1
|
Nyström K, Trybala E, Said J, Roth A, Patzi Churqui M, Kärmander A, Cihlar T, Bilello JP, Bergström T, Lagging M. Remdesivir is active in vitro against tick-borne encephalitis virus and selects for resistance mutations in the viral RNA-dependent RNA polymerase. Infect Dis (Lond) 2025:1-8. [PMID: 39973341 DOI: 10.1080/23744235.2025.2468510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is a neurological disease caused by the tick-borne encephalitis virus (TBEV). Despite available vaccines, breakthrough infections occur, some fatal. OBJECTIVES As no antiviral therapy for TBE is currently approved, this study evaluated the in vitro activity of already licenced remdesivir (RDV) and sofosbuvir (SOF) for possible drug repurposing against TBEV. METHODS TBEV was cultured in A549 cells, and the inhibitory effects of RDV (GS-5734), its parent nucleotide GS-441524, and SOF (GS-7977) were assessed. RESULTS After 78 h, RDV demonstrated significantly lower EC50 values than SOF (0.14 vs. 11 µM) based on TBEV RNA levels measured by RT-qPCR. RDV also had a lower mean EC50 (0.55 µM) compared to GS-441524 and SOF (>8.9 and 13.1 µM, respectively) using crystal violet staining after 5 days. After 11 passages of TBEV in the presence of RDV, emergence of virus with a higher EC50 (1.32 vs. 0.55 µM) was detected with two mutations (L3122F and Y3278F) in NS5, the viral RNA-dependent RNA polymerase (RdRp), and one substitution in envelope (E) protein (E402G). Similarly, SOF resistance appeared after 20 passages, increasing EC50 values (35.5 vs. 10 µM). CONCLUSION RDV exhibits potent in vitro antiviral activity against TBEV via specific targeting of the viral RdRp as confirmed by the emergence of resistance-associated double NS5 substitutions in vitro in the presence of RDV. While the potential in vivo implications of the observed RDV resistance remain to be determined, these in vitro data support further assessment of RDV for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Kristina Nyström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Edward Trybala
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joanna Said
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anette Roth
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ambjörn Kärmander
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Tomas Bergström
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Lagging
- Department of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Bartholdsson S, Hergens MP, Hansson KE, Ragnarsson J, Hodosi P, Kus I, Insulander M, Vene S, Lindquist L, Askling HH, Gredmark-Russ S. Clinical Characteristics of Tick-Borne Encephalitis in Adult Patients: A 10-year Retrospective Study in Stockholm, Sweden. J Infect Dis 2025; 231:e195-e205. [PMID: 39316686 PMCID: PMC11793045 DOI: 10.1093/infdis/jiae463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND The incidence of tick-borne encephalitis (TBE) has increased during the last decades in Europe. Our aim was to assess the clinical characteristics and outcome of patients with TBE in Region Stockholm, as a high-risk area in Sweden. METHODS The notification database at the regional Department of Communicable Disease Control and Prevention was used to identify TBE cases during 2006-2015. Clinical data were retrieved from the included patients' medical records. The associations of specific variables to predefined outcomes of disease severity were evaluated with multivariate logistic regression models. RESULTS Of 1004 identified TBE cases, 703 adult patients were included. Sixty-one percent were men, and the median age was 50 years (range, 18-94 years). The majority of patients were nonvaccinated. Comorbidity was present in 34%, and 4% were receiving immunomodulatory therapy. Seventy-five percent were hospitalized, and 11% had severe disease. More than 70% of the 79 patients followed up for >6 months had persisting symptoms. The case fatality rate was 1.4%, 15% in the group with immunomodulatory treatment. In the multivariate analysis, severe disease was associated with underlying comorbid conditions, age ≥50 years, and previous complete TBE vaccination. CONCLUSIONS This is the largest cohort of patients with TBE in Scandinavia. Our findings of a more severe course of disease in older patients, those receiving immunomodulatory therapy, those with comorbid conditions, and those with vaccination breakthrough infections must be interpreted in the context of hospitalized patients. Optimized prevention is needed for patients receiving immunomodulatory therapy, given the considerable case fatality rate. Follow-up visits and rehabilitation should be better standardized.
Collapse
Affiliation(s)
- Sofia Bartholdsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maria-Pia Hergens
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Communicable Disease Control and Prevention, Region Stockholm, Stockholm, Sweden
| | - Karin E Hansson
- Department of Infectious Diseases, Södersjukhuset Stockholm, Sweden
| | - Josef Ragnarsson
- Department of Infectious Diseases, University Hospital of Umeå, Umeå, Sweden
| | - Peter Hodosi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ismail Kus
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mona Insulander
- Department of Communicable Disease Control and Prevention, Region Stockholm, Stockholm, Sweden
| | - Sirkka Vene
- The Public Health Agency of Sweden, Solna, Sweden
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Helena H Askling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Academic Specialist Centre, Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå, Sweden
| |
Collapse
|
3
|
Czupryna P, Grygorczuk S, Siemieniako-Werszko A, Okrzeja J, Dunaj-Małyszko J, Adamczuk J, Pancewicz S, Zajkowska J, Narejko K, Oklińska J, Trojan G, Moniuszko-Malinowska A. Anti-Tick-Bourne Encephalitis IgM Intrathecal Synthesis as a Prediction Marker in Tick-Borne Encephalitis Patients. Microorganisms 2025; 13:213. [PMID: 39858981 PMCID: PMC11767730 DOI: 10.3390/microorganisms13010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
The aim of this study was to evaluate the usefulness of IgM anti-Tick-Borne Encephalitis (anti-TBE) intrathecal synthesis in the diagnosis and prediction of the clinical course of the disease. Thirty-six patients were included in the study (patients reported symptoms such as fever, headache, fatigue, and nausea/vomiting). CRP, White Blood Cells (WBC), pleocytosis, Cerebrospinal Fluid (CSF) protein concentration, CSF albumin concentration, serum IgM, serum IgG, CSF IgM, CSF IgG, IgM Index, IgG Index, and IgG Index/IgM Index ratio were the parameters which were examined in the individuals. An analysis of correlation presented statistical significance between IgM Index and pleocytosis and protein concentration in CSF in the whole group of individuals. IgM Index and IgG Index/IgM Index ratio may be used in the prediction of severity of TBE. The most probable link between the IgM intrathecal production and severity of TBE may be a result of delayed seroconversion to IgG, and therefore not an adequate response to the virus presence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540 Bialystok, Poland; (P.C.); (S.G.); (A.S.-W.); (J.O.); (J.D.-M.); (J.A.); (S.P.); (J.Z.); (K.N.); (J.O.); (G.T.)
| |
Collapse
|
4
|
Könighofer E, Mirgorodskaya E, Nyström K, Stiasny K, Kärmander A, Bergström T, Nordén R. Identification of Three Novel O-Linked Glycans in the Envelope Protein of Tick-Borne Encephalitis Virus. Viruses 2024; 16:1891. [PMID: 39772199 PMCID: PMC11680210 DOI: 10.3390/v16121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the Flaviviridae family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis. Here, we dissected the entire glycosylation profile of the E protein using liquid chromatography-tandem mass spectrometry and identified three novel O-linked glycans, which were found at relatively low frequency. One of the O-linked glycans was positioned close to the highly conserved N-linked glycan site, and structural analysis suggested that it may be relevant for the function of the E 150-loop. The N154 site was found to be glycosylated with a high frequency, containing oligomannose or complex-type structures, some of which were fucosylated. An unusually high portion of oligomannose N-linked glycan structures exhibited compositions that are normally observed on proteins when they are translocated from the endoplasmic reticulum to the trans-Golgi network, suggesting disruption of the glycan processing pathway in the infected cells from which the E protein was obtained.
Collapse
Affiliation(s)
- Ebba Könighofer
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ambjörn Kärmander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| |
Collapse
|
5
|
Pichkur EB, Vorovitch MF, Ivanova AL, Protopopova EV, Loktev VB, Osolodkin DI, Ishmukhametov AA, Samygina VR. The structure of inactivated mature tick-borne encephalitis virus at 3.0 Å resolution. Emerg Microbes Infect 2024; 13:2313849. [PMID: 38465849 PMCID: PMC10930109 DOI: 10.1080/22221751.2024.2313849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen. Here we report the refined single-particle cryo-electron microscopy (cryo-EM) structure of the inactivated mature TBEV vaccine strain Sofjin-Chumakov (Far-Eastern subtype) at a resolution of 3.0 Å. The increase of the resolution with respect to the previously published structures of TBEV strains Hypr and Kuutsalo-14 (European subtype) was reached due to improvement of the virus sample quality achieved by the optimized preparation methods. All the surface epitopes of TBEV were structurally conserved in the inactivated virions. ELISA studies with monoclonal antibodies supported the hypothesis of TBEV protein shell cross-linking upon inactivation with formaldehyde.
Collapse
Affiliation(s)
| | - Mikhail F. Vorovitch
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow, Russian Federation
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alla L. Ivanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow, Russian Federation
| | - Elena V. Protopopova
- State Research Center of Virology and Biotechnology “Vector”, Novosibirsk, Russian Federation
| | - Valery B. Loktev
- State Research Center of Virology and Biotechnology “Vector”, Novosibirsk, Russian Federation
| | - Dmitry I. Osolodkin
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow, Russian Federation
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Aydar A. Ishmukhametov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow, Russian Federation
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | |
Collapse
|
6
|
Aregay A, Slunečko J, Korva M, Bogovic P, Resman Rus K, Knap N, Beicht J, Kubinski M, Saletti G, Avšič-Županc T, Steffen I, Strle F, Osterhaus ADME, Rimmelzwaan GF. Tick-borne encephalitis vaccine breakthrough infections induce aberrant T cell and antibody responses to non-structural proteins. NPJ Vaccines 2024; 9:141. [PMID: 39112523 PMCID: PMC11306791 DOI: 10.1038/s41541-024-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) vaccine breakthrough (VBT) infections are not uncommon in endemic areas. The clinical and immunological outcomes have been poorly investigated. We assessed the magnitude and specificity of virus-specific antibody and T cell responses after TBE in previously vaccinated subjects and compared the results with those of unvaccinated TBE patients and study subjects that received vaccination without VBT infection. Symptomatic TBEV infection of unvaccinated study subjects induced virus-specific antibody responses to the E protein and non-structural protein 1 (NS1) as well as T cell responses to structural and other non-structural (NS) proteins. After VBT infections, significantly impaired NS1-specific antibody responses were observed, while the virus-specific T cell responses to the NS proteins were relatively strong. VBT infection caused predominantly moderate to severe disease during hospitalization. The level of TBEV EDIII- and NS1-specific antibodies in unvaccinated convalescent patients inversely correlated with TBE severity and neurological symptoms early after infection.
Collapse
Affiliation(s)
- Amare Aregay
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jan Slunečko
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
7
|
Zens KD, Altpeter E, Wymann MN, Mack A, Baer NB, Haile SR, Steffen R, Fehr JS, Lang P. A combined cross-sectional analysis and case-control study evaluating tick-borne encephalitis vaccination coverage, disease and vaccine effectiveness in children and adolescents, Switzerland, 2005 to 2022. Euro Surveill 2024; 29:2300558. [PMID: 38699900 PMCID: PMC11067431 DOI: 10.2807/1560-7917.es.2024.29.18.2300558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
BackgroundTick-borne encephalitis (TBE) is a severe, vaccine-preventable viral infection of the central nervous system. Symptoms are generally milder in children and adolescents than in adults, though severe disease does occur. A better understanding of the disease burden and duration of vaccine-mediated protection is important for vaccination recommendations.AimTo estimate TBE vaccination coverage, disease severity and vaccine effectiveness (VE) among individuals aged 0-17 years in Switzerland.MethodsVaccination coverage between 2005 and 2022 was estimated using the Swiss National Vaccination Coverage Survey (SNVCS), a nationwide, repeated cross-sectional study assessing vaccine uptake. Incidence and severity of TBE between 2005 and 2022 were determined using data from the Swiss disease surveillance system and VE was calculated using a case-control analysis, matching TBE cases with SNVCS controls.ResultsOver the study period, vaccination coverage increased substantially, from 4.8% (95% confidence interval (CI): 4.1-5.5%) to 50.1% (95% CI: 48.3-52.0%). Reported clinical symptoms in TBE cases were similar irrespective of age. Neurological involvement was less likely in incompletely (1-2 doses) and completely (≥ 3 doses) vaccinated cases compared with unvaccinated ones. For incomplete vaccination, VE was 66.2% (95% CI: 42.3-80.2), whereas VE for complete vaccination was 90.8% (95% CI: 87.7-96.4). Vaccine effectiveness remained high, 83.9% (95% CI: 69.0-91.7) up to 10 years since last vaccination.ConclusionsEven children younger than 5 years can experience severe TBE. Incomplete and complete vaccination protect against neurological manifestations of the disease. Complete vaccination offers durable protection up to 10 years against TBE.
Collapse
Affiliation(s)
- Kyra D Zens
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ekkehardt Altpeter
- Communicable Diseases Division, Swiss Federal Office of Public Health (FOPH), Bern, Switzerland
| | - Monica N Wymann
- Communicable Diseases Division, Swiss Federal Office of Public Health (FOPH), Bern, Switzerland
| | - Annora Mack
- Communicable Diseases Division, Swiss Federal Office of Public Health (FOPH), Bern, Switzerland
| | - Nora B Baer
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
| | - Sarah R Haile
- Epidemiology, Biostatistics and Prevention Institute, Department of Epidemiology, University of Zurich, Zurich, Switzerland
| | - Robert Steffen
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
| | - Jan S Fehr
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Gaist TA, Nilsson AC, Nissen MS, Ryding MAJ, Nielsen SL, Blaabjerg M. Tick-borne encephalitis as a trigger for anti-N-Methyl-d-aspartate receptor encephalitis. Ticks Tick Borne Dis 2024; 15:102292. [PMID: 38134512 DOI: 10.1016/j.ttbdis.2023.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
Tick Borne Encephalitis (TBE) is endemic to an increasing number of countries and is a common cause of meningoencephalitis in Europe and Asia making any potential complications of the disease increasingly relevant to clinicians. We present, what is to our knowledge, the second reported case of N-methyl-d-aspartate receptor (NMDAR) encephalitis following Tick Borne Encephalitis (TBE) in a 47-year-old Lithuanian man. The case provides further evidence of TBE being a possible trigger of NMDAR encephalitis and highlights the importance of being aware of symptoms of autoimmune encephalitis in patients with infectious encephalitis.
Collapse
Affiliation(s)
- Thomas Agerbo Gaist
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Anna Christine Nilsson
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mette Scheller Nissen
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matias Adonis Jul Ryding
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Ackermann-Gäumann R, Lang P, Zens KD. Defining the "Correlate(s) of Protection" to tick-borne encephalitis vaccination and infection - key points and outstanding questions. Front Immunol 2024; 15:1352720. [PMID: 38318179 PMCID: PMC10840404 DOI: 10.3389/fimmu.2024.1352720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a severe disease of the Central Nervous System (CNS) caused by the tick-borne encephalitis virus (TBEV). The generation of protective immunity after TBEV infection or TBE vaccination relies on the integrated responses of many distinct cell types at distinct physical locations. While long-lasting memory immune responses, in particular, form the basis for the correlates of protection against many diseases, these correlates of protection have not yet been clearly defined for TBE. This review addresses the immune control of TBEV infection and responses to TBE vaccination. Potential correlates of protection and the durability of protection against disease are discussed, along with outstanding questions in the field and possible areas for future research.
Collapse
Affiliation(s)
- Rahel Ackermann-Gäumann
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland
- Swiss National Reference Center for Tick-transmitted Diseases, La Chaux-de-Fonds, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kyra D. Zens
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Kubinski M, Beicht J, Gerlach T, Aregay A, Osterhaus ADME, Tscherne A, Sutter G, Prajeeth CK, Rimmelzwaan GF. Immunity to Tick-Borne Encephalitis Virus NS3 Protein Induced with a Recombinant Modified Vaccinia Virus Ankara Fails to Afford Mice Protection against TBEV Infection. Vaccines (Basel) 2024; 12:105. [PMID: 38276677 PMCID: PMC10819467 DOI: 10.3390/vaccines12010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Tick-borne encephalitis (TBE) is a serious neurological disease caused by TBE virus (TBEV). Because antiviral treatment options are not available, vaccination is the key prophylactic measure against TBEV infections. Despite the availability of effective vaccines, cases of vaccination breakthrough infections have been reported. The multienzymatic non-structural protein 3 (NS3) of orthoflaviviruses plays an important role in polyprotein processing and virus replication. In the present study, we evaluated NS3 of TBEV as a potential vaccine target for the induction of protective immunity. To this end, a recombinant modified vaccinia virus Ankara that drives the expression of the TBEV NS3 gene (MVA-NS3) was constructed. MVA-NS3 was used to immunize C57BL/6 mice. It induced NS3-specific immune responses, in particular T cell responses, especially against the helicase domain of NS3. However, MVA-NS3-immunized mice were not protected from subsequent challenge infection with a lethal dose of the TBEV strain Neudoerfl, indicating that in contrast to immunity to prME and NS1, NS3-specific immunity is not an independent correlate of protection against TBEV in this mouse model.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| | - Amare Aregay
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| | - Alina Tscherne
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Sonnenstraße 24, 85764 Oberschleißheim, Germany; (A.T.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Sonnenstraße 24, 85764 Oberschleißheim, Germany; (A.T.)
- German Center for Infection Research (DZIF), Partner Site Munich, 80802 Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.); (A.A.); (A.D.M.E.O.); (C.K.P.)
| |
Collapse
|
11
|
Roßbacher L, Malafa S, Huber K, Thaler M, Aberle SW, Aberle JH, Heinz FX, Stiasny K. Effect of previous heterologous flavivirus vaccinations on human antibody responses in tick-borne encephalitis and dengue virus infections. J Med Virol 2023; 95:e29245. [PMID: 38009693 PMCID: PMC10952712 DOI: 10.1002/jmv.29245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Arthropod-borne flaviviruses include a number of medically relevant human pathogens such as the mosquito-borne dengue (DEN), Zika, and yellow fever (YF) viruses as well as tick-borne encephalitis virus (TBEV). All flaviviruses are antigenically related and anamnestic responses due to prior immunity can modulate antibody specificities in subsequent infections or vaccinations. In our study, we analyzed the induction of broadly flavivirus cross-reactive antibodies in tick-borne encephalitis (TBE) and DEN patients without or with prior flavivirus exposure through TBE and/or YF vaccination, and determined the contribution of these antibodies to TBE and dengue virus (DENV) neutralization. In addition, we investigated the formation of cross-reactive antibodies in TBE-vaccination breakthroughs (VBTs). A TBEV infection without prior YF or TBE vaccination induced predominantly type-specific antibodies. In contrast, high levels of broadly cross-reactive antibodies were found in samples from TBE patients prevaccinated against YF as well as in DEN patients prevaccinated against TBE and/or YF. While these cross-reactive antibodies did not neutralize TBEV, they were effective in neutralizing DENV. This discrepancy points to structural differences between the two viruses and indicates that broadly cross-reactive epitopes are less accessible in TBEV than in DENV. In TBE VBT infections, type-specific antibodies dominated the antibody response, thus revealing no difference from that of unvaccinated TBE patients. Our results emphasize significant differences in the structural properties of different flaviviruses that have an impact on the induction of broadly cross-reactive antibodies and their functional activities in virus neutralization.
Collapse
Affiliation(s)
- Lena Roßbacher
- Center for VirologyMedical University of ViennaViennaAustria
| | - Stefan Malafa
- Center for VirologyMedical University of ViennaViennaAustria
| | - Kristina Huber
- Division of Infectious Diseases and Tropical MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Melissa Thaler
- Center for VirologyMedical University of ViennaViennaAustria
- Present address:
Department of Medical MicrobiologyLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Franz X. Heinz
- Center for VirologyMedical University of ViennaViennaAustria
| | - Karin Stiasny
- Center for VirologyMedical University of ViennaViennaAustria
| |
Collapse
|
12
|
Chiffi G, Grandgirard D, Leib SL, Chrdle A, Růžek D. Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev Med Virol 2023; 33:e2470. [PMID: 37392370 DOI: 10.1002/rmv.2470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.
Collapse
Affiliation(s)
- Gabriele Chiffi
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aleš Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, Ceske Budejovice, Czech Republic
- Faculty of Health and Social Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Beicht J, Kubinski M, Zdora I, Puff C, Biermann J, Gerlach T, Baumgärtner W, Sutter G, Osterhaus ADME, Prajeeth CK, Rimmelzwaan GF. Induction of humoral and cell-mediated immunity to the NS1 protein of TBEV with recombinant Influenza virus and MVA affords partial protection against lethal TBEV infection in mice. Front Immunol 2023; 14:1177324. [PMID: 37483628 PMCID: PMC10360051 DOI: 10.3389/fimmu.2023.1177324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.
Collapse
Affiliation(s)
- Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
14
|
Geißlreiter B, Kluger G, Eschermann K, Kiwull L, Staudt M, Dobler G, Wolf GK. High neutralizing antibody mismatch as a possible reason for vaccine failure in two children with severe tick-borne encephalitis. Ticks Tick Borne Dis 2023; 14:102158. [PMID: 36989602 DOI: 10.1016/j.ttbdis.2023.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
We describe two adolescents (13 and 16 years old) with severe tick-borne encephalitis (TBE) and vaccination breakthrough (VBT). Both suffer from severe persistent neurologic sequelae. Both patients had high TBE-IgG-titers after vaccination at the beginning of the infection and a low or missing TBE-IgM response (Type 2 vaccine failure). Neutralization tests show low titers against the respective infecting TBE virus strain and higher titers against the vaccine strain at the beginning of the infection implying an individual weak or impaired immune response to the respective virus as possible cause of TBE vaccine failure. We do not know of any similar observation or explanation for the phenomenon and at the moment can only speculate of a severe course correlated to highly mismatched IgG. This constellation of high TBE IgGs, the lack of immune response and a severe course strongly resembles the severe TBE courses that occurred in the past after TBE immunoglobulin administration. To our knowledge differentiation between structural and functional antibodies by neutralization tests with a) the affecting TBE virus strain and b) the vaccine virus strain in TBE vaccine failures has never been described before. We conclude (1) to consider a TBE virus infection also in vaccinated children presenting with meningoencephalitis, (2) to perform a broad immunological work-up in severe TBE especially after VBT, (3) to further study if high mismatch IgG's are a possible reason for vaccine failure.
Collapse
Affiliation(s)
- Bernd Geißlreiter
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Krankenhausstr. 20, Vogtareuth 83569, Germany.
| | - Gerhard Kluger
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Krankenhausstr. 20, Vogtareuth 83569, Germany; Paracelsus Privatuniversität Salzburg, Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Kirsten Eschermann
- Paracelsus Privatuniversität Salzburg, Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria; Berlin Centre for Travel & Tropical Medicine, Friedrichstr. 134, Berlin 10117, Germany
| | - Lorenz Kiwull
- Paracelsus Privatuniversität Salzburg, Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria; Berlin Centre for Travel & Tropical Medicine, Friedrichstr. 134, Berlin 10117, Germany; Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics and Epilepsy Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, Munich 80337, Germany; Institute of Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University, Lindwurmstr. 4, Munich 80337, Germany
| | - Martin Staudt
- Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schön Klinik, Vogtareuth, Krankenhausstr. 20, Vogtareuth 83569, Germany; Department for Pediatric Neurology and Developmental Medicine, University Children's Hospital Hoppe-Seyler-Straße 1, Tübingen, Germany
| | - Gerhard Dobler
- Department of Virology and Rickettsiology, Bundeswehr Institute of Microbiology, Neuherbergstr. 11, Munich 80937, Germany
| | - Gerhard K Wolf
- Department of Paediatrics, Kliniken Südostbayern AG, Cuno-Niggl-Straße 3, Traunstein 83278, Germany
| |
Collapse
|
15
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
16
|
Matveev A, Khlusevich Y, Kozlova I, Matveev L, Emelyanova L, Tikunov A, Baykov I, Tikunova N. New Neutralizing Epitope Exposed on the Domain II of Tick-Borne Encephalitis Virus Envelope Glycoprotein E. Viruses 2023; 15:1256. [PMID: 37376556 DOI: 10.3390/v15061256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Orthoflavivirus encephalitidis, formerly tick-borne encephalitis virus (TBEV), belongs to the Orthoflavivirus genus. TBEV is transmitted by tick bites and infection with TBEV can lead to serious disorders of the central nervous system. In this study, a new protective monoclonal mouse antibody (mAb) FVN-32, with high binding activity to glycoprotein E of TBEV, was selected and examined in post exposure prophylaxis in a mouse model of TBEV infection. BALB/c mice were injected mAb FVN-32 at doses of 200 μg, 50 μg, and 12.5 μg per mouse one day after a TBEV challenge. mAb FVN-32 showed 37.5% protective efficacy when administered at doses of 200 μg and 50 μg per mouse. The epitope for protective mAb FVN-32 was localized in TBEV glycoprotein E domain I+II, using a set of truncated fragments of glycoprotein E. Additionally, the target site recognized by mAb FVN-32 was defined using combinatorial libraries of peptides. Three-dimensional modeling revealed that the site is dspatially close to the fusion loop, but does not come into contact with it, and is localized in a region between 247 and 254 amino acid residues on the envelope protein. This region is conserved among TBEV-like orthoflaviviruses.
Collapse
Affiliation(s)
- Andrey Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yana Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina Kozlova
- Federal State Public Scientific Institution "Scientific Centre for Family Health and Human Reproduction Problems", Siberian Branch of Russian Academy of Sciences, 664003 Irkutsk, Russia
| | - Leonid Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyudmila Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ivan Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Marušić M, Kopitar AN, Korva M, Knap N, Bogovič P, Strle F, Ihan A, Avšič-Županc T. Dendritic cell activation and cytokine response in vaccine breakthrough TBE patients after in vitro stimulation with TBEV. Front Immunol 2023; 14:1190803. [PMID: 37261350 PMCID: PMC10228714 DOI: 10.3389/fimmu.2023.1190803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral infection of the human central nervous system caused by the TBE virus (TBEV). The most effective protective measure against TBE is vaccination. Despite the highly immunogenic vaccine, cases of vaccine breakthroughs (VBTs) occur. One of the first targets of infection is dendritic cells (DC), which represent a fundamental bridge between innate and adaptive immunity through antigen presentation, costimulation, and cytokine production. Therefore, we investigated the activation and maturation of DCs and cytokine production after in vitro TBEV stimulation of peripheral blood mononuclear cells (PBMCs) obtained from VBT and unvaccinated TBE patients. Our results showed that the expression of HLA-DR and CD86 on DCs, was upregulated to a similar extent in both vaccinated and unvaccinated TBE patients but differed in cytokine production after stimulation with TBEV. PBMCs from patients with VBT TBE responded with lower levels of IFN-α and the proinflammatory cytokines IL-12 (p70) and IL-15 after 24- and 48-hour in vitro stimulation with TBEV, possibly facilitating viral replication and influencing the development of cell-mediated immunity. On the other hand, significantly higher levels of IL-6 in addition to an observed trend of higher expression of TNF-α measured after 6 days of in vitro stimulation of PBMC could support disruption of the blood-brain barrier and promote viral and immune cell influx into the CNS, leading to more severe disease in VBT TBE patients.
Collapse
Affiliation(s)
- Miša Marušić
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Laboratory for Cellular Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Laboratory for Cellular Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostics of Zoonoses and World Health Organisation (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Santonja I, Stiasny K, Essl A, Heinz FX, Kundi M, Holzmann H. Tick-Borne Encephalitis in Vaccinated Patients: A Retrospective Case-Control Study and Analysis of Vaccination Field Effectiveness in Austria From 2000 to 2018. J Infect Dis 2023; 227:512-521. [PMID: 35235953 DOI: 10.1093/infdis/jiac075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND There are discrepant observations on the severity of tick-borne encephalitis (TBE) in vaccinated persons. We, therefore, analyzed the occurrence of severe and mild disease in hospitalized vaccinated and nonvaccinated patients with TBE and determined the field effectiveness (FE) of vaccination against these forms of disease. METHODS The study covered all patients hospitalized with TBE in Austria from 2000 to 2018. Clinical diagnoses in vaccinated and age- and sex-matched nonvaccinated patients were compared in a nested case-control study. FE was calculated based on vaccination coverage and incidences in the nonvaccinated and vaccinated population. RESULTS Of 1545 patients hospitalized with TBE, 206 were vaccinated. In those, a higher proportion of severe TBE was observed, especially in children. FE was high in all age groups and against all forms of disease. The higher proportion of severe TBE can be explained by a lower FE against severe than against mild disease, a difference especially pronounced in children (FE, 82.7% for severe vs 94.7% for mild disease). CONCLUSIONS The FE of TBE vaccination is excellent. The observed higher proportion of severe disease in vaccinated persons with TBE does not reflect a higher risk associated with vaccination but is rather due to a somewhat lower FE against severe TBE. Because this effect was more pronounced in children, we recommend adapting the immunization schedule.
Collapse
Affiliation(s)
- Isabel Santonja
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Astrid Essl
- Astrid Essl Consulting-Gesundheitsforschung, Wiener Neustadt, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
19
|
Kubinski M, Beicht J, Zdora I, Biermann J, Puff C, Gerlach T, Tscherne A, Baumgärtner W, Osterhaus ADME, Sutter G, Prajeeth CK, Rimmelzwaan GF. A recombinant Modified Vaccinia virus Ankara expressing prME of tick-borne encephalitis virus affords mice full protection against TBEV infection. Front Immunol 2023; 14:1182963. [PMID: 37153588 PMCID: PMC10160477 DOI: 10.3389/fimmu.2023.1182963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause a serious disease involving the central nervous system (tick-borne encephalitis, TBE). Although approved inactivated vaccines are available, the number of TBE cases is rising, and breakthrough infections in fully vaccinated subjects have been reported in recent years. Methods In the present study, we generated and characterized a recombinant Modified Vaccinia virus Ankara (MVA) for the delivery of the pre-membrane (prM) and envelope (E) proteins of TBEV (MVA-prME). Results MVA-prME was tested in mice in comparison with a licensed vaccine FSME-IMMUN® and proved to be highly immunogenic and afforded full protection against challenge infection with TBEV. Discussion Our data indicate that MVA-prME holds promise as an improved next-generation vaccine for the prevention of TBE.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Guus F. Rimmelzwaan,
| |
Collapse
|
20
|
Nygren TM, Pilic A, Böhmer MM, Wagner-Wiening C, Wichmann O, Harder T, Hellenbrand W. Tick-borne encephalitis vaccine effectiveness and barriers to vaccination in Germany. Sci Rep 2022; 12:11706. [PMID: 35810184 PMCID: PMC9271034 DOI: 10.1038/s41598-022-15447-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Tick-borne encephalitis (TBE) vaccination coverage remains low in Germany. Our case-control study (2018-2020) aimed to examine reasons for low vaccine uptake, vaccine effectiveness (VE), and vaccine breakthrough infections (VBIs). Telephone interviews (581 cases, 975 matched controls) covered vaccinations, vaccination barriers, and confounders identified with directed acyclic graphs. Multivariable logistic regression determined VE as 1-odds ratio with 95% confidence intervals (CI). We additionally calculated VE with the Screening method using routine surveillance and vaccination coverage data. Main vaccination barriers were poor risk perception and fear of adverse events. VE was 96.6% (95% CI 93.7-98.2) for ≥ 3 doses and manufacturer-recommended dosing intervals. Without boosters, VE after ≥ 3 doses at ≤ 10 years was 91.2% (95% CI 82.7-95.6). VE was similar for homologous/heterologous vaccination. Utilising routine surveillance data, VE was comparable (≥ 3 doses: 92.8%). VBIs (n = 17, 2.9% of cases) were older, had more comorbidities and higher severity than unvaccinated cases. However, only few VBIs were diagnostically confirmed; 57% of re-tested vaccinated cases (≥ 1 dose, n = 54) proved false positive. To increase TBE vaccine uptake, communication efforts should address complacency and increase confidence in the vaccines' safety. The observed duration of high VE may inform decision-makers to consider extending booster intervals to 10 years.
Collapse
Affiliation(s)
- Teresa M Nygren
- Immunisation Unit, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Antonia Pilic
- Immunisation Unit, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Merle M Böhmer
- Bavarian Health and Food Safety Authority (LGL), Oberschleißheim, Germany
- Institute of Social Medicine and Health Systems Research, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | | | - Ole Wichmann
- Immunisation Unit, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Thomas Harder
- Immunisation Unit, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Wiebke Hellenbrand
- Immunisation Unit, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| |
Collapse
|
21
|
Kunze M, Banović P, Bogovič P, Briciu V, Čivljak R, Dobler G, Hristea A, Kerlik J, Kuivanen S, Kynčl J, Lebech AM, Lindquist L, Paradowska-Stankiewicz I, Roglić S, Smíšková D, Strle F, Vapalahti O, Vranješ N, Vynograd N, Zajkowska JM, Pilz A, Palmborg A, Erber W. Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe. Microorganisms 2022; 10:1283. [PMID: 35889002 PMCID: PMC9322045 DOI: 10.3390/microorganisms10071283] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023] Open
Abstract
There has been an increase in reported TBE cases in Europe since 2015, reaching a peak in some countries in 2020, highlighting the need for better management of TBE risk in Europe. TBE surveillance is currently limited, in part, due to varying diagnostic guidelines, access to testing, and awareness of TBE. Consequently, TBE prevalence is underestimated and vaccination recommendations inadequate. TBE vaccine uptake is unsatisfactory in many TBE-endemic European countries. This review summarizes the findings of a scientific workshop of experts to improve TBE surveillance and vaccine uptake in Europe. Strategies to improve TBE surveillance and vaccine uptake should focus on: aligning diagnostic criteria and testing across Europe; expanding current vaccine recommendations and reducing their complexity; and increasing public education of the potential risks posed by TBEV infection.
Collapse
Affiliation(s)
- Michael Kunze
- Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria;
| | - Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Violeta Briciu
- Department of Infectious Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Rok Čivljak
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10000 Zagreb, Croatia; (R.Č.); (S.R.)
- Department for Infectious Diseases, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Gerhard Dobler
- National Reference Laboratory for TBEV, Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Adriana Hristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Jana Kerlik
- Department of Epidemiology, Regional Authority of Public Health in Banská Bystrica, 97556 Banská Bystrica, Slovakia;
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.K.); (O.V.)
| | - Jan Kynčl
- Department of Infectious Diseases Epidemiology, National Institute of Public Health, Vinohrady, 10000 Prague, Czech Republic;
- Department of Epidemiology and Biostatistics, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, 14186 Stockholm, Sweden;
| | - Iwona Paradowska-Stankiewicz
- Department of Epidemiology of Infectious Diseases and Surveillance, National Institute of Public Health, National Institute of Hygiene—National Research Institute, 00791 Warsaw, Poland;
| | - Srđan Roglić
- University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10000 Zagreb, Croatia; (R.Č.); (S.R.)
- Department for Infectious Diseases, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Dita Smíšková
- Department of Infectious Diseases, Second Faculty of Medicine, Charles University, 18081 Prague, Czech Republic;
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.K.); (O.V.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Virology and Immunology, HUSLAB, Helsinki University Hospital, 00260 Helsinki, Finland
| | - Nenad Vranješ
- Department for Research & Monitoring of Rabies & Other Zoonoses, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Nataliya Vynograd
- Department of Epidemiology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Joanna Maria Zajkowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Andreas Pilz
- Medical and Scientific Affairs, Pfizer Vaccines, 1210 Vienna, Austria;
| | - Andreas Palmborg
- Medical and Scientific Affairs, Pfizer Vaccines, 19138 Stockholm, Sweden;
| | - Wilhelm Erber
- Medical and Scientific Affairs, Pfizer Vaccines, 1210 Vienna, Austria;
| |
Collapse
|
22
|
Zens KD, Haile SR, Schmidt AJ, Altpeter ES, Fehr JS, Lang P. Retrospective, matched case-control analysis of tickborne encephalitis vaccine effectiveness by booster interval, Switzerland 2006-2020. BMJ Open 2022; 12:e061228. [PMID: 35459683 PMCID: PMC9036433 DOI: 10.1136/bmjopen-2022-061228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To estimate effectiveness of tickborne encephalitis (TBE) vaccination by time interval (<5, 5-10 and 10+years) postvaccination. DESIGN A retrospective, matched case-control study PARTICIPANTS: Cases-all adult (age 18-79) TBE cases in Switzerland reported via the national mandatory disease reporting surveillance system from 2006 to 2020 (final n=1868). Controls-community controls from a database of randomly selected adults (age 18-79) participating in a 2018 cross-sectional study of TBE vaccination in Switzerland (final n=4625). PRIMARY OUTCOME MEASURES For cases and controls, the number of TBE vaccine doses received and the time since last vaccination were determined. Individuals were classified as being 'unvaccinated' (0 doses), 'incomplete' (1-2 doses) or 'complete' (3+ doses). Individuals with 'complete' vaccination were further classified by time since the last dose was received (<5 years, 5-10 years or 10+ years). A conditional logistic regression model was used to calculate vaccine effectiveness (VE: 100 × [1-OR]) for each vaccination status category. RESULTS VE for incomplete vaccination was 76.8% (95% CI 69.0% to 82.6%). For complete vaccination, overall VE was 95.0% (95% CI 93.5% to 96.1%). When the most recent dose was received <5 years prior VE was 91.6% (95% CI 88.4% to 94.0%), 95.2% (95% CI 92.4% to 97.0%) when the most recent dose was received 5-10 years prior, and 98.5% (95% CI 96.8% to 99.2%) when the most recent dose was received 10+ years prior. CONCLUSIONS That VE does not decrease among completely vaccinated individuals over 10+ years since last vaccination supports the longevity of the protective response following complete TBE vaccination. Our findings support the effectiveness of 10-year TBE booster intervals currently used in Switzerland.
Collapse
Affiliation(s)
- Kyra D Zens
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah R Haile
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Axel J Schmidt
- Communicable Diseases Division, Swiss Federal Office of Public Health, Bern, Switzerland
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Ekkehardt S Altpeter
- Communicable Diseases Division, Swiss Federal Office of Public Health, Bern, Switzerland
| | - Jan S Fehr
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Kantele A, Rombo L, Vene S, Kundi M, Lindquist L, Erra EO. Three-dose versus four-dose primary schedules for tick-borne encephalitis (TBE) vaccine FSME-immun for those aged 50 years or older: A single-centre, open-label, randomized controlled trial. Vaccine 2022; 40:1299-1305. [PMID: 35101266 DOI: 10.1016/j.vaccine.2022.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/26/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND TBE vaccination failures among those past middle age have raised concern about immune response declining with age. We investigated immunogenicity of the TBE-vaccine FSME-Immun among those aged 50+ years using the standard three-dose primary series and alternative four-dose schedules. METHODS In this single-centre, open-label, randomized controlled trial, 200 TBE-naive Swedish adults were given primary TBE vaccination with FSME-Immun. Those aged 50+ years (n = 150) were randomized to receive the standard three-dose (days 0-30-360) or one of two four-dose series (0-7-21-360; 0-30-90-360). For participants < 50 years (n = 50) the standard three-dose schedule was used. Titres of neutralizing antibodies were determined on days 0, 60, 120, 360, and 400. The main outcome was the log titre of TBE virus-specific neutralizing antibodies on day 400. RESULTS The three-dose schedule yielded lower antibody titres among those aged 50+ years than the younger participants on day 400 (geometric mean titre 41 versus 74, p < 0.05). The older group showed higher titres for the four-dose 0-7-21-360 than the standard three-dose schedule both on day 400 (103 versus 41, p < 0.01; primary end point) and at the other testing points (days 60, 120, 360). Using the other four-dose schedule (0-30-90-360), no such difference was observed on day 400 (63 versus 41, NS). CONCLUSION Immune response to the TBE vaccine declined with age. A four-dose schedule (0-7-21-360) may benefit those aged 50 years or older. This study is registered at ClinicalTrials.gov, NCT01361776.
Collapse
Affiliation(s)
- Anu Kantele
- Meilahti Vaccine Research Center, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Human Microbiome Research Program, Faculty of Medicine, University, University of Helsinki, Helsinki, Finland.
| | - Lars Rombo
- Clinical Research Centre, Sormland County Council Eskilstuna, and University of Uppsala, Uppsala, Sweden; Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Sirkka Vene
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Michael Kundi
- Medical University of Vienna, Center for Public Health, Vienna, Austria
| | - Lars Lindquist
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Elina O Erra
- Meilahti Vaccine Research Center, MeVac, Department of Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
24
|
Bogovič P, Kastrin A, Lotrič-Furlan S, Ogrinc K, Županc TA, Korva M, Knap N, Strle F. Clinical and Laboratory Characteristics and Outcome of Illness Caused by Tick-Borne Encephalitis Virus without Central Nervous System Involvement. Emerg Infect Dis 2022; 28:291-301. [PMID: 35075993 PMCID: PMC8798682 DOI: 10.3201/eid2802.211661] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Illness progressed to encephalitis in 84% of patients within 18 days after defervescence. Information on febrile illness caused by tick-borne encephalitis virus (TBEV) without central nervous system involvement is limited. We characterized 98 patients who had TBEV RNA in their blood but no central nervous system involvement at the time of evaluation. Median duration of illness was 7 days; 37 (38%) patients were hospitalized. The most frequent findings were malaise or fatigue (98%), fever (97%), headache (86%), and myalgias (54%); common laboratory findings were leukopenia (88%), thrombocytopenia (59%), and abnormal liver test results (63%). During the illness, blood leukocyte counts tended to improve, whereas thrombocytopenia and liver enzymes tended to deteriorate. At the time of positive PCR findings, 0/98 patients had serum IgG TBEV and 7 serum IgM TBEV; all patients later seroconverted. Viral RNA load was higher in patients with more severe illness but did not differ substantially in relation to several other factors. Illness progressed to tick-borne encephalitis in 84% of patients within 18 days after defervescence.
Collapse
|
25
|
Sleep-Wake and Circadian Disorders after Tick-Borne Encephalitis. Microorganisms 2022; 10:microorganisms10020304. [PMID: 35208759 PMCID: PMC8879277 DOI: 10.3390/microorganisms10020304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious disease affecting the central nervous system. Recently, the occurrence of TBEV infections has steadily increased, reaching all-time high incidence rates in European countries. Up to 50% of patients with TBE present neurological sequelae, among them sleep–wake and circadian disorders (SWCD), which are poorly characterized. The aim of this review is to investigate the prevalence, clinical characteristics, and prognosis of SWCD after TBE. The literature review was performed in accordance with PRISMA guidelines. The quality of the paper was assessed using a standardized quality assessment. The analysis of SWCD was categorized into four different time intervals and two age groups. The literature search identified 15 studies, five including children and 10 including adults. In children, fatigue was most frequently observed with a prevalence of 73.9%, followed by somnolence/sleepiness, restlessness, and sleep-wake inversion. In adults, tiredness/fatigue was the most reported sequela with a prevalence of 27.4%, followed by extensive daytime sleepiness/somnolence, and insomnia (3.3%). Two studies showed impaired social outcomes in patients after TBE infections. SWCD after TBE in children and adults is a newly recognized sequela. Additional clinical and experimental research is needed to gain more precise insight into the clinical burden of SWCD after TBE and the underlying mechanisms.
Collapse
|
26
|
Hirose S, Hara M, Koda K, Natori N, Yokota Y, Ninomiya S, Nakajima H. Acute autoimmune transverse myelitis following COVID-19 vaccination: A case report. Medicine (Baltimore) 2021; 100:e28423. [PMID: 34941191 PMCID: PMC8701778 DOI: 10.1097/md.0000000000028423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Transverse myelitis is an infectious or noninfectious inflammatory spinal cord syndrome. We report a rare case of transverse myelitis following vaccination against COVID-19. PATIENT CONCERNS A 70-year-old male presented with progressive sensorimotor dysfunction of the bilateral lower limbs 7 days after receiving the mRNA-1273 vaccine against COVID-19. Spinal magnetic resonance imaging revealed intramedullary lesions with gadolinium enhancement on the Th1/2 and Th5/6 vertebral levels. Cerebrospinal fluid (CSF) testing showed a mildly increased level of total protein and positive oligoclonal bands (OCB). DIAGNOSIS The patient was diagnosed with acute transverse myelitis. INTERVENTION The patient received 5 days of intravenous methylprednisolone pulse (1000 mg/day) followed by oral prednisolone (30 mg/day with gradual tapering). OUTCOMES The patient fully recovered from muscle weakness of the lower limbs. He was discharged from our hospital and able to independently walk without unsteadiness. LESSON This is a rare case of transverse myelitis following COVID-19 vaccination. Positive OCB in CSF in the present case highlights the possibility of autoimmune processes, including polyclonal activation of B lymphocytes, following vaccination.
Collapse
|
27
|
Zens KD, Baroutsou V, Sinniger P, Lang P. A cross-sectional study evaluating tick-borne encephalitis vaccine uptake and timeliness among adults in Switzerland. PLoS One 2021; 16:e0247216. [PMID: 34905534 PMCID: PMC8670666 DOI: 10.1371/journal.pone.0247216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
The goal of this study was to evaluate timeliness of Tick-borne Encephalitis vaccination uptake among adults in Switzerland. In this cross-sectional survey, we collected vaccination records from randomly selected adults 18–79 throughout Switzerland. Of 4,626 participants, data from individuals receiving at least 1 TBE vaccination (n = 1875) were evaluated. We determined year and age of first vaccination and vaccine compliance, evaluating dose timeliness. Participants were considered “on time” if they received doses according to the recommended schedule ± a 15% tolerance period. 45% of participants received their first TBE vaccination between 2006 and 2009, which corresponds to a 2006 change in the official recommendation for TBE vaccination in Switzerland. 25% were first vaccinated aged 50+ (mean age 37). More than 95% of individuals receiving the first dose also received the second; ~85% of those receiving the second dose received the third. For individuals completing the primary series, 30% received 3 doses of Encepur, 58% received 3 doses of FSME-Immun, and 12% received a combination. According to “conventional” schedules, 88% and 79% of individuals received their second and third doses “on time”, respectively. 20% of individuals receiving Encepur received their third dose “too early”. Of individuals completing primary vaccination, 19% were overdue for a booster. Among the 31% of subjects receiving a booster, mean time to first booster was 7.1 years. We estimate that a quarter of adults in Switzerland were first vaccinated for TBE aged 50+. Approximately 80% of participants receiving at least one vaccine dose completed the primary series. We further estimate that 66% of individuals completing the TBE vaccination primary series did so with a single vaccine type and adhered to the recommended schedule.
Collapse
Affiliation(s)
- Kyra D. Zens
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vasiliki Baroutsou
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Department of Clinical Research, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Philipp Sinniger
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Phung Lang
- Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Pavletič M, Korva M, Knap N, Bogovič P, Lusa L, Strle K, Nahtigal Klevišar M, Vovko T, Tomažič J, Lotrič-Furlan S, Strle F, Avšič-Županc T. Upregulated Intrathecal Expression of VEGF-A and Long Lasting Global Upregulation of Proinflammatory Immune Mediators in Vaccine Breakthrough Tick-Borne Encephalitis. Front Cell Infect Microbiol 2021; 11:696337. [PMID: 34277474 PMCID: PMC8281926 DOI: 10.3389/fcimb.2021.696337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Although anti-TBE vaccines are highly effective, vaccine breakthrough (VBT) cases have been reported. With increasing evidence for immune system involvement in TBE pathogenesis, we characterized the immune mediators reflecting innate and adaptive T and B cell responses in neurological and convalescent phase in VBT TBE patients. At the beginning of the neurological phase, VBT patients have significantly higher serum levels of several innate and adaptive inflammatory cytokines compared to healthy donors, reflecting a global inflammatory state. The majority of cytokines, particularly those associated with innate and Th1 responses, are highly concentrated in CSF and positively correlate with intrathecal immune cell counts, demonstrating the localization of Th1 and proinflammatory responses in CNS, the site of disease in TBE. Interestingly, compared to unvaccinated TBE patients, VBT TBE patients have significantly higher CSF levels of VEGF-A and IFN-β and higher systemic levels of neutrophil chemoattractants IL-8/CXCL8 and GROα/CXCL1 on admission. Moreover, serum levels of IL-8/CXCL8 and GROα/CXCL1 remain elevated for two months after the onset of neurological symptoms, indicating a prolonged systemic immune activation in VBT patients. These findings provide the first insights into the type of immune responses and their dynamics during TBE in VBT patients. An observed systemic upregulation of neutrophil derived inflammation in acute and convalescent phase of TBE together with highly expressed VEGF-A could contribute to BBB disruption that facilitates the entry of immune cells and supports the intrathecal localization of Th1 responses observed in VBT patients.
Collapse
Affiliation(s)
- Miša Pavletič
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Misa Korva
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Klemen Strle
- Division of Infectious Diseases, Microbial Pathogenesis and Immunology Laboratory, Wadsworth Center, New York State (NYS) Department of Health, Albany, NY, United States
| | | | - Tomaž Vovko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Janez Tomažič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Laboratory for Diagnostic of Zoonoses and World Health Organization (WHO) Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Clinical Characteristics of Patients with Tick-Borne Encephalitis (TBE): A European Multicentre Study from 2010 to 2017. Microorganisms 2021; 9:microorganisms9071420. [PMID: 34209373 PMCID: PMC8306415 DOI: 10.3390/microorganisms9071420] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tick-borne encephalitis (TBE) virus is a major cause of central nervous system infections in endemic countries. Here, we present clinical and laboratory characteristics of a large international cohort of patients with confirmed TBE using a uniform clinical protocol. Patients were recruited in eight centers from six European countries between 2010 and 2017. A detailed description of clinical signs and symptoms was recorded. The obtained information enabled a reliable classification in 553 of 555 patients: 207 (37.3%) had meningitis, 273 (49.2%) meningoencephalitis, 15 (2.7%) meningomyelitis, and 58 (10.5%) meningoencephalomyelitis; 41 (7.4%) patients had a peripheral paresis of extremities, 13 (2.3%) a central paresis of extremities, and 25 (4.5%) had single or multiple cranial nerve palsies. Five (0.9%) patients died during acute illness. Outcome at discharge was recorded in 298 patients. Of 176 (59.1%) patients with incomplete recovery, 80 (27%) displayed persisting symptoms or signs without recovery expectation. This study provides further evidence that TBE is a severe disease with a large proportion of patients with incomplete recovery. We suggest monitoring TBE in endemic European countries using a uniform protocol to record the full clinical spectrum of the disease.
Collapse
|
30
|
Recovery of a Far-Eastern Strain of Tick-Borne Encephalitis Virus with a Full-Length Infectious cDNA Clone. Virol Sin 2021; 36:1375-1386. [PMID: 34191223 DOI: 10.1007/s12250-021-00396-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a pathogenic virus known to cause central nervous system (CNS) diseases in humans, and has become an increasing public health threat nowadays. The rates of TBEV infection in the endemic countries are increasing. However, there is no effective antiviral against the disease. This underscores the urgent need for tools to study the emergence and pathogenesis of TBEV and to accelerate the development of vaccines and antivirals. In this study, we reported an infectious cDNA clone of TBEV that was isolated in China (the WH2012 strain). A beta-globin intron was inserted in the coding region of nonstructural protein 1 (NS1) gene to improve the stability of viral genome in bacteria. In mammalian cells, the inserted intron was excised and spliced precisely, which did not lead to the generation of inserted mutants. High titers of infectious progeny viruses were generated after the transfection of the infectious clone. The cDNA-derived TBEV replicated efficiently, and caused typical cytopathic effect (CPE) and plaques in BHK-21 cells. In addition, the CPE and growth curve of cDNA-derived virus were similar to that of its parental isolate in cells. Together, we have constructed the first infectious TBEV cDNA clone in China, and the clone can be used to investigate the genetic determinants of TBEV virulence and disease pathogenesis, and to develop countermeasures against the virus.
Collapse
|
31
|
Tuchynskaya K, Volok V, Illarionova V, Okhezin E, Polienko A, Belova O, Rogova A, Chernokhaeva L, Karganova G. Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure. Microorganisms 2021; 9:1172. [PMID: 34072340 PMCID: PMC8229799 DOI: 10.3390/microorganisms9061172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.
Collapse
Affiliation(s)
- Ksenia Tuchynskaya
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Viktor Volok
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Illarionova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Okhezin
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra Polienko
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Oxana Belova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Anastasia Rogova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Liubov Chernokhaeva
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Galina Karganova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
32
|
Dynamics and Extent of Non-Structural Protein 1-Antibody Responses in Tick-Borne Encephalitis Vaccination Breakthroughs and Unvaccinated Patients. Viruses 2021; 13:v13061007. [PMID: 34072119 PMCID: PMC8228328 DOI: 10.3390/v13061007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne encephalitis (TBE) has a substantial impact on human public health in many parts of Europe and Asia. Effective inactivated purified whole-virus vaccines are in widespread use in TBE-endemic countries. Nevertheless, vaccination breakthroughs (VBTs) with manifest clinical disease do occur, and their specific serodiagnosis was shown to be facilitated by the detection of antibodies to a non-structural protein (NS1) that is produced during virus replication. However, recent data have shown that NS1 is also present in the current inactivated vaccines, with the potential of inducing corresponding antibodies and obscuring a proper interpretation of NS1-antibody assays for diagnosing VBTs. In our study, we quantified anti-virion and anti-NS1 antibody responses after vaccination as well as after natural infection in TBE patients, both without and with a history of previous TBE vaccination (VBTs). We did not find significant levels of NS1-specific antibodies in serum samples from 48 vaccinees with a completed vaccination schedule. In contrast, all TBE patients mounted an anti-NS1 antibody response, irrespective of whether they were vaccinated or not. Neither the dynamics nor the extent of NS1-antibody formation differed significantly between the two cohorts, arguing against substantial NS1-specific priming and an anamnestic NS1-antibody response in VBTs.
Collapse
|
33
|
Agudelo M, Palus M, Keeffe JR, Bianchini F, Svoboda P, Salát J, Peace A, Gazumyan A, Cipolla M, Kapoor T, Guidetti F, Yao KH, Elsterová J, Teislerová D, Chrdle A, Hönig V, Oliveira T, West AP, Lee YE, Rice CM, MacDonald MR, Bjorkman PJ, Růžek D, Robbiani DF, Nussenzweig MC. Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease. J Exp Med 2021; 218:e20210236. [PMID: 33831141 PMCID: PMC8040517 DOI: 10.1084/jem.20210236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI-EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Cells, Cultured
- Cohort Studies
- Cross Reactions/immunology
- Encephalitis Viruses, Tick-Borne/drug effects
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Encephalitis, Tick-Borne/virology
- Epitopes/immunology
- Female
- Humans
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Sequence Homology, Amino Acid
- Survival Analysis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Mice
Collapse
Affiliation(s)
- Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Filippo Bianchini
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Jiří Salát
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Tania Kapoor
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Francesca Guidetti
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Jana Elsterová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Aleš Chrdle
- Hospital České Budějovice, České Budějovice, Czech Republic
- Faculty of Social and Health Sciences, University of South Bohemia, České Budějovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Yu E. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| | - Davide F. Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
34
|
Comparison of Clinical, Laboratory and Immune Characteristics of the Monophasic and Biphasic Course of Tick-Borne Encephalitis. Microorganisms 2021; 9:microorganisms9040796. [PMID: 33920166 PMCID: PMC8070281 DOI: 10.3390/microorganisms9040796] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022] Open
Abstract
The biphasic course of tick-borne encephalitis (TBE) is well described, but information on the monophasic course is limited. We assessed and compared the clinical presentation, laboratory findings, and immune responses in 705 adult TBE patients: 283 with monophasic and 422 with biphasic course. Patients with the monophasic course were significantly (p ≤ 0.002) older (57 vs. 50 years), more often vaccinated against TBE (7.4% vs. 0.9%), more often had comorbidities (52% vs. 37%), and were more often treated in the intensive care unit (12.4% vs. 5.2%). Multivariate logistic regression found strong association between the monophasic TBE course and previous TBE vaccination (OR = 18.45), presence of underlying illness (OR = 1.85), duration of neurologic involvement before cerebrospinal fluid (CSF) examination (OR = 1.39), and patients’ age (OR = 1.02). Furthermore, patients with monophasic TBE had higher CSF levels of immune mediators associated with innate and adaptive (Th1 and B-cell) immune responses, and they had more pronounced disruption of the blood–brain barrier. However, the long-term outcome 2–7 years after TBE was comparable. In summary, the monophasic course is a frequent and distinct presentation of TBE that is associated with more difficult disease course and higher levels of inflammatory mediators in CSF than the biphasic course; however, the long-term outcome is similar.
Collapse
|
35
|
Wagner JN, Sonnberger M, Troescher A, Krehan I, Hauser A, Panholzer J, von Oertzen TJ. Reply to Schmitt HJ et al.: 'Response to: "Patients with breakthrough tick-borne encephalitis suffer a more severe clinical course and display extensive magnetic resonance imaging changes"'. Eur J Neurol 2021; 28:e30-e31. [PMID: 33501726 DOI: 10.1111/ene.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Judith N Wagner
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Michael Sonnberger
- Department of Neuroradiology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Anna Troescher
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Ingomar Krehan
- Department of Neurology 2, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Amadeus Hauser
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Juergen Panholzer
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Tim J von Oertzen
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
36
|
Bogovič P, Lotrič-Furlan S, Avšič-Županc T, Korva M, Lusa L, Strle K, Strle F. Low Virus-Specific IgG Antibodies in Adverse Clinical Course and Outcome of Tick-Borne Encephalitis. Microorganisms 2021; 9:microorganisms9020332. [PMID: 33562267 PMCID: PMC7914885 DOI: 10.3390/microorganisms9020332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis (TBE) is associated with a range of disease severity. The reasons for this heterogeneity are not clear. Levels of serum IgG antibodies to TBE virus (TBEV) were determined in 691 adult patients during the meningoencephalitic phase of TBE and correlated with detailed clinical and laboratory parameters during acute illness and with the presence of post-encephalitic syndrome (PES) 2–7 years after TBE. Specific IgG antibody levels ranged from below cut-off value (in 32/691 patients, 4.6%), to 896 U/mL (median = 37.3 U/mL). Patients with meningoencephalomyelitis were more often seronegative (24.3%; 9/37) than those with meningoencephalitis (4.7%; 20/428) or meningitis (1.3%; 3/226). Moreover, patients with antibody levels below cut-off had longer hospitalization (13 versus 8 days); more often required intensive care unit treatment (22% versus 8%) and artificial ventilation (71% versus 21%); and had a higher fatality rate (3/32; 9.4% versus 1/659; 0.2%) than seropositive patients. These results were confirmed when antibody levels, rather than cut-off values, were correlated with clinical parameters including the likelihood to develop PES. Low serum IgG antibody responses against TBEV at the onset of neurologic involvement are associated with a more difficult clinical course and unfavorable long-term outcome of TBE, providing a diagnostic and clinical challenge for physicians.
Collapse
Affiliation(s)
- Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (S.L.-F.); (F.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-522-2110; Fax: +386-1-522-2456
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (S.L.-F.); (F.S.)
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (T.A.-Ž.); (M.K.)
| | - Miša Korva
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; (T.A.-Ž.); (M.K.)
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
- Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Klemen Strle
- Laboratory of Microbial Pathogenesis and Immunology, Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, 120 New Scotland Ave, Albany, New York, NY 12208, USA;
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1525 Ljubljana, Slovenia; (S.L.-F.); (F.S.)
| |
Collapse
|
37
|
Radzišauskienė D, Urbonienė J, Kaubrys G, Andruškevičius S, Jatužis D, Matulytė E, Žvirblytė-Skrebutienė K. The epidemiology, clinical presentation, and predictors of severe Tick-borne encephalitis in Lithuania, a highly endemic country: A retrospective study of 1040 patients. PLoS One 2020; 15:e0241587. [PMID: 33211708 PMCID: PMC7676731 DOI: 10.1371/journal.pone.0241587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction In recent decades, the incidence of Tick-borne encephalitis (TBE) has been increasing and posing a growing health problem because of the high costs to the healthcare system and society. The clinical manifestations are well studied but there is a lack of research analyzing the severity of the disease. Objective The aim of this study was to analyze the epidemiology and clinical presentation of severe TBE, to identify the predictors for a severe disease course, and also predictors for meningoencephalomyelitic and severe meningoencephalitic/encephalitic forms. Methods A retrospective study was conducted in the Center of Infectious Diseases and the Center of Neurology at Vilnius University Hospital Santaros Klinikos in the years 2005–2017 to describe the clinical and epidemiological features of TBE in adults. Results 1040 patients were included in the study. A total of 152/1040 (14.6%) patients had a severe course. The highest proportion of severe cases, reaching 41.2%, was reported in the 70–79 year-old age group. A total of 36/152 (23.7%) severe patients presented meningoencephalomyelitis. Myelitic patients were older, were frequently infected in their living areas, and usually reported a monophasic disease course compared with severe meningoencephalitic/encephalitic patients. Severe meningoencephalitic/encephalitic patients, compared with non-severe meningoencephalitic/encephalitic, were older, less often noticed the tick bite, and often had a monophasic course. The sequelae on discharge were observed in 810/1000 (81%) of patients. Conclusions The prognostic factors associated with a severe disease course and severe meningoencephalitic form are: older age, comorbidities, a monophasic course, a fever of 40˚C and above, CRP more than 30 mg/l, CSF protein more than 1 g/l, delayed immune response of TBEV IgG, pathological findings in CT. Age above 60 years, presence of CNS disease, bulbar syndrome, pleocytosis 500x106/l and above, and delayed immune response of TBEV IgG are predictors of the most severe myelitic form.
Collapse
Affiliation(s)
- Daiva Radzišauskienė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- * E-mail:
| | - Jurgita Urbonienė
- Center of Infectious Diseases, Vilnius University, Vilnius, Lithuania
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Saulius Andruškevičius
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dalius Jatužis
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Elžbieta Matulytė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Karolina Žvirblytė-Skrebutienė
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
38
|
Albinsson B, Jääskeläinen AE, Värv K, Jelovšek M, GeurtsvanKessel C, Vene S, Järhult JD, Reusken C, Golovljova I, Avšič-Županc T, Vapalahti O, Lundkvist Å. Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017. ACTA ACUST UNITED AC 2020; 25. [PMID: 32234120 PMCID: PMC7118343 DOI: 10.2807/1560-7917.es.2020.25.12.1900427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Aim In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients’ diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory’s conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein–Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results Compared with each laboratory’s conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.
Collapse
Affiliation(s)
- Bo Albinsson
- Laboratory of Clinical Microbiology, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Anu E Jääskeläinen
- Helsinki University Hospital Laboratory Services (HUSLAB), Department of Virology and Immunology, Helsinki, Finland.,Department of Virology, University of Helsinki, Helsinki, Finland
| | - Kairi Värv
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Mateja Jelovšek
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Corine GeurtsvanKessel
- WHO Collaborating Centre for Arbovirus and Viral Haemorrhagic Fever Reference and Research, Department of Virology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Sirkka Vene
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,WHO Collaborating Centre for Arbovirus and Viral Haemorrhagic Fever Reference and Research, Department of Virology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Irina Golovljova
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia.,Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olli Vapalahti
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Laboratory Services (HUSLAB), Department of Virology and Immunology, Helsinki, Finland.,Department of Virology, University of Helsinki, Helsinki, Finland
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Immunogenicity and safety of the tick-borne encephalitis vaccination (2009–2019): A systematic review. Travel Med Infect Dis 2020; 37:101876. [DOI: 10.1016/j.tmaid.2020.101876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
|
40
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
41
|
Wagner JN, Sonnberger M, Troescher A, Krehan I, Hauser A, Panholzer J, von Oertzen TJ. Patients with breakthrough tick-borne encephalitis suffer a more severe clinical course and display extensive magnetic resonance imaging changes. Eur J Neurol 2020; 27:1201-1209. [PMID: 32324925 PMCID: PMC7383477 DOI: 10.1111/ene.14276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Background and purpose Tick‐borne encephalitis (TBE) is a common viral disease in central Europe and Asia. Severe or even lethal neurological symptoms may ensue. With limited therapeutic options, active vaccination against the TBE virus (TBEV) is strongly recommended in endemic areas. A systematic analysis of the clinical picture and cerebral imaging findings associated with TBE was conducted with particular focus on patients who acquired TBE despite previous vaccination. Methods A cohort of 52 patients with serologically proven TBE treated at our centre in a 10‐year period who received at least one cerebral magnetic resonance imaging (MRI) was retrospectively described. Extension of MRI changes was systematically assessed by an experienced neuroradiologist. Standard statistical procedures were performed. Results Fifty‐two patients with a definite serological diagnosis of TBE were included. The most common presentation was encephalitis (67%). MRI showed TBE‐associated parenchymal lesions in 33% of all patients. Sites of predilection included the periaqueductal grey, the thalamus and the brainstem. Ten patients had received at least one prior active or passive TBEV immunization. All of these had a maximal Rankin Scale score of at least 4. The median number of affected anatomical regions on MRI was significantly higher than in the non‐vaccinated cohort. Conclusions To our knowledge, this is the first study systematically describing the peculiarities of MRI in patients vaccinated against TBE. In addition to a severe clinical course, they exhibit more extensive MRI lesions than a non‐vaccinated cohort. Possible reasons for these findings include incomplete seroconversion, more virulent TBEV strains or antibody‐dependent enhancement.
Collapse
Affiliation(s)
- J N Wagner
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - M Sonnberger
- Department of Neuroradiology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Troescher
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - I Krehan
- Department of Neurology 2, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Hauser
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - J Panholzer
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - T J von Oertzen
- Department of Neurology 1, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
42
|
Matveev A, Matveev L, Stronin O, Baykov I, Emeljanova L, Khlusevich Y, Tikunova N. Characterization of neutralizing monoclonal antibody against tick-borne encephalitis virus in vivo. Vaccine 2020; 38:4309-4315. [PMID: 32409136 DOI: 10.1016/j.vaccine.2020.04.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-transmitted pathogen in the family Flaviviridae and causes one of the most severe human neuroinfections. In this study, a neutralizing mouse mAb 14D5, which was previously shown to have cross-reactive binding to several flaviviruses belonging to the TBEV group, was examined for its prophylactic and therapeutic effects in BALB/c mice infected with TBEV. Before and after infection, mice were administrated mAb 14D5 at doses 100 μg and 10 μg per mouse. mAb 14D5 showed clear protective efficacy when injected at the high dose one day after infection, with survival rates that were TBEV dose-dependent. Prophylactic administration of mAb 14D5 was more effective than post-exposure administration and complete protection was documented when the mAb was administered one day before infection. The protective efficacy of mAb 14D5 was significantly higher than that of the anti-TBE serum immunoglobulin. However, no protection was observed in mice received the low dose of mAb 14D5 independent of the timing of mAb injection and TBEV dose. The ability of species-matched mAb 14D5 to mediate TBEV infection in mice was also investigated, and the results indicated that mAb 14D5 did not augment TBEV infection independent of the time of mAb administration. The neutralizing epitope for mAb 14D5 was localized in domain III of glycoprotein E of TBEV in a region between residues 301-339, which is conserved among flaviviruses from the TBEV group.
Collapse
Affiliation(s)
- Andrey Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Leonid Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oleg Stronin
- Russian Federal State Unitary Company "Microgen Scientific Industrial Company for Immunobiological Medicines" of the Health Ministry of Russian Federation, Branch in Tomsk 634040, Russia
| | - Ivan Baykov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ljudmila Emeljanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yana Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
43
|
Varnaitė R, Blom K, Lampen MH, Vene S, Thunberg S, Lindquist L, Ljunggren HG, Rombo L, Askling HH, Gredmark-Russ S. Magnitude and Functional Profile of the Human CD4 + T Cell Response throughout Primary Immunization with Tick-Borne Encephalitis Virus Vaccine. THE JOURNAL OF IMMUNOLOGY 2020; 204:914-922. [PMID: 31924650 DOI: 10.4049/jimmunol.1901115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a viral infection of the CNS caused by TBE virus. With no specific treatment available, the only protection is a formalin-inactivated whole virus vaccine. Primary immunization with European TBE vaccines, as recommended by the manufacturers, consists of three vaccine doses administered within a 1-y period. Protection from vaccination is believed to be mediated by Abs, yet T cells may also have a protective role. We set out to characterize the human CD4+ T cell response throughout primary TBE immunization. The responses were evaluated before vaccination and 1 mo after each vaccine dose. A heterogeneous magnitude of CD4+ T cell-mediated memory responses was observed in regard to lymphoblast expansion and cytokine production (IFN-γ, IL-2, and TNF), with the highest median magnitude detected after the second dose of vaccine. Stimulation with an overlapping peptide library based on structural TBE virus proteins E and C revealed that CD4+ T cells concomitantly producing IL-2 and TNF dominated the responses from vaccinees after each vaccine dose, whereas a control cohort of TBE patients responded mainly with all three cytokines. CD107a expression was not upregulated upon peptide stimulation in the vaccinees. However, CD154 (CD40L) expression on cytokine-positive memory CD4+ T cells significantly increased after the second vaccine dose. Taken together, TBE vaccination induced CD4+ T cell responses dominated by IL-2 and TNF production together with CD154 upregulation and a lower IFN-γ response compared with TBE patients. This response pattern was consistent after all three doses of TBE vaccine.
Collapse
Affiliation(s)
- Renata Varnaitė
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Margit H Lampen
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Sirkka Vene
- The Public Health Agency of Sweden, 171 65 Stockholm, Sweden
| | - Sarah Thunberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Lars Rombo
- Centre for Clinical Research, Sörmland Region, Uppsala University, 631 88 Eskilstuna, Sweden
| | - Helena H Askling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; and.,Department of Communicable Disease Control and Prevention, Sörmland County, 631 88 Eskilstuna, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden; .,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
44
|
Hansson KE, Rosdahl A, Insulander M, Vene S, Lindquist L, Gredmark-Russ S, Askling HH. Tick-borne Encephalitis Vaccine Failures: A 10-year Retrospective Study Supporting the Rationale for Adding an Extra Priming Dose in Individuals Starting at Age 50 Years. Clin Infect Dis 2020; 70:245-251. [PMID: 30843030 PMCID: PMC6938976 DOI: 10.1093/cid/ciz176] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Southern Sweden is endemic for tick-borne encephalitis (TBE), with Stockholm County as one of the high-risk areas. Our aim in this study was to describe cases of vaccine failures and to optimize future vaccination recommendations. METHODS Patients with TBE were identified in the notification database at the Department of Communicable Disease Control and Prevention in Stockholm County during 2006-2015. Vaccine failure was defined as TBE despite adherence to the recommended vaccination schedule with at least 2 doses. Clinical data were extracted from medical records. RESULTS A total of 1004 TBE cases were identified, 53 (5%) were defined as vaccine failures. In this latter group, the median age was 62 years (6-83). Forty-three (81%) patients were aged >50 years and 2 were children. Approximately half of the patients had comorbidities, with diseases affecting the immune system accounting for 26% of all cases. Vaccine failures following the third or fourth vaccine dose accounted for 36 (68%) of the patients. Severe and moderate TBE disease affected 81% of the cases. CONCLUSIONS To our knowledge, this is the largest documented cohort of TBE vaccine failures. Vaccine failure after 5 TBE vaccine doses is rare. Our data provide rationale for adding an extra priming dose to those aged ≥50 years.
Collapse
Affiliation(s)
- Karin E Hansson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, Stockholm, Sweden
| | - Anja Rosdahl
- School of Medical Sciences, Örebro University, Sweden
- Department of Infectious Diseases, Örebro University Hospital, Sweden
| | - Mona Insulander
- Department of Communicable Disease Control and Prevention, Stockholm County, Sweden
| | - Sirkka Vene
- Public Health Agency of Sweden, Solna, Sweden
| | - Lars Lindquist
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Infectious diseases, Karolinska University Hospital, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious diseases, Karolinska University Hospital, Sweden
| | - Helena H Askling
- Division of Infectious Diseases, Unit for Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Department of Communicable Disease Control and Prevention, Sörmland County, Sweden
| |
Collapse
|
45
|
Dobler G, Kaier K, Hehn P, Böhmer MM, Kreusch TM, Borde JP. Tick-borne encephalitis virus vaccination breakthrough infections in Germany: a retrospective analysis from 2001 to 2018. Clin Microbiol Infect 2019; 26:1090.e7-1090.e13. [PMID: 31843655 DOI: 10.1016/j.cmi.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES There are few data available regarding the clinical course of tick-borne encephalitis virus (TBEV) vaccination breakthrough infections. The published studies suggest that vaccination breakthrough infections may have a more severe course than native TBEV infection in unvaccinated individuals-potentially due to antibody-dependent enhancement. Here we report a large analysis of vaccination breakthrough infections. METHODS This retrospective analysis was based on a national surveillance dataset spanning the years 2001-2018. Variables reflecting disease severity, such as 'CNS symptoms', 'myelitis', 'fatal outcome' and 'hospitalization' were analysed as well as general epidemiological variables. Cases were categorized as 'unvaccinated' or 'ever vaccinated', the latter category including cases with at least one dose of a TBEV vaccine. RESULTS A total of 6073 notified TBEV infection cases were included in our analysis. Sufficient data on vaccination status were available for 95.1% of patients (5777/6073); of these, 5298 presented with a native infection. A total of (334/5777) cases developed an infection despite having been vaccinated at least once. Comparing unvaccinated patients with those with at least one vaccination, we find an odds ratio (OR) 2.73, (95% confidence interval (CI) 0.79-9.50) regarding the variable fatal outcome that did not reach statistical significance. Analysing the clinical variables 'CNS symptoms' and 'myelitis', there is no difference between these groups (OR 0.86, 95% CI 0.68-1.08; and OR 1.30, 95% CI 0.74-2.27 respectively). Patients who were vaccinated and had an assumed protection at symptom onset (n = 100) had a higher risk for the development of myelitic symptoms (OR 2.21, 95% CI 1.01-4.86]) than unvaccinated patients. CONCLUSION Our findings could neither verify that vaccination breakthrough infections might cause a more severe disease than native infections nor prove a clear antibody-dependent enhancement phenomenon. It remains unclear whether the increased myelitis risk in a subgroup of vaccinated patients is a true effect or confounded.
Collapse
Affiliation(s)
- G Dobler
- Bundeswehr Institute of Microbiology, German National Reference Laboratory for TBEV, Munich, Germany
| | - K Kaier
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
| | - P Hehn
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Centre - University of Freiburg, Freiburg, Germany
| | - M M Böhmer
- Bavarian Health and Food Safety Authority, Department of Infectious Disease Epidemiology & Taskforce Infectiology/Airport, Oberschleissheim, Germany
| | - T M Kreusch
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Immunization Unit, Berlin, Germany
| | - J P Borde
- Division of Infectious Diseases, Department of Medicine II, University of Freiburg Medical Centre and Faculty of Medicine, Freiburg, Germany; Praxis Dr. J. Borde/Gesundheitszentrum Oberkirch, Oberkirch, Germany.
| |
Collapse
|
46
|
Albinsson B, Rönnberg B, Vene S, Lundkvist Å. Antibody responses to tick-borne encephalitis virus non-structural protein 1 and whole virus antigen-a new tool in the assessment of suspected vaccine failure patients. Infect Ecol Epidemiol 2019; 9:1696132. [PMID: 31839903 PMCID: PMC6896504 DOI: 10.1080/20008686.2019.1696132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
We report a new tool for improved serological diagnostics in suspected tick-borne encephalitis (TBE) vaccine failure cases. Due to an increase in the incidence of disease as well as the number of vaccinees, specific and simplified diagnostic methods are needed. Antibody responses to TBE-virus (TBEV) non-structural protein 1 (NS1) are detectable post TBEV infection but not post vaccination. We have used samples from 14 previously confirmed Swedish TBEV vaccine failure patients to study antibody responses against NS1 and whole virus antigens, respectively. Our conclusion is that the detection of antibodies directed to TBEV NS1 antigen is a useful tool to considerably simplify and improve the quality in investigations regarding suspected TBEV infection in vaccinated patients.
Collapse
Affiliation(s)
- Bo Albinsson
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Bengt Rönnberg
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden.,Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
| | - Sirkka Vene
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden.,Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
47
|
Reusken C, Boonstra M, Rugebregt S, Scherbeijn S, Chandler F, Avšič-Županc T, Vapalahti O, Koopmans M, GeurtsvanKessel CH. An evaluation of serological methods to diagnose tick-borne encephalitis from serum and cerebrospinal fluid. J Clin Virol 2019; 120:78-83. [PMID: 31590114 DOI: 10.1016/j.jcv.2019.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is an infectious disease endemic to large parts of Europe and Asia. Diagnosing TBE often relies on the detection of TBEV-specific antibodies in serum and cerebrospinal fluid (CSF) as viral genome is mostly not detectable once neurological symptoms occur. OBJECTIVES We evaluated the performance of TBEV IgM and IgG ELISAs in both serum and CSF of confirmed TBEV patients and discuss the role of (CSF) serology in TBEV diagnostics. STUDY DESIGN For the assay evaluation we collected specimen from confirmed TBEV patients. Assay specificity was assessed using sera from patients with a related flavivirus infection or other acute infection. A selected ELISA assay was used to analyze TBEV-specific antibodies in CSF and to evaluate the use in confirming TBE diagnosis. RESULTS In this study the overall sensitivity of the IgM TBEV ELISAs was acceptable (94 -100 %). Four out of five IgM ELISA's demonstrated an excellent overall specificity from 94 -100% whereas a low overall specificity was observed for the IgG TBEV ELISAs (30-71%). Intrathecal antibody production against TBEV was demonstrated in a subset of TBE patients. CONCLUSIONS In four out of five ELISAs, IgM testing in serum and CSF of TBE patients is specific and confirmative. The lack of IgG specificity in all ELISAs emphasizes the need of confirmatory testing by virus neutralisation, depending on the patient's background and the geographic location of exposure to TBEV. A CSF-serum IgG antibody index can support the diagnosis specifically in chronic disease or once IgM has disappeared.
Collapse
Affiliation(s)
- Chantal Reusken
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2); Centre for infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marrit Boonstra
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Sharona Rugebregt
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Sandra Scherbeijn
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Felicity Chandler
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - Olli Vapalahti
- Deptartment of Virology and Veterinary Biosciences: University of Helsinki, and HUSLAB, Helsinki University Hospital, Finland
| | - Marion Koopmans
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | | |
Collapse
|
48
|
Post-exposure administration of chimeric antibody protects mice against European, Siberian, and Far-Eastern subtypes of tick-borne encephalitis virus. PLoS One 2019; 14:e0215075. [PMID: 30958863 PMCID: PMC6453444 DOI: 10.1371/journal.pone.0215075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-transmitted pathogen. It belongs to the Flaviviridae family and causes severe human neuroinfections. In this study, protective efficacy of the chimeric antibody chFVN145 was examined in mice infected with strains belonging to the Far-Eastern, European, and Siberian subtypes of TBEV, and the antibody showed clear therapeutic efficacy when it was administered once one, two, or three days after infection. The efficacy was independent of the TBEV strain used to infect the mice; however, the survival rate of the mice was dependent on the dose of TBEV and of the antibody. No enhancement of TBEV infection was observed when the mice were treated with non-protective doses of chFVN145. Using a panel of recombinant fragments of the TBEV glycoprotein E, the neutralizing epitope for chFVN145 was localized in domain III of the TBEV glycoprotein E, in a region between amino acid residues 301 and 359. In addition, three potential sites responsible for binding with chFVN145 were determined using peptide phage display libraries, and 3D modeling demonstrated that the sites do not contact the fusion loop and, hence, their binding with chFVN145 does not result in increased attachment of TBEV to target cells.
Collapse
|
49
|
Dorko E, Bušová A, Rimárová K, Drabiščák E, Kizek P, Popaďák P, Popaďáková J, Jenčová J, Jenča A, Petrášová A. Effectiveness of primary vaccination against tick-borne encephalitis in employees of the armed forces. Cent Eur J Public Health 2019; 26 Suppl:S42-S46. [PMID: 30817872 DOI: 10.21101/cejph.a5271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/15/2018] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of our study is to evaluate immune response after receiving the primary vaccination against tick-borne encephalitis (TBE), and to establish a link between seropositivity and selected factors in soldiers. METHODS Blood samples, questionnaires and vaccination records were obtained. TBE antibodies were detected using both ELISA and a neutralization test (NT). We used logistic regression for statistical analysis. RESULTS Overall, seropositivity (presence of IgG) was detected in 88% of participants. The proportion of seropositive subjects in relation to the number of doses of vaccine was 69% (2 doses) and 91% (3 doses). A statistically significant relationship was found between seropositivity and the number of vaccine doses. No statistical significance was identified in relation to age and sex. There was no statistical significance of seropositivity, depending on the time of the last dose of the vaccine. CONCLUSIONS TBE immunisation should be targeted at individuals in the most affected locations and those at highest risk of exposure according to lifestyle and occupation.
Collapse
Affiliation(s)
- Erik Dorko
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Andrea Bušová
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Kvetoslava Rimárová
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Erik Drabiščák
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, Slovak Republic
| | - Peter Kizek
- 1st Department of Stomatology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice and Louis Pasteur University Hospital, Kosice, Slovak Republic
| | - Peter Popaďák
- Department of Forensic Medicine and Pathological Anatomy, Health Care Surveillance Authority, Kosice, Slovak Republic
| | - Jana Popaďáková
- Department of Neurology, Hospital Vranov nad Toplou, Vranov nad Toplou, Slovak Republic
| | - Janka Jenčová
- Department of Stomatology and Maxilofacial Surgery, Faculty of Medicine, Pavol Jozef Safarik University in Kosice and Louis Pasteur University Hospital, Kosice, Slovak Republic
| | - Andrej Jenča
- Department of Stomatology and Maxilofacial Surgery, Faculty of Medicine, Pavol Jozef Safarik University in Kosice and Louis Pasteur University Hospital, Kosice, Slovak Republic
| | - Adriána Petrášová
- Department of Stomatology and Maxilofacial Surgery, Faculty of Medicine, Pavol Jozef Safarik University in Kosice and Louis Pasteur University Hospital, Kosice, Slovak Republic
| |
Collapse
|
50
|
Bogovič P, Lotrič-Furlan S, Avšič-Županc T, Lusa L, Strle F. Factors associated with severity of tick-borne encephalitis: A prospective observational study. Travel Med Infect Dis 2018; 26:25-31. [PMID: 30296483 DOI: 10.1016/j.tmaid.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Information on parameters associated with the severity of tick-borne encephalitis (TBE) is limited. METHODS The association between 15 pre-defined parameters and the severity of TBE was evaluated in 717 consecutive adult patients diagnosed in Slovenia 2007-2012. RESULTS Multivariable logistic regression showed that patient age (odds ratio, OR 1.26, 95% CI 1.11-1.44; P = 0.001), previous vaccination against TBE (OR 14.23, 95% CI 1.72-117.87; P = 0.014), blood leukocyte count (OR 1.45, 95% CI 1.13-1.85; P = 0.004), and level of specific TBE virus serum IgG antibodies (OR 0.85, 95% CI 0.75-0.96; P = 0.009) were associated with severe acute illness based on the clinical diagnosis. When severity of TBE was based on the severity score and linear regression was used, corresponding association was found for age (estimated coefficient, EC 1.70, 95% CI 1.06-2.33; P<0.001), previous vaccination against TBE (EC 11.16, 95% CI 5.05-17.27; P < 0.001), serum C-reactive protein level (EC 1.20, 95% CI 0.48-1.91; P = 0.001), and level of specific TBE virus serum IgG antibodies (EC -0.74, 95% CI -1.27-0.20; P = 0.007). CONCLUSIONS Previous vaccination against TBE, low levels of TBE virus serum IgG antibodies, older age, higher blood leukocyte count, and higher serum C-reactive protein levels are associated with more severe TBE.
Collapse
Affiliation(s)
- Petra Bogovič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Department of Mathematics, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Franc Strle
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|