1
|
Jia L, Wang W, Zhao H, Ding X, Zheng M, Cai D, Wang Y, Wang Z, Liu H. Innovative Nano Delivery Systems for Astaxanthin: Enhancing Stability, Bioavailability, and Targeted Therapeutic Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3286-3304. [PMID: 39886831 DOI: 10.1021/acs.jafc.4c09415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems. This review summarizes various nanocarriers, including liposomes, nanostructured lipid carriers, nanoparticles, and others, and analyzes their advantages in enhancing the solubility, stability, and bioavailability of AST. Furthermore, the study focuses on targeted delivery systems achieved through biomolecular modifications, which enable precise delivery of AST to specific cells or tissues, enhancing therapeutic effects. Additionally, smart-responsive delivery systems, such as pH-responsive and light-sensitive systems, are also discussed, showing their immense potential in precise release and targeted therapy. These findings provide new perspectives for the precise nutrition and clinical applications of AST. Future research should further optimize the design of nanocarriers to enable broader applications.
Collapse
Affiliation(s)
- Lei Jia
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Wei Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Hongyu Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaoyu Ding
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
2
|
Polamraju SM, Manochkumar J, Ganeshbabu M, Ramamoorthy S. Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics. Arch Microbiol 2025; 207:45. [PMID: 39869136 DOI: 10.1007/s00203-025-04241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements. This review provides a comprehensive analysis of ASX applications, emphasizing its dual roles in cosmetic and nutraceutical fields. It integrates insights into the qualitative differences of ASX from various natural sources and assesses biosynthetic pathways across organisms. Advanced biotechnological strategies for industrial-scale production are explored alongside innovative delivery systems, such as emulsions, films, microcapsules, nanoliposomes, and nanoparticles, designed to enhance ASX's bioavailability and functional efficacy. By unifying perspectives on its nutraceutical and cosmetic applications, this review highlights the challenges and advancements in formulation and commercialization. Prospective research directions for optimizing ASX's production and applications are also discussed, providing a roadmap for its future development.
Collapse
Affiliation(s)
- Sai Manojna Polamraju
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Madhubala Ganeshbabu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Rivera-Hernández G, Roether JA, Aquino C, Boccaccini AR, Sánchez ML. Delivery systems for astaxanthin: A review on approaches for in situ dosage in the treatment of inflammation associated diseases. Int J Pharm 2025; 669:125017. [PMID: 39626846 DOI: 10.1016/j.ijpharm.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
Astaxanthin is a red-orange keto-carotenoid exhibiting antioxidant activity. AST is mainly used in the cosmetic, food, and healthcare industries. Nevertheless, because of its anti-inflammatory effects and immune modulation activity, AST use in pharmacology has been proposed as an alternative for treating neurodegenerative disorders, inflammatory bowel disease, arthritis, atherosclerosis, or diabetic foot ulcers, among others. However, before an AST clinical implementation, it is still necessary to solve challenges related to the use of AST, such as lack of solubility, poor bioavailability, and sensitivity to light, oxygen, and temperature. For that reason, the development of several biomaterials to encapsulate, protect, and dosage AST has been proposed in recent years. This review discusses the use of liposomes, hydrogels, and polymer micro and nanoparticles as vehicles for AST release based on available literature. Additionally, an analysis of released, encapsulated, and effective AST doses is presented, as well as the regulatory landscape of different delivery systems to reveal details of AST delivery, which should inform future strategies for implementing AST in the clinic.
Collapse
Affiliation(s)
- Gabriela Rivera-Hernández
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Judith A Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carolina Aquino
- Departamento de ingeniería y ciencias exactas y naturales, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| | - Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany.
| |
Collapse
|
4
|
Binsi P, Parvathy U, Jeyakumari A, George Thomas N, Zynudheen A. Marine biopolymers in cosmetics. MARINE BIOPOLYMERS 2025:677-752. [DOI: 10.1016/b978-0-443-15606-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Zhang C, Song W, Yu B, Chen X, Fan W, Gao L, Gu J, Hao F, He W, Ju Q, Li H, Liu H, Liang H, Li K, Li S, Lin T, Liu W, Li X, Liu Z, Qin X, Ren J, Wang B, Wu W, Wang W, Xu X, Xie H, Yang B, Yuan C, Yan Y, Zhang W, Zhang W, Zou Y, Zhao X, Zheng Z, Zhou Z, Wu Y, Xiang L. Expert consensus on perioperative integrated skincare for noninvasive energy-based device aesthetic procedures in clinical practice in China. J Eur Acad Dermatol Venereol 2024; 38 Suppl 6:26-36. [PMID: 38419560 DOI: 10.1111/jdv.19857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Noninvasive energy-based device (NI-EBD) aesthetic procedures has recently gained widespread usage for treating various skin conditions, enhancing skin texture and performing rejuvenation-related procedures. However, practically all NI-EBD procedures result in variable degrees of damage to the skin barrier, inducing pathological and physiological processes such as oxidative stress and inflammation, and only a small percentage of individuals possess the innate ability to restore it. OBJECTIVE To introduce the concept of integrated skincare and establish standardized operational procedures for perioperative integrated skincare, and furnish a theoretical basis for clinical diagnosis and treatment performed by professional medical aestheticians. METHODS The author leveraged domestic and international guidelines, clinical practice expertise and evidence-based research, adapting them to suit the specific circumstances in China. RESULTS The consensus were provided four parts, including concept and essence of integrated skincare, integrated skincare significance during the perioperative phase of NI-EBD procedures, active ingredients and functions of effective skincare products, standardized perioperative skincare procedure for NI-EBD procedures and precautions. For the standardized perioperative skincare procedure, four recommendations were listed according to different stages during NI-EBD procedures. CONCLUSION These recommendations create the 'Expert Consensus on Perioperative Integrated Skincare for Noninvasive Energy-Based Device Aesthetic Procedures in Clinical Practice in China'.
Collapse
Affiliation(s)
- Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiangdong Chen
- Shanghai Bestafairy Medical Cosmetic Clinic, Shanghai, China
| | - Weixin Fan
- Department of Dermatology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lin Gao
- Department of Dermatology, Xijing Hospital, Xi'an, China
| | - Jun Gu
- Deparment of Dermatology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Fei Hao
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei He
- Department of Dermatology, Guiqian International General Hospital, Guiyang, China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hengjin Li
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Hongmei Liu
- MEIYAN Aesthetic Plastic Medical Clinic, Beijing, China
| | - Hong Liang
- Department of Skin Medical Cosmetology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai Li
- DEYI SKIN Dermatology Clinic, Xi'an, China
| | - Shanshan Li
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Tong Lin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Liu
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, China
| | - Xueli Li
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhenfeng Liu
- Cosmetic Dermatology Department, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaolei Qin
- DEYI SKIN Dermatology Clinic, Shenzhen, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baoxi Wang
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Xiaoke Xu
- Xiaoke BeauCare Clinic, Guangzhou, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Chao Yuan
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yan
- Department of Dermatology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Zhang
- Biomedical Informatics and Statistics Center, School of Public Health, Fudan University, Shanghai, China
| | - Ying Zou
- Department of Skin and Cosmetic Research, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Zhizhong Zheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yan Wu
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
7
|
Januszewski J, Forma A, Zembala J, Flieger M, Tyczyńska M, Dring JC, Dudek I, Świątek K, Baj J. Nutritional Supplements for Skin Health-A Review of What Should Be Chosen and Why. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:68. [PMID: 38256329 PMCID: PMC10820017 DOI: 10.3390/medicina60010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Supplementation of micronutrients is considered to be crucial in the reinforcement of the skin's barrier. In this paper, 14 nutritional compounds commonly used in food or pharmaceutic industries were analyzed in terms of influencing skin conditions. The major objective of this paper was to provide a narrative review of the available literature regarding several chosen compounds that are currently widely recommended as supplements that aim to maintain proper and healthy skin conditions. We conducted a review of the literature from PubMed, Scopus, and Web of Science until September 2023 without any other restrictions regarding the year of the publication. Ultimately, we reviewed 238 articles, including them in this review. Each of the reviewed compounds, including vitamin A, vitamin C, vitamin D, vitamin E, curcumin, chlorella, Omega-3, biotin,Ppolypodium leucotomos, Simmondsia chinesis, gamma oryzanol, olive leaf extract, spirulina, and astaxanthin, was observed to present some possible effects with promising benefits for a skin condition, i.e., photoprotective radiation. Adding them to the diet or daily routine might have a positive influence on some skin inflammatory diseases such as atopic dermatitis or psoriasis. Further, UV radiation protection facilitated by some supplements and their impact on human cells might be helpful during chemotherapy or in preventing melanoma development. Further research is needed because of the lack of clear consensus regarding the doses of the described compounds that could provide desirable effects on the skin.
Collapse
Affiliation(s)
- Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Julita Zembala
- University Clinical Center, Medical University of Warsaw, Lindleya 4, 02-004 Warsaw, Poland;
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Magdalena Tyczyńska
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - James Curtis Dring
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.F.); (I.D.)
| | - Kamila Świątek
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (J.J.); (M.T.); (J.C.D.); (K.Ś.)
| |
Collapse
|
8
|
Bakac ER, Percin E, Gunes-Bayir A, Dadak A. A Narrative Review: The Effect and Importance of Carotenoids on Aging and Aging-Related Diseases. Int J Mol Sci 2023; 24:15199. [PMID: 37894880 PMCID: PMC10607816 DOI: 10.3390/ijms242015199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is generally defined as a time-dependent functional decline that affects most living organisms. The positive increase in life expectancy has brought along aging-related diseases. Oxidative stress caused by the imbalance between pro-oxidants and antioxidants can be given as one of the causes of aging. At the same time, the increase in oxidative stress and reactive oxygen species (ROS) is main reason for the increase in aging-related diseases such as cardiovascular, neurodegenerative, liver, skin, and eye diseases and diabetes. Carotenoids, a natural compound, can be used to change the course of aging and aging-related diseases, thanks to their highly effective oxygen-quenching and ROS-scavenging properties. Therefore, in this narrative review, conducted using the PubMed, ScienceDirect, and Google Scholar databases and complying with the Scale for the Assessment of Narrative Review Articles (SANRA) guidelines, the effects of carotenoids on aging and aging-related diseases were analyzed. Carotenoids are fat-soluble, highly unsaturated pigments that occur naturally in plants, fungi, algae, and photosynthetic bacteria. A large number of works have been conducted on carotenoids in relation to aging and aging-related diseases. Animal and human studies have found that carotenoids can significantly reduce obesity and fatty liver, lower blood sugar, and improve liver fibrosis in cirrhosis, as well as reduce the risk of cardiovascular disease and erythema formation, while also lowering glycated hemoglobin and fasting plasma glucose levels. Carotenoid supplementation may be effective in preventing and delaying aging and aging-related diseases, preventing and treating eye fatigue and dry eye disease, and improving macular function. These pigments can be used to stop, delay, or treat aging-related diseases due to their powerful antioxidant, restorative, anti-proliferative, anti-inflammatory, and anti-aging properties. As an increasingly aging population emerges globally, this review could provide an important prospective contribution to public health.
Collapse
Affiliation(s)
- Elif Rabia Bakac
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ece Percin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Ayse Gunes-Bayir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bezmialem Vakif University, 34065 Istanbul, Turkey
| | - Agnes Dadak
- Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
9
|
Honda M, Nishida Y. In Vitro Evaluation of Skin-Related Physicochemical Properties and Biological Activities of Astaxanthin Isomers. ACS OMEGA 2023; 8:19311-19319. [PMID: 37305308 PMCID: PMC10249140 DOI: 10.1021/acsomega.2c08173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Dietary astaxanthin exists predominantly as the all-E-isomer; however, certain amounts of the Z-isomers are universally present in the skin, whose roles remain largely unknown. The aim of this study was to investigate the effects of the astaxanthin E/Z-isomer ratio on skin-related physicochemical properties and biological activities using human dermal fibroblasts and B16 mouse melanoma cells. We revealed that astaxanthin enriched in Z-isomers (total Z-isomer ratio = 86.6%) exhibited greater UV-light-shielding ability and skin antiaging and skin-whitening activities, such as anti-elastase and anti-melanin formation activities, than the all-E-isomer-rich astaxanthin (total Z-isomer ratio = 3.3%). On the other hand, the all-E-isomer was superior to the Z-isomers in singlet oxygen scavenging/quenching activity, and the Z-isomers inhibited type I collagen release into the culture medium in a dose-dependent manner. Our findings help clarify the roles of astaxanthin Z-isomers in the skin and would help in the development of novel skin health-promoting food ingredients.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty
of Science & Technology, Meijo University, Shiogamaguchi,
Tempaku-ku, Nagoya, Aichi 468-8502, Japan
| | - Yasuhiro Nishida
- Fuji
Chemical Industries, Co., Ltd., Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
| |
Collapse
|
10
|
Cai L, Gan M, Regenstein JM, Luan Q. Improving the biological activities of astaxanthin using targeted delivery systems. Crit Rev Food Sci Nutr 2023; 64:6902-6923. [PMID: 36779336 DOI: 10.1080/10408398.2023.2176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The antioxidant and anti-inflammatory properties of astaxanthin (AST) enable it to protect against oxidative stress-related and inflammatory diseases with a range of biological effects. These activities provide the potential to develop healthier food products. Therefore, it would be beneficial to design delivery systems for AST to overcome its low stability, control its release, and/or improve its bioavailability. This review discusses the basis for AST's various biological activities and the factors limiting these activities, including stability, solubility, and bioavailability. It also discusses the different systems available for the targeted delivery of AST and their applications in enhancing the biological activity of AST. These include systems that are candidates for preventive and therapeutic effects, which include nerves, liver, and skin, particularly for possible cancer reduction. Targeted delivery of AST to specific regions of the gastrointestinal tract, or more selectively to target tissues and cells, can be achieved using targeted delivery systems to increase the biological activities of AST.
Collapse
Affiliation(s)
- Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Miaoyu Gan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qian Luan
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
The Role of Astaxanthin as a Nutraceutical in Health and Age-Related Conditions. Molecules 2022; 27:molecules27217167. [PMID: 36363994 PMCID: PMC9655540 DOI: 10.3390/molecules27217167] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
The current review provides an up-to-date analysis of scientific data on astaxanthin (ASX) sources and experimental studies on its health benefits as a potent antioxidant in the aging process. ASX is a liposoluble carotenoid nutrient and reddish-orange pigment, naturally synthesized by numerous microalgae, yeasts, and bacteria as secondary metabolites. Provides a reddish hue to redfish and shellfish flesh that feed on ASX-producing microorganisms. The microalga Haematococcus pluvialis is the most important source for its industrial bioproduction. Due to its strong antioxidant properties, numerous investigations reported that natural ASX is a more significant antioxidant agent than other antioxidants, such as vitamin C, vitamin E, and β-carotene. Furthermore, several data show that ASX possesses important nutraceutical applications and health benefits, especially in healthy aging processes. However, further studies are needed for a deeper understanding of the potential mechanisms through which ASX could lead to its effective role in the healthy aging process, such as supporting brain health and skin homeostasis. This review highlights the current investigations on the effective role of ASX in oxidative stress, aging mechanisms, skin physiology, and central nervous system functioning, and shows the potential clinical implications related to its consumption.
Collapse
|
12
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
13
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
14
|
Chung BY, Park SH, Yun SY, Yu DS, Lee YB. Astaxanthin Protects Ultraviolet B-Induced Oxidative Stress and Apoptosis in Human Keratinocytes via Intrinsic Apoptotic Pathway. Ann Dermatol 2022; 34:125-131. [PMID: 35450317 PMCID: PMC8989909 DOI: 10.5021/ad.2022.34.2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ultraviolet radiation causes skin damage due to increased production of reactive oxygen species (ROS) and inflammatory intermediates and direct attack of DNA of skin cells. Astaxanthin is a reddish pigment that belongs to a group of chemicals called carotenoids and has protective effects as an antioxidant. Objective To determine the beneficial effects of astaxanthin on damaged human skin after exposure to ultraviolet radiation. Methods Normal human epidermal keratinocytes (NHEKs) were pre-treated with astaxanthin for 24 hours and exposed to ultraviolet B (UVB) irradiation. After 24 hours, the Cell Counting Kit-8 (CCK-8) assay measured cell viability, ROS assay and flow cytometry analysis assessed apoptosis, and western blotting was performed to determine expression of apoptosis-related proteins. Results Astaxanthin significantly inhibited UVB-induced NHEKs cytotoxicity. Pretreatment of NHEKs with astaxanthin reduced UVB-induced ROS production. Astaxanthin caused significant inhibition of UVB-induced apoptosis, as evidenced by flow cytometry analysis and western blotting. Conclusion These results suggest that astaxanthine has a beneficial effect of reducing damage caused by UVB by effectively inhibiting cell death and reducing ROS production in keratinocytes.
Collapse
Affiliation(s)
- Bom Yee Chung
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Korea
| | - Sang Ho Park
- Department of Clinical Research Laboratory, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| | - So Yeon Yun
- Department of Dermatology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| | - Dong Soo Yu
- Department of Dermatology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| | - Young Bok Lee
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Korea
- Department of Dermatology, The Catholic University of Korea, Uijeongbu St. Mary’s Hospital, Uijeongbu, Korea
| |
Collapse
|
15
|
Aslankoc R, Ozmen O, Yalcın A. Astaxanthin ameliorates damage to the cerebral cortex, hippocampus and cerebellar cortex caused by methotrexate. Biotech Histochem 2021; 97:382-393. [PMID: 34850645 DOI: 10.1080/10520295.2021.2004616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated the ameliorating effects of astaxanthin (AXA) on methotrexate (MTX) induced damage to the cerebral cortex, hippocampus, cerebellar cortex and blood. We used 24 female Wistar albino rats divided into three groups of eight as follows: sham/control group, single dose of saline intraperitoneally (i.p.) and 7 days orally; MTX group, single dose of 20 mg/kg MTX (i.p.); MTX + AXA group, single dose of 20 mg/kg MTX i.p.+ 100 mg/kg AXA orally for 7 days. For all groups we measured total oxidant status (TOS) and total antioxidant status (TAS) in the cerebral cortex, hippocampus and blood. Histological sections of cerebral cortex, hippocampus and cerebellar cortex were inspected microscopically. Caspase-3 (cas-3), granulocyte colony-stimulating factor (GCSF), growth related oncogene (GRO), inducible nitric oxide synthase (iNOS) and myelin basic protein (MBP) were estimated immunohistochemically in the cerebral cortex, hippocampus and cerebellar cortex. In the MTX group, TAS was decreased significantly in the cerebral cortex, hippocampus and blood, while TOS was significantly increased. AXA significantly ameliorated oxidative stress parameters in the cerebral cortex and hippocampus. Histopathological examination revealed degeneration, edema and hyperemia in the cerebral cortex, hippocampus and cerebellar cortex in the MTX group. AXA treatment ameliorated histopathological changes. MTX decreased MBP expression in cerebral cortex. Although MBP expression was decreased in the cerebral cortex, hippocampus and cerebellar cortex stimulated with MTX, the expressions of cas-3, GCSF, GRO and iNOS were significantly increased. AXA ameliorated the expression of cas-3, GCSF, GRO, iNOS and MBP. AXA exhibits anti-inflammatory, antioxidant and anti-apoptotic effects on MTX induced toxicity in the cerebral cortex, hippocampus and cerebellar cortex by increasing MBP expression, regulating inflammatory cytokine release and reducing oxidative stress.
Collapse
Affiliation(s)
- Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Arzu Yalcın
- Department of Physiology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
16
|
Kumar S, Kumar R, Kumari A, Panwar A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. J Basic Microbiol 2021; 62:1064-1082. [PMID: 34817092 DOI: 10.1002/jobm.202100391] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/13/2021] [Indexed: 01/19/2023]
Abstract
Astaxanthin is a ketocarotenoid, super antioxidant molecule. It has higher antioxidant activity than a range of carotenoids, thus has applications in cosmetics, aquaculture, nutraceuticals, therapeutics, and pharmaceuticals. Naturally, it is derived from Haematococcus pluvialis via a one-stage process or two-stage process. Natural astaxanthin significantly reduces oxidative and free-radical stress as compared to synthetic astaxanthin. The present review summarizes all the aspects of astaxanthin, including its structure, chemistry, bioavailability, and current production technology. Also, this paper gives a detailed mechanism for the potential role of astaxanthin as nutraceuticals for cardiovascular disease prevention, skin protection, antidiabetic and anticancer, cosmetic ingredient, natural food colorant, and feed supplement in poultry and aquaculture. Astaxanthin is one of the high-valued microalgae products of the future. However, due to some risks involved or not having adequate research in terms of long-term consumption, it is still yet to be explored by food industries. Although the cost of naturally derived astaxanthin is high, it accounts for only a 1% share in total astaxanthin available in the global market. Therefore, scientists are looking for ways to cut down the cost of natural astaxanthin to be made available to consumers.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | - Rakesh Kumar
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | -
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, India
| | - Anju Kumari
- Centre of Food Science and Technology, CCS Haryana Agricultural University, Hisar, India
| | - Anil Panwar
- Department of Molecular Biology, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
17
|
Gao S, Heng N, Liu F, Guo Y, Chen Y, Wang L, Ni H, Sheng X, Wang X, Xing K, Xiao L, Qi X. Natural astaxanthin enhanced antioxidant capacity and improved semen quality through the MAPK/Nrf2 pathway in aging layer breeder roosters. J Anim Sci Biotechnol 2021; 12:112. [PMID: 34732261 PMCID: PMC8567604 DOI: 10.1186/s40104-021-00633-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Background Natural astaxanthin (ASTA) has strong antioxidant properties and has been widely used as a health product to improve human health. However, the effects of ASTA on the reproductive performance of aging roosters have been poorly studied. We aimed to investigate the effects of dietary ASTA on semen quality and antioxidant capacity in aging roosters and to explore the potential mechanism of semen quality change via anti-oxidation defense system. Methods In the present study, 96 53-week-old Jinghong No. 1 layer breeder roosters were fed a corn-soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. Results Semen quality in the ASTA groups remarkably improved than that in the control group, and antioxidant activities, the abilities to scavenge hydroxyl radicals and superoxide anions, increased gradually with ASTA addition (P < 0.05). In addition, the mRNA levels of antioxidant enzymes as well as the mRNA and protein levels of the mitogen-activated protein kinase (MAPK) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were markedly increased in the 50–100 mg/kg ASTA group (P < 0.05). Conclusions Collectively, these results demonstrate that dietary ASTA may improve semen quality by increasing antioxidant enzyme activities and the ability to scavenge hydroxyl radicals, which may be related to upregulation of the MAPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Fang Liu
- School of Economics and Management, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
18
|
Miguel SP, Ribeiro MP, Otero A, Coutinho P. Application of microalgae and microalgal bioactive compounds in skin regeneration. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Manosonication-assisted extraction of trans-astaxanthin from Xanthophyllomyces dendrorhous: A green and organic solvent-free methodology. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Systematic Review and Meta-Analysis on the Effects of Astaxanthin on Human Skin Ageing. Nutrients 2021; 13:nu13092917. [PMID: 34578794 PMCID: PMC8472736 DOI: 10.3390/nu13092917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Context: Astaxanthin (ASX), a xanthophyll carotenoid derived from microalgae Haematococcus pluvialis, mitigating skin photoaging and age-related skin diseases by its antioxidant and anti-inflammatory effects in animal studies. Objective: The aim was to systematically evaluate if ASX applications have anti-ageing effects in humans. Methods: A comprehensive search of PubMed, Scopus and Web of Science found a total of eleven studies. Nine randomised, controlled human studies assessed oral ASX effects and two open-label, prospective studies evaluated topical, oral-topical ASX effects on skin ageing. GetData Graph Digitizer was used to extract mean values and standard deviations of baseline and endpoint, and Cochrane Collaboration’s tool assessed RoB for all included studies. Review Manager 5.4 was used to conduct meta-analysis of RCTs; the results were reported as effect size ± 95% confidence interval. Results: Oral ASX supplementation significantly restored moisture content (SMD = 0.53; 95% CI = 0.05, 1.01; I2 = 52%; p = 0.03) and improved elasticity (SMD = 0.77; 95% CI = 0.19, 1.35; I2 = 75%; p = 0.009) but did not significantly decrease wrinkle depth (SMD = −0.26; 95% CI = −0.58, 0.06; I2 = 0%; p = 0.11) compared to placebo. Open-label, prospective studies suggested slightly protective effects of topical and oral-topical ASX applications on skin ageing. Conclusions: Ingestion and/or topical usages of ASX may be effective in reducing skin ageing and have promising cosmetical potential, as it improves moisture content and elasticity and reduces wrinkles.
Collapse
|
21
|
Lim SR, Kim DW, Sung J, Kim TH, Choi CH, Lee SJ. Astaxanthin Inhibits Autophagic Cell Death Induced by Bisphenol A in Human Dermal Fibroblasts. Antioxidants (Basel) 2021; 10:antiox10081273. [PMID: 34439521 PMCID: PMC8389241 DOI: 10.3390/antiox10081273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Astaxanthin, a natural antioxidant carotenoid, is a nutrient with diverse health benefits, given that it decreases the risk of oxidative stress-related diseases. In the present study, we investigate the functional role of astaxanthin during autophagic cell death induced by the estrogenic endocrine-disrupting chemical bisphenol A (BPA) in normal human dermal fibroblasts (NHDF). BPA significantly induced apoptotic cell death and autophagy in NHDF. Autophagic cell death evoked by BPA was significantly restored upon a treatment with astaxanthin (10 μM) via the inhibition of intracellular reactive oxygen species (ROS) production. Astaxanthin inhibited the phosphorylation of extracellular signal-regulated kinases (ERK) stimulated by ROS production, but it did not influence the activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) in BPA-treated NHDF. Astaxanthin abrogated the ERK-mediated activation of nuclear factor-kappa B (NF-κB), which is responsible for the mRNA expression of LC3-II, Beclin-1, Atg12, and Atg14 during apoptotic cell death induced by BPA. These results indicate that astaxanthin is a pharmacological and nutritional agent that blocks the skin fibroblastic autophagic cell death induced by BPA in human dermal fibroblasts.
Collapse
Affiliation(s)
- Seong-Ryeong Lim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-R.L.); (D.-W.K.)
| | - Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-R.L.); (D.-W.K.)
| | - Junghee Sung
- Research Center, Reanzen Co., Ltd., Anyang 14056, Korea;
| | - Tae Hoon Kim
- FoodyWorm Inc., Yancheongsongdae-gil 10, Ochang-eup, Cheongwon-gu, Choenju-si 28118, Korea;
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (C.-H.C.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea; (S.-R.L.); (D.-W.K.)
- Correspondence: (C.-H.C.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| |
Collapse
|
22
|
Benefits of Exercise and Astaxanthin Supplementation: Are There Additive or Synergistic Effects? Antioxidants (Basel) 2021; 10:antiox10060870. [PMID: 34071514 PMCID: PMC8229412 DOI: 10.3390/antiox10060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
A healthy lifestyle is essential for maintaining physical and mental health. Health promotion, with a particular emphasis on regular exercise and a healthy diet, is one of the emerging trends in healthcare. However, the way in which exercise training and nutrients from dietary intake interact with each other to promote additive, synergistic, or antagonistic effects on physiological functions leading to health promotion, and the possible underlying biomolecular mechanisms of such interactions, remain poorly understood. A healthy diet is characterized by a high intake of various bioactive compounds usually found in natural, organic, and fresh foodstuffs. Among these bioactive compounds, astaxanthin (ASX), a red carotenoid pigment especially found in seafood, has been recognized in the scientific literature as a potential nutraceutical due to its antioxidant, anti-inflammatory, and neurotrophic properties. Therefore, scientists are currently exploring whether this promising nutrient can increase the well-known benefits of exercise on health and disease prevention. Hence, the present review aimed to compile and summarize the current scientific evidence for ASX supplementation in association with exercise regimes, and evaluate the additive or synergistic effects on physiological functions and health when both interventions are combined. The new insights into the combination paradigm of exercise and nutritional supplementation raise awareness of the importance of integrative studies, particularly for future research directions in the field of health and sports nutrition science.
Collapse
|
23
|
Novel Self-Nano-Emulsifying Drug Delivery Systems Containing Astaxanthin for Topical Skin Delivery. Pharmaceutics 2021; 13:pharmaceutics13050649. [PMID: 34063593 PMCID: PMC8147608 DOI: 10.3390/pharmaceutics13050649] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Astaxanthin (ASX) is a potent lipophilic antioxidant derived from the natural pigment that gives marine animals their distinctive red-orange colour and confers protection from ultraviolet radiation. Self nano-emulsifying drug delivery systems (SNEDDS) have been successfully developed and evaluated to increase the skin penetration of ASX and target its antioxidant and anti-inflammatory potential to the epidermis and dermis. SNEDDS were prepared using a low-temperature spontaneous emulsification method, and their physical characteristics, stability, antioxidant activity, and skin penetration were characterized. Terpenes (D-limonene, geraniol, and farnesol) were included in the SNEDDS formulations to evaluate their potential skin penetration enhancement. An HPLC assay was developed that allowed ASX recovery from skin tissues and quantification. All SNEDDS formulations had droplets in the 20 nm range, with low polydispersity. ASX stability over 28 days storage in light and dark conditions was improved and antioxidant activity was high. SNEDDS-L1 (no terpene) gave significantly increased ASX penetration to the stratum corneum (SC) and the epidermis-dermis-follicle region (E + D + F) compared to an ASX in oil solution and a commercial ASX facial serum product. The SNEDDS-containing D-limonene gave the highest ASX permeation enhancement, with 3.34- and 3.79-fold the amount in the SC and E + D + F, respectively, compared to a similar applied dose of ASX in oil. We concluded that SNEDDS provide an effective formulation strategy for enhanced skin penetration of a highly lipophilic molecule, and when applied to ASX, have the potential to provide topical formulations for UV protection, anti-aging, and inflammatory conditions of the skin.
Collapse
|
24
|
Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102178] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Huan Y, Peng XD, Lin J, Zhang YX, Zhan L, Gao H, Zhao GQ. Anti-inflammatory effects of astaxanthin against fungal keratitis. Int J Ophthalmol 2020; 13:1681-1688. [PMID: 33214996 DOI: 10.18240/ijo.2020.11.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022] Open
Abstract
AIM To characterize effect of astaxanthin (ASX) in Aspergillus fumigatus (A. fumigatus) induced keratitis in mouse model. METHODS In vivo, fungal keratitis mouse model was established in C57BL/6 mice using A. fumigatus, followed by ASX or dimethyl sulfoxide (DMSO) treatment. Clinical responses were evaluated by clinical score and myeloperoxidase (MPO) assay. Inflammatory cytokines were assessed by reverse-transcription polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, and enzyme-linked immuno sorbent assay (ELISA). RESULTS In animal model, ASX improved corneal transparency and clinical response, suppressed the expression of inflammatory cytokine like IL-1β, TNF-α, and HMGB-1. Neutrophil levels have been shown to decrease in ASX-treated cornea by immunofluorescence and MPO. TLR2 and TLR4 levels were lower in ASX-treated group than DMSO-treated. CONCLUSION ASX can suppress inflammatory response and reduce inflammatory cytokine production in mice model with A. fumigatus keratitis.
Collapse
Affiliation(s)
- Yu Huan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Ying-Xue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, MI 48201, USA
| | - Lu Zhan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Han Gao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
26
|
Oh H, Lee JS, Sung D, Lim JM, Choi WI. Potential Antioxidant and Wound Healing Effect of Nano-Liposol with High Loading Amount of Astaxanthin. Int J Nanomedicine 2020; 15:9231-9240. [PMID: 33262585 PMCID: PMC7686476 DOI: 10.2147/ijn.s272650] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Astaxanthin (ASTA), a carotenoid, is a strong antioxidant. However, its application in functional foods, pharmaceuticals, and cosmetics remains limited due to its low aqueous solubility and stability. Several different encapsulating materials have been used to improve the stability and bioavailability of ASTA; however, the currently investigated nano-carriers for ASTA require additional improvements with regard to their loading capacity and stability. Methods In this study, we developed lecithin nano-liposol (Lec NS) as a novel carrier of ASTA using a simple emulsion evaporation method. The physicochemical characteristics including hydrodynamic diameter, polydispersity index, surface charge and morphology were analyzed by DLS and TEM. The antioxidant activity of the ASTA-loaded Lec NS (ASTA@Lec NS) was evaluated using a DPPH radical scavenging assay and in vitro antioxidant assay. The study of in vitro wound healing efficacy was carried out to observe the beneficial effect of antioxidant activity of ASTA@Lec NS on cell migration. Results ASTA@Lec NS showed improved stability and efficacy owing to improved aqueous solubility of ASTA inside Lec NS. Both in situ and in vitro antioxidant activities of ASTA@Lec NS were higher than that of bare ASTA and Lec NS. It also exhibited strong wound healing efficacy by regulation of ROS level in in vitro cell model. Conclusion This study revealed that the encapsulation of ASTA into Lec NS using a wet phase transfer enhanced its physiological stability and bioavailability for effective scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk 28160, Republic of Korea.,School of Materials Science and Engineering and Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Jin Sil Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk 28160, Republic of Korea.,School of Materials Science and Engineering and Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jong-Min Lim
- Department of Chemical Engineering, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.,Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju, Chungbuk 28160, Republic of Korea
| |
Collapse
|
27
|
Gao S, Li R, Heng N, Chen Y, Wang L, Li Z, Guo Y, Sheng X, Wang X, Xing K, Ni H, Qi X. Effects of dietary supplementation of natural astaxanthin from Haematococcus pluvialis on antioxidant capacity, lipid metabolism, and accumulation in the egg yolk of laying hens. Poult Sci 2020; 99:5874-5882. [PMID: 33142505 PMCID: PMC7647864 DOI: 10.1016/j.psj.2020.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/18/2020] [Accepted: 08/07/2020] [Indexed: 01/21/2023] Open
Abstract
The present study evaluated the effects of natural astaxanthin (ASTA) from Haematococcus pluvialis on the antioxidant capacity, lipid metabolism, and ASTA accumulation in the egg yolk of laying hens. Hy-Line Brown layers (n = 288, 50 wk old) were randomly assigned to 1 of 4 dietary treatment groups. Each group had 6 replicates of 12 hens each. All birds were given a corn-soybean meal-based diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 wk. The results showed that the total antioxidant capacity, superoxide dismutase level, and glutathione peroxidase level in the plasma, livers, and egg yolks were significantly increased in the ASTA groups compared with those of the control group (P < 0.05), whereas the content of malondialdehyde linearly decreased (P < 0.05). The plasma levels of high-density and very-low-density lipoprotein cholesterol in the ASTA groups were significantly higher than those in the control group (P < 0.05). In addition, ASTA supplementation decreased low-density lipoprotein cholesterol and triglyceride plasma levels (P < 0.05). However, there were no significant differences in the other lipid metabolism parameters among the ASTA-supplemented groups relative to the control group except for an increase in high-density lipoprotein cholesterol in the liver. Compared with the control, dietary ASTA supplementation significantly increased the enrichment of ASTA in egg yolks at the end of week 2, 4, and 6 (P < 0.05). The mRNA expression of scavenger receptor class B type 1 (SCARB1) and very-low-density lipoprotein receptor (VLDLR) in the ASTA groups was markedly higher (P < 0.05) than that in the control group in the liver and ovaries, respectively. In conclusion, these results suggest that dietary ASTA enhances the antioxidant capacity and regulates lipid metabolism in laying hens. ASTA enrichment in egg yolks may be closely related to the upregulation of SCARB1 and VLDLR gene expression.
Collapse
Affiliation(s)
- Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Runhua Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Feed Analysis Lab, Beijing Institute of Feed Control, Beijing 100012, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
28
|
Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol 2020; 145:111714. [DOI: 10.1016/j.fct.2020.111714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
|
29
|
Zhang J, Li Q, Liu J, Lu Y, Wang Y, Wang Y. Astaxanthin overproduction and proteomic analysis of Phaffia rhodozyma under the oxidative stress induced by TiO 2. BIORESOURCE TECHNOLOGY 2020; 311:123525. [PMID: 32447228 DOI: 10.1016/j.biortech.2020.123525] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study analyzed the effect of TiO2 on the growth and astaxanthin yield of P. rhodozyma PR106. Subsequently, proteomics method was used to analyze the proteins changes of the strain under TiO2 treatment, to investigate the metabolic mechanism of the active oxygen generator TiO2 promoting the astaxanthin synthesis in P. rhodozyma. The results showed that TiO2 caused oxidative stress response in P. rhodozyma, and astaxanthin yield was 14.74 mg/L, which was 2 times of the control group; while, TiO2 had no effect on biomass and apoptosis of the cells. Proteomics analysis and parallel reaction monitoring (PRM) technology initially explored that bud-site selection protein (BUD22), ubiquitin-40s ribosomal protein s31 fusion protein, cell cycle control protein, C-4 methyl sterol oxidase and glutaredoxin were associated with astaxanthin synthesis.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Qingru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Jiahuan Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yanhong Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, Chin; National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China.
| |
Collapse
|
30
|
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020; 25:molecules25112536. [PMID: 32486036 PMCID: PMC7321322 DOI: 10.3390/molecules25112536] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).
Collapse
Affiliation(s)
- Ana Alves
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| |
Collapse
|
31
|
Li L, Chen Y, Jiao D, Yang S, Li L, Li P. Protective Effect of Astaxanthin on Ochratoxin A-Induced Kidney Injury to Mice by Regulating Oxidative Stress-Related NRF2/KEAP1 Pathway. Molecules 2020; 25:molecules25061386. [PMID: 32197464 PMCID: PMC7144393 DOI: 10.3390/molecules25061386] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of astaxanthin (ASX) on ochratoxin A (OTA)-induced renal oxidative stress and its mechanism of action. Serum kidney markers, histomorphology, ultrastructural observation, and oxidative stress indicators were assessed. Meanwhile, quantitative real-time reverse transcription PCR and western blotting detection of NRF2 (encoding nuclear factor, erythroid 2 like) and members of the NRF2/KEAP1 signaling pathway (KEAP1 (encoding Kelch-like ECH-associated protein), NQO1 (encoding NAD(P)H quinone dehydrogenase), HO-1 (encoding heme oxygenase 1), γ-GCS (gamma-glutamylcysteine synthetase), and GSH-Px (glutathione peroxidase 1)) were performed. Compared with the control group, the OTA-treated group showed significantly increased levels of serum UA (uric acid) and BUN (blood urea nitrogen), tubular epithelial cells were swollen and degenerated, and the levels of antioxidant enzymes decreased significantly, and the expression of NRF2 (cytoplasm), NQO1, HO-1, γ-GCS, and GSH-Px decreased significantly. More importantly, after ASX pretreatment, compared with the OTA group, serum markers were decreased, epithelial cells appeared normal; the expression of antioxidant enzymes increased significantly, NQO1, HO-1, γ-GCS and GSH-Px levels increased significantly, and ASX promoted the transfer of NRF2 from the cytoplasm to the nucleus. These results highlight the protective ability of ASX in renal injury caused by OTA exposure, and provide theoretical support for ASX’s role in other mycotoxin-induced damage.
Collapse
Affiliation(s)
| | | | | | - Shuhua Yang
- Correspondence: (S.Y.); (L.L.); (P.L.); Tel./Fax: +86-24-8848-7156 (S.Y., L.L. & P.L.)
| | - Lin Li
- Correspondence: (S.Y.); (L.L.); (P.L.); Tel./Fax: +86-24-8848-7156 (S.Y., L.L. & P.L.)
| | - Peng Li
- Correspondence: (S.Y.); (L.L.); (P.L.); Tel./Fax: +86-24-8848-7156 (S.Y., L.L. & P.L.)
| |
Collapse
|
32
|
Kubo H, Asai K, Kojima K, Sugitani A, Kyomoto Y, Okamoto A, Yamada K, Ijiri N, Watanabe T, Hirata K, Kawaguchi T. Astaxanthin Suppresses Cigarette Smoke-Induced Emphysema through Nrf2 Activation in Mice. Mar Drugs 2019; 17:md17120673. [PMID: 31795292 PMCID: PMC6950584 DOI: 10.3390/md17120673] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) is a key cellular defense mechanism against oxidative stress. Recent studies have shown that astaxanthin protects against oxidative stress via Nrf2. In this study, we investigated the emphysema suppression effect of astaxanthin via Nrf2 in mice. Mice were divided into four groups: control, smoking, astaxanthin, and astaxanthin + smoking. The mice in the smoking and astaxanthin + smoking groups were exposed to cigarette smoke for 12 weeks, and the mice in the astaxanthin and astaxanthin + smoking groups were fed a diet containing astaxanthin. Significantly increased expression levels of Nrf2 and its target gene, heme oxygenase-1 (HO-1), were found in the lung homogenates of astaxanthin-fed mice. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) was significantly decreased, and emphysema was significantly suppressed. In conclusion, astaxanthin protects against oxidative stress via Nrf2 and ameliorates cigarette smoke-induced emphysema. Therapy with astaxanthin directed toward activating the Nrf2 pathway has the potential to be a novel preventive and therapeutic strategy for COPD.
Collapse
|
33
|
Balić A, Mokos M. Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants (Basel) 2019; 8:E259. [PMID: 31370257 PMCID: PMC6719967 DOI: 10.3390/antiox8080259] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Due to their potential health-promoting effects, carotenoids have drawn both scientific and public attention in recent years. The primary source of carotenoids in the human skin is diet, mainly fruits, vegetables, and marine product, but they may originate from supplementation and topical application, too. In the skin, they accumulate mostly in the epidermis and act as a protective barrier to various environmental influences. Namely, the skin is exposed to numerous environmental factors, including ultraviolet radiation (UVR), air pollution, and smoking, that cause oxidative stress within the skin with consequent premature (extrinsic) aging. UVR, as the most prominent environmental factor, may cause additional detrimental skin effects, such as sunburn, DNA damage, and skin cancer. Therefore, photoprotection is the first line intervention in the prevention of premature aging and skin cancer. Numerous studies have demonstrated that carotenoids, particularly β-carotene, lycopene, lutein, and astaxanthin, have photoprotective effects, not only through direct light-absorbing properties, but also through their antioxidant effects (scavenging reactive oxygen species), as well as by regulation of UV light-induced gene expression, modulation of stress-dependent signaling, and/or suppression of cellular and tissue responses like inflammation. Interventional studies in humans with carotenoid-rich diet have shown its photoprotective effects on the skin (mostly by decreasing the sensitivity to UVR-induced erythema) and its beneficial effects in prevention and improvement of skin aging (improved skin elasticity and hydration, skin texture, wrinkles, and age spots). Furthermore, carotenoids may be helpful in the prevention and treatment of some photodermatoses, including erythropoietic protoporphyria (EPP), porphyria cutanea tarda (PCT) and polymorphous light eruption (PMLE). Although UVR is recognized as the main etiopathogenetic factor in the development of non-melanoma skin cancer (NMSC) and melanoma, and the photoprotective effects of carotenoids are certain, available studies still could not undoubtedly confirm the protective role of carotenoids in skin photocarcinogenesis.
Collapse
Affiliation(s)
- Anamaria Balić
- University Hospital Centre Zagreb, Department of Dermatology and Venereology, School of Medicine University of Zagreb, Šalata 4, 10 000 Zagreb, Croatia.
| | - Mislav Mokos
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|