: 37480465 DOI: 10.1007/978-3-031-32997-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to hot environments either for combat operations or peacekeeping missions. Hot environment is a severe stressful situation leading to profound hyperthermia, fatigue and neurological impairments. To avoid stressful environment, some people frequently use methamphetamine (METH) or other psychostimulants to feel comfortable under adverse situations. Our studies show that heat stress alone induces breakdown of the blood-brain barrier (BBB) and edema formation associated with reduced cerebral blood flow (CBF). On the other hand, METH alone induces hyperthermia and neurotoxicity. These effects of METH are exacerbated at high ambient temperatures as seen with greater breakdown of the BBB and brain pathology. Thus, a combination of METH use at hot environment may further enhance the brain damage-associated behavioral dysfunctions. METH is well known to induce severe oxidative stress leading to brain pathology. In this investigation, METH intoxication at hot environment was examined on brain pathology and to explore suitable strategies to induce neuroprotection. Accordingly, TiO2-nanowired delivery of H-290/51 (150 mg/kg, i.p.), a potent chain-breaking antioxidant in combination with mesenchymal stem cells (MSCs), is investigated in attenuating METH-induced brain damage at hot environment in model experiments. Our results show that nanodelivery of H-290/51 with MSCs significantly enhanced CBF and reduced BBB breakdown, edema formation and brain pathology following METH exposure at hot environment. These observations are the first to point out that METH exacerbated brain pathology at hot environment probably due to enhanced oxidative stress, and MSCs attenuate these adverse effects, not reported earlier.
Collapse
Affiliation(s)
- José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Effects of Aerobic Exercise on Markers of Brain Injury in Methamphetamine-Dependent Individuals: A Randomized Controlled Trial. Brain Sci 2022; 12:brainsci12111521. [PMID: 36358447 PMCID: PMC9688363 DOI: 10.3390/brainsci12111521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Objective: Drug dependence has become a major global public health problem. This study aimed to investigate the effects of moderate-intensity aerobic exercise on the blood−brain barrier and neurological damage in methamphetamine (MA)-dependent individuals. Methods: MA-dependent individuals (all males) were recruited and randomly divided into MA exercise group (MAE) and MA control group (MAC) by using random number table method. The MAE group underwent 12 weeks of moderate-intensity aerobic exercise, and the MAC group underwent conventional detoxification. The Neurofilament light chain (NfL), S100 calcium binding protein b (S100b), and Neuron-Specific Enolase (NSE) levels in the blood of MA-dependent individuals were measured before and after the exercise intervention. Results: After the exercise intervention was implemented, the amount of change in NfL in the plasma of the MAE (1.75 ± 1.40) group was significantly different from that of the MAC (0.60 ± 1.21) group (p < 0.01); the amount of change in NSE in the serum of the MAE [−1.51 (−3.99~0.31)] group was significantly different from that of the MAC [0.03 (−1.18~1.16)] group (p < 0.05); and the amount of change in S100b in the serum of the MAE [0.66 (0.40~0.95)] group was not significantly different from that of the MAC (0.60 (0.21~1.04)) group (p > 0.05). Conclusion: This study showed that 12 weeks of moderate-intensity aerobic exercise treatment significantly promoted the recovery of blood−brain barrier and neurological damage in MA-dependent patients compared with conventional withdrawal.
Collapse
|
15
|
Methamphetamine Induces Systemic Inflammation and Anxiety: The Role of the Gut–Immune–Brain Axis. Int J Mol Sci 2022; 23:ijms231911224. [PMID: 36232524 PMCID: PMC9569811 DOI: 10.3390/ijms231911224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal–immune–nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1β, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood–brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.
Collapse
|
16
|
Chen W, Meng S, Han Y, Shi J. Astrocytes: the neglected stars in the central nervous system and drug addiction. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:417-426. [PMID: 37724324 PMCID: PMC10388769 DOI: 10.1515/mr-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
With the advent of improved tools to examine the astrocytes, which have been believed to play a supportive role in the central nervous system (CNS) for years, their participation in the operation of the CNS and drug addiction was unveiled. Assisting the formation and function of the CNS, astrocytes are involved in physiological and pathological brain activities. Drug addiction is a pervasive psychiatric disorder, characterized by compulsive drug-taking behavior and high rate of relapse, impacting individual health and society stability and safety. When exposed to drugs of abuse, astrocytes go through a series of alterations, contributing to the development of addiction. Here we review how astrocytes contribute to the CNS and drug addiction. We hope that understanding the interaction between addictive drugs and astrocytes may help discover new mechanisms underlying the addiction and produce novel therapeutic treatments.
Collapse
Affiliation(s)
- Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Dong N, Zhu J, Wang R, Wang S, Chen Y, Wang C, Goh EL, Chen T. Maternal Methamphetamine Exposure Influences Behavioral Sensitization and Nucleus Accumbens DNA Methylation in Subsequent Generation. Front Pharmacol 2022; 13:940798. [PMID: 35928279 PMCID: PMC9343784 DOI: 10.3389/fphar.2022.940798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The deleterious effects of methamphetamine (METH) exposure extend beyond abusers, and may potentially impact the vulnerability of their offspring in developing addictive behaviors. Epigenetic signatures have been implicated in addiction, yet the characteristics to identify prenatal METH abuse to offspring addiction risk remains elusive. Here, we used escalating doses of METH-exposed mouse model in F0 female mice before and during pregnancy to simulate the human pattern of drug abuse and generated METH-induced behavioral sensitization to investigate the addictive behavior in offspring mice. We then utilized whole genome-bisulfite sequencing (WGBS) to investigate the methylation signature of nucleus accumbens (NAc) in male METH-sensitized mice. Interestingly, male but not female offspring exhibited an enhanced response to METH-induced behavioral sensitization. Additionally, the METH-exposed group of male mice underwent a more comprehensive wave of epigenome remodeling over all genomic elements compared with unexposed groups due to drug exposure history. 104,219 DMCs (METH-SAL vs. SAL-SAL) induced by prenatal METH-exposure were positively correlated with that of postnatal METH-exposure (38,570, SAL-METH vs. SAL-SAL). Moreover, 4,983 DMCs induced by pre- and postnatal METH exposure (METH-METH vs. SAL-METH) were negatively correlated with that of postnatal METH exposure, and 371 commonly changed DMCs between the two comparison groups also showed a significantly negative correlation and 86 annotated genes functionally enriched in the pathways of neurodevelopment and addiction. Key annotated genes included Kirrel3, Lrpprc, and Peg3, implicated in neurodevelopmental processes, were down-regulated in METH-METH group mice compared with the SAL-METH group. Taken together, we render novel insights into the epigenetic correlation of drug exposure and provide evidence for epigenetic characteristics that link maternal METH exposure to the intensity of the same drug-induced behavioral sensitization in adult offspring.
Collapse
Affiliation(s)
- Nan Dong
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jie Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Shuai Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Eyleen L.K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Singhealth Duke-NUS Neuroscience Academic Clinical Programme, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
18
|
Zhao JJ, Wang ZH, Zhang YJ, Wang WJ, Cheng AF, Rong PJ, Shan CL. The mechanisms through which auricular vagus nerve stimulation protects against cerebral ischemia/reperfusion injury. Neural Regen Res 2022; 17:594-600. [PMID: 34380899 PMCID: PMC8504367 DOI: 10.4103/1673-5374.320992] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Previous studies have shown that vagus nerve stimulation can improve patients' locomotor function. The stimulation of the auricular vagus nerve, which is the only superficial branch of the vagus nerve, may have similar effects to vagus nerve stimulation. However, the precise mechanisms remain poorly understood. In this study, rat models of cerebral ischemia/reperfusion injury were established by modified Longa ligation. Twenty-four hours later, 7-day auricular vagus nerve stimulation was performed. The results showed that auricular vagus nerve stimulation promoted the secretion of acetylcholine, inhibited the secretion of interleukin-1β, interleukin-6, and tumor necrosis factor-α, and reduced connexin 43 phosphorylation in the ischemic penumbra and motor cortex, promoting locomotor function recovery in rats with cerebral ischemia/reperfusion injury. These findings suggested that auricular vagus nerve stimulation promotes the recovery of locomotor function in rats with cerebral ischemia/reperfusion injury by altering the secretion of acetylcholine and inflammatory factors and the phosphorylation of connexin 43. This study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine on November 8, 2019 (approval No. PZSHUTCM191108014).
Collapse
Affiliation(s)
- Jing-Jun Zhao
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; School of Rehabilitation Science; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Zheng-Hui Wang
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ying-Jie Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Wen-Jing Wang
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Fang Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Pei-Jing Rong
- Institute of Acupuncture and Moxibustion, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Lei Shan
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine; School of Rehabilitation Science; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
19
|
Abstract
Astroglia are key regulators of synaptic function, playing central roles in homeostatic ion buffering, energy dynamics, transmitter uptake, maintenance of neurotransmitter pools, and regulation of synaptic plasticity through release of neuroactive chemicals. Given the myriad of crucial homeostatic and signaling functions attributed to astrocytes and the variety of neurotransmitter receptors expressed by astroglia, they serve as prime cellular candidates for establishing maladaptive synaptic plasticity following drug exposure. Initial studies on astroglia and addiction have placed drug-mediated disruptions in the homeostatic regulation of glutamate as a central aspect of relapse vulnerability. However, the generation of sophisticated tools to study and manipulate astroglia have proven that the interaction between addictive substances, astroglia, and relapse-relevant synaptic plasticity extends far beyond the homeostatic regulation of glutamate. Here we present astroglial systems impacted by drug exposure and discuss how changes in astroglial biology contribute to addiction biology.
Collapse
|
20
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
21
|
Naveed Z, Fox HS, Wichman CS, May P, Arcari CM, Meza J, Baccaglini L. An assessment of factors associated with neurocognitive decline in people living with HIV. Int J STD AIDS 2021; 33:38-47. [PMID: 34565257 DOI: 10.1177/09564624211043351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite the widespread use of combination antiretroviral therapy (cART), HIV-associated neurocognitive impairment (NCI) remains a health concern. However, limited research has been done to identify factors associated with neurocognitive decline. We assessed risk factors associated with neurocognitive decline in people living with HIV using a definition of decline that is statistically easy to adopt, is based on a commonly used neuropsychological cut-off and may be clinically relevant. Cox proportional hazards modeling was performed using the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study database. 581 participants were followed for up to 12 years. Neurocognitive decline was defined as the first observed drop in global T-scores of at least 2.67. Lifetime methamphetamine use had the strongest association with neurocognitive decline (adjusted Hazard Ratio; aHR = 1.48; 95% CI = 0.92-2.39) followed by no current antiretroviral medication use (aHR = 1.32; 95% CI = 0.91-1.92). Other risk factors included Hispanic ethnicity, lifetime history of major depressive disorder, lifetime cannabis use, hepatitis-C infection, and difficulty eating, dressing, bathing, or using the toilet. Results indicate that consistent use of ART may be of high significance to preserving neurocognition. Furthermore, Hispanic patients, those with a history of depression and substance use, and those having difficulty in essential activities of daily living may require vigilant follow-up.
Collapse
Affiliation(s)
- Zaeema Naveed
- Department of Epidemiology, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Neurological Sciences, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Christopher S Wichman
- Department of Biostatistics, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Pamela May
- Department of Neurological Sciences, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine M Arcari
- Department of Epidemiology, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Jane Meza
- Department of Biostatistics, 12284University of Nebraska Medical Center, Omaha, NE, USA
| | - Lorena Baccaglini
- Department of Epidemiology, 12284University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
22
|
Fattakhov N, Torices S, Stangis M, Park M, Toborek M. Synergistic Impairment of the Neurovascular Unit by HIV-1 Infection and Methamphetamine Use: Implications for HIV-1-Associated Neurocognitive Disorders. Viruses 2021; 13:1883. [PMID: 34578464 PMCID: PMC8473422 DOI: 10.3390/v13091883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The neurovascular units (NVU) are the minimal functional units of the blood-brain barrier (BBB), composed of endothelial cells, pericytes, astrocytes, microglia, neurons, and the basement membrane. The BBB serves as an important interface for immune communication between the brain and peripheral circulation. Disruption of the NVU by the human immunodeficiency virus-1 (HIV-1) induces dysfunction of the BBB and triggers inflammatory responses, which can lead to the development of neurocognitive impairments collectively known as HIV-1-associated neurocognitive disorders (HAND). Methamphetamine (METH) use disorder is a frequent comorbidity among individuals infected with HIV-1. METH use may be associated not only with rapid HIV-1 disease progression but also with accelerated onset and increased severity of HAND. However, the molecular mechanisms of METH-induced neuronal injury and cognitive impairment in the context of HIV-1 infection are poorly understood. In this review, we summarize recent progress in the signaling pathways mediating synergistic impairment of the BBB and neuronal injury induced by METH and HIV-1, potentially accelerating the onset or severity of HAND in HIV-1-positive METH abusers. We also discuss potential therapies to limit neuroinflammation and NVU damage in HIV-1-infected METH abusers.
Collapse
Affiliation(s)
- Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Michael Stangis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.T.); (M.S.); (M.P.)
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40065 Katowice, Poland
| |
Collapse
|
23
|
D'Amico D, Valdebenito S, Eugenin EA. The role of Pannexin-1 channels and extracellular ATP in the pathogenesis of the human immunodeficiency virus. Purinergic Signal 2021; 17:563-576. [PMID: 34542793 DOI: 10.1007/s11302-021-09817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Silvana Valdebenito
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience , Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
24
|
Silvana V, Paul C, Ajasin D, Eugenin EA. Astrocytes are HIV reservoirs in the brain: A cell type with poor HIV infectivity and replication but efficient cell-to-cell viral transfer. J Neurochem 2021; 158:429-443. [PMID: 33655498 PMCID: PMC11102126 DOI: 10.1111/jnc.15336] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The major barrier to eradicating Human immunodeficiency virus-1 (HIV) infection is the generation of tissue-associated quiescent long-lasting viral reservoirs refractory to therapy. Upon interruption of anti-retroviral therapy (ART), HIV replication can be reactivated. Within the brain, microglia/macrophages and a small population of astrocytes are infected with HIV. However, the role of astrocytes as a potential viral reservoir is becoming more recognized because of the improved detection and quantification of HIV viral reservoirs. In this report, we examined the infectivity of human primary astrocytes in vivo and in vitro, and their capacity to maintain HIV infection, become latently infected, be reactivated, and transfer new HIV virions into neighboring cells. Analysis of human brain tissue sections obtained from HIV-infected individuals under effective and prolonged ART indicates that a small population of astrocytes has integrated HIV-DNA. In vitro experiments using HIV-infected human primary astrocyte cultures confirmed a low percentage of astrocytes had integrated HIV-DNA, with poor to undetectable replication. Even in the absence of ART, long-term culture results in latency that could be transiently reactivated with histone deacetylase inhibitor, tumor necrosis factor-alpha (TNF-α), or methamphetamine. Reactivation resulted in poor viral production but efficient cell-to-cell viral transfer into cells that support high viral replication. Together, our data provide a new understanding of astrocytes' role as viral reservoirs within the central nervous system (CNS).
Collapse
Affiliation(s)
- Valdebenito Silvana
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Castellano Paul
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - David Ajasin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
25
|
Gorska AM, Donoso M, Valdebenito S, Prideaux B, Queen S, Scemes E, Clements J, Eugenin E. Human immunodeficiency virus-1/simian immunodeficiency virus infection induces opening of pannexin-1 channels resulting in neuronal synaptic compromise: A novel therapeutic opportunity to prevent NeuroHIV. J Neurochem 2021; 158:500-521. [PMID: 33899944 DOI: 10.1111/jnc.15374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
In healthy conditions, pannexin-1 (Panx-1) channels are in a close state, but in several pathological conditions, including human immunodeficiency virus-1 (HIV) and NeuroHIV, the channel becomes open. However, the mechanism or contribution of Panx-1 channels to the HIV pathogenesis and NeuroHIV is unknown. To determine the contribution of Panx-1 channels to the pathogenesis of NeuroHIV, we used a well-established model of simian immunodeficiency virus (SIV) infection in macaques (Macaca mulatta) in the presence of and absence of a Panx-1 blocker to later examine the synaptic/axonal compromise induced for the virus. Using Golgi's staining, we demonstrated that SIV infection compromised synaptic and axonal structures, especially in the white matter. Blocking Panx-1 channels after SIV infection prevented the synaptic and axonal compromise induced by the virus, especially by maintaining the more complex synapses. Our data demonstrated that targeting Panx-1 channels can prevent and maybe revert brain synaptic compromise induced by SIV infection.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, John Hopkins Medical Center, Baltimore, MD, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Janice Clements
- Department of Molecular and Comparative Pathobiology, John Hopkins Medical Center, Baltimore, MD, USA
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
26
|
Mazaud D, Capano A, Rouach N. The many ways astroglial connexins regulate neurotransmission and behavior. Glia 2021; 69:2527-2545. [PMID: 34101261 DOI: 10.1002/glia.24040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Astrocytes have emerged as major players in the brain, contributing to many functions such as energy supply, neurotransmission, and behavior. They accomplish these functions in part via their capacity to form widespread intercellular networks and to release neuroactive factors, which can modulate neurotransmission at different levels, from individual synapses to neuronal networks. The extensive network communication of astrocytes is primarily mediated by gap junction channels composed of two connexins, Cx30 and Cx43, which present distinct temporal and spatial expression patterns. Yet, astroglial connexins are also involved in direct exchange with the extracellular space via hemichannels, as well as in adhesion and signaling processes via unconventional nonchannel functions. Accumulating evidence indicate that astrocytes modulate neurotransmission and behavior through these diverse connexin functions. We here review the many ways astroglial connexins regulate neuronal activity from the molecular level to behavior.
Collapse
Affiliation(s)
- David Mazaud
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | - Anna Capano
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France.,Doctoral School N°158, Sorbonne University, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| |
Collapse
|
27
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
28
|
GKT136901 protects primary human brain microvascular endothelial cells against methamphetamine-induced blood-brain barrier dysfunction. Life Sci 2020; 256:117917. [DOI: 10.1016/j.lfs.2020.117917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
|
29
|
Liang Z, Wang X, Hao Y, Qiu L, Lou Y, Zhang Y, Ma D, Feng J. The Multifaceted Role of Astrocyte Connexin 43 in Ischemic Stroke Through Forming Hemichannels and Gap Junctions. Front Neurol 2020; 11:703. [PMID: 32849190 PMCID: PMC7411525 DOI: 10.3389/fneur.2020.00703] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke is a multi-factorial cerebrovascular disease with high worldwide morbidity and mortality. In the past few years, multiple studies have revealed the underlying mechanism of ischemia/reperfusion injury, including calcium overload, amino acid toxicity, oxidative stress, and inflammation. Connexin 43 (Cx43), the predominant connexin protein in astrocytes, has been recently proven to display non-substitutable roles in the pathology of ischemic stroke development and progression through forming gap junctions and hemichannels. Under normal conditions, astrocytic Cx43 could be found in hemichannels or in the coupling with other hemichannels on astrocytes, neurons, or oligodendrocytes to form the neuro-glial syncytium, which is involved in metabolites exchange between communicated cells, thus maintaining the homeostasis of the CNS environment. In ischemic stroke, the phosphorylation of Cx43 might cause the degradation of gap junctions and the opening of hemichannels, contributing to the release of inflammatory mediators. However, the remaining gap junctions could facilitate the exchange of protective and harmful metabolites between healthy and injured cells, protecting the injured cells to some extent or damaging the healthy cells depending on the balance of the exchange of protective and harmful metabolites. In this study, we review the changes in astrocytic Cx43 expression and distribution as well as the influence of these changes on the function of astrocytes and other cells in the CNS, providing new insight into the pathology of ischemic stroke injury; we also discuss the potential of astrocytic Cx43 as a target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Lin Qiu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yaoting Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
31
|
Kocovic DM, Limaye PV, Colburn LCH, Singh MB, Milosevic MM, Tadic J, Petronijevic M, Vrzic-Petronijevic S, Andjus PR, Antic SD. Cadmium versus Lanthanum Effects on Spontaneous Electrical Activity and Expression of Connexin Isoforms Cx26, Cx36, and Cx45 in the Human Fetal Cortex. Cereb Cortex 2020; 30:1244-1259. [PMID: 31408166 PMCID: PMC7132928 DOI: 10.1093/cercor/bhz163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
Electrical activity is important for brain development. In brain slices, human subplate neurons exhibit spontaneous electrical activity that is highly sensitive to lanthanum. Based on the results of pharmacological experiments in human fetal tissue, we hypothesized that hemichannel-forming connexin (Cx) isoforms 26, 36, and 45 would be expressed on neurons in the subplate (SP) zone. RNA sequencing of dissected human cortical mantles at ages of 17-23 gestational weeks revealed that Cx45 has the highest expression, followed by Cx36 and Cx26. The levels of Cx and pannexin expression between male and female fetal cortices were not significantly different. Immunohistochemical analysis detected Cx45- and Cx26-expressing neurons in the upper segment of the SP zone. Cx45 was present on the cell bodies of human SP neurons, while Cx26 was found on both cell bodies and dendrites. Cx45, Cx36, and Cx26 were strongly expressed in the cortical plate, where newborn migrating neurons line up to form cortical layers. New information about the expression of 3 "neuronal" Cx isoforms in each cortical layer/zone (e.g., SP, cortical plate) and pharmacological data with cadmium and lanthanum may improve our understanding of the cellular mechanisms underlying neuronal development in human fetuses and potential vulnerabilities.
Collapse
Affiliation(s)
- Dusica M Kocovic
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Pallavi V Limaye
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Lauren C H Colburn
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Mandakini B Singh
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Milena M Milosevic
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Jasmina Tadic
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | | | | | - Pavle R Andjus
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Srdjan D Antic
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
32
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
33
|
Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ. Astroglial correlates of neuropsychiatric disease: From astrocytopathy to astrogliosis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:126-146. [PMID: 28989099 PMCID: PMC5889368 DOI: 10.1016/j.pnpbp.2017.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Abstract
Complex roles for astrocytes in health and disease continue to emerge, highlighting this class of cells as integral to function and dysfunction of the nervous system. In particular, escalating evidence strongly implicates a range of changes in astrocyte structure and function associated with neuropsychiatric diseases including major depressive disorder, schizophrenia, and addiction. These changes can range from astrocytopathy, degeneration, and loss of function, to astrogliosis and hypertrophy, and can be either adaptive or maladaptive. Evidence from the literature indicates a myriad of changes observed in astrocytes from both human postmortem studies as well as preclinical animal models, including changes in expression of glial fibrillary protein, as well as changes in astrocyte morphology and astrocyte-mediated regulation of synaptic function. In this review, we seek to provide a comprehensive assessment of these findings and consequently evidence for common themes regarding adaptations in astrocytes associated with neuropsychiatric disease. While results are mixed across conditions and models, general findings indicate decreased astrocyte cellular features and gene expression in depression, chronic stress and anxiety, but increased inflammation in schizophrenia. Changes also vary widely in response to different drugs of abuse, with evidence reflective of features of astrocytopathy to astrogliosis, varying across drug classes, route of administration and length of withdrawal.
Collapse
Affiliation(s)
- Ronald Kim
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kati L Healey
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Marian T Sepulveda-Orengo
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kathryn J Reissner
- Department of Psychology and Neuroscience, CB 3270, UNC Chapel Hill, Chapel Hill, NC 27599, United States..
| |
Collapse
|
34
|
Valdebenito S, Lou E, Baldoni J, Okafo G, Eugenin E. The Novel Roles of Connexin Channels and Tunneling Nanotubes in Cancer Pathogenesis. Int J Mol Sci 2018; 19:E1270. [PMID: 29695070 PMCID: PMC5983846 DOI: 10.3390/ijms19051270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and "normal" surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| | - Emil Lou
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - John Baldoni
- GlaxoSmithKline, In-Silico Drug Discovery Unit, 1250 South Collegeville Road, Collegeville, PA 19426, USA.
| | - George Okafo
- GlaxoSmithKline, In-Silico Drug Discovery Unit, Stevenage SG1 2NY, UK.
| | - Eliseo Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of NJ, Newark, NJ 07103, USA.
| |
Collapse
|
35
|
Lerner RP, Francardo V, Fujita K, Bimpisidis Z, Jourdain VA, Tang CC, Dewey SL, Chaly T, Cenci MA, Eidelberg D. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep 2017; 7:16005. [PMID: 29167476 PMCID: PMC5700135 DOI: 10.1038/s41598-017-16228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic levodopa treatment leads to the appearance of dyskinesia in the majority of Parkinson’s disease patients. Neurovascular dysregulation in putaminal and pallidal regions is thought to be an underlying feature of this complication of treatment. We used microPET to study unilaterally lesioned 6-hydroxydopamine rats that developed levodopa-induced abnormal involuntary movements (AIMs) after three weeks of drug treatment. Animals were scanned with [15O]-labeled water and [18F]-fluorodeoxyglucose, to map regional cerebral blood flow and glucose metabolism, and with [11C]-isoaminobutyric acid (AIB), to assess blood-brain-barrier (BBB) permeability, following separate injections of levodopa or saline. Multitracer scan data were acquired in each animal before initiating levodopa treatment, and again following the period of daily drug administration. Significant dissociation of vasomotor and metabolic levodopa responses was seen in the striatum/globus pallidus (GP) of the lesioned hemisphere. These changes were accompanied by nearby increases in [11C]-AIB uptake in the ipsilateral GP, which correlated with AIMs scores. Histopathological analysis revealed high levels of microvascular nestin immunoreactivity in the same region. The findings demonstrate that regional flow-metabolism dissociation and increased BBB permeability are simultaneously induced by levodopa within areas of active microvascular remodeling, and that such changes correlate with the severity of dyskinesia.
Collapse
Affiliation(s)
- Renata P Lerner
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Koji Fujita
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Zisis Bimpisidis
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Vincent A Jourdain
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Chris C Tang
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Stephen L Dewey
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Thomas Chaly
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA.
| |
Collapse
|
36
|
Rich MT, Torregrossa MM. Molecular and synaptic mechanisms regulating drug-associated memories: Towards a bidirectional treatment strategy. Brain Res Bull 2017; 141:58-71. [PMID: 28916448 DOI: 10.1016/j.brainresbull.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
The successful treatment of substance use disorders is dependent on the establishment of a long-term abstinent state. Relapse can be suppressed by interfering with memories of drug use that are evoked by re-exposure to drug-associated contexts and cues. Two strategies for accomplishing this goal are either to prevent drug-memory reconsolidation or to induce the formation of a competing, extinction memory. However, clinical attempts to prolong abstinence by behavioral modification of drug-related memories have had limited success. One approach to improve behavioral treatment strategies is to identify the molecular mechanisms that regulate these memory processes and then use pharmacological tools as supplements to improve efficacy. Still, due to the involvement of several overlapping signaling cascades in both reconsolidation and extinction, it is difficult to specifically modify one of the two processes. For example, attempting to elicit extinction may instead initiate reconsolidation, resulting in the unintentional strengthening of drug-related memories. A better approach is to identify diverging components of the two processes, whereby a single medication would simultaneously weaken reconsolidation and enhance extinction. This review will provide an overview of the neural substrates that are involved in the regulation of drug-associated memories, and will discuss emerging approaches to pharmacologically weaken these memories, including recent efforts to precisely and bidirectionally target reconsolidation and extinction. Ultimately, pharmacologically-enhanced memory-based approaches have the potential to produce more informed relapse-prevention therapies.
Collapse
Affiliation(s)
- Matthew T Rich
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA, 15213, United States.
| | - Mary M Torregrossa
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
37
|
Abstract
Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.
Collapse
|
38
|
Jumnongprakhon P, Sivasinprasasn S, Govitrapong P, Tocharus C, Tocharus J. Activation of melatonin receptor (MT1/2) promotes P-gp transporter in methamphetamine-induced toxicity on primary rat brain microvascular endothelial cells. Toxicol In Vitro 2017; 41:42-48. [PMID: 28223141 DOI: 10.1016/j.tiv.2017.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 11/17/2022]
Abstract
Melatonin has been known as a neuroprotective agent for the central nervous system (CNS) and the blood-brain barrier (BBB), which is the primary structure that comes into contact with several neurotoxins including methamphetamine (METH). Previous studies have reported that the activation of melatonin receptors (MT1/2) by melatonin could protect against METH-induced toxicity in brain endothelial cells via several mechanisms. However, its effects on the P-glycoprotein (P-gp) transporter, the active efflux pump involved in cell homeostasis, are still unclear. Thus, this study investigated the role of melatonin and its receptors on the METH-impaired P-gp transporter in primary rat brain microvascular endothelial cells (BMVECs). The results showed that METH impaired the function of the P-gp transporter, significantly decreasing the efflux of Rho123 and P-gp expression, which caused a significant increase in the intracellular accumulation of Rho123, and these responses were reversed by the interaction of melatonin with its receptors. Blockade of the P-gp transporter by verapamil caused oxidative stress, apoptosis, and cell integrity impairment after METH treatment, and these effects could be reversed by melatonin. Our results, together with previous findings, suggest that the interaction of melatonin with its receptors protects against the effects of the METH-impaired P-gp transporter and that the protective role in METH-induced toxicity was at least partially mediated by the regulation of the P-gp transporter. Thus, melatonin and its receptors (MT1/2) are essential for protecting against BBB impairment caused by METH.
Collapse
Affiliation(s)
- Pichaya Jumnongprakhon
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Neuroscience, Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand; Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|