1
|
Targas ABA, Victoriano PHM, Garcia MBB, Alexandre-Silva V, Cominetti MR. Exploring the connection between dementia and cardiovascular risk with a focus on ADAM10. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167825. [PMID: 40174790 DOI: 10.1016/j.bbadis.2025.167825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) represents a leading cause of dementia, characterized by progressive cognitive and functional decline. Although extensive research has unraveled critical aspects of AD pathology, its etiology remains incompletely understood, urging further exploration into potential risk factors. Growing evidence underscores a significant link between cardiovascular disease (CVD) risk factors and AD, with modifiable lifestyle elements - such as physical inactivity, high low-density lipoprotein (LDL) levels, obesity, hypertension, atherosclerosis, and diabetes - emerging as contributors to cerebrovascular damage and neurodegeneration. ADAM10, a disintegrin and metalloproteinase involved in the non-amyloidogenic processing of amyloid precursor protein (APP), has garnered interest for its dual role in cardiovascular and neurodegenerative processes. ADAM10's regulation of neuroinflammation, endothelial function, and proteolytic cleavage of APP potentially moderates amyloid-β (Aβ) peptide formation, thus influencing both cardiovascular and brain health. Given these interconnected roles, this narrative review investigates whether ADAM10-driven vascular dysfunction accelerates neurodegeneration, how lipid metabolism influences ADAM10 activity in CVD and AD, and whether targeting ADAM10 could offer a dual-benefit therapeutic strategy to mitigate disease burden. By exploring epidemiological data, clinical studies, and molecular pathways, we aim to clarify ADAM10's bridging function between AD and cardiovascular risk, offering a new perspective into therapeutic opportunities to alleviate the dual burden of these interrelated conditions.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Regina Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, Brazil; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Wang F, Wang X, Wang C, Liu H, Xu Z, Li D, Zhao X, Zhao J, Li S, Zhao J. Association between hemoglobin-to-red blood cell distribution width ratio and cognitive function in older US adults: a cross-sectional study based on the NHANES 2011-2014. Front Aging Neurosci 2025; 17:1571159. [PMID: 40297491 PMCID: PMC12034618 DOI: 10.3389/fnagi.2025.1571159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction The hemoglobin-to-red blood cell distribution width ratio (HRR) is acknowledged as a promising new prognostic biomarker. Nevertheless, investigations into its connection with cognitive function have yielded unclear results. Aim This study aimed to investigate the association between the hemoglobin-to-red blood cell distribution width ratio (HRR) and cognitive function in older adults in the United States. Methods This study utilized data obtained from the NHANES database, encompassing the years 2011 to 2014. The participant cohort consisted of elderly individuals aged 60 years and older, all of whom underwent thorough assessments of cognitive function, hemoglobin levels, and red blood cell width. We employed weighted logistic regression analysis, along with restricted cubic spline (RCS) curves and subgroup analyses, to rigorously evaluate the association between hemoglobin-to-red blood cell distribution width ratio (HRR) and cognitive function. Results This study encompassed a total of 2,520 participants, with a mean age of 69.44 ± 6.76 years. After adjusting for multiple covariates, logistic regression analysis indicated a significant linear cognitive impairment between HRR and cognitive function. Specifically, each one-unit increase in HRR was associated with an 82% reduction in the probability of cognitive impairment among participants (OR = 0.18, 95% CI: 0.04-0.78). This relationship remained exist after HRR was categorized into tertiles. Participants in the highest HRR tertile exhibited a 42% lower likelihood of cognitive impairment compared to those in the lowest tertile (OR = 0.58; 95% CI: 0.37-0.91, p = 0.022). To validate the robustness of our findings, we conducted subgroup analyses, which consistently demonstrated stable results across all evaluated groups. Conclusion This cross-sectional study revealed a significant negative correlation between HRR and cognitive function.
Collapse
Affiliation(s)
- Fan Wang
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Xinxiang, China
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiangyang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Chaowei Wang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hao Liu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhixiu Xu
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Dongli Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | | | - Jialu Zhao
- Xinxiang Medical University, Xinxiang, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jianhua Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia, Xinxiang, China
- Henan Key Laboratory of Neurorestoratology and Protein Modification, Xinxiang, China
| |
Collapse
|
3
|
Wang J, Niu Q, Yu Y, Liu J, Zhang S, Zong W, Tian S, Wang Z, Li B. Modular-Based Synergetic Mechanisms of Jasminoidin and Ursodeoxycholic Acid in Cerebral Ischemia Therapy. Biomedicines 2025; 13:938. [PMID: 40299522 PMCID: PMC12025273 DOI: 10.3390/biomedicines13040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives: Jasminoidin (JA) and ursodeoxycholic acid (UA) have been shown to exert synergistic effects on cerebral ischemia (CI) therapy, but the underlying mechanisms remain to be elucidated. Objective: To elucidate the synergistic mechanisms involved in the combined use of JA and UA (JU) for CI therapy using a driver-induced modular screening (DiMS) strategy. Methods: Network proximity and topology-based approaches were used to identify synergistic modules and driver genes from an anti-ischemic microarray dataset (ArrayExpress, E-TABM-662). A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in 30 Sprague Dawley rats, divided into sham, vehicle, JA (25 mg/mL), UA (7 mg/mL), and JU (JA:UA = 1:1) groups. After 90 minutes of ischemia, infarct volume and neurological deficit scores were evaluated. Western blotting was performed 24 h after administration to validate key protein changes. Results: Six, eleven, and four drug-responsive On_modules were identified for JA, UA, and JU, respectively. Three synergistic modules (Sy-modules, JU-Mod-7, 8, and 10) and 12 driver genes (e.g., NRF1, FN1, CUL3) were identified, mainly involving the PI3K-Akt and MAPK pathways and regulation of the actin cytoskeleton. JA and UA synergistically reduced infarct volume and neurological deficit score (2.5, p < 0.05) in MCAO/R rats. In vivo studies demonstrated that JU suppressed the expression of CUL3, FN1, and ITGA4, while it increased that of NRF1. Conclusions: JU acts synergistically on CI-reperfusion injury by regulating FN1, CUL3, ITGA4, and NRF1 and inducing the PI3K-Akt, MAPK, and actin cytoskeleton pathways. DiMS provides a new approach to uncover mechanisms of combination therapies.
Collapse
Affiliation(s)
- Jingai Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Siwei Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| |
Collapse
|
4
|
Allen J, Ermine CM, Lin R, Cloud GC, Shultz SR, Casillas-Espinosa PM. Proteinopathies and the Neurodegenerative Aftermath of Stroke: Potential Biomarkers and Treatment Targets. Stroke 2025. [PMID: 40145137 DOI: 10.1161/strokeaha.124.049279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Stroke remains a predominant cause of death and long-term disability among adults worldwide. Emerging evidence suggests that proteinopathies, characterized by the aggregation and accumulation of misfolded proteins, may play a significant role in the aftermath of stroke and the progression of neurodegenerative disorders. In this review, we explore preclinical and clinical research on key proteinopathies associated with stroke, including tau, Aβ (amyloid-β), TDP-43 (TAR DNA-binding protein 43), α-synuclein, and UCH-L1 (ubiquitin C-terminal hydrolase-L1). We focus on their potential as biomarkers for recovery management and as novel treatment targets that may enhance neuronal repair and mitigate secondary neurodegeneration. The involvement of these proteinopathies in various aspects of stroke, including neuroinflammation, oxidative stress, neuronal damage, and vascular dysfunction, underscores their potential. However, further investigations are essential to validate the clinical utility of these biomarkers, elucidate the mechanisms connecting proteinopathies to poststroke neurodegeneration, and develop targeted interventions. Identifying specific protein signatures associated with stroke outcomes could facilitate the advancement of precision medicine tailored to individual patient needs, significantly enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Josh Allen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia. (C.M.E.)
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
| | - Geoffrey C Cloud
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia. (S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia (J.A., R.L., G.C.C., S.R.S., P.M.C.-E.)
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia. (S.R.S., P.M.C.-E.)
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia (G.C.C., S.R.S., P.M.C.-E.)
| |
Collapse
|
5
|
Khowdiary MM, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhenawy AA, Rashwan EK, Alexiou A, Papadakis M, Fetoh MEAE, Batiha GES. The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Neuromolecular Med 2025; 27:20. [PMID: 40032716 PMCID: PMC11876215 DOI: 10.1007/s12017-025-08836-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) and atherosclerosis (AS) are two chronic diseases with seemingly distinct pathologies. However, emerging research points to a bidirectional relationship driven by common mechanisms, such as inflammation, oxidative stress, and dysregulation of Amyloid-Beta (Aβ). This review focuses on the role of Aβ as a critical molecular link between AD and AS, emphasizing its contribution to neuronal impairment and vascular damage. Specifically, peripheral Aβ produced in the pancreas and skeletal muscle tissues exacerbates AS by promoting endothelial dysfunction and insulin resistance (IR). Furthermore, AS accelerates AD progression by impairing cerebral blood flow and inducing chronic hypoxia, causing Aβ accumulation. This review critically evaluates recent findings, highlighting inconsistencies in clinical studies and suggesting future research directions. Understanding the bidirectional influence of AD and AS could pave the way for novel therapeutic approaches targeting shared molecular pathways, particularly emphasizing Aβ clearance and inflammation.
Collapse
Affiliation(s)
- Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Lieth Collage, Umm Al-Qura University, 24382, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Chemistry Department, Faculty of Science, AlBaha University, 65731, Al Bahah, Saudi Arabia
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Akaka, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, 11741, Athens, Attiki, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- University Hospital, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
6
|
Patel R, Cheng R, Cardona CL, Angeles E, Singh G, Miller S, Ashok A, Teich AF, Piriz A, Maldonado A, Jimenez-Velazquez IZ, Mayeux R, Lee JH, Sproul AA. Reduced SH3RF3 may protect against Alzheimer's disease by lowering microglial pro-inflammatory responses via modulation of JNK and NFkB signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.23.600281. [PMID: 38979369 PMCID: PMC11230201 DOI: 10.1101/2024.06.23.600281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding how high-risk individuals are protected from Alzheimer's disease (AD) may illuminate potential therapeutic targets. We identified protective genetic variants in SH3RF3/POSH2 that delayed the onset of AD among individuals carrying the PSEN1 G206A mutation. SH3RF3 acts as a JNK pathway scaffold and activates NFκB signaling. While effects of SH3RF3 knockdown in human neurons were subtle, including decreased ptau S422, knockdown in human microglia significantly reduced inflammatory cytokines in response to either a viral mimic or oAβ42. This was associated with reduced activation of JNK and NFκB pathways in response to these stimuli. Pharmacological inhibition of JNK or NFκB signaling phenocopied SH3RF3 knockdown. We also found PSEN1 G206A microglia had reduced inflammatory response to oAβ42. Thus, further reduction of microglial inflammatory responses in PSEN1 G206A mutant carriers by protective variants in SH3RF3 might reduce the link between amyloid and neuroinflammation to subsequently delay the onset of AD.
Collapse
|
7
|
Moseholm KF, Meineche JT, Jensen MK. The potential of circulating nonesterified fatty acids and sphingolipids in the biological understanding of cognitive decline and dementia. Curr Opin Lipidol 2025; 36:27-37. [PMID: 39641159 DOI: 10.1097/mol.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Cognitive decline and late-onset dementia pose significant challenges in aging societies, and many dementia cases could be prevented or delayed through modification of associated risk factors, many of which are tied to cardiovascular and metabolic dysfunction. As individuals age, the blood-brain barrier becomes more permeable, easing the exchange of molecules between the bloodstream and the brain. Consequently, blood-based biological markers (so-called biomarkers) provide a minimally invasive and accessible means of accessing molecular changes associated with aging and neurodegeneration. RECENT FINDINGS Circulating free fatty acids, also called nonesterified fatty acids (NEFAs), and sphingolipids are associated with cardiovascular disease, insulin resistance, and diabetes; thus, could be promising candidates as biomarkers for cognitive decline and dementia. SUMMARY The opportunity to study such minimally invasive biomarkers further opens up potential new avenues for improved understanding of the underlying biology of diseases of the brain.
Collapse
Affiliation(s)
- Kristine F Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Josefine T Meineche
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Majken K Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Porel P, Bala K, Aran KR. Exploring the role of HIF-1α on pathogenesis in Alzheimer's disease and potential therapeutic approaches. Inflammopharmacology 2025; 33:669-678. [PMID: 39465478 DOI: 10.1007/s10787-024-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a crucial transcription factor that regulates cellular responses to low oxygen levels (hypoxia). In Alzheimer's disease (AD), emerging evidence suggests a significant involvement of HIF-1α in disease pathogenesis. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to neuronal dysfunction and cognitive decline. HIF-1α is implicated in AD through its multifaceted roles in various cellular processes. Firstly, in response to hypoxia, HIF-1α promotes the expression of genes involved in angiogenesis, which is crucial for maintaining cerebral blood flow and oxygen delivery to the brain. However, in the context of AD, dysregulated HIF-1α activation may exacerbate cerebral hypoperfusion, contributing to neuronal damage. Moreover, HIF-1α is implicated in the regulation of Aβ metabolism. It can influence the production and clearance of Aβ peptides, potentially modulating their accumulation and toxicity in the brain. Additionally, HIF-1α activation has been linked to neuroinflammation, a key feature of AD pathology. It can promote the expression of pro-inflammatory cytokines and exacerbate neuronal damage. Furthermore, HIF-1α may play a role in synaptic plasticity and neuronal survival, which are impaired in AD. Dysregulated HIF-1α signaling could disrupt these processes, contributing to cognitive decline and neurodegeneration. Overall, the involvement of HIF-1α in various aspects of AD pathophysiology highlights its potential as a therapeutic target. Modulating HIF-1α activity could offer novel strategies for mitigating neurodegeneration and preserving cognitive function in AD patients. However, further research is needed to elucidate the precise mechanisms underlying HIF-1α dysregulation in AD and to develop targeted interventions.
Collapse
Affiliation(s)
- Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
9
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2025; 103:1-19. [PMID: 39601807 PMCID: PMC11739239 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
10
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
11
|
Testai FD, Gorelick PB, Chuang PY, Dai X, Furie KL, Gottesman RF, Iturrizaga JC, Lazar RM, Russo AM, Seshadri S, Wan EY. Cardiac Contributions to Brain Health: A Scientific Statement From the American Heart Association. Stroke 2024; 55:e425-e438. [PMID: 39387123 DOI: 10.1161/str.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The burden of neurologic diseases, including stroke and dementia, is expected to grow substantially in the coming decades. Thus, achieving optimal brain health has been identified as a public health priority and a major challenge. Cardiovascular diseases are the leading cause of death and disability in the United States and around the world. Emerging evidence shows that the heart and the brain, once considered unrelated organ systems, are interdependent and linked through shared risk factors. More recently, studies designed to unravel the intricate pathogenic mechanisms underpinning this association show that people with various cardiac conditions may have covert brain microstructural changes and cognitive impairment. These findings have given rise to the idea that by addressing cardiovascular health earlier in life, it may be possible to reduce the risk of stroke and deter the onset or progression of cognitive impairment later in life. Previous scientific statements have addressed the association between cardiac diseases and stroke. This scientific statement discusses the pathogenic mechanisms that link 3 prevalent cardiac diseases of adults (heart failure, atrial fibrillation, and coronary heart disease) to cognitive impairment.
Collapse
|
12
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
13
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
14
|
Guillot P, Celle S, Barth N, Roche F, Perek N. 'Selected' Exosomes from Sera of Elderly Severe Obstructive Sleep Apnea Patients and Their Impact on Blood-Brain Barrier Function: A Preliminary Report. Int J Mol Sci 2024; 25:11058. [PMID: 39456840 PMCID: PMC11507461 DOI: 10.3390/ijms252011058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) affects a large part of the aging population. It is characterized by chronic intermittent hypoxia and associated with neurocognitive dysfunction. One hypothesis is that the blood-brain barrier (BBB) functions could be altered by exosomes. Exosomes are nanovesicles found in biological fluids. Through the study of exosomes and their content in tau and amyloid beta (Aβ), the aim of this study was to show how exosomes could be used as biomarkers of OSAS and of their cognitive disorders. Two groups of 15 volunteers from the PROOF cohort were selected: severe apnea (AHI > 30) and control (AHI < 5). After exosome isolation from blood serum, we characterized and quantified them (CD81, CD9, CD63) by western blot and ELISAs and put them 5 h in contact with an in vitro BBB model. The apparent permeability of the BBB was measured using sodium-fluorescein and TEER. Cell ELISAs were performed on tight junctions (ZO-1, claudin-5, occludin). The amount of tau and Aβ proteins found in the exosomes was quantified using ELISAs. Compared to controls, OSAS patients had a greater quantity of exosomes, tau, and Aβ proteins in their blood sera, which induced an increase in BBB permeability in the model and was reflected by a loss of tight junction' expression. Elderly patients suffering severe OSAS released more exosomes in serum from the brain compartment than controls. Such exosomes increased BBB permeability. The impact of such alterations on the risk of developing cognitive dysfunction and/or neurodegenerative diseases is questioned.
Collapse
Affiliation(s)
- Pauline Guillot
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| | - Sebastien Celle
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Barth
- Gérontopôle AURA, 42000 Saint-Etienne, France;
- Chaire Santé des Ainés, Ingénierie de la Prévention, Université Jen Monnet, 42000 Saint-Etienne, France
| | - Frederic Roche
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
- Physiologie Clinique et de l’Exercice, Centre Visas, CHU Saint Etienne, 42000 Saint-Etienne, France
| | - Nathalie Perek
- Inserm, U1059, Sainbiose, Faculté de Médecine Jacques Lisfranc, Université de Lyon, 42000 Saint-Etienne, France; (S.C.); (F.R.); (N.P.)
- Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, 42000 Saint-Etienne, France
| |
Collapse
|
15
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
16
|
Katusic ZS, d’Uscio LV, He T. Cerebrovascular Endothelial Dysfunction: Role of BACE1. Arterioscler Thromb Vasc Biol 2024; 44:1737-1747. [PMID: 38868939 PMCID: PMC11269044 DOI: 10.1161/atvbaha.124.320798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Dysfunctional endothelium is increasingly recognized as a mechanistic link between cardiovascular risk factors and dementia, including Alzheimer disease. BACE1 (β-site amyloid-β precursor protein-cleaving enzyme 1) is responsible for β-processing of APP (amyloid-β precursor protein), the first step in the production of Aβ (amyloid-β) peptides, major culprits in the pathogenesis of Alzheimer disease. Under pathological conditions, excessive activation of BACE1 exerts detrimental effects on endothelial function by Aβ-dependent and Aβ-independent mechanisms. High local concentration of Aβ in the brain blood vessels is responsible for the loss of key vascular protective functions of endothelial cells. More recent studies recognized significant contribution of Aβ-independent proteolytic activity of endothelial BACE1 to the pathogenesis of endothelial dysfunction. This review critically evaluates existing evidence supporting the concept that excessive activation of BACE1 expressed in the cerebrovascular endothelium impairs key homeostatic functions of the brain blood vessels. This concept has important therapeutic implications. Indeed, improved understanding of the mechanisms of endothelial dysfunction may help in efforts to develop new approaches to the protection and preservation of healthy cerebrovascular function.
Collapse
Affiliation(s)
- Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Tongrong He
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
17
|
Stelzer GT, Lima-Filho RAS. Amyloid-β as a Key Player in Cerebrovascular Dysfunction in Alzheimer's Disease. J Neurosci 2024; 44:e0663242024. [PMID: 38960709 PMCID: PMC11223453 DOI: 10.1523/jneurosci.0663-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Affiliation(s)
- Gustavo T Stelzer
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
18
|
Ortmann BM, Taylor CT, Rocha S. Hypoxia research, where to now? Trends Biochem Sci 2024; 49:573-582. [PMID: 38599898 DOI: 10.1016/j.tibs.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Investigating how cells and organisms sense and respond to O2 levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O2 sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O2 concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.
Collapse
Affiliation(s)
- Brian M Ortmann
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | - Cormac T Taylor
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
19
|
Iram F, Shahid M, Ansari J, Ashraf GM, Hassan MI, Islam A. Navigating the Maze of Alzheimer's disease by exploring BACE1: Discovery, current scenario, and future prospects. Ageing Res Rev 2024; 98:102342. [PMID: 38762102 DOI: 10.1016/j.arr.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurological condition that has become a leading cause of cognitive decline in elder individuals. Hardly any effective medication has been developed to halt the progression of AD due to the disease's complexity. Several theories have been put forward to clarify the mechanisms underlying AD etiology. The identification of amyloid plaques as a hallmark of AD has sparked the development of numerous drugs targeting the players involved in the amyloidogenic pathway, such as the β-site of amyloid precursor protein cleavage enzyme 1 (BACE1) blockers. Over the last ten years, preclinical and early experimental research has led several pharmaceutical companies to prioritize producing BACE1 inhibitors. Despite all these efforts, earlier discovered inhibitors were discontinued in consideration of another second-generation small molecules and recent BACE1 antagonists failed in the final stages of clinical trials because of the complications associated either with toxicity or effectiveness. In addition to discussing the difficulties associated with development of BACE1 inhibitors, this review aims to provide an overview of BACE1 and offer perspectives on the causes behind the failure of five recent BACE1 inhibitors, that would be beneficial for choosing effective treatment approaches in the future.
Collapse
Affiliation(s)
- Faiza Iram
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
20
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
21
|
Singrang N, Nopparat C, Panmanee J, Govitrapong P. Melatonin Inhibits Hypoxia-Induced Alzheimer's Disease Pathogenesis by Regulating the Amyloidogenic Pathway in Human Neuroblastoma Cells. Int J Mol Sci 2024; 25:5225. [PMID: 38791263 PMCID: PMC11121645 DOI: 10.3390/ijms25105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Stroke and Alzheimer's disease (AD) are prevalent age-related diseases; however, the relationship between these two diseases remains unclear. In this study, we aimed to investigate the ability of melatonin, a hormone produced by the pineal gland, to alleviate the effects of ischemic stroke leading to AD by observing the pathogenesis of AD hallmarks. We utilized SH-SY5Y cells under the conditions of oxygen-glucose deprivation (OGD) and oxygen-glucose deprivation and reoxygenation (OGD/R) to establish ischemic stroke conditions. We detected that hypoxia-inducible factor-1α (HIF-1α), an indicator of ischemic stroke, was highly upregulated at both the protein and mRNA levels under OGD conditions. Melatonin significantly downregulated both HIF-1α mRNA and protein expression under OGD/R conditions. We detected the upregulation of β-site APP-cleaving enzyme 1 (BACE1) mRNA and protein expression under both OGD and OGD/R conditions, while 10 µM of melatonin attenuated these effects and inhibited beta amyloid (Aβ) production. Furthermore, we demonstrated that OGD/R conditions were able to activate the BACE1 promoter, while melatonin inhibited this effect. The present results indicate that melatonin has a significant impact on preventing the aberrant development of ischemic stroke, which can lead to the development of AD, providing new insight into the prevention of AD and potential stroke treatments.
Collapse
Affiliation(s)
| | - Chutikorn Nopparat
- Innovative Learning Center, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | | |
Collapse
|
22
|
Mitroshina EV, Vedunova MV. The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration. Int J Mol Sci 2024; 25:4581. [PMID: 38731800 PMCID: PMC11083463 DOI: 10.3390/ijms25094581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia;
| | | |
Collapse
|
23
|
Pluta R, Czuczwar SJ. Trans- and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer's Disease-like Type. Int J Mol Sci 2024; 25:3091. [PMID: 38542064 PMCID: PMC10970557 DOI: 10.3390/ijms25063091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
Recent evidence indicates that experimental brain ischemia leads to dementia with an Alzheimer's disease-like type phenotype and genotype. Based on the above evidence, it was hypothesized that brain ischemia may contribute to the development of Alzheimer's disease. Brain ischemia and Alzheimer's disease are two diseases characterized by similar changes in the hippocampus that are closely related to memory impairment. Following brain ischemia in animals and humans, the presence of amyloid plaques in the extracellular space and intracellular neurofibrillary tangles was revealed. The phenomenon of tau protein hyperphosphorylation is a similar pathological feature of both post-ischemic brain injury and Alzheimer's disease. In Alzheimer's disease, the phosphorylated Thr231 motif in tau protein has two distinct trans and cis conformations and is the primary site of tau protein phosphorylation in the pre-entanglement cascade and acts as an early precursor of tau protein neuropathology in the form of neurofibrillary tangles. Based on the latest publication, we present a similar mechanism of the formation of neurofibrillary tangles after brain ischemia as in Alzheimer's disease, established on trans- and cis-phosphorylation of tau protein, which ultimately influences the development of tauopathy.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | |
Collapse
|
24
|
Gurtoo S, Karthikkeyan G, Behera SK, Kotimoole CN, Najar MA, Modi PK, Ks S, Pinto SM, Ab A. A comparative proteomic analysis for non-invasive early prediction of hypoxic-ischemic injury in asphyxiated neonates. Proteomics Clin Appl 2024; 18:e2200054. [PMID: 37787895 DOI: 10.1002/prca.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
AIM Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented. EXPERIMENTAL DESIGN A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed. RESULTS The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE. CONCLUSION Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.
Collapse
Affiliation(s)
- Sumrati Gurtoo
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sahana Ks
- Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Arun Ab
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Yenepoya Institute of Arts Science Commerce and Management, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
25
|
Park CH, Park JY, Cho WG. Chemical Hypoxia Induces Pyroptosis in Neuronal Cells by Caspase-Dependent Gasdermin Activation. Int J Mol Sci 2024; 25:2185. [PMID: 38396860 PMCID: PMC10889762 DOI: 10.3390/ijms25042185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Hypoxia-induced neuronal death is a major cause of neurodegenerative diseases. Pyroptosis is a type of inflammatory programmed cell death mediated by elevated intracellular levels of reactive oxygen species (ROS). Therefore, we hypothesized that hypoxia-induced ROS may trigger pyroptosis via caspase-dependent gasdermin (GSDM) activation in neuronal cells. To test this, we exposed SH-SY5Y neuronal cells to cobalt chloride (CoCl2) to trigger hypoxia and then evaluated the cellular and molecular responses to hypoxic conditions. Our data revealed that CoCl2 induced cell growth inhibition and the expression of hypoxia-inducible factor-1α in SH-SY5Y cells. Exposure to CoCl2 elicits excessive accumulation of cytosolic and mitochondrial ROS in SH-SY5Y cells. CoCl2-induced hypoxia not only activated the intrinsic (caspases-3, -7, and -9) apoptotic pathway but also induced caspase-3/GSDME-dependent and NLRP3/caspase-1/GSDMD-mediated pyroptosis in SH-SY5Y cells. Importantly, inhibition of caspase-3 and -1 using selective inhibitors ameliorated pyroptotic cell death and downregulated GSDM protein expression. Additionally, treatment with a ROS scavenger significantly suppressed caspase- and pyroptosis-related proteins in CoCl2-treated SH-SY5Y cells. Our findings indicate that hypoxia-mediated ROS production plays an important role in the activation of both apoptosis and pyroptosis in SH-SY5Y neuronal cells, thus providing a potential therapeutic strategy for hypoxia-related neurological diseases.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea;
| |
Collapse
|
26
|
Pluta R, Czuczwar SJ. Ischemia-Reperfusion Programming of Alzheimer's Disease-Related Genes-A New Perspective on Brain Neurodegeneration after Cardiac Arrest. Int J Mol Sci 2024; 25:1291. [PMID: 38279289 PMCID: PMC10816023 DOI: 10.3390/ijms25021291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The article presents the latest data on pathological changes after cerebral ischemia caused by cardiac arrest. The data include amyloid accumulation, tau protein modification, neurodegenerative and cognitive changes, and gene and protein changes associated with Alzheimer's disease. We present the latest data on the dysregulation of genes related to the metabolism of the amyloid protein precursor, tau protein, autophagy, mitophagy, apoptosis, and amyloid and tau protein transport genes. We report that neuronal death after cerebral ischemia due to cardiac arrest may be dependent and independent of caspase. Moreover, neuronal death dependent on amyloid and modified tau protein has been demonstrated. Finally, the results clearly indicate that changes in the expression of the presented genes play an important role in acute and secondary brain damage and the development of post-ischemic brain neurodegeneration with the Alzheimer's disease phenotype. The data indicate that the above genes may be a potential therapeutic target for brain therapy after ischemia due to cardiac arrest. Overall, the studies show that the genes studied represent attractive targets for the development of new therapies to minimize ischemic brain injury and neurological dysfunction. Additionally, amyloid-related genes expression and tau protein gene modification after cerebral ischemia due to cardiac arrest are useful in identifying ischemic mechanisms associated with Alzheimer's disease. Cardiac arrest illustrates the progressive, time- and area-specific development of neuropathology in the brain with the expression of genes responsible for the processing of amyloid protein precursor and the occurrence of tau protein and symptoms of dementia such as those occurring in patients with Alzheimer's disease. By carefully examining the common genetic processes involved in these two diseases, these data may help unravel phenomena associated with the development of Alzheimer's disease and neurodegeneration after cerebral ischemia and may lead future research on Alzheimer's disease or cerebral ischemia in new directions.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | | |
Collapse
|
27
|
Pluta R, Bogucka-Kocka A, Bogucki J, Kocki J, Czuczwar SJ. Apoptosis, Autophagy, and Mitophagy Genes in the CA3 Area in an Ischemic Model of Alzheimer's Disease with 2-Year Survival. J Alzheimers Dis 2024; 99:1375-1383. [PMID: 38759019 PMCID: PMC11191440 DOI: 10.3233/jad-240401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
Background Currently, no evidence exists on the expression of apoptosis (CASP3), autophagy (BECN1), and mitophagy (BNIP3) genes in the CA3 area after ischemia with long-term survival. Objective The goal of the paper was to study changes in above genes expression in CA3 area after ischemia in the period of 6-24 months. Methods In this study, using quantitative RT-PCR, we present the expression of genes associated with neuronal death in a rat ischemic model of Alzheimer's disease. Results First time, we demonstrated overexpression of the CASP3 gene in CA3 area after ischemia with survival ranging from 0.5 to 2 years. Overexpression of the CASP3 gene was accompanied by a decrease in the activity level of the BECN1 and BNIP3 genes over a period of 0.5 year. Then, during 1-2 years, BNIP3 gene expression increased significantly and coincided with an increase in CASP3 gene expression. However, BECN1 gene expression was variable, increased significantly at 1 and 2 years and was below control values 1.5 years post-ischemia. Conclusions Our observations suggest that ischemia with long-term survival induces neuronal death in CA3 through activation of caspase 3 in cooperation with the pro-apoptotic gene BNIP3. This study also suggests that the BNIP3 gene regulates caspase-independent pyramidal neuronal death post-ischemia. Thus, caspase-dependent and -independent death of neuronal cells occur post-ischemia in the CA3 area. Our data suggest new role of the BNIP3 gene in the regulation of post-ischemic neuronal death in CA3. This suggests the involvement of the BNIP3 together with the CASP3 in the CA3 in neuronal death post-ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Faculty of Medicine, Johon Paul II Catholic University of Lublin, Lublin, Poland
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
28
|
Pluta R. A Look at the Etiology of Alzheimer's Disease based on the Brain Ischemia Model. Curr Alzheimer Res 2024; 21:166-182. [PMID: 38963100 DOI: 10.2174/0115672050320921240627050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
29
|
Czuczwar SJ, Kocki J, Miziak B, Bogucki J, Bogucka-Kocka A, Pluta R. Alpha-, Beta-, and Gamma-Secretase, Amyloid Precursor Protein, and Tau Protein Genes in the Hippocampal CA3 Subfield in an Ischemic Model of Alzheimer's Disease with Survival up to 2 Years. J Alzheimers Dis 2024; 98:151-161. [PMID: 38393914 PMCID: PMC10977426 DOI: 10.3233/jad-231333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 02/25/2024]
Abstract
Background Understanding the phenomena underlying the non-selective susceptibility to ischemia of pyramidal neurons in the CA3 is important from the point of view of elucidating the mechanisms of memory loss and the development of dementia. Objective The aim of the study was to investigate changes in genes expression of amyloid precursor protein, its cleaving enzymes and tau protein in CA3 post-ischemia with survival of 12-24 months. Methods We used an ischemic model of Alzheimer's disease to study the above genes using an RT-PCR protocol. Results The expression of the amyloid precursor protein gene was above the control values at all times post-ischemia. The expression of the α-secretase gene also exceeded the control values post-ischemia. The expression of the β-secretase gene increased 12 and 24 months post-ischemia, and 18 months was below control values. Presenilin 1 and 2 genes expression was significantly elevated at all times post-ischemia. Also, tau protein gene expression was significantly elevated throughout the observation period, and peak gene expression was present 12 months post-ischemia. Conclusions The study suggests that the genes studied are involved in the non-amyloidogenic processing of amyloid precursor protein. Additionally data indicate that brain ischemia with long-term survival causes damage and death of pyramidal neurons in the CA3 area of the hippocampus in a modified tau protein-dependent manner. Thus defining a new and important mechanism of pyramidal neuronal death in the CA3 area post-ischemia. In addition expression of tau protein gene modification after brain ischemia is useful in identifying ischemic mechanisms occurring in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Bogucki
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, Lublin, Poland
| | - Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
30
|
Colita D, Burdusel D, Glavan D, Hermann DM, Colită CI, Colita E, Udristoiu I, Popa-Wagner A. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders. J Affect Disord 2024; 344:149-158. [PMID: 37827260 DOI: 10.1016/j.jad.2023.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Two of the most common and incapacitating mental health disorders around the world are major depressive disorder (MDD) and post-stroke depression (PSD). MDD is thought to result from abnormal connectivity between the monoaminergic, glutamatergic, GABAergic, and/or cholinergic pathways. Additional factors include the roles of hormonal, immune, ageing, as well as the influence of cellular, molecular, and epigenetics in the development of mood disorders. This complexity of factors has been anticipated by the Swiss psychiatrists Paul Kielholz and Jules Angst who introduced a multimodal treatment of MDD. Depression is the predominant mood disorder, impacting around one-third of individuals who have experienced a stroke. MDD and PSD share common underlying biological mechanisms related to the disruption of monoaminergic pathways. The major contributor to PSD is the stroke lesion location, which can involve the disruption of the serotoninergic, dopaminergic, glutamatergic, GABAergic, or cholinergic pathways. Additionally, various other disorders such as mania, bipolar disorder, anxiety disorder, and apathy might occur post-stroke, although their prevalence is considerably lower. However, there are differences in the onset of MDD among mood disorders. Some mood disorders develop gradually and can persist for a lifetime, potentially culminating in suicide. In contrast, PSD has a rapid onset because of the severe disruption of neural pathways essential for mood behavior caused by the lesion. However, PSD might also spontaneously resolve several months after a stroke, though it is associated with higher mortality. This review also provides a brief overview of the treatments currently available in medical practice.
Collapse
Affiliation(s)
- Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Daiana Burdusel
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Cezar-Ivan Colită
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Eugen Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
31
|
Polis B, Samson AO. Addressing the Discrepancies Between Animal Models and Human Alzheimer's Disease Pathology: Implications for Translational Research. J Alzheimers Dis 2024; 98:1199-1218. [PMID: 38517793 DOI: 10.3233/jad-240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Animal models, particularly transgenic mice, are extensively used in Alzheimer's disease (AD) research to emulate key disease hallmarks, such as amyloid plaques and neurofibrillary tangles formation. Although these models have contributed to our understanding of AD pathogenesis and can be helpful in testing potential therapeutic interventions, their reliability is dubious. While preclinical studies have shown promise, clinical trials often yield disappointing results, highlighting a notable gap and disparity between animal models and human AD pathology. Existing models frequently overlook early-stage human pathologies and other key AD characteristics, thereby limiting their application in identifying optimal therapeutic interventions. Enhancing model reliability necessitates rigorous study design, comprehensive behavioral evaluations, and biomarker utilization. Overall, a nuanced understanding of each model's neuropathology, its fidelity to human AD, and its limitations is essential for accurate interpretation and successful translation of findings. This article analyzes the discrepancies between animal models and human AD pathology that complicate the translation of findings from preclinical studies to clinical applications. We also delve into AD pathogenesis and attributes to propose a new perspective on this pathology and deliberate over the primary limitations of key experimental models. Additionally, we discuss several fundamental problems that may explain the translational failures and suggest some possible directions for more effective preclinical studies.
Collapse
Affiliation(s)
- Baruh Polis
- Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel
| | | |
Collapse
|
32
|
Pluta R, Kocki J, Bogucki J, Bogucka-Kocka A, Czuczwar SJ. LRP1 and RAGE Genes Transporting Amyloid and Tau Protein in the Hippocampal CA3 Area in an Ischemic Model of Alzheimer's Disease with 2-Year Survival. Cells 2023; 12:2763. [PMID: 38067191 PMCID: PMC10706460 DOI: 10.3390/cells12232763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Explaining changes at the gene level that occur during neurodegeneration in the CA3 area is crucial from the point of view of memory impairment and the development of post-ischemic dementia. An ischemic model of Alzheimer's disease was used to evaluate changes in the expression of genes related to amyloid transport in the CA3 region of the hippocampus after 10 min of brain ischemia with survival of 2, 7 and 30 days and 12, 18 and 24 months. The quantitative reverse transcriptase PCR assay revealed that the expression of the LRP1 and RAGE genes involved in amyloid transport was dysregulated from 2 days to 24 months post-ischemia in the CA3 area of the hippocampus. LRP1 gene expression 2 and 7 days after ischemia was below control values. However, its expression from day 30 to 24 months, survival after an ischemic episode was above control values. RAGE gene expression 2 days after ischemia was below control values, reaching a maximum increase 7 and 30 days post-ischemia. Then, after 12, 18 and 24 months, it was again below the control values. The data indicate that in the CA3 area of the hippocampus, an episode of brain ischemia causes the increased expression of the RAGE gene for 7-30 days during the acute phase and that of LRP1 from 1 to 24 months after ischemia during the chronic stage. In other words, in the early post-ischemic stage, the expression of the gene that transport amyloid to the brain increases (7-30 days). Conversely, in the late post-ischemic stage, amyloid scavenging/cleaning gene activity increases, reducing and/or preventing further neuronal damage or facilitating the healing of damaged sites. This is how the new phenomenon of pyramidal neuronal damage in the CA3 area after ischemia is defined. In summary, post-ischemic modification of the LRP1 and RAGE genes is useful in the study of the ischemic pathways and molecular factors involved in the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Jacek Bogucki
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | | |
Collapse
|
33
|
Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, Soares JC, Chen CH. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer's disease. Front Neurosci 2023; 17:1275932. [PMID: 38033552 PMCID: PMC10687420 DOI: 10.3389/fnins.2023.1275932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| | | | - Mei-Chuan Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shioulan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Salih Selek
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, UTHealth Houston McGovern Medical School, Houston, TX, United States
| | - Chu-Huang Chen
- Molecular Cardiology, Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX, United States
| |
Collapse
|
34
|
Amadoro G, Latina V, Stigliano E, Micera A. COVID-19 and Alzheimer's Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post-Pandemic Future. Cells 2023; 12:2601. [PMID: 37998336 PMCID: PMC10670749 DOI: 10.3390/cells12222601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
A growing body of evidence indicates that a neuropathological cross-talk takes place between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a tremendous impact on the global economy and health since three years after its outbreak in December 2019- and Alzheimer's Disease (AD), the leading cause of dementia among human beings, reaching 139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19, resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic inflammation and dysregulated activation of immune response, encompass memory decline and anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and AD by summarizing the involved risk factors/targets and the underlying biological mechanisms shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme 2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies. Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common physiopathological aspects linking COVID-19 and AD will pave the way to novel management and diagnostic/therapeutic approaches to cope with them in the post-pandemic future.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Valentina Latina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| |
Collapse
|
35
|
Al-Kuraishy HM, Jabir MS, Albuhadily AK, Al-Gareeb AI, Rafeeq MF. The link between metabolic syndrome and Alzheimer disease: A mutual relationship and long rigorous investigation. Ageing Res Rev 2023; 91:102084. [PMID: 37802319 DOI: 10.1016/j.arr.2023.102084] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
It has been illustrated that metabolic syndrome (MetS) is associated with Alzheimer disease (AD) neuropathology. Components of MetS including central obesity, hypertension, insulin resistance (IR), and dyslipidemia adversely affect the pathogenesis of AD by different mechanisms including activation of renin-angiotensin system (RAS), inflammatory signaling pathways, neuroinflammation, brain IR, mitochondrial dysfunction, and oxidative stress. MetS exacerbates AD neuropathology, and targeting of molecular pathways in MetS by pharmacological approach could a novel therapeutic strategy in the management of AD in high risk group. However, the underlying mechanisms of these pathways in AD neuropathology are not completely clarified. Therefore, this review aims to elucidate the association between MetS and AD regarding the oxidative and inflammatory mechanistic pathways.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
36
|
Pinky, Neha, Salman M, Kumar P, Khan MA, Jamal A, Parvez S. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res Rev 2023; 90:102022. [PMID: 37490963 DOI: 10.1016/j.arr.2023.102022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by an adverse cellular environment and pathological alterations in distinct brain regions. The development is triggered or facilitated by a condition such as hypoxia or ischemia, or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Increasing evidence suggests that hypoxia may affect many pathological aspects of AD, including oxidative stress, mitochondrial dysfunction, ER stress, amyloidogenic processing of APP, and Aβ accumulation, which may collectively result in neurodegeneration. Further investigation into the relationship between hypoxia and AD may provide an avenue for the effective preservation and pharmacological treatment of this neurodegenerative disease. This review summarizes the effects of normoxia and hypoxia on AD pathogenesis and discusses the underlying mechanisms. Regulation of HIF-1α and the role of its key players, including P53, VEGF, and GLUT1, are also discussed.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pratika Kumar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
37
|
Milton NGN. SARS-CoV-2 amyloid, is COVID-19-exacerbated dementia an amyloid disorder in the making? FRONTIERS IN DEMENTIA 2023; 2:1233340. [PMID: 39081980 PMCID: PMC11285677 DOI: 10.3389/frdem.2023.1233340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2024]
|
38
|
Pluta R, Miziak B, Czuczwar SJ. Post-Ischemic Permeability of the Blood-Brain Barrier to Amyloid and Platelets as a Factor in the Maturation of Alzheimer's Disease-Type Brain Neurodegeneration. Int J Mol Sci 2023; 24:10739. [PMID: 37445917 DOI: 10.3390/ijms241310739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this review is to present evidence of the impact of ischemic changes in the blood-brain barrier on the maturation of post-ischemic brain neurodegeneration with features of Alzheimer's disease. Understanding the processes involved in the permeability of the post-ischemic blood-brain barrier during recirculation will provide clinically relevant knowledge regarding the neuropathological changes that ultimately lead to dementia of the Alzheimer's disease type. In this review, we try to distinguish between primary and secondary neuropathological processes during and after ischemia. Therefore, we can observe two hit stages that contribute to Alzheimer's disease development. The onset of ischemic brain pathology includes primary ischemic neuronal damage and death followed by the ischemic injury of the blood-brain barrier with serum leakage of amyloid into the brain tissue, leading to increased ischemic neuronal susceptibility to amyloid neurotoxicity, culminating in the formation of amyloid plaques and ending in full-blown dementia of the Alzheimer's disease type.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
39
|
Shabani K, Pigeon J, Benaissa Touil Zariouh M, Liu T, Saffarian A, Komatsu J, Liu E, Danda N, Becmeur-Lefebvre M, Limame R, Bohl D, Parras C, Hassan BA. The temporal balance between self-renewal and differentiation of human neural stem cells requires the amyloid precursor protein. SCIENCE ADVANCES 2023; 9:eadd5002. [PMID: 37327344 PMCID: PMC10275593 DOI: 10.1126/sciadv.add5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Neurogenesis in the developing human cerebral cortex occurs at a particularly slow rate owing in part to cortical neural progenitors preserving their progenitor state for a relatively long time, while generating neurons. How this balance between the progenitor and neurogenic state is regulated, and whether it contributes to species-specific brain temporal patterning, is poorly understood. Here, we show that the characteristic potential of human neural progenitor cells (NPCs) to remain in a progenitor state as they generate neurons for a prolonged amount of time requires the amyloid precursor protein (APP). In contrast, APP is dispensable in mouse NPCs, which undergo neurogenesis at a much faster rate. Mechanistically, APP cell-autonomously contributes to protracted neurogenesis through suppression of the proneurogenic activator protein-1 transcription factor and facilitation of canonical WNT signaling. We propose that the fine balance between self-renewal and differentiation is homeostatically regulated by APP, which may contribute to human-specific temporal patterns of neurogenesis.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julien Pigeon
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marwan Benaissa Touil Zariouh
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tengyuan Liu
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Azadeh Saffarian
- Scipio bioscience, iPEPS-ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jun Komatsu
- Scipio bioscience, iPEPS-ICM, Hôpital Pitié-Salpêtrière, Paris, France
| | - Elise Liu
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Natasha Danda
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Mathilde Becmeur-Lefebvre
- Genetics and Foetopathology, Centre Hospitalier Regional d’Orleans–Hôpital de la Source, Orleans, France
| | - Ridha Limame
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Carlos Parras
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau–Paris Brain Institute–ICM, Sorbonne Université, INSERM, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
40
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
41
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
42
|
Li M, Sun C, Xue S, Leng B, Sun H, Shen T, Liu X, Li Z, Shang X, Zhang J. Complement protein levels in serum astrocyte-derived exosomes are associated with cognitive impairment in obstructive sleep apnea. J Clin Sleep Med 2023; 19:727-739. [PMID: 36692174 PMCID: PMC10071385 DOI: 10.5664/jcsm.10412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/25/2023]
Abstract
STUDY OBJECTIVES An association between neuroinflammation and cognitive decline has been established. The complement system regulates neuroinflammation. Dysregulation, impairment, or inadvertent activation of complement components contribute to preclinical Alzheimer's disease. The astrocyte-derived exosome (ADE) complement proteins, including C3b and C5b-9, may be predictive biomarkers of mild cognitive impairment conversion to Alzheimer's disease dementia. We hypothesized that complement proteins might be involved in cognitive impairment during obstructive sleep apnea (OSA). The aim of our study was to explore the correlation between the complement system and mild cognitive impairment (MCI) in patients with OSA. METHODS All participants with subjective snoring complaints from the Sleep Medicine Center underwent polysomnography. OSA was defined as apnea-hypopnea index ≥ 5 events/h. MCI was defined as the Montreal Cognitive Assessment < 26 and met the criteria: (1) a subjective cognitive impairment; (2) an objective impairment in 1 or more cognitive domains; (3) complex instrumental daily abilities can be slightly impaired but independent daily living abilities are maintained; and (4) no dementia. The ADEs were isolated immunochemically for enzyme-linked immunosorbent assay quantification of complement proteins, including C3b, C5b-9, and CD55. The participants who received continuous positive airway pressure were followed up and their complement protein levels were reassessed after 1 year of treatment. RESULTS A total of 212 participants (66.98% males; mean age of 56.71 ± 10.10 years) were divided into the OSA+MCI group (n = 90), OSA-MCI group (n = 79), and controls (normal cognitive state without OSA) (n = 43). The ADE levels of C3b and C5b-9 in the OSA+MCI group were higher than those in the OSA-MCI and control groups. The C3b and C5b-9 were independently associated with cognitive impairment in patients with OSA. The relationship between apnea-hypopnea index and Montreal Cognitive Assessment scores was mediated by C3b and C5b-9. We found no linear correlation between the complement proteins and the severity of OSA. The complement proteins were negatively correlated with global cognitive performance and cognitive subdomains. The complement protein levels significantly decreased after continuous positive airway pressure treatment. CONCLUSIONS Complement proteins were implicated in cognitive impairment in patients with OSA and may be promising biomarkers for predicting cognitive impairment in patients with OSA. CLINICAL TRIAL REGISTRATION Registry: Chinese Clinical Trial Registry; Name: Study on early diagnostic markers in patients with dementia and mild cognitive impairment; URL: https://www.chictr.org.cn/; Identifier: ChiCTR1900021544. CITATION Li M, Sun C, Xue S, et al. Complement proteins levels in serum astrocyte-derived exosomes are associated with cognitive impairment in obstructive sleep apnea. J Clin Sleep Med. 2023;19(4):727-739.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Chao Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Song Xue
- Weifang Medical University, Weifang, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Resident Standardized Training Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Xiaoxiao Liu
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| |
Collapse
|
43
|
Wu S, Huang R, Zhang R, Xiao C, Wang L, Luo M, Song N, Zhang J, Yang F, Liu X, Yang W. Gastrodin and Gastrodigenin Improve Energy Metabolism Disorders and Mitochondrial Dysfunction to Antagonize Vascular Dementia. Molecules 2023; 28:molecules28062598. [PMID: 36985572 PMCID: PMC10059574 DOI: 10.3390/molecules28062598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Vascular dementia (VD) is the second most common dementia syndrome worldwide, and effective treatments are lacking. Gastrodia elata Blume (GEB) has been used in traditional Chinese herbal medicine for centuries to treat cognitive impairment, ischemic stroke, epilepsy, and dizziness. Gastrodin (p-hydroxymethylphenyl-b-D-glucopyranoside, Gas) and Gastrodigenin (p-hydroxybenzyl alcohol, HBA) are the main bioactive components of GEB. This study explored the effects of Gas and HBA on cognitive dysfunction in VD and their possible molecular mechanisms. The VD model was established by bilateral common carotid artery ligation (2-vessel occlusion, 2-VO) combined with an intraperitoneal injection of sodium nitroprusside solution. One week after modeling, Gas (25 and 50 mg/kg, i.g.) and HBA (25 and 50 mg/kg, i.g.) were administered orally for four weeks, and the efficacy was evaluated. A Morris water maze test and passive avoidance test were used to observe their cognitive function, and H&E staining and Nissl staining were used to observe the neuronal morphological changes; the expressions of Aβ1-42 and p-tau396 were detected by immunohistochemistry, and the changes in energy metabolism in the brain tissue of VD rats were analyzed by targeted quantitative metabolomics. Finally, a Hippocampus XF analyzer measured mitochondrial respiration in H2O2-treated HT-22 cells. Our study showed that Gas and HBA attenuated learning memory dysfunction and neuronal damage and reduced the accumulation of Aβ1-42, P-Tau396, and P-Tau217 proteins in the brain tissue. Furthermore, Gas and HBA improved energy metabolism disorders in rats, involving metabolic pathways such as glycolysis, tricarboxylic acid cycle, and the pentose phosphate pathway, and reducing oxidative damage-induced cellular mitochondrial dysfunction. The above results indicated that Gas and HBA may exert neuroprotective effects on VD by regulating energy metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Sha Wu
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Rong Huang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ruiqin Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chuang Xiao
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Lueli Wang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Min Luo
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Na Song
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Jie Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Fang Yang
- School of Basic Medicine, Kunming Medical University, Kunming 650500, China
| | - Xuan Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (X.L.); (W.Y.)
| | - Weimin Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
- Correspondence: (X.L.); (W.Y.)
| |
Collapse
|
44
|
The Role of the JAK/STAT Signaling Pathway in the Pathogenesis of Alzheimer's Disease: New Potential Treatment Target. Int J Mol Sci 2023; 24:ijms24010864. [PMID: 36614305 PMCID: PMC9821184 DOI: 10.3390/ijms24010864] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, emerging evidence suggests that neuroinflammation, mediated notably by activated neuroglial cells, neutrophils, and macrophages, also plays an important role in the pathogenesis of Alzheimer's disease. Therefore, understanding the interplay between the nervous and immune systems might be the key to the prevention or delay of Alzheimer's disease progression. One of the most important mechanisms determining gliogenic cell fate is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway that is influenced by the overactivation of microglia and astrocytes. The JAK/STAT signaling pathway is one of the critical factors that promote neuroinflammation in neurodegenerative diseases such as Alzheimer's disease by initiating innate immunity, orchestrating adaptive immune mechanisms, and finally, constraining neuroinflammatory response. Since a chronic neuroinflammatory environment in the brain is a hallmark of Alzheimer's disease, understanding the process would allow establishing the underlying role of neuroinflammation, then estimating the prognosis of Alzheimer's disease development and finding a new potential treatment target. In this review, we highlight the recent advances in the potential role of JAK/STAT signaling in neurological diseases with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for Alzheimer's disease.
Collapse
|
45
|
Li M, Sun Z, Sun H, Zhao G, Leng B, Shen T, Xue S, Hou H, Li Z, Zhang J. Paroxysmal slow wave events are associated with cognitive impairment in patients with obstructive sleep apnea. Alzheimers Res Ther 2022; 14:200. [PMID: 36585689 PMCID: PMC9801625 DOI: 10.1186/s13195-022-01153-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Increasing evidence has supported a link between obstructive sleep apnea (OSA) and cognition, and blood-brain barrier (BBB) dysfunction which can be reflected by paroxysmal slow wave events (PSWEs) may be a potential mechanism. The purpose of our study was to investigate the correlation between the PSWEs and cognitive impairment in patients with OSA, with a focus on the possible mechanism. METHODS In total, 339 subjects with subjective snoring complaints from the Sleep Medicine Center underwent magnetic resonance imaging and whole-night polysomnography. OSA was defined as apnea-hypopnea index (AHI) ≥ 5 events/h. MCI was defined as the MoCA < 26 and met the criteria: (1) subjective cognitive impairment; (2) objective impairment in one or more cognitive domains; (3) slightly impaired complex instrumental daily abilities, but independent daily living abilities; and (4) no dementia. The PSWEs calculated by self-developed Python scripts were defined for EEG recordings as a median power frequency of < 6 Hz for more than five consecutive seconds. Serum cyclophilin A (CyPA) and matrix metalloproteinase-9 (MMP-9) levels and amyloid-β 42 levels in neuron-derived exosomes were determined. The participants who received continuous positive airway pressure (CPAP) were followed up and their PSWEs were recalculated after 1 year of treatment. RESULTS A total of 339 participants were divided into the OSA+MCI group (n = 157), OSA-MCI group (n = 118), and controls (normal cognitive state without OSA) (n = 64). The total PSWEs and the occurrence per minute of PSWEs at stage REM in the OSA+MCI group were higher than those in the OSA-MCI and control groups. The duration ratio of PSWEs at stage REM in the OSA+MCI group significantly increased. The total PSWEs and PSWEs at the F4-M1, O1-M2, and O2-M1 channels in stage REM were independently associated with cognitive impairment in OSA patients. There were positive correlations between the PSWEs and serum CyPA and MMP-9 levels in patients with OSA. The mediation analysis showed that the relationship between mean SaO2 and percentage of sleep time spent with oxygen saturation <90% with MoCA scores was mediated by the total PSWEs (proportion of mediation 77.89% and 82.89%). The PSWEs were negatively correlated with global cognitive performance and cognitive subdomains. After 1 year of CPAP treatment, the total PSWEs, PSWEs in stage REM, and serum CyPA and MMP-9 levels decreased significantly, and MoCA scores were improved compared with baseline. CONCLUSIONS The PSWEs were implicated in cognitive impairment in patients with OSA, and the mechanisms of cognitive impairment due to hypoxia in OSA patients could be BBB dysfunction. The PSWEs can be used as a marker of cognitive impairment in patients with OSA. TRIAL REGISTRATION This trial is registered on the Chinese Clinical Trial Registry, number ChiCTR1900021544. The trial was registered on February 27, 2019.
Collapse
Affiliation(s)
- Mengfan Li
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Zhuoran Sun
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Hairong Sun
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Guochen Zhao
- grid.19373.3f0000 0001 0193 3564School of Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai, 264209 Shandong China
| | - Bing Leng
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Tengqun Shen
- grid.27255.370000 0004 1761 1174Department of Resident Standardized Training Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Song Xue
- grid.268079.20000 0004 1790 6079Weifang Medical University, Weifang, 261053 Shandong China
| | - Huimin Hou
- grid.27255.370000 0004 1761 1174Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Zhenguang Li
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| | - Jinbiao Zhang
- grid.27255.370000 0004 1761 1174Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200 Shandong China
| |
Collapse
|
46
|
Liu H, Xie Y, Wang X, Abboud MI, Ma C, Ge W, Schofield CJ. Exploring links between 2-oxoglutarate-dependent oxygenases and Alzheimer's disease. Alzheimers Dement 2022; 18:2637-2668. [PMID: 35852137 PMCID: PMC10083964 DOI: 10.1002/alz.12733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Hypoxia, that is, an inadequate oxygen supply, is linked to neurodegeneration and patients with cardiovascular disease are prone to Alzheimer's disease (AD). 2-Oxoglutarate and ferrous iron-dependent oxygenases (2OGDD) play a key role in the regulation of oxygen homeostasis by acting as hypoxia sensors. 2OGDD also have roles in collagen biosynthesis, lipid metabolism, nucleic acid repair, and the regulation of transcription and translation. Many biological processes in which the >60 human 2OGDD are involved are altered in AD patient brains, raising the question as to whether 2OGDD are involved in the transition from normal aging to AD. Here we give an overview of human 2OGDD and critically discuss their potential roles in AD, highlighting possible relationships with synapse dysfunction/loss. 2OGDD may regulate neuronal/glial differentiation through enzyme activity-dependent mechanisms and modulation of their activity has potential to protect against synapse loss. Work linking 2OGDD and AD is at an early stage, especially from a therapeutic perspective; we suggest integrated pathology and in vitro discovery research to explore their roles in AD is merited. We hope to help enable long-term research on the roles of 2OGDD and, more generally, oxygen/hypoxia in AD. We also suggest shorter term empirically guided clinical studies concerning the exploration of 2OGDD/oxygen modulators to help maintain synaptic viability are of interest for AD treatment.
Collapse
Affiliation(s)
- Haotian Liu
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yong Xie
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
- National Clinical Research Center for OrthopedicsSports Medicine & RehabilitationDepartment of OrthopedicsGeneral Hospital of Chinese PLABeijingChina
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Martine I. Abboud
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| | - Chao Ma
- Department of Human Anatomy, Histology and EmbryologyNeuroscience CenterNational Human Brain Bank for Development and FunctionInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of ImmunologyInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Christopher J. Schofield
- The Chemistry Research LaboratoryDepartment of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
47
|
Priemer DS, Rhodes CH, Karlovich E, Perl DP, Goldman JE. Aβ Deposits in the Neocortex of Adult and Infant Hypoxic Brains, Including in Cases of COVID-19. J Neuropathol Exp Neurol 2022; 81:988-995. [PMID: 36264253 DOI: 10.1093/jnen/nlac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The brain of a 58-year-old woman was included as a civilian control in an ongoing autopsy study of military traumatic brain injury (TBI). The woman died due to a polysubstance drug overdose, with Coronavirus Disease 2019 (COVID-19) serving as a contributing factor. Immunohistochemical stains for β-amyloid (Aβ), routinely performed for the TBI study, revealed numerous, unusual neocortical Aβ deposits. We investigated the autopsied brains of 10 additional young patients (<60 years old) who died of COVID-19, and found similar Aβ deposits in all, using two different Aβ antibodies across three different medical centers. The deposits failed to stain with Thioflavin-S. To investigate whether or not these deposits formed uniquely to COVID-19, we applied Aβ immunostains to the autopsied brains of COVID-19-negative adults who died with acute respiratory distress syndrome and infants with severe cardiac anomalies, and also biopsy samples from patients with subacute cerebral infarcts. Cortical Aβ deposits were also found in these cases, suggesting a link to hypoxia. The fate of these deposits and their effects on function are unknown, but it is possible that they contribute to the neurocognitive sequelae observed in some COVID-19 patients. Our findings may also have broader implications concerning hypoxia and its role in Aβ deposition in the brain.
Collapse
Affiliation(s)
- David S Priemer
- From the Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University, F. Edward Hébert School of Medicine, Bethesda, Maryland, USA
| | - Charles Harker Rhodes
- From the Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Esma Karlovich
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel P Perl
- From the Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, Maryland, USA.,Department of Pathology, Uniformed Services University, F. Edward Hébert School of Medicine, Bethesda, Maryland, USA
| | - James E Goldman
- Division of Neuropathology, Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, The Taub Center for Research in Alzheimer's Disease and Aging, and the New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
48
|
Na,K-ATPase Acts as a Beta-Amyloid Receptor Triggering Src Kinase Activation. Cells 2022; 11:cells11172753. [PMID: 36078160 PMCID: PMC9455167 DOI: 10.3390/cells11172753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer's disease and as a regulator in brain physiology. The inhibitory effect of Aβ42 oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer's disease. Still, the physiological role of the monomeric form of Aβ42 interaction with Na,K-ATPase remains unclear. We report that Na,K-ATPase serves as a receptor for Aβ42 monomer, triggering Src kinase activation. The co-localization of Aβ42 with α1- and β1-subunits of Na,K-ATPase, and Na,K-ATPase with Src kinase in SH-SY5Y neuroblastoma cells, was observed. Treatment of cells with 100 nM Aβ42 causes Src kinase activation, but does not alter Na,K-ATPase transport activity. The interaction of Aβ42 with α1β1 Na,K-ATPase isozyme leads to activation of Src kinase associated with the enzyme. Notably, prevention of Na,K-ATPase:Src kinase interaction by a specific inhibitor pNaKtide disrupts the Aβ-induced Src kinase activation. Stimulatory effect of Aβ42 on Src kinase was lost under hypoxic conditions, which was similar to the effect of specific Na,K-ATPase ligands, the cardiotonic steroids. Our findings identify Na,K-ATPase as a Aβ42 receptor, thus opening a prospect on exploring the physiological and pathological Src kinase activation caused by Aβ42 in the nervous system.
Collapse
|
49
|
Nordestgaard LT, Christoffersen M, Frikke-Schmidt R. Shared Risk Factors between Dementia and Atherosclerotic Cardiovascular Disease. Int J Mol Sci 2022; 23:9777. [PMID: 36077172 PMCID: PMC9456552 DOI: 10.3390/ijms23179777] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, and the prodromal phases of Alzheimer's disease can last for decades. Vascular dementia is the second most common form of dementia and is distinguished from Alzheimer's disease by evidence of previous stroke or hemorrhage and current cerebrovascular disease. A compiled group of vascular-related dementias (vascular dementia and unspecified dementia) is often referred to as non-Alzheimer dementia. Recent evidence indicates that preventing dementia by lifestyle interventions early in life with a focus on reducing cardiovascular risk factors is a promising strategy for reducing future risk. Approximately 40% of dementia cases is estimated to be preventable by targeting modifiable, primarily cardiovascular risk factors. The aim of this review is to describe the association between risk factors for atherosclerotic cardiovascular disease and the risk of Alzheimer's disease and non-Alzheimer dementia by providing an overview of the current evidence and to shed light on possible shared pathogenic pathways between dementia and cardiovascular disease. The included risk factors are body mass index (BMI); plasma triglyceride-, high-density lipoprotein (HDL) cholesterol-, low-density lipoprotein (LDL) cholesterol-, and total cholesterol concentrations; hypertension; diabetes; non-alcoholic fatty liver disease (NAFLD); physical inactivity; smoking; diet; the gut microbiome; and genetics. Furthermore, we aim to disentangle the difference between associations of risk factors in midlife as compared with in late life.
Collapse
Affiliation(s)
- Liv Tybjærg Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
50
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|