1
|
Zeng H, Jin Z. The role of ferroptosis in Alzheimer's disease: Mechanisms and therapeutic potential (Review). Mol Med Rep 2025; 32:192. [PMID: 40341407 PMCID: PMC12076055 DOI: 10.3892/mmr.2025.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/27/2025] [Indexed: 05/10/2025] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by insidious onset and progressive symptom deterioration. It extends beyond a simple aging process, involving irreversible and progressive neurological degeneration that impairs brain function through multiple etiologies. Iron dysregulation is implicated in the pathophysiology of AD; however, the precise mechanisms remain unclear. Additionally, vitamin E and selenium are key in regulating ferroptosis through their antioxidant properties. The present review examined the mechanistic pathways by which ferroptosis contributes to AD, the regulatory roles of vitamin E, selenium, ferrostatin‑1, N‑acetylcysteine and curcumin, and their potential as therapeutic agents to mitigate neurodegeneration.
Collapse
Affiliation(s)
- Heng Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Sassano ML, Tyurina YY, Diometzidou A, Vervoort E, Tyurin VA, More S, La Rovere R, Giordano F, Bultynck G, Pavie B, Swinnen JV, Bayir H, Kagan VE, Scorrano L, Agostinis P. Endoplasmic reticulum-mitochondria contacts are prime hotspots of phospholipid peroxidation driving ferroptosis. Nat Cell Biol 2025:10.1038/s41556-025-01668-z. [PMID: 40514428 DOI: 10.1038/s41556-025-01668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/03/2025] [Indexed: 06/16/2025]
Abstract
The peroxidation of membrane phospholipids (PLs) is a hallmark of ferroptosis. The endoplasmic reticulum and mitochondria have been implicated in ferroptosis, but whether intracellular PL peroxidation ensues at their contact sites (endoplasmic reticulum-mitochondria contact sites, EMCSs) is unknown. Using super-resolution live imaging, we charted the spatiotemporal events triggered by ferroptosis at the interorganelle level. Here we show that EMCSs expand minutes after localized PL peroxides are formed and secondarily spread to mitochondria, promoting mitochondrial reactive oxygen species and fission. Oxidative lipidomics unravels that EMCSs host distinct proferroptotic polyunsaturated-PLs, including doubly proferroptotic polyunsaturated-acylated PLs, demonstrating their high propensity to undergo PL peroxidation. Endoplasmic reticulum-mitochondria untethering blunts PL peroxidation and ferroptosis, while EMCS stabilization enhances them. Consistently, distancing EMCSs protects the ferroptosis-susceptible triple-negative breast cancer subtype, harbouring high EMCS-related gene expression and basal PL peroxide levels. Conversely, in insensitive triple-negative breast cancer subtypes, bolstering EMCSs sensitizes them to ferroptosis. Our data unveil endoplasmic reticulum-mitochondria appositions as initial hubs of PL peroxide formation and posit that empowering EMCSs endorses ferroptosis in cancer cells.
Collapse
Affiliation(s)
- Maria Livia Sassano
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Antigoni Diometzidou
- Department of Biology, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Ellen Vervoort
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket More
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | | | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | | | - Johan V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Hülya Bayir
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Luca Scorrano
- Department of Biology, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, Leuven, Belgium.
- Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Huang J, Wu F, Cao W, Chen Y, Yao Q, Cen P, Wang J, Hong L, Zhang X, Zhou R, Jin C, Tian M, Zhang H, Zhong Y. Ultrasmall iron-gallic acid coordination polymer nanoparticles for scavenging ROS and suppressing inflammation in tauopathy-induced Alzheimer's disease. Biomaterials 2025; 317:123042. [PMID: 39805185 DOI: 10.1016/j.biomaterials.2024.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies. Herein, we reported ultrasmall coordination polymer nanoparticles formed by ferric ions and gallic acid (Fe-GA CPNs), which owned antioxidant and anti-inflammation properties for AD therapeutics. The facilely prepared Fe-GA CPNs exhibited remarkable superoxide dismutase-like, peroxidase-like enzyme activity, and ROS eliminating ability with great water solubility, compared with gallic acid. We demonstrated that Fe-GA CPNs effectively relieved oxidative stress, ameliorated inflammation by modulating microglial polarization towards anti-inflammation phenotype, and reduced hyperphosphorylated tau protein levels. Furthermore, Fe-GA CPNs treatment significantly improved cognitive function in tauopathy-induced AD rats, and achieved a neuroprotective effect against AD pathology. This study highlights the potential of coordination polymer nanoparticles as promising therapeutic candidates for AD and other tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuhan Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qiong Yao
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lu Hong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Jiang J, Hu S, Hu K, Xiao L, Lin J, Chen Y, Zhang D, Ou Y, Zhang J, Yuan L, Wang W, Yu P. Novel impact of metal ion-induced cell death on diabetic cardiomyopathy pathogenesis and therapy. Apoptosis 2025; 30:1152-1181. [PMID: 40042744 DOI: 10.1007/s10495-025-02090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 06/16/2025]
Abstract
Diabetes mellitus is a common chronic metabolic disease, with its prevalence escalating annually. Diabetic cardiomyopathy is a leading cause of mortality among diabetic patients, characterized by intricate metabolic disturbances and myocardial cell demise. Various forms of cellular death pathways including apoptosis, pyroptosis, autophagic cell death, necroptosis, ferroptosis, and entosis have been identified in diabetic cardiomyopathy. Inhibiting myocardial cell death pathways has shown promise in mitigating diabetic cardiomyopathy progression. However, there are still gaps in understanding the role of metal ions in diabetic cardiomyopathy pathogenesis. Recent research endeavors have found that iron, copper, zinc, calcium, manganese and other metal elements related to cell death play an intricate and critical role in the pathogenesis and progression of diabetic cardiomyopathy. Notably, many animal studies have shown that the development and progression of diabetic cardiomyopathy can be alleviated by inhibiting the cell death process induced by these metal ions. Therefore, we review the molecular mechanisms underlying the death of various metal ions and the potential pathophysiological roles they play in diabetic cardiomyopathy. In addition, the value of these metal ions in the treatment of diabetic cardiomyopathy is also described.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Shengnan Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jitao Lin
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999007, Hong Kong
| | - Yangliu Ou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Linhui Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Wenting Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Hainan University, Haikou, 570311, China.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Yang C, Li Y, Chen C, Sun Z, Liu E, Wei N, Liu X, Shu J, Zhao N, Sun M. Long Non-Coding RNAs: Crucial Regulators in Alzheimer's Disease Pathogenesis and Prospects for Precision Medicine. Mol Neurobiol 2025; 62:7525-7541. [PMID: 39907902 DOI: 10.1007/s12035-025-04729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Long non-coding RNAs (LncRNAs) have emerged as pivotal regulators in the pathogenesis of Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. With the capacity to modulate gene expression at various levels, LncRNAs are implicated in multiple pathological mechanisms of AD, including amyloid-beta (Aβ) accumulation, tau protein phosphorylation, neuroinflammation, and neuronal apoptosis. Recent studies have highlighted the potential of LncRNAs as diagnostic biomarkers and therapeutic targets due to their differential expression patterns in AD patients. This review synthesizes current knowledge on the role of LncRNAs in AD, focusing on their involvement in key molecular pathways and their promise as indicators for early diagnosis and prognosis. We discuss the regulatory networks of LncRNAs in the context of AD, their interaction with miRNAs, and the implications for developing novel therapeutic strategies. Despite the complexity and variability in LncRNA function, the prospect of harnessing these molecules for precision medicine in AD is gaining momentum. The translational potential of LncRNA-based interventions offers a new frontier in the quest for effective treatments and a deeper understanding of the molecular underpinnings of AD.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yiwei Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zexin Sun
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
6
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
7
|
Yang D, Zhai C, Ren J, Bai J, Li T, Lu M, Tang Y, Wei L, Luo R, Tong F. Hydroxycitric acid inhibits ferroptosis and ameliorates benign prostatic hyperplasia by upregulating the Nrf2/GPX4 pathway. World J Urol 2025; 43:318. [PMID: 40392347 PMCID: PMC12092493 DOI: 10.1007/s00345-025-05637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/15/2025] [Indexed: 05/22/2025] Open
Abstract
PURPOSE Benign prostatic hyperplasia (BPH) poses a significant public health challenge, affecting a substantial portion of aging men worldwide. Current therapeutic options offer limited efficacy. The pathogenesis of BPH is multifactorial, involving ferroptosis, oxidative stress, and chronic inflammation. Hydroxycitric acid (HCA) is a natural compound with diverse pharmacological activities, including the inhibition of ferroptosis, anti-inflammatory, anti-oxidative stress, and anti-tumor effects. However, its role in BPH remains unexplored. This study aimed to investigate the effects of HCA on BPH and elucidate the underlying mechanisms, with the goal of providing novel therapeutic insights for BPH treatment. METHODS C57BL/6J mice were used to establish a BPH model induced by testosterone propionate (TP). Animals were then randomly assigned to the following groups: Sham, BPH, BPH + Lip-1, BPH + Bru, BPH + HCA + Bru, and BPH + HCA. Prostate index (PI) was determined, and histopathological changes were evaluated by hematoxylin and eosin (HE) staining. Mitochondrial morphology was analyzed by TEM. The levels of Fe2+, MDA, and GSH in prostate tissues were measured. Western blot analysis was performed to assess the protein expression of Nrf2 and GPX4. RESULTS Compared to the Sham group, the prostate tissues of the BPH group exhibited typical histopathological features of hyperplasia, including epithelial cell proliferation, increased glandular lumen size. Concurrently, the levels of ferroptosis markers Fe2+ (P < 0.01) and MDA (P < 0.001) were significantly elevated, while the expression of GSH (P < 0.01) and GPX4 (P < 0.05) was downregulated. Furthermore, mitochondrial morphology showed abnormalities. HCA treatment significantly reduced PI (P < 0.01) and attenuated epithelial cell proliferation and glandular lumen enlargement (P < 0.01, P < 0.001, respectively). HCA also reduced the levels of Fe2+ (P < 0.05) and MDA (P < 0.05), and elevated GSH levels (P < 0.01). Furthermore, HCA upregulated the expression of Nrf2 (P < 0.01) and GPX4 (P < 0.01). The Nrf2 inhibitor Brusatol increased the levels of Fe2+ (P < 0.05) and MDA (P < 0.05), and downregulated the expression of Nrf2 (P < 0.05) and GPX4 (P < 0.05), thereby attenuating the protective effects of HCA. However, co-administration of HCA and Brusatol partially reversed changes in Fe2+ (P < 0.05) and MDA (P < 0.05) levels, and increased the expression of Nrf2 (P < 0.05) and GPX4 (P < 0.05), indicating reduction in Brusatol-induced effects. Furthermore, HCA treatment did not significantly affect liver and kidney function markers (AST, ALT, SCR, and UR) (P > 0.05). CONCLUSION HCA inhibits ferroptosis by activating the Nrf2/GPX4 pathway, thereby ameliorating the pathological changes in BPH induced by TP. This study suggests a novel therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Dayong Yang
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China
| | - Chengxi Zhai
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China
| | - Junyu Ren
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China
| | - Jinran Bai
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China
| | - Tao Li
- Dali University, Dali, Yunnan Province, China
| | - Mingyao Lu
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China
| | - Yongjie Tang
- Lincang Mengku Community Health Service Center, Yunnan, China
| | - Liangsheng Wei
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China
| | - Rongyao Luo
- Dali University, Dali, Yunnan Province, China
| | - Fachun Tong
- Kunming Medical University Sixth Affiliated Hospital (Yuxi People's Hospital), Yuxi City, Yunnan Province, China.
| |
Collapse
|
8
|
Godoy SR, Sanchis P, Frau J, Vilanova B, Adrover M. On the Potential Role of Phytate Against Neurodegeneration: It Protects Against Fe 3+-Catalyzed Degradation of Dopamine and Ascorbate and Against Fe 3+-Induced Protein Aggregation. Int J Mol Sci 2025; 26:4799. [PMID: 40429940 PMCID: PMC12112605 DOI: 10.3390/ijms26104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6) is commonly found in plant-derived foods and has important pharmacological properties against many pathologies. One of them appears to be neurodegeneration, which is notably stimulated by dysregulated metal metabolism. Consequently, we explore the role of IP6 in mitigating neurodegenerative events catalyzed by dysregulated free iron. More precisely, we performed spectrophotometric measurements in aqueous solutions to investigate the ability of IP6 to chelate Fe3+ and inhibit its role in catalyzing the oxidative degradation of dopamine and ascorbic acid, two key molecules in neuronal redox systems. Our results demonstrate that IP6 effectively prevents the formation of harmful intermediates, such as neuromelanin and reactive oxygen species, which are linked to neuronal damage. Additionally, we assessed the effect of IP6 on Fe3+-induced protein aggregation, focusing on α-synuclein, which is closely associated with Parkinson's disease. Our data reveal that IP6 accelerates the conversion of toxic α-synuclein oligomers into less harmful amyloid fibrils, thereby reducing their neurotoxic potential. Our findings highlight the dual function of IP6 as a potent Fe3+ chelator and modulator of protein aggregation pathways, reinforcing its potential as a neuroprotective agent. Consequently, IP6 offers promising therapeutic potential for mitigating the progression of neurodegenerative disorders such as Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Samantha Rebeca Godoy
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pilar Sanchis
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan Frau
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Interdisciplinary Group on Neurodegeneration, Vascular and Metabolic Diseases (INNoVAM), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain; (S.R.G.); (P.S.); (J.F.); (B.V.)
- Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa 79, E-07010 Palma de Mallorca, Spain
- Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
9
|
Khodadadi H, Łuczyńska K, Winiarczyk D, Leszczyński P, Taniguchi H. NFE2L1 as a central regulator of proteostasis in neurodegenerative diseases: interplay with autophagy, ferroptosis, and the proteasome. Front Mol Neurosci 2025; 18:1551571. [PMID: 40375958 PMCID: PMC12078313 DOI: 10.3389/fnmol.2025.1551571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/14/2025] [Indexed: 05/18/2025] Open
Abstract
Maintaining proteostasis is critical for neuronal health, with its disruption underpinning the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Nuclear Factor Erythroid 2-Related Factor 1 (NFE2L1) has emerged as a key regulator of proteostasis, integrating proteasome function, autophagy, and ferroptosis to counteract oxidative stress and protein misfolding. This review synthesizes current knowledge on the role of NFE2L1 in maintaining neuronal homeostasis, focusing on its mechanisms for mitigating proteotoxic stress and supporting cellular health, offering protection against neurodegeneration. Furthermore, we discuss the pathological implications of NFE2L1 dysfunction and explore its potential as a therapeutic target. By highlighting gaps in the current understanding and presenting future research directions, this review aims to elucidate NFE2L1's role in advancing treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hossein Khodadadi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Kamila Łuczyńska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- The Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Dawid Winiarczyk
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Paweł Leszczyński
- Department of Stem Cell Bioengineering Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| |
Collapse
|
10
|
Zhou C, Xu Z, Ding S, Li X, Wang H, He H, Sun H, Tong X, Ji T, Lyu Y, Zheng J. Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) Induces Ferroptosis in Rat Cortical Neurons via p53-SLC7A11-ALOX12/p53-SAT1-ALOX15 Pathways. J Appl Toxicol 2025. [PMID: 40288885 DOI: 10.1002/jat.4798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), the ultimate metabolite of benzo(a)pyrene, has been implicated in the induction of neuronal cell death. Our previous research established that BPDE initiates ferroptosis in neuroblastoma SH-SY5Y cells; however, the underlying mechanisms remain elusive. This study examines BPDE-induced ferroptosis in rat primary cortical neurons, revealing a significant increase in intracellular reactive oxygen species (ROS) and Fe2+ concentrations. Following exposure to 0.5 μM BPDE, distinctive morphological changes in mitochondria, indicative of ferroptosis, were observed. An upregulation of malondialdehyde (MDA) expression was observed, alongside a downregulation of glutathione (GSH) levels, glutathione peroxidase (GSH-PX) activity, and superoxide dismutase (SOD) activity postexposure. Additionally, there was an increase in the expression of ferroptosis-associated proteins ACSL4 and COX2, whereas the levels of SLC7A11 and GPX4 were reduced. Notably, the application of lipid peroxidation inhibitors and iron chelators, such as deferoxamine (DFO) and ferrostatin-1 (Fer-1), partially mitigated these effects. These findings suggest that BPDE is capable of inducing ferroptosis in primary rat neurons. Mechanistically, exposure to BPDE resulted in the upregulation of p53 expression, a reduction in SLC7A11 levels, and the promotion of ALOX12, SAT1, and ALOX15. In contrast, treatment with the p53-specific inhibitor Pifithrin-μ led to an increase in SLC7A11 levels and a significant decrease in ALOX12, SAT1, and ALOX15 levels, thereby mitigating BPDE-induced ferroptosis. In summary, these findings indicate that BPDE induces ferroptosis in primary rat cortical neurons via the p53-SLC7A11-ALOX12 and p53-SAT1-ALOX15 pathways.
Collapse
Affiliation(s)
- Chaoli Zhou
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhaomeng Xu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Shihan Ding
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hui He
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hongyu Sun
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Xiaomin Tong
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Tingyu Ji
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yi Lyu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jinping Zheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Shanxi Province for Aging Mechanism Research and Transformation, Center for Healthy Aging, School of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| |
Collapse
|
11
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhang C, Zhou T, Qiao S, Lu L, Zhu M, Wang A, Zhang S. Taurine Attenuates Neuronal Ferroptosis by CSF-Derived Exosomes of GABABR Encephalitis Through GABABR/NF2/P-YAP Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04819-3. [PMID: 40085353 DOI: 10.1007/s12035-025-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
GABAB receptor (GABABR) encephalitis represents a rare subtype of paraneoplastic limbic encephalitis (LE), characterized by persistent seizures and cognitive impairments. Nevertheless, the precise phenotype and underlying mechanisms of neuronal dysfunction associated with intrathecal lymphocytes in GABABR encephalitis remain inadequately understood. In the present study, we demonstrate that exosomes derived from the cerebrospinal fluid (CSF) of patients with GABABR encephalitis can induce neuronal ferroptosis, oxidative stress, iron accumulation, and lipid hyperoxidation in an in vitro model of anti-GABABR encephalitis. MicroRNA (miRNA) sequencing revealed that miR-92a-3p is a differentially expressed miRNA in CSF exosomes, and its expression was positively correlated with unfavorable clinical outcomes in GABABR encephalitis patients during a 6-month follow-up period. The NF2/P-YAP signaling pathway was identified as a downstream effector of miR-92a-3p, influencing the expression of ACSL4/GPX4 and IL-6, with the expression of these genes being enhanced following taurine supplementation. Clinically, taurine levels in CSF exhibited a negative correlation with IL-6 levels, CSF cell counts, blood-CSF barrier integrity, and clinical prognosis in GABABR encephalitis. Mechanistically, taurine effectively reduced reactive oxygen species (ROS) and iron accumulation, as well as IL-6 production, while modulating the levels of NF2, P-YAP, ACSL4, and GPX4 in neurons treated with CSF-derived exosomes from GABABR encephalitis through GABABR activation. Proliferation assays indicated that extracellular taurine intake activated CD4 + T cells, CD8 + T cells, and CD19 + B cells in the CSF of patients with GABABR encephalitis. In summary, our findings reveal for the first time that intrathecal lymphocytes in GABABR encephalitis maintain an activated state by absorbing extracellular taurine and that decreased taurine levels in CSF promote neuronal ferroptosis via the miR-92a-3p-mediated NF2/P-YAP/ACSL4 pathway.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University, Jinan, China
| | - Tianyu Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University, Jinan, China
| | - Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
| | - Lu Lu
- Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Meirong Zhu
- Department of Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China
| | - Shanchao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Institute of Neuroimmunology, Jinan, China.
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Hu J, Huynh DT, Dunn DE, Wu J, Manriquez-Rodriguez C, Zhang QE, Hirschkorn GA, Georgiou GR, Hirata T, Myers SA, Floyd SR, Chi JT, Boyce M. Evidence for Functional Regulation of the KLHL3/WNK Pathway by O-GlcNAcylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640596. [PMID: 40060460 PMCID: PMC11888436 DOI: 10.1101/2025.02.27.640596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The 42-member Kelch-like (KLHL) protein family are adaptors for ubiquitin E3 ligase complexes, governing the stability of a wide range of substrates. KLHL proteins are critical for maintaining proteostasis in a variety of tissues and are mutated in human diseases, including cancer, neurodegeneration, and familial hyperkalemic hypertension. However, the regulation of KLHL proteins remains incompletely understood. Previously, we reported that two KLHL family members, KEAP1 and gigaxonin, are regulated by O-linked β-N-acetylglucosamine (O-GlcNAc), an intracellular form of glycosylation. Interestingly, some ubiquitination targets of KEAP1 and gigaxonin are themselves also O-GlcNAcylated, suggesting that multi-level control by this posttranslational modification may influence many KLHL pathways. To test this hypothesis, we examined KLHL3, which ubiquitinates with-no-lysine (WNK) kinases to modulate downstream ion channel activity. Our biochemical and glycoproteomic data demonstrate that human KLHL3 and all four WNK kinases (WNK1-4) are O-GlcNAcylated. Moreover, our results suggest that O-GlcNAcylation affects WNK4 function in both osmolarity control and ferroptosis, with potential implications ranging from blood pressure regulation to neuronal health and survival. This work demonstrates the functional regulation of the KLHL3/WNK axis by O-GlcNAcylation and supports a broader model of O-GlcNAc serving as a general regulator of KLHL signaling and proteostasis.
Collapse
Affiliation(s)
- Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Duc T. Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Denise E. Dunn
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cindy Manriquez-Rodriguez
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Qianyi E. Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - George R. Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tetsuya Hirata
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Samuel A. Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
14
|
Rao IY, Hanson LR, Frey WH. Brain Glucose Hypometabolism and Brain Iron Accumulation as Therapeutic Targets for Alzheimer's Disease and Other CNS Disorders. Pharmaceuticals (Basel) 2025; 18:271. [PMID: 40006083 PMCID: PMC11859321 DOI: 10.3390/ph18020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Two common mechanisms contributing to multiple neurological disorders, including Alzheimer's disease, are brain glucose hypometabolism (BGHM) and brain iron accumulation (BIA). Currently, BGHM and BIA are both widely acknowledged as biomarkers that aid in diagnosing CNS disorders, distinguishing between disorders with similar symptoms, and tracking disease progression. Therapeutics targeting BGHM and BIA in Alzheimer's disease can be beneficial in treating neurocognitive symptoms. This review addresses the evidence for the therapeutic potential of targeting BGHM and BIA in multiple CNS disorders. Intranasal insulin, which is anti-inflammatory and increases brain cell energy, and intranasal deferoxamine, which reduces oxidative damage and inflammation, represent promising treatments targeting these mechanisms. Both BGHM and BIA are promising therapeutic targets for AD and other CNS disorders.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - William H. Frey
- HealthPartners Center for Memory and Aging, Saint Paul, MN 55130, USA; (I.Y.R.); (L.R.H.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
15
|
Meng X, Zhao W, Yang R, Xu SQ, Wang SY, Li MM, Jiang YK, Hao ZC, Guan W, Kuang HX, Chen QS, Yao HY, Yan JJ, Yang BY, Liu Y. Lignans from Schisandra chinensis (Turcz.) Baill ameliorates cognitive impairment in Alzheimer's disease and alleviates ferroptosis by activating the Nrf2/FPN1 signaling pathway and regulating iron levels. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119335. [PMID: 39798677 DOI: 10.1016/j.jep.2025.119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill (S. chinensis), first recorded in Shennong's Classic of the Materia Medica, is described as a "top grade medicine". As a traditional Chinese medicine of tonifying the kidneys and the brain, S. chinensis is widely used to treat diseases such as amnesia and dementia. Alzheimer's disease (AD) is a neurodegenerative disease, and ferroptosis is one of the essential causes of AD. Although previous studies have suggested that the lignans of S. chinensis (SCL) have neuroprotective effects, it is unclear whether SCL can alleviate AD pathology by inhibiting ferroptosis. AIM OF THE STUDY To investigate the effect of SCL on AD caused by ferroptosis and its possible molecular mechanism. MATERIALS AND METHODS This study was based on SAMR1/SAMP8 mouse models along with Erastin-induced HT22 cell lines to examine the influence of SCL on ferroptosis in AD. The S. chinensis was extracted via 75% EtOH-H2O and identified by HPLC/UPLC-QTOF-MS. MWM assessed spatial learning, while HE staining, biochemical detection, IHC, and WB analyzed AD pathology and iron metabolism. Mitochondrial changes were evaluated by TEM, and confocal imaging post-SCL treatment analyzed ROS, MMP, and Fe2+ levels in HT22 cells. IF determined the expression levels and localization of Nrf2 and FPN1. CETSA was deployed to study the interaction between SCL and Nrf2. RESULTS Treatment with SCL mitigated cognitive dysfunction and reduced p-Tau as well as neuronal loss in AD model mice. Additionally, the administration of SCL alleviated oxidative stress and maintained relatively intact mitochondrial ridges and membranes, decreased TFR and DMT1 protein expression, and upregulated FTH1. Consistent with the in vivo results, SCL inhibited Erastin-induced ferroptosis in HT22 cells. SCL promoted Nrf2 nuclear translocation and upregulated FPN1, SLC7A11, and GPX4 protein expressions while decreasing FACL4. The improvement of ferroptosis by SCL was associated with the regulation of the Nrf2/FPN1 signaling pathway. CONCLUSION The novel discoveries of this study suggest that SCL can suppress ferroptosis in the brains of AD model mice and exerts a partial protective effect against Erastin-induced ferroptosis in HT22 cells, in which the Nrf2/FPN1 signaling pathway plays a crucial role.
Collapse
Affiliation(s)
- Xin Meng
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Wei Zhao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Shi-Qi Xu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Zhi-Chao Hao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Wei Guan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hong-Yan Yao
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin, 150040, People's Republic of China.
| | - Jiu-Jiang Yan
- Heilongjiang Zbd Pharmaceutical Co., LTD, Harbin, 150060, People's Republic of China.
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| |
Collapse
|
16
|
Fu M, Wang Q, Gao L, Ma Q, Wang J. Dihydroergotamine and Bromocriptine: Potential Drugs for the Treatment of Major Depressive Disorder and Alzheimer's Disease Comorbidity. Mol Neurobiol 2025; 62:2493-2514. [PMID: 39134826 DOI: 10.1007/s12035-024-04416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that is characterized by memory loss and cognitive impairment. Evidence shows that depression is a common co-occurrence in AD patients, and major depressive disorder (MDD) is considered a risk factor for AD. The crosstalk between the biological procedures related to the two disorders makes it very difficult to treat the comorbid conditions caused by them. Considering the common pathophysiological mechanisms underlying AD and MDD, antidepressant drugs may have beneficial therapeutic effects against their concurrence. In this study, we aimed to explore the potential drug candidates for the prevention and treatment of the comorbidity of AD and MDD. First, we screened the potential drugs for treating MDD by evaluating the distances of drug targets to MDD-related genes on the human protein-protein interaction network (PPIN) via a network-based algorithm. Then, the drugs were further screened to identify those that may be effective for AD treatment by analyzing their affinities with tau protein and Aβ42 peptide via molecular docking. Furthermore, the most stable binding modes were identified via molecular dynamics simulations, and the regulatory effects of drug candidates on genes involved in the pathogenesis of AD and MDD were analyzed. A total of 506 MDD-related genes were retrieved, and 831 drug candidates for MDD treatment were screened via the network-based approach. The results from molecular docking and molecular dynamics simulations indicated dihydroergotamine had the lowest binding affinity with tau protein and bromocriptine could form the most stable binding mode with Aβ42 peptide. Further analyses found that both dihydroergotamine and bromocriptine could regulate the expression of genes involved in the pathogenesis of AD and/or MDD in the brain. The exact mechanisms of the two drugs in treating AD and MDD, as well as their comorbidity, are still unclear, and further exploration is needed to evaluate their roles and mechanisms, both in vitro and in vivo. This study revealed that dihydroergotamine and bromocriptine may be the potential drug candidates for the treatment of the comorbidity of AD and MDD, and the therapeutic effects may be achieved by inhibiting the accumulation and aggregation of Aβ42 and tau protein and regulating the expression of disease-related genes in the brain.
Collapse
Affiliation(s)
- Mengjie Fu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Qiuchen Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Lihui Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Qianhui Ma
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
17
|
Tian L, Li H, Xiong W, Li X, Duan S, Yang C, Shi C. Proteomic alteration in catalpol treatment of Alzheimer's disease by regulating HSPA5/ GPX4. Eur J Pharmacol 2025; 987:177075. [PMID: 39522685 DOI: 10.1016/j.ejphar.2024.177075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by the deposition of extracellular amyloid plaques and intracellular neurofibrillary tangles. Conventional anti-AD drugs exhibit high toxicity and adversely impact patients' quality of life. Therefore, novel treatments for AD are urgently required. In recent years, targeting ferroptosis through the modulation of lipid oxidation has emerged as a new approach in the treatment of neurodegenerative diseases. Catalpol, an iridoid glycoside isolated from the roots of Rehmannia glutinosa, has exhibited anti-inflammatory, antioxidant, and neuroprotective properties. Therefore, in this study, we investigated the protective effects and associated underlying mechanisms of catalpol in an APP/PS1 AD mouse model. Catalpol treatment significantly improved the cognitive capabilities and decreased Aβ1-40 and Aβ1-42 levels in mice. Morphological testing revealed that catalpol prevented neuronal loss and reduced mitochondrial swelling in the hippocampal CA1 region. Proteomic studies identified 2495 hippocampus proteins whose expression was associated with the mechanism of catalpol treatment, including 44 ferroptosis-related proteins. Bioinformatic analysis revealed that catalpol significantly increased the protein levels of HSPA5 and GPX4 in the hippocampus. Additionally, catalpol modulated biological pathways related to apoptosis, cytokine-mediated signaling, and ferroptosis. The considerable upregulation of HSPA5 and GPX4 with catalpol was further confirmed through western blotting. Catalpol exhibited neuroprotective effects through a variety of mechanisms. Among these, HSPA5 and GPX4, associated with ferroptosis, may play key roles in AD pathogenesis, and present promising therapeutic targets.
Collapse
Affiliation(s)
- Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongwei Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Comparative Medicine Center, Peking Union Medical College and Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Wei Xiong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xia Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaobin Duan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chengzhi Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Changhua Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
18
|
Guo Y, Zhao J, Liu X, Lu P, Liang F, Wang X, Wu J, Hai Y. Ghrelin Induces Ferroptosis Resistance and M2 Polarization of Microglia to Alleviate Neuroinflammation and Cognitive Impairment in Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:6. [PMID: 39797928 DOI: 10.1007/s11481-024-10165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025]
Abstract
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis. Mouse BV2 microglial cells and male mice were treated with beta-amyloid (Aβ) (1-42) to simulate the AD environment. Microglia ferroptosis was measured by detecting levels of ferroptosis-related proteins (SLC7A11, GPX4, FTL1, and FTH1), metabolic markers (ROS, MDA, GSH, SOD), and observing mitochondrial morphological changes. Microglial polarization was evaluated by measuring levels of inflammatory markers and surface markers. The impact of ghrelin on Aβ1-42-exposed microglia was assessed by coupling with the ferroptosis activator Erastin. Cognitive impairment in AD mice was evaluated through behavioral tests. Tissue staining was applied to determine neuronal damage. In Aβ1-42-exposed microglia, ghrelin upregulated the protein expression of SLC7A11, GPX4, FTL1 and FTH1, reduced ROS and MDA levels, and elevated GSH and SOD levels through the BMP6/SMAD1 pathway. Ghrelin alleviated mitochondrial structural damage. Additionally, ghrelin reduced levels of pro-inflammatory factors and CD86, while increasing levels of anti-inflammatory factors and CD206. Erastin reversed the effects of ghrelin on ferroptosis and phenotypic polarization in Aβ1-42-exposed microglia. In AD mice, ghrelin ameliorated abnormal behavior, neuroinflammation, and plaque deposition. Ghrelin attenuated iNOS/IBA1-positive expression and enhanced Arg-1/IBA1-positive expression in the hippocampus. Ghrelin induces microglial M2 polarization by inhibiting microglia ferroptosis, thereby alleviating neuroinflammation. Our results indicate that ghrelin may serve as a promising potential agent for treating cognitive impairment in AD.
Collapse
Affiliation(s)
- Yaoxue Guo
- Department of Clinical Pharmacy, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Junli Zhao
- Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Xing Liu
- Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Pu Lu
- Oncology Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Furu Liang
- Department of Neurology, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Xueyan Wang
- Oncology Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Jing Wu
- Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China
| | - Yan Hai
- Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
- Baotou Central Hospital, 61 Huancheng Road, Donghe District, Baotou, 014040, Inner Mongolia, China.
| |
Collapse
|
19
|
Thorwald MA, Godoy‐Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi‐Sanabria R, Forman HJ, Finch CE. Iron-associated lipid peroxidation in Alzheimer's disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. Alzheimers Dement 2025; 21:e14541. [PMID: 39876821 PMCID: PMC11775463 DOI: 10.1002/alz.14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. METHODS To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice. RESULTS AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. Apolipoprotein E ε4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron in AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. DISCUSSION These novel molecular pathways highlight iron-mediated damage to lipid rafts during AD. HIGHLGHTS Alzheimer's disease (AD) brains have numerous markers for ferroptosis, including increased lipid peroxidation, reduced antioxidant levels, and increased iron storage. Lipid rafts in AD cases have increased oxidative damage and reduced antioxidant enzyme levels and activity which are most severe in apolipoprotein E ε4 carriers. Neuronal markers are correlated with lipid peroxidation, antioxidant defense, and iron signaling proteins suggesting that neuronal loss is linked to these events. Chelation of iron in the early-onset familial AD model reduces iron-mediated lipid peroxidation and fibrillar amyloid.
Collapse
Affiliation(s)
- Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jose A. Godoy‐Lugo
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Gilberto Garcia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Justine Silva
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Minhoo Kim
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy Christensen
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Peggy A. O'Day
- Life and Environmental Sciences DepartmentUniversity of CaliforniaMercedCaliforniaUSA
| | - Bérénice A. Benayoun
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian J. Pike
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ryo Higuchi‐Sanabria
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Henry Jay Forman
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- School of Natural SciencesUniversity of California MercedMercedCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Dornsife CollegeUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
20
|
Ayton S, Barton D, Brew B, Brodtmann A, Clarnette R, Desmond P, Devos D, Ellis KA, Fazlollahi A, Fradette C, Goh AMY, Kalinowski P, Kyndt C, Lai R, Lim YY, Maruff P, O’Brien TJ, Rowe C, Salvado O, Schofield PW, Spino M, Tricta F, Wagen A, Williams R, Woodward M, Bush AI. Deferiprone in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 2025; 82:11-18. [PMID: 39495531 PMCID: PMC11536302 DOI: 10.1001/jamaneurol.2024.3733] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/11/2024] [Indexed: 11/05/2024]
Abstract
Importance Interventions that substantially slow neurodegeneration are needed to address the growing burden of Alzheimer disease (AD) to societies worldwide. Elevated brain iron observed in AD has been associated with accelerated cognitive decline and may be a tractable drug target. Objective To investigate whether the brain-permeable iron chelator deferiprone slows cognitive decline in people with AD. Design, Setting, and Participants This phase 2, double-masked, placebo-controlled randomized clinical trial of 12-month duration was conducted at 9 sites in Australia between August 2, 2018, and April 1, 2023. Patients older than 54 years with amyloid-confirmed mild cognitive impairment or early AD (a Mini-Mental State Examination score of 20 or higher) were screened. Randomization was 2:1 and masked to participants and all study staff. Interventions Deferiprone 15 mg/kg twice a day or placebo administered orally for 12 months. Main Outcomes and Measures The primary outcome was a composite cognitive measure assessed at baseline, 6 months, and 12 months using a neuropsychological test battery (NTB) of memory, executive function, and attention tasks. Secondary outcomes included change in brain iron burden measured by quantitative susceptibility mapping (QSM) magnetic resonance imaging (target engagement), brain volume changes (secondary efficacy measure), and adverse events (safety analysis). Results Of 167 patients screened for eligibility, 81 were included, with 53 randomly assigned to the deferiprone group (mean [SD] age, 73.0 [8.0] years; 29 male [54.7%]) and 28 to the placebo group (mean [SD] age, 71.6 [7.2] years; 17 male [60.7%]); 54 participants completed the study (7 [25.0%] withdrew from the placebo group and 20 [37.7%] from the deferiprone group). In an intention-to-treat analysis, participants in the deferiprone group showed accelerated cognitive decline on the NTB primary outcome (β for interaction = -0.50; 95% CI, -0.80 to -0.20) compared with placebo (change in NTB composite z score for deferiprone, -0.80 [95% CI, -0.98 to -0.62]; for placebo, -0.30 [95% CI, -0.54 to -0.06]). Secondary analysis revealed that this result was driven by worsening performance on executive function tests. The QSM confirmed that deferiprone decreased iron in the hippocampus compared with placebo (change in hippocampal QSM for deferiprone, -0.36 ppb [95% CI, -0.76 to 0.04 ppb]; for placebo, 0.32 ppb [95% CI, -0.12 to 0.75 ppb]; β for interaction = -0.68 [95% CI, -1.27 to -0.09]). Longitudinal hippocampal volume loss was not affected by deferiprone, but exploratory analysis of other brain regions revealed increased volume loss with deferiprone in frontal areas. The frequency of the adverse effect of neutropenia (4 participants [7.5%] in the deferiprone group) was higher than in similar studies (1.6%-4.4%). Conclusions These trial findings show that deferiprone 15 mg/kg twice a day decreased hippocampal QSM and accelerated cognitive decline in patients with amyloid-confirmed early AD, suggesting that lowering iron with deferiprone is detrimental to patients with AD. Trial Registration ClinicalTrials.gov Identifier: NCT03234686.
Collapse
Affiliation(s)
- Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | | | - Bruce Brew
- Department of Neurology and Peter Duncan Neurosciences Research Unit, St Vincent’s Hospital, Darlinghurst, Australia
- University of New South Wales, Sydney, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Roger Clarnette
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - David Devos
- Department of Medical Pharmacology, Expert Center of Parkinson’s Disease, ALS, and Neurogenetics, University of Lille, Lille Neuroscience & Cognition Research Center, Lille, France
| | - Kathryn A. Ellis
- Department of Psychiatry, Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Australia
| | - Amir Fazlollahi
- Department of Radiology, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Caroline Fradette
- Chiesi Global Rare Diseases, Chiesi Canada Corporation, Woodbridge, Canada
| | - Anita M. Y. Goh
- National Ageing Research Institute, The University of Melbourne, Parkville, Australia
| | - Pawel Kalinowski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Christopher Kyndt
- Melbourne Health Cognitive Neurology Clinic, The Royal Melbourne Hospital, Parkville, Australia
| | - Rosalyn Lai
- KaRa Institute of Neurological Diseases, Macquarie Park, Australia
| | - Yen Ying Lim
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Cogstate Ltd, Melbourne, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Christopher Rowe
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Austin Health, The University of Melbourne, Parkville, Australia
| | - Olivier Salvado
- Data61, Commonwealth Scientific and Industrial Research Organization, Eveleigh, Australia
| | - Peter W. Schofield
- Neuropsychiatry Service, Hunter New England Local Health District, Newcastle, Australia
- University of Newcastle, Callaghan, Australia
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Fernando Tricta
- Chiesi Global Rare Diseases, Chiesi Canada Corporation, Woodbridge, Canada
| | - Aaron Wagen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Robert Williams
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- National Imaging Facility, St Lucia, Australia
| | - Michael Woodward
- Austin Health, The University of Melbourne, Parkville, Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| |
Collapse
|
21
|
Luo C, Wu G, Xiao Z, Hu R, Qiao M, Li W, Liu C, Li Z, Lan C, Huang Z. Role of miRNA regulation in IGFBP-2 overexpression and neuronal ferroptosis: Insights into the Nrf2/SLC7A11/GPX4 pathway in Alzheimer's disease. Int J Biol Macromol 2025; 287:138537. [PMID: 39653234 DOI: 10.1016/j.ijbiomac.2024.138537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease with pathological features including amyloid plaque deposits and neurofibrillary tangles. In this study, the expressions of miRNA, IGFBP-2 and neuronal ferritin were detected by qPCR, Western blot and immunohistochemistry. The regulatory effects of miRNA on IGFBP-2 and neuronal ferritin were further verified by intervention experiments with miRNA mimics and inhibitors. Double luciferase reporter gene assay and RNA immunoprecipitation were used to investigate the interaction between miRNA and target genes. Finally, the effect of miRNA on Nrf2/SLC7A11/GPX4 pathway was evaluated by antioxidant enzyme activity and oxidative stress marker detection. The overexpression of IGFBP-2 was found to be significantly increased with the deposition of neuronal ferritin. Expression levels of specific mirnas were significantly down-regulated in AD models and negatively correlated with IGFBP-2 and neuronal ferritin expression. Intervention experiments with miRNA mimics and inhibitors have confirmed that these mirnas can regulate the expression of IGFBP-2 and neuronal ferritin. Further studies revealed that these mirnas affect antioxidant enzyme activity and oxidative stress levels by targeting key genes in the Nrf2/SLC7A11/GPX4 pathway, thereby regulating the deposition of neuronal ferritin.
Collapse
Affiliation(s)
- Chenliang Luo
- Graduate School of Guangxi University of Chinese Medicine, Qingxiu District, Nanning City 530200, Guangxi, China
| | - Guiyou Wu
- Graduate School of Guangxi University of Chinese Medicine, Qingxiu District, Nanning City 530200, Guangxi, China
| | - Zhen Xiao
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Rui Hu
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Mingyu Qiao
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Weineng Li
- College of Pharmacy, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Chaoyu Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City 533000, Guangxi, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City 533000, Guangxi, China
| | - Zhenzhong Li
- College of Pharmacy, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City 533000, Guangxi, China; Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise City 533000, Guangxi, China.
| | - Zhongshi Huang
- College of Basic Medical Sciences, Youjiang Medical University For Nationalities, Youjiang District, Baise City 533000, Guangxi, China.
| |
Collapse
|
22
|
Streit WJ, Phan L, Bechmann I. Ferroptosis and pathogenesis of neuritic plaques in Alzheimer disease. Pharmacol Rev 2025; 77:100005. [PMID: 39952690 DOI: 10.1124/pharmrev.123.000823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Neuritic plaques are pathognomonic and terminal lesions of Alzheimer disease (AD). They embody AD pathogenesis because they harbor in one space critical pathologic features of the disease: amyloid deposits, neurofibrillary degeneration, neuroinflammation, and iron accumulation. Neuritic plaques are thought to arise from the conversion of diffuse extracellular deposits of amyloid-β protein (Aβ), and it is believed that during conversion, amyloid toxicity creates the dystrophic neurites of neuritic plaques, as well as neurofibrillary tangles However, recent evidence from human postmortem studies suggests a much different mechanism of neuritic plaque formation, where the first step in their creation is neuronal degeneration driven by iron overload and ferroptosis. Similarly, neurofibrillary tangles represent the corpses of iron-laden neurons that develop independently of Aβ deposits. In this review, we will focus on the role of free redox-active iron in the development of typical AD pathology, as determined largely by evidence obtained in the human temporal lobe during early, preclinical stages of AD. The findings have allowed the construction of a scheme of AD pathogenesis where brain iron is center stage and is involved in every step of the sequence of events that produce characteristic AD pathology. We will discuss how the study of preclinical AD has produced a fresh and revised assessment of AD pathogenesis that may be important for reconsidering current therapeutic efforts and guiding future ones. SIGNIFICANCE STATEMENT: This review offers a novel perspective on Alzheimer disease pathogenesis where elevated brain iron plays a central role and is involved throughout the development of lesions. Herein, we review arguments against the amyloid cascade theory and explain how recent findings in humans during early preclinical disease support iron-mediated cell death and endogenous iron containment mechanisms as critical components of neuritic plaque formation and ensuing dementia.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida.
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
23
|
Liu MX, Gu YY, Nie WY, Zhu XM, Qi MJ, Zhao RM, Zhu WZ, Zhang XL. Formononetin Induces Ferroptosis in Activated Hepatic Stellate Cells to Attenuate Liver Fibrosis by Targeting NADPH Oxidase 4. Phytother Res 2024; 38:5988-6003. [PMID: 39475496 DOI: 10.1002/ptr.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 12/13/2024]
Abstract
Ferroptosis is a newly discovered type of cell death that exerts a crucial role in hepatic fibrosis. Formononetin (FMN), a natural isoflavone compound mainly isolated from Spatholobus suberectus Dunn, shows multiple biological activities, including antioxidant, anti-inflammatory, and hepatoprotection. This research aims to explore the regulatory mechanism of FMN in liver fibrosis and the relationship between NADPH oxidase 4 (NOX4) and ferroptosis. The effects of FMN on HSC ferroptosis were evaluated in rat model of CCl4-induced hepatic fibrosis. In vitro, N-acetyl-L-cysteine (NAC) and deferoxamine (DFO) were used to block ferroptosis and then explored the anti-fibrotic effect of FMN. The target protein of FMN was identified by bio-orthogonal click chemistry reaction as well as drug affinity responsive target stability (DARTS), cellular thermal shift (CETSA), surface plasmon resonance (SPR) assays, and isothermal titration calorimetry (ITC) analysis. Here, we found that FMN exerted anti-fibrotic effects via inducing ferroptosis in activated HSCs. NAC and DFO prevented FMN-induced ferroptotic cell death and collagen reduction. Furthermore, FMN bound directly to NOX4 through possible active amino acid residues sites, and increased NOX4-based NADPH oxidase activity to enhance levels of NADP+/NADPH, thus promoting ferroptosis of activated HSCs and relieving liver fibrosis. These results demonstrate that the direct target and mechanism by which FMN improves liver fibrosis, suggesting that FMN may be a natural candidate for further development of liver fibrosis therapy.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Wen-Yuan Nie
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Xiao-Ming Zhu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Meng-Jing Qi
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Rui-Min Zhao
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Wei-Zhong Zhu
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong, People's Republic of China
| |
Collapse
|
24
|
De Leon-Oliva D, Boaru DL, Minaya-Bravo AM, De Castro-Martinez P, Fraile-Martinez O, Garcia-Montero C, Cobo-Prieto D, Barrena-Blázquez S, Lopez-Gonzalez L, Albillos A, Alvarez-Mon M, Saez MA, Diaz-Pedrero R, Ortega MA. Improving understanding of ferroptosis: Molecular mechanisms, connection with cellular senescence and implications for aging. Heliyon 2024; 10:e39684. [PMID: 39553553 PMCID: PMC11564042 DOI: 10.1016/j.heliyon.2024.e39684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
In the face of cell damage, cells can initiate a response ranging from survival to death, the balance being crucial for tissue homeostasis and overall health. Cell death, in both accidental and regulated forms, plays a fundamental role in maintaining tissue homeostasis. Among the regulated mechanisms of cell death, ferroptosis has garnered attention for its iron-dependent phospholipid (PL) peroxidation and its implications in aging and age-related disorders, as well as for its therapeutic relevance. In this review, we provide an overview of the mechanisms, regulation, and physiological and pathological roles of ferroptosis. We present new insights into the relationship between ferroptosis, cellular senescence and aging, emphasizing how alterations in ferroptosis pathways contribute to aging-related tissue dysfunction. In addition, we examine the therapeutic potential of ferroptosis in aging-related diseases, offering innovative insights into future interventions aimed at mitigating the effects of aging and promoting longevity.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Agustín Albillos
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Gastroenterology and Hepatology Service, Ramón y Cajal University Hospital, University of Alcalá, IRYCIS, Network Biomedical Research Center for Liver and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806, Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| |
Collapse
|
25
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
26
|
Faraji P, Parandavar E, Kuhn H, Habibi-Rezaei M, Borchert A, Zahedi E, Ahmadian S. Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis. Mol Med 2024; 30:204. [PMID: 39511487 PMCID: PMC11545178 DOI: 10.1186/s10020-024-00980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common human neurodegenerative disorder worldwide. Owing to its chronic nature, our limited understanding of its pathophysiological mechanisms, and because of the lack of effective anti-AD drugs, AD represents a significant socio-economic challenge for all industrialized countries. Neuronal cell death is a key factor in AD pathogenesis and recent studies have suggested that neuronal ferroptosis may play a major patho-physiological role. Since ferroptosis involves free radical-mediated lipid peroxidation, we hypothesized that enteral administration of the radical scavenger butylated hydroxytoluene (BHT) might slow down or even prevent the development of AD-related symptoms in an in vivo animal AD model. MATERIAL AND METHODS To test this hypothesis, we employed the rat model of streptozotocin-induced AD and administered butylated hydroxytoluene orally at a dose of 120 mg/kg body weight. Following BHT treatment, neuronal cell death was induced by bilateral stereotactic intraventricular injection of streptozotocin at a dose of 3.0 mg/kg body weight. Three weeks after surgery, we assessed the learning capabilities and the short-term memory of three experimental groups using the conventional y-maze test: (i) streptozotocin-treated rats (BHT pre-treatment), (ii) streptozotocin-treated rats (no BHT pre-treatment), (iii) sham-operated rats (BHT pre-treatment but no streptozotocin administration). After the y-maze test, the animals were sacrificed, hippocampal tissue was prepared and several biochemical (malonyl dialdehyde formation, glutathione homeostasis, gene expression patterns) and histochemical (Congo-red staining, Nissl staining, Perls staining) readout parameters were quantified. RESULTS Intraventricular streptozotocin injection induced the development of AD-related symptoms, elevated the degree of lipid peroxidation and upregulated the expression of ferroptosis-related genes. Histochemical analysis indicated neuronal cell death and neuroinflammation, which were paralleled by aberrant intraneuronal iron deposition. The streptozotocin-induced alterations were significantly reduced and sometimes even abolished by oral BHT treatment. CONCLUSION Our data indicate that oral BHT treatment attenuated the development of AD-related symptoms in an in vivo rat model, most probably via inhibiting neuronal ferroptosis. These findings suggest that BHT might constitute a promising candidate as anti-AD drug. However, more work is needed to explore the potential applicability of BHT in other models of neurodegeneration and in additional ferroptosis-related disorders.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Parandavar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | | | - Astrid Borchert
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Zahedi
- Institute of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
27
|
Krüger DM, Pena‐Centeno T, Liu S, Park T, Kaurani L, Pradhan R, Huang Y, Risacher SL, Burkhardt S, Schütz A, Wan Y, Shaw LM, Brodsky AS, DeStefano AL, Lin H, Schroeder R, Krunic A, Hempel N, Sananbenesi F, Blusztajn JK, Saykin AJ, Delalle I, Nho K, Fischer A, Alzheimer's Disease Neuroimaging Initiative. The plasma miRNAome in ADNI: Signatures to aid the detection of at-risk individuals. Alzheimers Dement 2024; 20:7479-7494. [PMID: 39291752 PMCID: PMC11567822 DOI: 10.1002/alz.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION MicroRNAs are short non-coding RNAs that control proteostasis at the systems level and are emerging as potential prognostic and diagnostic biomarkers for Alzheimer's disease (AD). METHODS We performed small RNA sequencing on plasma samples from 847 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. RESULTS We identified microRNA signatures that correlate with AD diagnoses and help predict the conversion from mild cognitive impairment (MCI) to AD. DISCUSSION Our data demonstrate that plasma microRNA signatures can be used to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD. Moreover, combined with neuropsychological testing, plasma microRNAome evaluation helps predict MCI to AD conversion. These findings are of considerable public interest because they provide a path toward reducing indiscriminate utilization of costly and invasive testing by defining the at-risk segment of the aging population. HIGHLIGHTS We provide the first analysis of the plasma microRNAome for the ADNI study. The levels of several microRNAs can be used as biomarkers for the prediction of conversion from MCI to AD. Adding the evaluation of plasma microRNA levels to neuropsychological testing in a clinical setting increases the accuracy of MCI to AD conversion prediction.
Collapse
Affiliation(s)
- Dennis M. Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Bioinformatics UnitGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Tonatiuh Pena‐Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Bioinformatics UnitGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Shiwei Liu
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Tamina Park
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Yen‐Ning Huang
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Shannon L. Risacher
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Anna‐Lena Schütz
- Research Group for Genome Dynamics in Brain DiseasesGerman Center for Neurodegenerative DiseasesGöttingenGermany
| | - Yang Wan
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Leslie M. Shaw
- Perelman School of MedicineDepartment of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory MedicineRhode Island Hospital, Warren Alpert Medical School at Brown UniversityProvidenceRhode IslandUSA
| | - Anita L. DeStefano
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Honghuang Lin
- Department of MedicineUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Robert Schroeder
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Andre Krunic
- Department of Pathology & Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Nina Hempel
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain DiseasesGerman Center for Neurodegenerative DiseasesGöttingenGermany
| | - Jan Krzysztof Blusztajn
- Department of Pathology & Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ivana Delalle
- Department of Pathology & Laboratory MedicineBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and the Indiana Alzheimer's Disease Research CenterIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Center for Neurodegenerative Diseases (DZNE)GöttingenGermany
- Department for Psychiatry and PsychotherapyUniversity Medical Center of GöttingenGeorg‐August UniversityGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
- German Center for Cardiovascular Diseases (DZKH) GöttingenGöttingenGermany
| | | |
Collapse
|
28
|
Chen Z, Wang F, Chen Z, Zheng N, Zhou Q, Xie L, Sun Q, Li L, Li B. Decursin ameliorates neurotoxicity induced by glutamate through restraining ferroptosis by up-regulating FTH1 in SH-SY5Y neuroblastoma cells. Neuroscience 2024; 559:139-149. [PMID: 39197742 DOI: 10.1016/j.neuroscience.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Alzheimer's disease (AD) is the most common form of neurodegeneration which currently has no effective treatment. Ferroptosis is a new style of programmed cell death and is widely implicated in the pathogenesis and progression of AD. Decursin has been shown widely neuroprotective effects but poorly understood about the underlying mechanisms between decursin and ferroptosis in AD. Here, the protective effect of decursin and the underlying mechanism under glutamate treatment in SH-SY5Y cells was investigated. SH-SY5Y cells were cultured with glutamate in the presence or absence of decursin. The safe concentrations of decursin on SH-SY5Y cells were measured via CCK-8. Furthermore, LDH content, antioxidant enzyme activities including GPx, CAT and SOD, MDA contents, GSH levels, ROS formation, MMP, mitochondria ultrastructure morphology change, and intracellular Fe2+ levels were measured to investigate the influence of decursin and Fer-1 on ferroptosis in glutamate-treated SH-SY5Y cells. Moreover, the expressions of ferroptosis-related proteins were determined by Western blot. As a result, glutamate-induced cell survival was markedly elevated and morphological change was improved by decursin administrated in SH-SY5Y cells. Furthermore, decursin could reversed the decreased antioxidant enzyme activities, GSH levels, GPX4n and FTH1 expression, as well as the increased iron levels, LDH, MDA, ROS formation, and MMP, which showed similar effects to Fer-1, the specific ferroptosis inhibitor. Therefore, the inhibitory effect of decursin on ferroptosis probably was partially governed by FTH1 expression to regulate the cellular iron homeostasis. Additionally, decursin facilitated the translocation of Nrf2 from the cytoplasm to the nucleus. Taken together, our data for the first time suggest that decursin could ameliorate neurotoxicity induced by glutamate by attenuating ferroptosis via alleviating cellular iron levels by up-regulating FTH1 expression which is attributing to its promotion of Nrf2 translocation into the nucleus in SH-SY5Y neuroblastoma cells. Hence, decursin might be a novel and promising therapeutic option for AD. In addition, our study also provided some new clues to potential target for the intervention and therapy of AD.
Collapse
Affiliation(s)
- Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiu Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
29
|
Majerníková N, Marmolejo-Garza A, Salinas CS, Luu MDA, Zhang Y, Trombetta-Lima M, Tomin T, Birner-Gruenberger R, Lehtonen Š, Koistinaho J, Wolters JC, Ayton S, den Dunnen WFA, Dolga AM. The link between amyloid β and ferroptosis pathway in Alzheimer's disease progression. Cell Death Dis 2024; 15:782. [PMID: 39468028 PMCID: PMC11519607 DOI: 10.1038/s41419-024-07152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis. The existing link between ferroptosis and AD has been largely based on cell culture and animal studies, while evidence from human brain tissue is limited. Here we evaluate if Aβ is associated with ferroptosis pathways in post-mortem human brain tissue and whether ferroptosis inhibition could attenuate Aβ-related effects in human brain organoids. Performing positive pixel density scoring on immunohistochemically stained post-mortem Brodmann Area 17 sections revealed that the progression of AD pathology was accompanied by decreased expression of nuclear receptor co-activator 4 and glutathione peroxidase 4 in the grey matter. Differentiating between white and grey matter, allowed for a more precise understanding of the disease's impact on different brain regions. In addition, ferroptosis inhibition prevented Aβ pathology, decreased lipid peroxidation and restored iron storage in human AD iPSCs-derived brain cortical organoids at day 50 of differentiation. Differential gene expression analysis of RNAseq of AD organoids compared to isogenic controls indicated activation of the ferroptotic pathway. This was also supported by results from untargeted proteomic analysis revealing significant changes between AD and isogenic brain organoids. Determining the causality between the development of Aβ plaques and the deregulation of molecular pathways involved in ferroptosis is crucial for developing potential therapeutic interventions.
Collapse
Affiliation(s)
- Naďa Majerníková
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
- Department of Pathology and Medical Biology, Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research, Research School of Behavioural and Cognitive Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, Molecular Neurobiology Section, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Casandra Salinas Salinas
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Minh D A Luu
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Vienna, Austria
| | - Šárka Lehtonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Scott Ayton
- The Florey Neuroscience Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research, Research School of Behavioural and Cognitive Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands.
- Department of Pathology and Medical Biology, Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research, Research School of Behavioural and Cognitive Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
31
|
Zheng D, Jin S, Liu PS, Ye J, Xie X. Targeting ferroptosis by natural products in pathophysiological conditions. Arch Toxicol 2024; 98:3191-3208. [PMID: 38987487 DOI: 10.1007/s00204-024-03812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Ferroptosis is a form of cell death that is induced by iron-mediated accumulation of lipid peroxidation. The involvement of ferroptosis in different pathophysiological conditions has offered new perspectives on potential therapeutic interventions. Natural products, which are widely recognized for their significance in drug discovery and repurposing, have shown great promise in regulating ferroptosis by targeting various ferroptosis players. In this review, we discuss the regulatory mechanisms of ferroptosis and its implications in different pathological conditions. We dissect the interactions between natural products and ferroptosis in cancer, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury, liver injury, and cardiomyopathy, with an emphasis on the relevance of ferroptosis players to disease targetability.
Collapse
Affiliation(s)
- Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Jianping Ye
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
32
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
33
|
Tang Z, Chen Z, Guo M, Peng Y, Xiao Y, Guan Z, Ni R, Qi X. NRF2 Deficiency Promotes Ferroptosis of Astrocytes Mediated by Oxidative Stress in Alzheimer's Disease. Mol Neurobiol 2024; 61:7517-7533. [PMID: 38401046 DOI: 10.1007/s12035-024-04023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Oxidative stress is involved in the pathogenesis of Alzheimer's disease (AD), which is linked to reactive oxygen species (ROS), lipid peroxidation, and neurotoxicity. Emerging evidence suggests a role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a major source of antioxidant response elements in AD. The molecular mechanism of oxidative stress and ferroptosis in astrocytes in AD is not yet fully understood. Here, we aimed to investigate the mechanism by which Nrf2 regulates the ferroptosis of astrocytes in AD. We found decreased expression of Nrf2 and upregulated expression of the ROS marker NADPH oxidase 4 (NOX4) in the frontal cortex from patients with AD and in the cortex of 3×Tg mice compared to wildtype mice. We demonstrated that Nrf2 deficiency led to ferroptosis-dependent oxidative stress-induced ROS with downregulated heme oxygenase-1 and glutathione peroxidase 4 and upregulated cystine glutamate expression. Moreover, Nrf2 deficiency increased lipid peroxidation, DNA oxidation, and mitochondrial fragmentation in mouse astrocytes (mAS, M1800-57). In conclusion, these results suggest that Nrf2 deficiency promotes ferroptosis of astrocytes involving oxidative stress in AD.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou, 550004, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
34
|
Zhu YY, Zhang Q, Jia YC, Hou MJ, Zhu BT. Protein disulfide isomerase plays a crucial role in mediating chemically-induced, glutathione depletion-associated hepatocyte injury in vitro and in vivo. Cell Commun Signal 2024; 22:431. [PMID: 39243059 PMCID: PMC11378433 DOI: 10.1186/s12964-024-01798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/18/2024] [Indexed: 09/09/2024] Open
Abstract
Recently we have shown that protein disulfide isomerase (PDI or PDIA1) is involved in mediating chemically-induced, glutathione (GSH) depletion-associated ferroptotic cell death through NOS activation (dimerization) and NO accumulation. The present study aims to determine the role of PDI in mediating chemically-induced hepatocyte injury in vitro and in vivo and whether PDI inhibitors can effectively protect against chemically-induced hepatocyte injury. We show that during the development of erastin-induced ferroptotic cell death, accumulation of cellular NO, ROS and lipid-ROS follows a sequential order, i.e., cellular NO accumulation first, followed by accumulation of cellular ROS, and lastly cellular lipid-ROS. Cellular NO, ROS and lipid-ROS each play a crucial role in mediating erastin-induced ferroptosis in cultured hepatocytes. In addition, it is shown that PDI is an important upstream mediator of erastin-induced ferroptosis through PDI-mediated conversion of NOS monomer to its dimer, which then leads to accumulation of cellular NO, ROS and lipid-ROS, and ultimately ferroptotic cell death. Genetic manipulation of PDI expression or pharmacological inhibition of PDI function each can effectively abrogate erastin-induced ferroptosis. Lastly, evidence is presented to show that PDI is also involved in mediating acetaminophen-induced liver injury in vivo using both wild-type C57BL/6J mice and hepatocyte-specific PDI conditional knockout (PDIfl/fl Alb-cre) mice. Together, our work demonstrates that PDI is an important upstream mediator of chemically-induced, GSH depletion-associated hepatocyte ferroptosis, and inhibition of PDI can effectively prevent this injury.
Collapse
Affiliation(s)
- Yan-Yin Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Qi Zhang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Chen Jia
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ming-Jie Hou
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 2001 Longxiang Blvd., Longgang District, Shenzhen, 518172, Guangdong, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Wang Y, Song X, Wang R, Xu X, Du Y, Chen G, Mei J. Genome-Wide Mendelian Randomization Identifies Ferroptosis-Related Drug Targets for Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1185-1197. [PMID: 39247875 PMCID: PMC11380310 DOI: 10.3233/adr-240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) currently lacks effective disease-modifying treatments. Recent research suggests that ferroptosis could be a potential therapeutic target. Mendelian randomization (MR) is a widely used method for identifying novel therapeutic targets. OBJECTIVE Employ genetic information to evaluate the causal impact of ferroptosis-related genes on the risk of AD. METHODS 564 ferroptosis-related genes were obtained from FerrDb. We derived genetic instrumental variables for these genes using four brain quantitative trait loci (QTL) and two blood QTL datasets. Summary-data-based Mendelian randomization (SMR) and two-sample MR methods were applied to estimate the causal effects of ferroptosis-related genes on AD. Using extern transcriptomic datasets and triple-transgenic mouse model of AD (3xTg-AD) to further validate the gene targets identified by the MR analysis. RESULTS We identified 17 potential AD risk gene targets from GTEx, 13 from PsychENCODE, and 22 from BrainMeta (SMR p < 0.05 and HEIDI test p > 0.05). Six overlapping ferroptosis-related genes associated with AD were identified, which could serve as potential therapeutic targets (PEX10, CDC25A, EGFR, DLD, LIG3, and TRIB3). Additionally, we further pinpointed risk genes or proteins at the blood tissue and pQTL levels. Notably, EGFR demonstrated significant dysregulation in the extern transcriptomic datasets and 3xTg-AD models. CONCLUSIONS This study provides genetic evidence supporting the potential therapeutic benefits of targeting the six druggable genes for AD treatment, especially for EGFR (validated by transcriptome and 3xTg-AD), which could be useful for prioritizing AD drug development in the field of ferroptosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan/Wuhan First Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Song
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Wang
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinzi Xu
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Yaming Du
- Department of Neurology, Wuhan First Hospital, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Chen
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| | - Junhua Mei
- Department of Neurology, Traditional Chinese and Western Medicine Hospital of Wuhan, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
36
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
37
|
Chen J, Li X, Tao J, Luo L. Identification of Marine-Derived SLC7A11 Inhibitors: Molecular Docking, Structure-Based Virtual Screening, Cytotoxicity Prediction, and Molecular Dynamics Simulation. Mar Drugs 2024; 22:375. [PMID: 39195490 PMCID: PMC11355350 DOI: 10.3390/md22080375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
The search for anticancer drugs that target ferroptosis is a promising avenue of research. SLC7A11, a key protein involved in ferroptosis, has been identified as a potential target for drug development. Through screening efforts, novel inhibitors of SLC7A11 have been designed with the aim of promoting ferroptosis and ultimately eliminating cancer cells. We initially screened 563 small molecules using pharmacophore and 2D-QSAR models. Molecular docking and ADMET toxicity predictions, with Erastin as a positive control, identified the small molecules 42711 and 27363 as lead compounds with strong inhibitory activity against SLC7A11. Further optimization resulted in the development of a new inhibitor structure (42711_11). Molecular docking and ADMET re-screening demonstrated successful fragment substitution for this small molecule. Final molecular dynamics simulations also confirmed its stable interaction with the protein. These findings represent a significant step towards the development of new therapeutic strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jiaqi Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (J.C.); (X.L.); (J.T.)
| | - Xuan Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (J.C.); (X.L.); (J.T.)
| | - Jiahua Tao
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, China; (J.C.); (X.L.); (J.T.)
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
38
|
Kang H, Meng F, Liu F, Xie M, Lai H, Li P, Zhang X. Nanomedicines Targeting Ferroptosis to Treat Stress-Related Diseases. Int J Nanomedicine 2024; 19:8189-8210. [PMID: 39157732 PMCID: PMC11328858 DOI: 10.2147/ijn.s476948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
Ferroptosis, a unique form of regulated cell death driven by iron-dependent lethal lipid peroxidation, is implicated in various stress-related diseases like neurodegeneration, vasculopathy, and metabolic disturbance. Stress-related diseases encompass widespread medical disorders that are influenced or exacerbated by stress. These stressors can manifest in various organ or tissue systems and have significant implications for human overall health. Understanding ferroptosis in these diseases offers insights for therapeutic strategies targeting relevant pathways. This review explores ferroptosis mechanisms, its role in pathophysiology, its connection to stress-related diseases, and the potential of ferroptosis-targeted nanomedicines in treating conditions. This monograph also delves into the engineering of ferroptosis-targeted nanomedicines for tackling stress-related diseases, including cancer, cardia-cerebrovascular, neurodegenerative, metabolic and inflammatory diseases. Anyhow, nanotherapy targeting ferroptosis holds promise by both promoting and suppressing ferroptosis for managing stress-related diseases.
Collapse
Affiliation(s)
- Hao Kang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Anhui College of Traditional Chinese Medicine, Wuhu, People’s Republic of China
- Wuhu Modern Technology Research and Development Center of Chinese Medicine and Functional Food, Wuhu, People’s Republic of China
| | - Fansu Meng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Fengjie Liu
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Mengjie Xie
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| | - Haibiao Lai
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, People’s Republic of China
| | - Pengfei Li
- Department of Oncology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
39
|
Prajapati SK, Pathak A, Samaiya PK. Alzheimer's disease: from early pathogenesis to novel therapeutic approaches. Metab Brain Dis 2024; 39:1231-1254. [PMID: 39046584 DOI: 10.1007/s11011-024-01389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
The mainstay behind Alzheimer's disease (AD) remains unknown due to the elusive pathophysiology of the disease. Beta-amyloid and phosphorylated Tau is still widely incorporated in various research studies while studying AD. However, they are not sufficient. Therefore, many scientists and researchers have dug into AD studies to deliver many innovations in this field. Many novel biomarkers, such as phosphoglycerate-dehydrogenase, clusterin, microRNA, and a new peptide ratio (Aβ37/Aβ42) in cerebral-spinal fluid, plasma glial-fibrillary-acidic-protein, and lipid peroxidation biomarkers, are mushrooming. They are helping scientists find breakthroughs and substantiating their research on the early detection of AD. Neurovascular unit dysfunction in AD is a significant discovery that can help us understand the relationship between neuronal activity and cerebral blood flow. These new biomarkers are promising and can take these AD studies to another level. There have also been big steps forward in diagnosing and finding AD. One example is self-administered-gerocognitive-examination, which is less expensive and better at finding AD early on than mini-mental-state-examination. Quantum brain sensors and electrochemical biosensors are innovations in the detection field that must be explored and incorporated into the studies. Finally, novel innovations in AD studies like nanotheranostics are the future of AD treatment, which can not only diagnose and detect AD but also offer treatment. Non-pharmacological strategies to treat AD have also yielded interesting results. Our literature review spans from 1957 to 2022, capturing research and trends in the field over six decades. This review article is an update not only on the recent advances in the search for credible biomarkers but also on the newer detection techniques and therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Bhavdiya Institute of Pharmaceutical Sciences and Research, Ayodhya, UP, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Arjit Pathak
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India
| | - Puneet K Samaiya
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India.
| |
Collapse
|
40
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
41
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
42
|
Moorthy H, Ramesh M, Padhi D, Baruah P, Govindaraju T. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer's disease. MATERIALS HORIZONS 2024; 11:3082-3089. [PMID: 38647314 DOI: 10.1039/d4mh00023d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects learning, memory, and cognition. Current treatments targeting amyloid-β (Aβ) and tau have shown limited effectiveness, necessitating further research on the aggregation and toxicity mechanisms. One of these mechanisms involves the liquid-liquid phase separation (LLPS) of tau, contributing to the formation of pathogenic tau aggregates, although their conformational details remain elusive. Another mechanism is ferroptosis, a type of iron-dependent lipid peroxidation-mediated cell death, which has been implicated in AD. There is a lack of therapeutic strategies that simultaneously target amyloid toxicity and ferroptosis. This study aims to explore the potential of polycatechols, PDP and PLDP, consisting of dopamine and L-Dopa, respectively, as multifunctional agents to modulate the pathological nexus between ferroptosis and AD. Polycatechols were found to sequester the labile iron pool (LIP), inhibit Aβ and tau aggregation, scavenge free radicals, protect mitochondria, and prevent ferroptosis, thereby rescuing neuronal cell death. Interestingly, PLDP promotes tau LLPS, and modulates their intermolecular interactions to inhibit the formation of toxic tau aggregates, offering a conceptually innovative approach to tackle tauopathies. This is a first-of-its-kind polymer-based integrative approach that inhibits ferroptosis, counteracts amyloid toxicity, and modulates tau LLPS to mitigate the multifaceted toxicity of AD.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Dikshaa Padhi
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Prayasee Baruah
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka 560064, India.
| |
Collapse
|
43
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
44
|
Thorwald M, Godoy-Lugo JA, Garcia G, Silva J, Kim M, Christensen A, Mack WJ, Head E, O'Day PA, Benayoun BA, Morgan TE, Pike CJ, Higuchi-Sanabria R, Forman HJ, Finch CE. Iron associated lipid peroxidation in Alzheimers disease is increased in lipid rafts with decreased ferroptosis suppressors, tested by chelation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534324. [PMID: 37034750 PMCID: PMC10081222 DOI: 10.1101/2023.03.28.534324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimers disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death. To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed postmortem human brain and ApoEFAD mice. AD brains had decreased antioxidant enzymes, including those mediated by glutathione (GSH). Subcellular analyses of AD brains showed greater oxidative damage and lower antioxidant enzymes in lipid rafts, the site of amyloid processing, than in the non-raft membrane fraction. ApoE4 carriers had lower lipid raft yield with greater membrane oxidation. The hypothesized role of iron to AD pathology was tested in ApoEFAD mice by iron chelation with deferoxamine, which decreased fibrillar amyloid and lipid peroxidation, together with increased GSH-mediated antioxidants. These novel molecular pathways in iron mediated damage during AD.
Collapse
|
45
|
Barrett E, Ivey G, Cunningham A, Coffman G, Pemberton T, Lee C, Patra P, Day JB, Lee PHU, Shim JW. Reduced GLP-1R availability in the caudate nucleus with Alzheimer's disease. Front Aging Neurosci 2024; 16:1350239. [PMID: 38915346 PMCID: PMC11194438 DOI: 10.3389/fnagi.2024.1350239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonists reduce glycated hemoglobin in patients with type 2 diabetes. Mounting evidence indicates that the potential of GLP-1R agonists, mimicking a 30 amino acid ligand, GLP-1, extends to the treatment of neurodegenerative conditions, with a particular focus on Alzheimer's disease (AD). However, the mechanism that underlies regulation of GLP-1R availability in the brain with AD remains poorly understood. Here, using whole transcriptome RNA-Seq of the human postmortem caudate nucleus with AD and chronic hydrocephalus (CH) in the elderly, we found that GLP-1R and select mRNAs expressed in glucose dysmetabolism and dyslipidemia were significantly altered. Furthermore, we detected human RNA indicating a deficiency in doublecortin (DCX) levels and the presence of ferroptosis in the caudate nucleus impacted by AD. Using the genome data viewer, we assessed mutability of GLP-1R and 39 other genes by two factors associated with high mutation rates in chromosomes of four species. Surprisingly, we identified that nucleotide sizes of GLP-1R transcript exceptionally differed in all four species of humans, chimpanzees, rats, and mice by up to 6-fold. Taken together, the protein network database analysis suggests that reduced GLP-1R in the aged human brain is associated with glucose dysmetabolism, ferroptosis, and reduced DCX+ neurons, that may contribute to AD.
Collapse
Affiliation(s)
- Emma Barrett
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gabrielle Ivey
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Adam Cunningham
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Gary Coffman
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Tyera Pemberton
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Prabir Patra
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - James B. Day
- Department of Orthopedic Surgery, Cabell Huntington Hospital and Marshall University School of Medicine, Huntington, WV, United States
| | - Peter H. U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| |
Collapse
|
46
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
47
|
Yan C, Yang S, Shao S, Zu R, Lu H, Chen Y, Zhou Y, Ying X, Xiang S, Zhang P, Li Z, Yuan Y, Zhang Z, Wang P, Xie Z, Wang W, Ma H, Sun Y. Exploring the anti-ferroptosis mechanism of Kai-Xin-San against Alzheimer's disease through integrating network pharmacology, bioinformatics, and experimental validation strategy in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117915. [PMID: 38360383 DOI: 10.1016/j.jep.2024.117915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai Xin San (KXS), first proposed by Sun Simiao during the Tang Dynasty, has been utilized to treat dementia by tonifying qi and dispersing phlegm. AIM OF THE STUDY This study aimed to elucidate the mechanism by which KXS exerts its therapeutic effects on Alzheimer's disease (AD) by targeting ferroptosis, using a combination of network pharmacology, bioinformatics, and experimental validation strategies. MATERIALS AND METHODS The active target sites and the further potential mechanisms of KXS in protecting against AD were investigated through molecular docking, molecular dynamics simulation, and network pharmacology, and combined with the validation of animal experiments. RESULTS Computational and experimental findings provide the first indication that KXS significantly improves learning and memory defects and inhibits neuronal ferroptosis by repairing mitochondria damage and upregulating the protein expression of ferroptosis suppressor protein 1 (FSP1) in vivo APP/PS1 mice AD model. According to bioinformatics analysis, the mechanism by which KXS inhibits ferroptosis may involve SIRT1. KXS notably upregulated the mRNA and protein expression of SIRT1 in both vivo APP/PS1 mice and in vitro APP-overexpressed HT22 cells. Additionally, KXS inhibited ferroptosis induced by APP-overexpression in HT22 cells through activating the SIRT1-FSP1 signal pathway. CONCLUSIONS Collectively, our findings suggest that KXS may inhibit neuronal ferroptosis through activating the SIRT1/FSP1 signaling pathway. This study reveals the scientific basis and underlying modern theory of replenishing qi and eliminating phlegm, which involves the inhibition of ferroptosis. Moreover, it highlights the potential application of SIRT1 or FSP1 activators in the treatment of AD and other ferroptosis-related diseases.
Collapse
Affiliation(s)
- Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Peixu Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
48
|
Pereira A, Baron L, Bucci R, Plays M, Bonasegale G, Picard-Bernes A, Bibrowski M, Morris N, Marynberg S, Sindikubwabo F, Cañeque T, Müller S, Colombeau L, Solier S, Bono Y, Gaillet C, Johannes L, Puisieux A, Rodriguez R. PSL Chemical Biology Symposia: Recent Progress in Ferroptosis. Chembiochem 2024; 25:e202400211. [PMID: 38530090 DOI: 10.1002/cbic.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 03/27/2024]
Abstract
This symposium is the 5th PSL (Paris Sciences & Lettres) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition hosted around 150 participants and was focused on the burgeoning field of ferroptosis, its mechanism and implications in health and disease. While not initially planned, it was felt that the next large Ferroptosis venue (CSHA, China) would not happen before late 2024. A discussion involving Conrad, Birsoy, Ubellacker, Brabletz and Rodriguez next to lake Como in Italy sponsored by the DKFZ, prompted us to fill in this gap and to organize a Ferroptosis meeting in Paris beforehand.
Collapse
Affiliation(s)
- Arthur Pereira
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Leeroy Baron
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Romain Bucci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Marina Plays
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Giulia Bonasegale
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Armel Picard-Bernes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Manuel Bibrowski
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Nolwenn Morris
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sacha Marynberg
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Tatiana Cañeque
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastian Müller
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludovic Colombeau
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Stéphanie Solier
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Yannick Bono
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christine Gaillet
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludger Johannes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Alain Puisieux
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
49
|
Zhang TC, Lin YC, Sun NN, Liu S, Hu WZ, Zhao Y, Dong XH, He XP. Icariin, astragaloside a and puerarin mixture attenuates cognitive impairment in APP/PS1 mice via inhibition of ferroptosis-lipid peroxidation. Neurochem Int 2024; 175:105705. [PMID: 38412923 DOI: 10.1016/j.neuint.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens the quality of life of the elderly. Its pathogenesis has not yet been fully elucidated. Ferroptosis, a cell death caused by excessive accumulation of iron-dependent lipid peroxides, has been implicated in the pathogenesis of AD. Uncontrolled lipid peroxidation is the core process of ferroptosis, and inhibiting lipid peroxidation of ferroptosis may be an important therapeutic target for AD. Based on previous studies, we mixed standards of icariin, astragaloside IV, and puerarin, named the standard mixture YHG, and investigated the effect of YHG on ferroptosis -lipid peroxidation in APP/PS1 mice. DFX, a ferroptosis inhibitor, was used as a control drug. In this study, APP/PS1 mice were used as an AD animal model, and behavioral experiments, iron level detection, Transmission electron microscopy (TEM) observation, lipid peroxidation level detection, antioxidant capacity detection, immunofluorescence, Western blot and real-time qPCR were performed. It was found that YHG could reduce body weight, significantly improve abnormal behaviors and the ultrastructure of hippocampal neurons in APP/PS1 mice. The results of biochemical tests showed that YHG reduced the contents of iron, malondialdehyde (MDA) and lipid peroxide (LPO) in brain tissue and serum, and increased the levels of superoxide dismutase (SOD) and reduced glutathione (GSH). Immunofluorescence, WesternBlot and real-time qPCR results showed that YHG could promote the expression of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2) and glutathione peroxidase 4(GPX4). Inhibited the expression of long-chain acyllipid coenzyme a synthetase 4(ACSL4) and lysophosphatidyltransferase 3 (LPCAT3). This study suggests that the mechanism by which YHG improves cognitive dysfunction in APP/PS1 mice may be related to the inhibition of ferroptosis-lipid peroxidation.
Collapse
Affiliation(s)
- Tian-Ci Zhang
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Yi-Can Lin
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Ning-Ning Sun
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Shan Liu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Wen-Zhu Hu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Yan Zhao
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Xian-Hui Dong
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China.
| | - Xiao-Ping He
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China.
| |
Collapse
|
50
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|