1
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
2
|
Zolfagharypoor A, Ajdari A, Seirafianpour F, Pakbaz Y, Hosseinzadeh A, Mehrzadi S. Signaling pathways in skin cancers and the protective functions of melatonin. Biochimie 2025; 231:1-14. [PMID: 39577617 DOI: 10.1016/j.biochi.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Melatonin, a hormone primarily synthesized in the pineal gland, has an essential role in the regulation of various physiological processes, such as the sleep-wake cycle, immune function, and antioxidative responses. Emerging evidence suggests that melatonin also exerts significant protective effects against skin cancers, particularly melanoma and non-melanoma skin cancers. This review aims to provide a comprehensive overview of melatonin's multifaceted mechanisms of action in preventing and treating skin cancers, focusing on its antioxidant, photoprotective, and radioprotective properties. Melatonin's capability to modulate skin cancer's related key signaling pathways underscores its complex yet potent anticancer mechanisms. Furthermore, synergistic effects between melatonin and conventional oncology treatments, such as radiotherapy, chemotherapy, and targeted therapies, hold promise for improving treatment outcomes while mitigating adverse effects. However, while melatonin shows great potential as an adjunct in oncology treatment regimens, further research is needed to optimize its clinical applications and fully understand its safety profile and potential side effects. Overall, elucidating melatonin's role in skin cancer prevention and treatment represents a promising avenue for advancing cancer therapeutics and improving patient outcomes.
Collapse
Affiliation(s)
- Azin Zolfagharypoor
- Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | | | - Yeganeh Pakbaz
- Breast Health & Cancer Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Azam Hosseinzadeh
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Saeed Mehrzadi
- Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Liu CJ, Wang LK, Tsai FM. The Application and Molecular Mechanisms of Mitochondria-Targeted Antioxidants in Chemotherapy-Induced Cardiac Injury. Curr Issues Mol Biol 2025; 47:176. [PMID: 40136430 PMCID: PMC11941228 DOI: 10.3390/cimb47030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapeutic agents play a crucial role in cancer treatment. However, their use is often associated with significant adverse effects, particularly cardiotoxicity. Drugs such as anthracyclines (e.g., doxorubicin) and platinum-based agents (e.g., cisplatin) cause mitochondrial damage, which is one of the main mechanisms underlying cardiotoxicity. These drugs induce oxidative stress, leading to an increase in reactive oxygen species (ROS), which in turn damage the mitochondria in cardiomyocytes, resulting in impaired cardiac function and heart failure. Mitochondria-targeted antioxidants (MTAs) have emerged as a promising cardioprotective strategy, offering a potential solution. These agents efficiently scavenge ROS within the mitochondria, protecting cardiomyocytes from oxidative damage. Recent studies have shown that MTAs, such as elamipretide, SkQ1, CoQ10, and melatonin, significantly mitigate chemotherapy-induced cardiotoxicity. These antioxidants not only reduce oxidative damage but also help maintain mitochondrial structure and function, stabilize mitochondrial membrane potential, and prevent excessive opening of the mitochondrial permeability transition pore, thus preventing apoptosis and cardiac dysfunction. In this review, we integrate recent findings to elucidate the mechanisms of chemotherapy-induced cardiotoxicity and highlight the substantial therapeutic potential of MTAs in reducing chemotherapy-induced heart damage. These agents are expected to offer safer and more effective treatment options for cancer patients in clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Liu
- Division of Cardiology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Lu-Kai Wang
- Veterinary Diagnostic Division, National Laboratory Animal Center, National Institutes of Applied Research, Taipei City 115, Taiwan;
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
4
|
Díaz-de-la-Cruz EN, Hurtado-Nuñez GE, Sánchez-Ceja SG, Torner L, Bartolomé-Camacho MC, Trujillo-Rangel WÁ, García-Pérez ME. Role of Vitamin C on methotrexate-induced nephrotoxicity in psoriasis context: A preclinical assessment. Toxicol Rep 2024; 13:101782. [PMID: 39526234 PMCID: PMC11544083 DOI: 10.1016/j.toxrep.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Methotrexate (MTX) is the most prescribed drug for systemic treatment of psoriasis. However, its clinical use is limited by its nephrotoxicity, which antioxidants can attenuate. This study evaluates the impact of vitamin C (vitC), a well-known antioxidant, on nephrotoxicity induced by high MTX doses in the context of psoriasis. To achieve this purpose, the kidney injury triggered by acute MTX exposure was established in an imiquimod-induced psoriasis-like mouse model. Mice were randomly divided into six groups: group 1 (control); group 2 (Imiquimod, IMQ), group 3 (IMQ+vitC 175 mg/kg/day); group 4 (MTX 20 mg/kg i.p); group 5 (IMQ+MTX 20 mg/kg) and group 6 (IMQ+MTX 20 mg/kg + vitC 175 mg/kg/day). The effects of these treatments were determined by considering the evolution of IMQ-induced skin lesions and serum creatinine levels. Moreover, histopathological analysis, lipid peroxidation, oxidative stress, and TNF-α production were determined in kidney tissue. Results showed that vitC attenuates renal damage in the context of IMQ-induced psoriasis. However, the opposite occurs when administered with IMQ+MTX, worsening skin psoriasis lesions and exacerbating acute renal tubular necrosis and oxidative DNA damage. These results establish new clues about the MTX-induced nephrotoxicity in the psoriasis context and the putative protective effects of vitC. It suggests that vitC supplementation could help attenuate the renal damage promoted by the psoriatic pathological environment. However, it should be avoided in psoriasis patients with renal dysfunction treated with MTX.
Collapse
Affiliation(s)
| | - Grecia-Elena Hurtado-Nuñez
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | | | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Morelia, Michoacán, Mexico
| | | | | | - Martha-Estrella García-Pérez
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
5
|
Shen Z, Jiang J, Zhou X, Tan Q, Yan S, Wu X, Pi J, Wang H, Yang H, Luo X. Melatonin Attenuates Imiquimod-Induced Psoriasis-Like Inflammation and Restores the Th17/Treg Immune Balance. Inflammation 2024; 47:2027-2040. [PMID: 38653920 DOI: 10.1007/s10753-024-02023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Psoriasis is a common immune-mediated skin disease characterized by abnormally reactive inflammation and epidermal hyperplasia. Previous studies have shown melatonin (MLT) has powerful anti-inflammatory effects. The mechanisms that MLT regulates psoriasis-associated skin inflammation remain unclear. Here, in imiquimod-induced psoriasis-like mice, MLT supplementation reduced skin inflammation and corrected the Th17/Treg cell imbalance. Network pharmacology and proteome sequencing analyses revealed that MLT attenuates the inflammatory response in the skin of psoriatic mice by inhibiting the PI3K/Akt signaling pathway. Overall, the data suggest that MLT has a protective effect against psoriasis-like inflammation.
Collapse
Affiliation(s)
- Zhanting Shen
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jinqiu Jiang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaoying Zhou
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Qingqing Tan
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Shi Yan
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuege Wu
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Jiangshan Pi
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Hua Wang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Huan Yang
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaoyan Luo
- Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan 2nd Road, Yuzhong District, 400014, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
6
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
7
|
Kim TK, Slominski RM, Pyza E, Kleszczynski K, Tuckey RC, Reiter RJ, Holick MF, Slominski AT. Evolutionary formation of melatonin and vitamin D in early life forms: insects take centre stage. Biol Rev Camb Philos Soc 2024; 99:1772-1790. [PMID: 38686544 PMCID: PMC11368659 DOI: 10.1111/brv.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Melatonin, a product of tryptophan metabolism via serotonin, is a molecule with an indole backbone that is widely produced by bacteria, unicellular eukaryotic organisms, plants, fungi and all animal taxa. Aside from its role in the regulation of circadian rhythms, it has diverse biological actions including regulation of cytoprotective responses and other functions crucial for survival across different species. The latter properties are also shared by its metabolites including kynuric products generated by reactive oxygen species or phototransfomation induced by ultraviolet radiation. Vitamins D and related photoproducts originate from phototransformation of ∆5,7 sterols, of which 7-dehydrocholesterol and ergosterol are examples. Their ∆5,7 bonds in the B ring absorb solar ultraviolet radiation [290-315 nm, ultraviolet B (UVB) radiation] resulting in B ring opening to produce previtamin D, also referred to as a secosteroid. Once formed, previtamin D can either undergo thermal-induced isomerization to vitamin D or absorb UVB radiation to be transformed into photoproducts including lumisterol and tachysterol. Vitamin D, as well as the previtamin D photoproducts lumisterol and tachysterol, are hydroxylated by cyochrome P450 (CYP) enzymes to produce biologically active hydroxyderivatives. The best known of these is 1,25-dihydroxyvitamin D (1,25(OH)2D) for which the major function in vertebrates is regulation of calcium and phosphorus metabolism. Herein we review data on melatonin production and metabolism and discuss their functions in insects. We discuss production of previtamin D and vitamin D, and their photoproducts in fungi, plants and insects, as well as mechanisms for their enzymatic activation and suggest possible biological functions for them in these groups of organisms. For the detection of these secosteroids and their precursors and photoderivatives, as well as melatonin metabolites, we focus on honey produced by bees and on body extracts of Drosophila melanogaster. Common biological functions for melatonin derivatives and secosteroids such as cytoprotective and photoprotective actions in insects are discussed. We provide hypotheses for the photoproduction of other secosteroids and of kynuric metabolites of melatonin, based on the known photobiology of ∆5,7 sterols and of the indole ring, respectively. We also offer possible mechanisms of actions for these unique molecules and summarise differences and similarities of melatoninergic and secosteroidogenic pathways in diverse organisms including insects.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Radomir M Slominski
- Department of Genetics, Genomics, Bioinformatics and Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Kraków, 30-387, Poland
| | - Konrad Kleszczynski
- Department of Dermatology, Münster, Von-Esmarch-Str. 58, Münster, 48161, Germany
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX, 78229, USA
| | | | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| |
Collapse
|
8
|
Drăgoi CM, Diaconu CC, Nicolae AC, Dumitrescu IB. Redox Homeostasis and Molecular Biomarkers in Precision Therapy for Cardiovascular Diseases. Antioxidants (Basel) 2024; 13:1163. [PMID: 39456418 PMCID: PMC11504313 DOI: 10.3390/antiox13101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Precision medicine is envisioned as the future of cardiovascular healthcare, offering a more tailored and effective method for managing cardiovascular diseases compared to the traditional one-size-fits-all approaches. The complex role of oxidative stress in chronic diseases within the framework of precision medicine was carefully explored, delving into the cellular redox status and its critical involvement in the pathophysiological complexity of cardiovascular diseases (CVDs). The review outlines the mechanisms of reactive oxygen species generation and the function of antioxidants in maintaining redox balance. It emphasizes the elevated reactive oxygen species concentrations observed in heart failure and their detrimental impact on cardiovascular health. Various sources of ROS within the cardiovascular system are examined, including mitochondrial dysfunction, which contributes to oxidative stress and mitochondrial DNA degradation. The article also addresses oxidative stress's role in myocardial remodeling, a process pivotal to the progression of heart diseases. By integrating these aspects, the review underscores the importance of redox homeostasis and identifies molecular biomarkers that can enhance precision therapy for CVDs. The insights provided aim to pave the way for targeted therapeutic strategies that mitigate oxidative stress, thereby improving patient outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- Cristina Manuela Drăgoi
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (I.-B.D.)
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania;
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Alina Crenguța Nicolae
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (I.-B.D.)
| | - Ion-Bogdan Dumitrescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (I.-B.D.)
| |
Collapse
|
9
|
Shakel Z, Costa Lima SA, Reis S. Strategies to make human skin models based on cellular senescence for ageing research. Ageing Res Rev 2024; 100:102430. [PMID: 39032611 DOI: 10.1016/j.arr.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Human skin ageing is closely related to the ageing of the whole organism, and it's a continuous multisided process that is influenced not only by genetic and physiological factors but also by the cumulative impact of environmental factors. Currently, there is a scientific community need for developing skin models representing ageing processes to (i) enhance understanding on the mechanisms of ageing, (ii) discover new drugs for the treatment of age-related diseases, and (iii) develop effective dermo-cosmetics. Bioengineers worldwide are trying to reproduce skin ageing in the laboratory aiming to better comprehend and mitigate the senescence process. This review provides details on the main ageing molecular mechanisms and procedures to obtain in vitro aged skin models.
Collapse
Affiliation(s)
- Zinaida Shakel
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
10
|
Ziaei S, Hasani M, Malekahmadi M, Daneshzad E, Kadkhodazadeh K, Heshmati J. Effect of melatonin supplementation on cardiometabolic risk factors, oxidative stress and hormonal profile in PCOS patients: a systematic review and meta-analysis of randomized clinical trials. J Ovarian Res 2024; 17:138. [PMID: 38965577 PMCID: PMC11225253 DOI: 10.1186/s13048-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND To investigate whether melatonin supplementation can enhance cardiometabolic risk factors, reduce oxidative stress, and improve hormonal and pregnancy-related factors in patients with PCOS. METHODS We conducted a systematic search of PubMed/Medline, Scopus, and the Cochrane Library for articles published in English from inception to March 2023. We included randomized controlled trials (RCTs) on the use of melatonin for patients with polycystic ovary syndrome (PCOS). We performed a meta-analysis using a random-effects model and calculated the standardized mean differences (SMDs) and 95% confidence intervals (CIs). RESULTS Six studies met the inclusion criteria. The result of meta-analysis indicated that melatonin intake significantly increase TAC levels (SMD: 0.87, 95% CI: 0.46, 1.28, I2 = 00.00%) and has no effect on FBS, insulin, HOMA-IR, TC, TG, HDL, LDL, MDA, hs-CRP, mFG, SHBG, total testosterone, and pregnancy rate in patients with PCOS compare to controls. The included trials did not report any adverse events. CONCLUSION Melatonin is a potential antioxidant that may prevent damage from oxidative stress in patients with PCOS. However, the clear effect of melatonin supplementation on cardiometabolic risk factors, hormonal outcomes, and pregnancy-related outcomes needs to be evaluated further in large populations and long-term RCTs.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Katayoun Kadkhodazadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
De Simoni E, Candelora M, Belleggia S, Rizzetto G, Molinelli E, Capodaglio I, Ferretti G, Bacchetti T, Offidani A, Simonetti O. Role of antioxidants supplementation in the treatment of atopic dermatitis: a critical narrative review. Front Nutr 2024; 11:1393673. [PMID: 38933878 PMCID: PMC11203398 DOI: 10.3389/fnut.2024.1393673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by itching, epidermal barrier dysfunction, and an unbalanced inflammatory reaction. AD pathophysiology involves a dysregulated immune response driven by T helper-2 cells. Many factors, including reactive oxygen species (ROS), are involved in AD pathogenesis by causing cellular damage and inflammation resulting in skin barrier dysfunction. This narrative review aims to provide a comprehensive overview of the role of natural molecules and antioxidant compounds, highlighting their potential therapeutic value in AD prevention and management. They include vitamin D, vitamin E, pyridoxine, Vitamin C, carotenoids, and melatonin. Some studies report a statistically significant association between antioxidant levels and improvement in AD, however, there are conflicting results in which antioxidant supplementation, especially Vitamin D, did not result in improvement in AD. Therefore, the clinical efficacy of these dietary nutritional factors in the treatment of AD needs to be further evaluated in clinical trials. Meanwhile, antioxidants can be incorporated into the management of AD patients in a personalized manner, tailored to the severity of the disease, comorbidities, and individual needs.
Collapse
Affiliation(s)
- Edoardo De Simoni
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Candelora
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sara Belleggia
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Irene Capodaglio
- Hospital Cardiology and UTIC, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Research Center of Health Education and Health Promotion, Ancona, Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Polytechnic University of Marche, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
12
|
Greco G, Di Lorenzo R, Ricci L, Di Serio T, Vardaro E, Laneri S. Clinical Studies Using Topical Melatonin. Int J Mol Sci 2024; 25:5167. [PMID: 38791203 PMCID: PMC11121188 DOI: 10.3390/ijms25105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Melatonin is ubiquitously present in all animals and plants, where it exerts a variety of physiological activities thanks to its antioxidant properties and its key role as the first messenger of extracellular signaling functions. Most of the clinical studies on melatonin refer to its widespread oral use as a dietary supplement to improve sleep. A far smaller number of articles describe the clinical applications of topical melatonin to treat or prevent skin disorders by exploiting its antioxidant and anti-inflammatory activities. This review focuses on the clinical studies in which melatonin was applied on the skin as a photoprotective, anti-aging, or hair growth-promoting agent. The methodologies and results of such studies are discussed to provide an overall picture of the state of the art in this intriguing field of research. The clinical studies in which melatonin was applied on the skin before exposure to radiation (UV, sunlight, and high-energy beams) were all characterized by an appropriate design (randomized, double-blind, and placebo-controlled) and strongly support its clinical efficacy in preventing or reducing skin damage such as dermatitis, erythema, and sunburn. Most of the studies examined in this review do not provide a clear demonstration of the efficacy of topical melatonin as a skin anti-aging or as a hair growth-promoting agent owing to limitations in their design and/or to the use of melatonin combined with extra active ingredients, except for one trial that suggests a possible beneficial role of melatonin in treating some forms of alopecia in women. Further research efforts are required to reach definitive conclusions concerning the actual benefits of topical melatonin to counteract skin aging and hair loss.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (G.G.); (R.D.L.); (L.R.); (T.D.S.); (E.V.)
| |
Collapse
|
13
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
14
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int J Mol Sci 2024; 25:4858. [PMID: 38732075 PMCID: PMC11084828 DOI: 10.3390/ijms25094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin and sericin exhibit antioxidant properties and may be useful in topical wound healing patches by maintaining redox balance, cell integrity, and regulating the inflammatory response. In human skin, melatonin suppresses damage caused by ultraviolet radiation (UVR) which involves numerous mechanisms associated with reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and enhancing apoptosis. Sericin is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). It is of interest because of its biodegradability, anti-oxidative, and anti-bacterial properties. Sericin inhibits tyrosinase activity and promotes cell proliferation that can be supportive and useful in melanoma treatment. In recent years, wound healing patches containing sericin and melatonin individually have attracted significant attention by the scientific community. In this review, we summarize the state of innovation of such patches during 2021-2023. To date, melatonin/sericin-polymer patches for application in post-operational wound healing treatment has been only sparingly investigated and it is an imperative to consider these materials as a promising approach targeting for skin tissue engineering or regenerative dermatology.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Vivian A. Gaida
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Jasmin Schäfer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Lina Bosse
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Clara Diemer
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland; (K.A.); (A.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (V.A.G.); (J.S.); (L.B.); (C.D.); (K.S.)
| |
Collapse
|
16
|
Stępniak J, Karbownik-Lewińska M. Protective Effects of Melatonin against Carcinogen-Induced Oxidative Damage in the Thyroid. Cancers (Basel) 2024; 16:1646. [PMID: 38730600 PMCID: PMC11083294 DOI: 10.3390/cancers16091646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin, primarily synthesized in the pineal gland, plays a crucial role in regulating circadian rhythms and possesses significant antioxidative properties. By neutralizing free radicals and reducing oxidative stress, melatonin emerges as a promising agent for the prevention and therapy of many different disorders, including cancer. This paper reviews the relationship between the thyroid gland and melatonin, presenting experimental evidence on the protective effects of this indoleamine against oxidative damage to macromolecules in thyroid tissue caused by documented carcinogens (as classified by the International Agency for Research on Cancer, IARC) or caused by potential carcinogens. Furthermore, the possible influence on cancer therapy in humans and the overall well-being of cancer patients are discussed. The article highlights melatonin's essential role in maintaining thyroid health and its contribution to management strategies in patients with thyroid cancer and other thyroid diseases.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
- Polish Mother’s Memorial Hospital-Research Institute, Rzgowska St. 281/289, 93-338 Lodz, Poland
| |
Collapse
|
17
|
Kandil OM, Rahman SMAE, Ali RS, Ismail EA, Ibrahim NM. Effect of melatonin on developmental competence, mitochondrial distribution, and intensity of fresh and vitrified/thawed in vitro matured buffalo oocytes. Reprod Biol Endocrinol 2024; 22:39. [PMID: 38580962 PMCID: PMC10996257 DOI: 10.1186/s12958-024-01209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND In livestock breeding, oocyte cryopreservation is crucial for preserving and transferring superior genetic traits. This study was conducted to examine the additional effect of melatonin to maturation and vitrification media on the in vitro developmental capacity, mitochondrial distribution, and intensity of buffalo oocytes. The study involved obtaining ovaries from a slaughterhouse and conducting two phases. In the first phase, high-quality oocytes were incubated in a maturation medium with or without 10-9M melatonin for 22 h (at 38.5°C in 5% CO2). Matured oocytes were fertilized in vitro and cultured in SOF media for seven days. In the second phase, vitrified in vitro matured oocytes were stored in vitrified media (basic media (BM) containing a combination of cryoprotectants (20% Ethyl Glycol and 20% Dimethyl sulfoxide), with or without melatonin, and then stored in liquid nitrogen. Normal vitrified/thawed oocytes were fertilized in vitro and cultured as described. Finally, the matured oocytes from the fresh and vitrified/thawed groups, both with and without melatonin, were stained using DAPI and Mitotracker red to detect their viability (nuclear maturation), mitochondrial intensity, and distribution using a confocal microscope. The study found that adding 10-9M melatonin to the maturation media significantly increased maturation (85.47%), fertilization rate (84.21%)cleavage (89.58%), and transferable embryo (48.83%) rates compared to the group without melatonin (69.85%,79.88%, 75.55%, and 37.25% respectively). Besides that, the addition of melatonin to the vitrification media improved the recovery rate of normal oocytes (83.75%), as well as the cleavage (61.80%) and transferable embryo (27.00%) rates when compared to the vitrified TCM group (67.46%, 51.40%, and 17.00%, respectively). The diffuse mitochondrial distribution was higher in fresh with melatonin (TCM + Mel) (80%) and vitrified with melatonin (VS2 + Mel groups) (76.70%), Furthermore, within the same group, while the mitochondrial intensity was higher in the TCM + Mel group (1698.60) than other group. In conclusion, Melatonin supplementation improves the developmental competence and mitochondrial distribution in buffalo oocytes in both cases(in vitro maturation and vitrification).
Collapse
Affiliation(s)
- Omaima Mohamed Kandil
- Department of Animal Reproduction & Artificial Insemination, Veterinary Research Institute, National Research Centre, Cairo, Egypt.
- Accredited (ISO 17025) Embryo and Genetic Resources Conservation Bank in National Research Centre (NRC), Cairo, Egypt.
| | | | - Rania S Ali
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Esraa Aly Ismail
- Department of Animal Reproduction & Artificial Insemination, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Nehad M Ibrahim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
18
|
Gosomji IJ, Bello UM, Dzenda T, Baso A, Arukwe A, Aire TA. Influence of photoperiod and exogenous melatonin on testis morpho-physiology of sexually mature guinea fowl (Numida meleagris). Anim Reprod Sci 2024; 263:107410. [PMID: 38402776 DOI: 10.1016/j.anireprosci.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/06/2024] [Indexed: 02/27/2024]
Abstract
The biological effects of simulated photoperiod and melatonin on the control of reproduction of guinea fowls (Numida meleagris) are not well understood. Herein, thirty (30) sexually mature guinea fowl cocks were randomly assigned to 1-6 groups (n = 5) and subjected to different photoperiodic regimes in the presence or absence of exogenous melatonin (Mel; 1 mg/kgBW/day, i/m) for eight weeks. Testes of the euthanized cocks were processed for gross morphology, histological, histochemical, and oxidative stress markers. Testosterone concentration was determined in serum samples using the enzyme-linked immunosorbent assay (ELISA) technique. We observed an increase in testicular size in the Mel and Non-Mel groups under long-day (LD) photoperiods, and in the Non-Mel group under short-day (SD) photoperiod. Conversely, the testicular size was drastically reduced in the Mel group for SD. Seminiferous tubules in the Mel and Non-Mel groups of the SD showed cytomorphological changes, including degenerated cells, focal vacuolations, and depletion of germinal epithelium. However, the germinal epithelium appeared to be complete and active in both the Mel and Non-Mel groups for the LD. In all groups, the testes showed positive staining for PAS with varying intensities. There was a significant difference in PAS-staining intensity between different photoperiodic regimes and exogenous melatonin. The study observed the interaction between photoperiods and exogenous melatonin on glutathione reductase (GSH), malondialdehyde (MDA), and serum testosterone. Overall, the results indicated that a long-day (LD) photoperiod, combined with exogenous melatonin, enhanced reproductive activity in male guinea fowl by increasing testicular size and serum testosterone concentration.
Collapse
Affiliation(s)
- Innocent J Gosomji
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Jos, Nigeria
| | - Umar M Bello
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Tavershima Dzenda
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Abdullahi Baso
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Tom A Aire
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True Blue, Grenada
| |
Collapse
|
19
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
20
|
Lei X, Xu Z, Huang L, Huang Y, Tu S, Xu L, Liu D. The potential influence of melatonin on mitochondrial quality control: a review. Front Pharmacol 2024; 14:1332567. [PMID: 38273825 PMCID: PMC10808166 DOI: 10.3389/fphar.2023.1332567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024] Open
Abstract
Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxiao Huang
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yujun Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Tu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Xu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dengqun Liu
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Lu J, Zou R, Yang Y, Bai X, Wei W, Ding R, Hua X. Association between nocturnal light exposure and melatonin in humans: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3425-3434. [PMID: 38123771 DOI: 10.1007/s11356-023-31502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Night shift workers are more susceptible to circadian rhythm disturbances due to their prolonged exposure to nighttime light. This exposure during abnormal periods causes inappropriate suppression of melatonin synthesis and secretion in the pineal gland, thereby disrupting circadian rhythms. While it is believed that nocturnal light exposure is involved in suppressing melatonin secretion, research findings in this area have been inconsistent. METHODS Thirteen publications retrieved from PubMed and Web of Science databases were included to compare the differences between night shift workers and controls using aggregated mean differences (MD) and 95% confidence intervals (CI). RESULTS After a comprehensive review, 13 publications were included and data on urinary melatonin metabolite 6-sulfameoxymelatonin(aMT6s) were collected for meta-analysis. The results showed that the morning urinary aMT6s levels were significantly lower in the exposed group than in the non-exposed group (MD = -3.69, 95%CI = (-5.41, -1.98), P < 0.0001), with no significant heterogeneity among the original studies (I2 = 42%, P = 0.13). In addition, night shift workers had significantly lower mean levels of 24-h urinary aMT6s than day shift workers (MD = -3.38, 95%CI = (-4.27, -2.49), P < 0.00001, I2 = 0). Nocturnal light was correlated with nocturnal urine aMT6s secretion and inhibited nocturnal aMT6s secretion (MD = -11.68, 95%CI = (-15.70, -7.67), P < 0.00001, I2 = 0). Additionally, nocturnal light inhibited the secretion of melatonin in the blood, with no significant heterogeneity between studies (MD = -11.37, 95%CI = (-15.41, -7.33), P < 0.00001, I2 = 0). CONCLUSION The findings of this study indicate that exposure to nocturnal light among night shift workers leads to inhibition of melatonin secretion.
Collapse
Affiliation(s)
- Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Wei Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
22
|
Bagheri F, Goudarzi I, Lashkarbolouki T, Elahdadi Salmani M, Goudarzi A, Morley-Fletcher S. Improving behavioral deficits induced by perinatal ethanol and stress exposure in adolescent male rat progeny via maternal melatonin treatment. Psychopharmacology (Berl) 2024; 241:153-169. [PMID: 37889278 DOI: 10.1007/s00213-023-06470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND AND AIM Early-life stressful situations and binge drinking have been thus far acknowledged as two burdensome conditions that potentially give rise to negative outcomes and then synergistically affect brain development. In this context, the hippocampus, with the greatest number of glucocorticoid receptors (GCRs) in the brain, is responsible for regulating negative responses to stress. Prolonged glucocorticoid (GC) exposure can accordingly cause oxidative stress (OS), leading to cognitive and emotional dysfunction. Against this background, melatonin, as a powerful antioxidant and hypothalamus-pituitary-adrenal (HPA) axis regulator, was administered in this study to ameliorate cognitive impairments induced by perinatal ethanol and stress exposure in adolescent male rat progeny. METHODS Wistar rat dams were exposed to ethanol (4 g/kg) and melatonin (10 mg/kg) from gestational day (GD) 6 to postnatal day (PND) 14 and then limited nesting material (LNS) from PND0 to PND14 individually or in combination. Maternal behavior was then investigated in mothers. Afterward, the plasma corticosterone (CORT) concentration, the OS marker, the corticotropin-releasing hormone receptor type 1 (CRHR1) expression, and the GCR and brain-derived neurotrophic factor (BDNF) levels were measured in the male pups. Moreover, behavioral tasks, including the elevated plus maze (EPM), the Morris water maze (MWM), the novel object recognition (NORT), and the object-location memory (OLM) tests were completed and assessed. RESULTS The quantity and quality of maternal care significantly decreased in the mothers with dual exposure to ethanol and stress. The plasma CORT concentration in the progeny also dropped in the Ethanol + LNS group, but the risk-taking behavior elevated significantly. The ethanol and stress exposure further revealed a significant fall in the GCR and CRHR1 expression levels, compared with stress alone. The results of learning and memory tasks also indicated a significant reduction in spatial learning and memory among animals exposed to ethanol and stress. The BDNF mRNA levels correspondingly increased in the Ethanol + LNS group, compared with LNS alone. In the presence of ethanol and stress, the superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities correspondingly declined. On the other hand, the malondialdehyde (MDA) levels augmented in the hippocampus of the animals with ethanol and LNS dual exposure, as compared with the control group. Melatonin treatment (MT) thus improved nursing behaviors in dams, prevented OS, enhanced the CRHR1 and GCR expression, and reduced the BDNF levels to the similar ones in the control group. The animals in the Ethanol + LNS + MT group ultimately showed an ameliorated performance at behavioral tasks, including the memory and risk-taking behavior. CONCLUSION It was concluded that MT could prevent stress response and memory impairments arising from dual exposure to ethanol and stress by inhibiting OS.
Collapse
Affiliation(s)
| | - Iran Goudarzi
- School of Biology, Damghan University, Damghan, Iran.
| | | | | | - Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France
| |
Collapse
|
23
|
Bee R, Ahmad M, Verma S. A Review on Exploring the Potential of Vincamine and Melatonin as an Effective Anti-depressant Agent. Curr Drug Res Rev 2024; 16:395-402. [PMID: 37622717 DOI: 10.2174/2589977515666230825095036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Depression is a prevalent psychiatric disorder and one of the leading causes of disability around the world. Herbal and synthetic medications used to treat depression, may interrupt the therapy process and cause adverse effects. Currently, the use of medicinal and phytochemical plants, which have various therapeutic effects and has potential strategy for treating depression. According to the studies, medicinal plants have a variety of effects on the brain system and have antidepressant properties such as synaptic modulation of serotonin, noradrenalin and dopamine as well as inflammatory mediators. According to the literature review, Vinca Rosea extract has a variety of pharmacological activities, but there is no evidence of its antidepressant properties. OBJECTIVES The main aim of the present study is to gather data from the literature review regarding the antidepressant activity of vincamine alone and along with melatonin. METHODS According to the review antidepressant activity of various medications can be tested using two different types of studies, including in-vivo and in-vitro. RESULTS Clinical and preclinical research suggests that one of the main mediators in the pathophysiology of depression seems to be stress. Depression can be evaluated using experimental methods based on a variety of physical indicators, including locomotor activity, rearing, faeces, and the quantity of entries in the centre square (in-vivo and in-vitro). Biological conditions can be used to find it as well. It has been successfully concluded that vincamine, either alone or in combination with melatonin, may provide a potential role as an antidepressant. CONCLUSION According to the Globe Health Organization, depression will become the most common cause of loss of interest in working in the world. As a result, depression research is one of the most significant ways in which we might create new treatments in the form of vincamine and combination with melatonin for depression and improve existing therapies to make them work better for depressed people. It will also aid in the development and creation of novel ways for the better treatment of depression.
Collapse
Affiliation(s)
- Rizwana Bee
- Shri Ram Murti Smarak College of Engineering & Technology (Pharmacy) Bareilly, Uttar Pradesh, 243202, India
| | - Mohammad Ahmad
- Department of Pharmacy, Integral University Lucknow, Lucknow, India
| | - Shashi Verma
- Department of Pharmaceutics, Shri Ram Murti Smarak College of Engineering & Technology (Pharmacy) Bareilly, Uttar Pradesh, 243202, India
| |
Collapse
|
24
|
Sim WJ, Kim J, Baek KS, Lim W, Lim TG. Porcine Placenta Peptide Inhibits UVB-Induced Skin Wrinkle Formation and Dehydration: Insights into MAPK Signaling Pathways from In Vitro and In Vivo Studies. Int J Mol Sci 2023; 25:83. [PMID: 38203253 PMCID: PMC10778591 DOI: 10.3390/ijms25010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation from sunlight accelerates skin aging, leading to various clinical manifestations such as wrinkles, dryness, and loss of elasticity. This study investigated the protective effects of porcine placenta peptide (PPP) against UVB-induced skin photoaging. Female hairless SKH-1 mice were orally administered PPP for 12 weeks, followed by UVB irradiation. PPP significantly reduced wrinkle formation, improved skin moisture levels, and prevented collagen degradation. Mechanistically, PPP inhibited the expression of matrix metalloproteinases (MMPs) and upregulated collagen production. Moreover, PPP elevated hyaluronic acid levels, contributing to enhanced skin hydration. Additionally, PPP demonstrated antioxidant properties by increasing the expression of the antioxidant enzyme GPx-1, thereby reducing UVB-induced inflammation. Further molecular analysis revealed that PPP suppressed the activation of p38 MAP kinase and JNK signaling pathways, crucial mediators of UV-induced skin damage. These findings highlight the potential of porcine placental peptides as a natural and effective intervention against UVB-induced skin photoaging. The study provides valuable insights into the mechanisms underlying the protective effects of PPP, emphasizing its potential applications in skincare and anti-aging formulations.
Collapse
Affiliation(s)
- Woo-Jin Sim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
| | - Jinhak Kim
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea; (J.K.); (K.-S.B.)
| | - Kwang-Soo Baek
- R&D Division, Daehan Chemtech Co., Ltd., Gwacheon-si 13840, Republic of Korea; (J.K.); (K.-S.B.)
| | - Wonchul Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
25
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
26
|
Samra T, Gomez-Gomez T, Linowiecka K, Akhundlu A, Lopez de Mendoza G, Gompels M, Lee WW, Gherardini J, Chéret J, Paus R. Melatonin Exerts Prominent, Differential Epidermal and Dermal Anti-Aging Properties in Aged Human Eyelid Skin Ex Vivo. Int J Mol Sci 2023; 24:15963. [PMID: 37958946 PMCID: PMC10647640 DOI: 10.3390/ijms242115963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin aging is associated with functional deterioration on multiple levels of physiology, necessitating the development of effective skin senotherapeutics. The well-tolerated neurohormone melatonin unfolds anti-aging properties in vitro and in vivo, but it remains unclear whether these effects translate to aged human skin ex vivo. We tested this in organ-cultured, full-thickness human eyelid skin (5-6 donors; 49-77 years) by adding melatonin to the culture medium, followed by the assessment of core aging biomarkers via quantitative immunohistochemistry. Over 6 days, 200 µM melatonin significantly downregulated the intraepidermal activity of the aging-promoting mTORC1 pathway (as visualized by reduced S6 phosphorylation) and MMP-1 protein expression in the epidermis compared to vehicle-treated control skin. Conversely, the transmembrane collagen 17A1, a key stem cell niche matrix molecule that declines with aging, and mitochondrial markers (e.g., TFAM, MTCO-1, and VDAC/porin) were significantly upregulated. Interestingly, 100 µM melatonin also significantly increased the epidermal expression of VEGF-A protein, which is required and sufficient for inducing human skin rejuvenation. In aged human dermis, melatonin significantly increased fibrillin-1 protein expression and improved fibrillin structural organization, indicating an improved collagen and elastic fiber network. In contrast, other key aging biomarkers (SIRT-1, lamin-B1, p16INK4, collagen I) remained unchanged. This ex vivo study provides proof of principle that melatonin indeed exerts long-suspected but never conclusively demonstrated and surprisingly differential anti-aging effects in aged human epidermis and dermis.
Collapse
Affiliation(s)
- Tara Samra
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Tatiana Gomez-Gomez
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Kinga Linowiecka
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Aysun Akhundlu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Gabriella Lopez de Mendoza
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Matthew Gompels
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Wendy W. Lee
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
- Monasterium Laboratory, 48149 Muenster, Germany
- CUTANEON—Skin & Hair Innovations, 22335 Hamburg, Germany
| |
Collapse
|
27
|
Slominski AT, Kim TK, Slominski RM, Song Y, Qayyum S, Placha W, Janjetovic Z, Kleszczyński K, Atigadda V, Song Y, Raman C, Elferink CJ, Hobrath JV, Jetten AM, Reiter RJ. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int J Mol Sci 2023; 24:15496. [PMID: 37895177 PMCID: PMC10607054 DOI: 10.3390/ijms242015496] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.
Collapse
Affiliation(s)
- Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Radomir M. Slominski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuwei Song
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
- Brigham’s Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Wojciech Placha
- Department of Medicinal Biochemistry, Collegium Medicum, Jagiellonian University, 31-008 Kraków, Poland;
| | - Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48161 Münster, Germany;
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Y.S.); (S.Q.); (Z.J.); (V.A.); (C.R.)
| | - Cornelis J. Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 79567, USA;
| | | | - Anton M. Jetten
- Cell Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| |
Collapse
|
28
|
Sun S, Tang T, Wei M. Melatonin enhances the ability of M2 macrophages to secrete IL10 by inhibiting Erk5 signaling pathway. Mol Immunol 2023; 162:45-53. [PMID: 37647773 DOI: 10.1016/j.molimm.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Melatonin plays a role in repairing damaged cartilage and regulating immune cells. The anti-inflammatory effect of Melatonin involves multiple pathways and molecular activation, which directly or indirectly inhibits inflammatory reaction. M2 macrophages have the ability to anti-inflammatory response and repair damaged tissues, secrete IL10 and IL-4, and participate in tissue repair and remodeling. Erk5 is a recently discovered member of the MAPK family and one of the least studied members. It plays an important role in cell differentiation, proliferation, secretion and other functions. This experiment aims to study how Melatonin affects M2 Macrophage polarization and secretion through ERK5 signaling pathway. METHODS The RAW 264.7 macrophages were used for cell culture. The cells were cultured according to the pre-experimental results. The effects of Melatonin on M2 macrophages were comprehensively evaluated by CCK8 activity detection, RT-PCR, ELISA, cellular immunofluorescence, and WB.SD mice were selected to evaluate the effect of Melatonin on cartilage damage in rats with knee Osteoarthritis through HE staining, immunohistochemistry and immunofluorescence. RESULTS Melatonin cultivates RAW 264.7 macrophages. Without affecting the polarization ratio of M2 Macrophage polarization, Melatonin may reduce Erk5 gene expression, reduce Erk5 and p-Erk5 protein synthesis, and cooperate with BIX 02189 to enhance the secretion function of existing M2 macrophages and increase the secretion of cytokines IL10. Immunohistochemistry of rat knee Osteoarthritis model confirmed that the expression of IL10 was up-regulated and the synthesis of type II collagen was enhanced, but immunofluorescence found that the polarization of M2 Macrophage polarization in subchondral bone was not obvious. CONCLUSION Melatonin enhances the ability of M2 macrophages to secrete IL10 by inhibiting Erk5 signaling pathway, but has no effect on M2 Macrophage polarization.
Collapse
Affiliation(s)
- Shouqi Sun
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China; Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital Department of Orthopedics/Chinese National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Tianshi Tang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China; Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital Department of Orthopedics/Chinese National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Min Wei
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China; Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China; Chinese PLA General Hospital Department of Orthopedics/Chinese National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| |
Collapse
|
29
|
Wu R, Huang L, Xia Q, Liu Z, Huang Y, Jiang Y, Wang J, Ding H, Zhu C, Song Y, Liu L, Zhang L, Feng G. Injectable mesoporous bioactive glass/sodium alginate hydrogel loaded with melatonin for intervertebral disc regeneration. Mater Today Bio 2023; 22:100731. [PMID: 37533731 PMCID: PMC10393589 DOI: 10.1016/j.mtbio.2023.100731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a major contributing factor to both lower back and neck pain. As IDD progresses, the intervertebral disc (IVD) loses its ability to maintain its disc height when subjected to axial loading. This failure in the weight-bearing capacity of the IVD is a characteristic feature of degeneration. Natural polymer-based hydrogel, derived from biological polymers, possesses biocompatibility and is able to mimic the structure of extracellular matrix, enabling them to support cellular behavior. However, their mechanical performance is relatively poor, thus limiting their application in IVD regeneration. In this study, we developed an injectable composite hydrogel, namely, Mel-MBG/SA, which is similar to natural weight-bearing IVD. Mesoporous bioactive glasses not only enhance hydrogels, but also act as carriers for melatonin (Mel) to suppress inflammation during IDD. The Mel-MBG/SA hydrogel further provides a mixed system with sustained Mel release to alleviate IL-1β-induced oxidative stress and relieve inflammation associated with IDD pathology. Furthermore, our study shows that this delivery system can effectively suppress inflammation in the rat tail model, which is expected to further promote IVD regeneration. This approach presents a novel strategy for promoting tissue regeneration by effectively modulating the inflammatory environment while harnessing the mechanical properties of the material.
Collapse
Affiliation(s)
- Ruibang Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Leizhen Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Zheng Liu
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yulin Jiang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Juehan Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ce Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Limin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
30
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
31
|
Holtkamp CE, Warmus D, Bonowicz K, Gagat M, Linowiecka K, Wolnicka-Glubisz A, Reiter RJ, Böhm M, Slominski AT, Steinbrink K, Kleszczyński K. Ultraviolet Radiation-Induced Mitochondrial Disturbances Are Attenuated by Metabolites of Melatonin in Human Epidermal Keratinocytes. Metabolites 2023; 13:861. [PMID: 37512568 PMCID: PMC10383625 DOI: 10.3390/metabo13070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is recognized as an effective antioxidant produced by the pineal gland, brain and peripheral organs, which also has anti-inflammatory, immunomodulatory, and anti-tumour capacities. Melatonin has been reported as a substance that counteracts ultraviolet radiation B (UVB)-induced intracellular disturbances. Nevertheless, the mechanistic actions of related molecules including its kynurenic derivatives (N1-acetyl-N2-formyl-5-methoxykynurenine (AFMK)), its indolic derivatives (6-hydroxymelatonin (6(OH)MEL) and 5-methoxytryptamine (5-MT)) and its precursor N-acetylserotonin (NAS) are only poorly understood. Herein, we treated human epidermal keratinocytes with UVB and assessed the protective effect of the studied substances in terms of the maintenance of mitochondrial function or their radical scavenging capacity. Our results show that UVB caused the significant elevation of catalase (CAT) and superoxide dismutase (Mn-SOD), the dissipation of mitochondrial transmembrane potential (mtΔΨ), a reduction in ATP synthesis, and the enhanced release of cytochrome c into cytosol, leading subsequently to UVB-mediated activation of the caspases and apoptosis (appearance of sub-G1 population). Our findings, combined with data reported so far, indicate the counteracting and beneficial actions of melatonin and its molecular derivatives against these deleterious changes within mitochondria. Therefore, they define a path to the development of novel strategies delaying mitochondrial aging and promoting the well-being of human skin.
Collapse
Affiliation(s)
- Chantal E. Holtkamp
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Dawid Warmus
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (A.W.-G.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (M.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (M.G.)
| | - Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
- Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (A.W.-G.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| |
Collapse
|
32
|
Bocheva G, Slominski RM, Slominski AT. Environmental Air Pollutants Affecting Skin Functions with Systemic Implications. Int J Mol Sci 2023; 24:10502. [PMID: 37445680 PMCID: PMC10341863 DOI: 10.3390/ijms241310502] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The increase in air pollution worldwide represents an environmental risk factor that has global implications for the health of humans worldwide. The skin of billions of people is exposed to a mixture of harmful air pollutants, which can affect its physiology and are responsible for cutaneous damage. Some polycyclic aromatic hydrocarbons are photoreactive and could be activated by ultraviolet radiation (UVR). Therefore, such UVR exposure would enhance their deleterious effects on the skin. Air pollution also affects vitamin D synthesis by reducing UVB radiation, which is essential for the production of vitamin D3, tachysterol, and lumisterol derivatives. Ambient air pollutants, photopollution, blue-light pollution, and cigarette smoke compromise cutaneous structural integrity, can interact with human skin microbiota, and trigger or exacerbate a range of skin diseases through various mechanisms. Generally, air pollution elicits an oxidative stress response on the skin that can activate the inflammatory responses. The aryl hydrocarbon receptor (AhR) can act as a sensor for small molecules such as air pollutants and plays a crucial role in responses to (photo)pollution. On the other hand, targeting AhR/Nrf2 is emerging as a novel treatment option for air pollutants that induce or exacerbate inflammatory skin diseases. Therefore, AhR with downstream regulatory pathways would represent a crucial signaling system regulating the skin phenotype in a Yin and Yang fashion defined by the chemical nature of the activating factor and the cellular and tissue context.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Radomir M. Slominski
- Department of Genetics, Informatics Institute in the School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
34
|
Areshidze DA, Kozlova MA, Mnikhovich MV, Bezuglova TV, Chernikov VP, Gioeva ZV, Borisov AV. Influence of Various Light Regimes on Morphofunctional Condition of Transplantable Melanoma B16. Biomedicines 2023; 11:biomedicines11041135. [PMID: 37189753 DOI: 10.3390/biomedicines11041135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
A study of the morphofunctional condition of mice with transplantable melanoma B16 under the influence of a normal daylight regime, constant lighting and constant darkness was conducted. It was shown that exposure to constant lighting leads to intensification of the proliferation of melanoma cells, more significant growth and spread of the tumor, the development of more pronounced secondary changes, the presence of perivascular growth and an increase in perineural invasion. At the same time, keeping of animals in constant darkness significantly reduced the intensity of the proliferative process in the tumor and lead to tumor regression in the absence of signs of lympho-, intravascular and intraneural invasion. Intergroup differences in tumor cell status were confirmed by the results of micromorphometric studies. It was also shown that the expression of clock genes was suppressed by an exposure to constant light, while an influence of constant darkness, on contrary, led to its intensification.
Collapse
Affiliation(s)
- David A Areshidze
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Maria A Kozlova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Maxim V Mnikhovich
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Tatyana V Bezuglova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Valery P Chernikov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Zarina V Gioeva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| | - Aleksey V Borisov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Center of Surgery", 117418 Moscow, Russia
| |
Collapse
|
35
|
Zhang S, Yao X. Mechanism of action and promising clinical application of melatonin from a dermatological perspective. J Transl Autoimmun 2023; 6:100192. [PMID: 36860771 PMCID: PMC9969269 DOI: 10.1016/j.jtauto.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.
Collapse
Key Words
- 5HT, Serotonin
- AAD, Aromatic amino acid decarboxylase
- AANAT/NAT, serotonin-N-acetyltransferase(s)
- Anti-Inflammation
- Antioxidation
- CAT, catalase
- COX-2, Cyclooxygenase-2
- CYP450, cytochrome P450
- Casp-1/3, caspase 1/3
- DNCB, 2,4-dinitrochlorobenzene
- GPx, Glutathione peroxidase
- GSH, Glutathione
- HIOMT, 4-hydroxyindole-O-methyl transferase
- HO-1, heme oxygenase-1
- HSP 70, Heat Shock Protein 70
- IKK-α, IkB kinase-α
- IL-1β, interleukin-1 β
- IL-6, interleukin- 6
- IkB, NF-κ-B inhibitor
- Immunoregulation
- MT, Melatonin
- MT1/2, Melatonin receptor
- Melatonin
- NF-κB, Nuclear factor kappa-B
- NQO1, NAD(P), quinone oxidoreductase 1
- NQO2, NRH, Quinone oxidoreductase 2
- Nrf2, Nuclear erythroid 2-related factor
- Oncostatic mechanism
- PEPT1/2, oligopeptide transporter 1/2
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- RZR-α, Retinoid Z receptor α
- SOD, superoxide dismutase
- Skin barrier
- TPH, tryptophan5-hydroxylase enzymes, including dominant TPH1 and TPH2
- Trp, Tryptophan
- iNOS, Inducible nitric oxide synthase
- γ-GCS, c-glutamylcysteine synthetase
Collapse
Affiliation(s)
| | - Xu Yao
- Corresponding author. Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
36
|
Shafiei G, Moghani-Ghoroghi F, Miyan J, Almasi M, Kashani IR, Nikzad H, Hosseini ES, Moshkdanian G. Melatonin protects against visible light-induced oxidative stress and promotes the implantation potential of mouse blastocyst in vitro. Res Vet Sci 2023; 155:29-35. [PMID: 36610243 DOI: 10.1016/j.rvsc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Improvement of embryo culture media using antioxidant agents could help to improve embryo quality against environmental factors such as visible light and could overcome implantation failures. The usefulness of the melatonin against the effect of light on the expression of the primary implantation receptors, ErbB1 and ErbB4 on pre-implantation mouse embryo was investigated. Two-cell mouse embryos were exposed to the 1600 LUX light for 30 min then randomly divided into 3 groups including: Melatonin-Treated; Luzindole Treated and Simple media as a Control group. After 72-96 The expanded blastocysts were examined for morphological quality of the embryos by Hoechst and propidium iodide staining and for the expression of ErbB1 and ErbB4 by Real-time PCR and immunocytochemistry. The expression of the Sirt3 gene was also assayed. Furthermore, intracellular reactive oxygen species (ROS) levels and the total antioxidant capacity (TAC) were examined by DCFH-DA fluorescence intensity and radical cation respectively. The number of cells in the inner cell mass (ICM) and outer cell mass (OCM) were elevated significantly in the Melatonin-treated group suggesting increased viability and proliferation. Furthermore, we found that melatonin significantly increased the expression levels of ErbB1, ErbB4, and Sirt3 genes, and the protein expression of ErbB1, ErbB4 correlated with intracellular ROS levels and TAC significantly increased after melatonin treatment. Together, these results demonstrate that melatonin could be helpful to improve preimplantation embryos through its effects in decreasing ROS levels and increasing expression of implantation-related genes.
Collapse
Affiliation(s)
- Golnaz Shafiei
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical sciences, Kerman, Iran
| | | | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Majid Almasi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Ghazaleh Moshkdanian
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Pathipaka R, Thyagarajan A, Sahu RP. Melatonin as a Repurposed Drug for Melanoma Treatment. Med Sci (Basel) 2023; 11:9. [PMID: 36649046 PMCID: PMC9844458 DOI: 10.3390/medsci11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer, with a greater risk of metastasis and a higher prevalence and mortality rate. This cancer type has been demonstrated to develop resistance to the known treatment options such as conventional therapeutic agents and targeted therapy that are currently being used as the standard of care. Drug repurposing has been explored as a potential alternative treatment strategy against disease pathophysiologies, including melanoma. To that end, multiple studies have suggested that melatonin produced by the pineal gland possesses anti-proliferative and oncostatic effects in experimental melanoma models. The anticarcinogenic activity of melatonin is attributed to its ability to target a variety of oncogenic signaling pathways, including the MAPK pathways which are involved in regulating the behavior of cancer cells, including cell survival and proliferation. Additionally, preclinical studies have demonstrated that melatonin in combination with chemotherapeutic agents exerts synergistic effects against melanoma. The goal of this review is to highlight the mechanistic insights of melatonin as a monotherapy or combinational therapy for melanoma treatment.
Collapse
Affiliation(s)
| | | | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
38
|
Sahoo DK, Chainy GBN. Hormone-linked redox status and its modulation by antioxidants. VITAMINS AND HORMONES 2023; 121:197-246. [PMID: 36707135 DOI: 10.1016/bs.vh.2022.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hormones have been considered as key factors involved in the maintenance of the redox status of the body. We are making considerable progress in understanding interactions between the endocrine system, redox status, and oxidative stress with the dynamics of life, which encompasses fertilization, development, growth, aging, and various pathophysiological states. One of the reasons for changes in redox states of vertebrates leading to oxidative stress scenario is the disruption of the endocrine system. Comprehending the dynamics of hormonal status to redox state and oxidative stress in living systems is challenging. It is more difficult to come to a unifying conclusion when some hormones exhibit oxidant properties while others have antioxidant features. There is a very limited approach to correlate alteration in titers of hormones with redox status and oxidative stress with growth, development, aging, and pathophysiological stress. The situation is further complicated when considering various tissues and sexes in vertebrates. This chapter discusses the beneficial impacts of hormones with antioxidative properties, such as melatonin, glucagon, insulin, estrogens, and progesterone, which protect cells from oxidative damage and reduce pathophysiological effects. Additionally, we discuss the protective effects of antioxidants like vitamins A, E, and C, curcumin, tempol, N-acetyl cysteine, α-lipoic acid, date palm pollen extract, resveratrol, and flavonoids on oxidative stress triggered by hormones such as aldosterone, glucocorticoids, thyroid hormones, and catecholamines. Inflammation, pathophysiology, and the aging process can all be controlled by understanding how antioxidants and hormones operate together to maintain cellular redox status. Identifying the hormonal changes and the action of antioxidants may help in developing new therapeutic strategies for hormonal imbalance-related disorders.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa States University, Ames, IA, United States.
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
39
|
Nikkola V, Huotari-Orava R, Joronen H, Grönroos M, Kautiainen H, Ylianttila L, Snellman E, Partonen T. Melatonin immunoreactivity of epidermal skin is higher in the evening than morning but does not account for erythema sensitivity. Chronobiol Int 2022; 40:132-144. [PMID: 36576151 DOI: 10.1080/07420528.2022.2157733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The skin is a site of melatonin synthesis, and melatonin has a role in protecting against ultraviolet radiation-induced damage. Ultraviolet B (UVB) induced erythema seems to vary between morning and evening. We investigated whether epidermal melatonin immunoreactivities in the morning differed from those in the evening, and whether UVB-induced erythema was associated with these melatonin immunoreactivities in healthy volunteers. Erythema sensitivity of the skin was determined in the morning and in the evening by scoring the Minimal Erythema Dose and quantifying the erythema index (EI). We took biopsies from the non-UVB-exposed skin of healthy volunteers (n = 39) in the morning and in the evening to study melatonin immunoreactivity with immunohistochemistry (IHC). In the IHC staining, there was more melatonin immunoreactivity in the evening than in the morning (p < .001). Erythema was more pronounced in the evening than in the morning irradiated skin (p < .001). The graded amount of melatonin immunoreactivity in the samples was not associated with the EI. We discovered melatonin immunoreactivity of the non-irradiated skin to vary diurnally. However, endogenous skin melatonin does not seem to be the reason why NB-UVB induces more erythema in the evening than in the morning.
Collapse
Affiliation(s)
- Veera Nikkola
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Riitta Huotari-Orava
- Faculty of Medicine and Health Technology, Department of Pathology and FIMLAB, Tampere University, Tampere, Finland
| | - Heli Joronen
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Mari Grönroos
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Päijät-Häme Social and Health Care Group, Lahti, Finland
| | - Hannu Kautiainen
- Unit of Primary Health Care, Department of General Practice, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.,Unit of Primary Health Care, Kuopio University, Kuopio, Finland
| | - Lasse Ylianttila
- Non-Ionizing Radiation Surveillance, Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Erna Snellman
- Faculty of Medicine and Health Technology, Department of Dermatology and Venereology, Tampere University, Tampere, Finland.,Department of Dermatology and Allergology, Tampere University Hospital, Tampere, Finland.,Department of Dermatology, University of Turku, Turku, Finland
| | - Timo Partonen
- Department of Public Health, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
40
|
Gong YQ, Hou FT, Xiang CL, Li CL, Hu GH, Chen CW. The mechanisms and roles of melatonin in gastrointestinal cancer. Front Oncol 2022; 12:1066698. [PMID: 36591447 PMCID: PMC9798083 DOI: 10.3389/fonc.2022.1066698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal (GI) cancer is a global health problem with wide lesions and numerous cases. The increased morbidity and mortality of GI cancer is a socio-economic challenge for decades to come. Melatonin, a nature indolamine, exerts a crucial role in molecular interactions involved in multiple functional and physiological processes. Increasing evidence indicates that melatonin can modulate GI tract, decrease the occurrence of GI cancer, and enhance the sensitivity to chemoradiotherapy. However, little is known about the exact role of melatonin in anti-carcinogenesis. In this review, we discuss the action of the beneficial effects of melatonin in GI carcinogenesis. Furthermore, we compile the understanding of the role of melatonin in GI cancer, including esophageal cancer (EC), gastric cancer (GC), hepatocellular carcinoma (HCC), colorectal cancer (CRC), and pancreatic cancer (PC). In addition, the potential therapeutic application and clinical evaluation of melatonin in GI cancer are also discussed.
Collapse
Affiliation(s)
- Yong-Qiang Gong
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Fu-Tao Hou
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Cai-Ling Xiang
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Cheng-Long Li
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Guo-Huang Hu
- Department of General Surgery, Institute of Digestive Surgery of Changsha, Affiliated Changsha Hospital of Hunan Normal University, Changsha, Hunan, China,*Correspondence: Guo-Huang Hu, ; Chao-Wu Chen,
| | - Chao-Wu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China,*Correspondence: Guo-Huang Hu, ; Chao-Wu Chen,
| |
Collapse
|
41
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
42
|
Yuan X, An J, Zheng T, Liu W. Exogenous melatonin improves salt tolerance mainly by regulating the antioxidant system in cyanobacterium Nostoc flagelliforme. PeerJ 2022; 10:e14479. [PMID: 36518273 PMCID: PMC9744160 DOI: 10.7717/peerj.14479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Melatonin is a multifunctional nontoxic bio-stimulant or signaling molecule, generally distributing in different animal and plant organs for invigorating numerous physiological processes against abiotic stresses. In this study, we investigated the potential impact of melatonin on the cyanobacterium Nostoc flagelliforme when exposed to salt stress according to some biochemical and physiological parameters, such as relative electrolyte leakage, PSII activity, and photosynthetic pigments including chlorophyll a, phycocyanobilin, and phycoerythrobilin. We found that melatonin could also maintain K+ homeostasis in salt-stressed N. flagelliforme. These above results confirmed melatonin had multiple functions in hyperosmotic stress and ion stress caused by salinity. Notably, we observed melatonin could regulate the reactive oxygen species (ROS) signal and distinctly decrease the content of hydrogen peroxide and superoxide anion in salt-stressed cells, which were largely attributed to the increased antioxidant enzymes activities including catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase. Finally, qRT-PCR analysis showed that melatonin stimulated the expression of antioxidant genes (NfCAT, NfSOD, and NfGR). In general, our findings demonstrate melatonin has beneficial effects on N. flagelliforme under salt stress by intensively regulating antioxidant system.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Jing An
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an, China
| | - Wenjian Liu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an, China
| |
Collapse
|
43
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
44
|
Moradian F, Pourhanifeh MH, Mehrzadi S, Karimi‐Behnagh A, Hosseinzadeh A. Therapeutic potentials of melatonin in the treatment of lymphoma: A review of current evidence. Fundam Clin Pharmacol 2022; 36:777-789. [DOI: 10.1111/fcp.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Farid Moradian
- Departement of General Surgery Alborz University of Medical Science Alborz Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences Kashan University of Medical Sciences Kashan Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
45
|
Paulino LRFM, Barroso PAA, Silva BR, Barroso LG, Barbalho EC, Bezerra FTG, Souza ALP, Monte APO, Silva AWB, Matos MHT, Silva JRV. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles. Domest Anim Endocrinol 2022; 81:106750. [PMID: 35870423 DOI: 10.1016/j.domaniend.2022.106750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the (1) expression of melatonin receptors types 1A/B (MTNR1A/B) in bovine ovaries and (2) the in vitro effects of melatonin on secondary follicle development, antrum formation, viability, and expression of messenger ribonucleic acid (mRNA) for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase-1 (GPX1) and peroxiredoxin 6 (PRDX6). The expression of MTNR1A/B in bovine ovarian follicles was demonstrated by immunohistochemistry. To choose the most effective concentration of melatonin on follicular growth and viability, isolated secondary follicles were cultured individually at 38.5°C, with 5% CO2 in air, for 18 d in TCM-199+ alone or supplemented with 10-11, 10-9, 10-7 or 10-5 M melatonin. Then, melatonin receptor antagonist, luzindole, was tested to further evaluate the mechanisms of actions of melatonin, that is, the follicles were cultured in control medium alone or supplemented with 10-7 M melatonin, 10 µM luzindole and both 10-7 M melatonin and 10 µM luzindole. Follicular growth, morphology and antrum formation were evaluated at days 6, 12 and 18. At the end of culture, viability of secondary follicles was analyzed by calcein-AM and ethidium homodimer-1, and the relative levels of mRNA for SOD, CAT, GPX1 and PRDX6 were evaluated by real time polymerase chain reaction. Immunohistochemistry results showed expression of MTNR1A/B in oocyte and granulosa cells of primordial, primary, secondary and antral follicles. Secondary follicles cultured in medium supplemented with melatonin at different concentrations had well preserved follicles after 18 d of culture. Furthermore, follicles cultured in presence of 10-7 M melatonin presented significantly higher diameters than those cultured in other treatments. The presence of melatonin receptor antagonist, luzindole, blocked the effects of melatonin on follicular growth and viability. In addition, follicles cultured in medium containing only melatonin had significantly higher rates of antrum formation. Follicles cultured in medium containing only melatonin had higher relative levels of mRNA for CAT, SOD and PRDX-6 than those cultured with both melatonin and luzindole. Follicles cultured with luzindole only or both melatonin and luzindole had lower relative levels of mRNA for PRDX6 and GPX1 than those cultured control medium. In conclusion, melatonin promotes growth of bovine secondary follicles through its membrane-coupled receptors, while luzindole blocks the effects of melatonin on follicle growth and reduces the expression of antioxidant enzymes in cultured follicles.
Collapse
Affiliation(s)
- L R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - P A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - B R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - L G Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - E C Barbalho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A L P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - A P O Monte
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - A W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil
| | - M H T Matos
- Laboratory of Cell Biology, Cytology and Histology, Federal University of Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, Ceará, Brazil.
| |
Collapse
|
46
|
Nan B, Sun X, Zhang J, Huang Q, Zhang X, Li Y, Duan J, Chen R, Sun Z, Shen H. Accumulated oxidative stress risk in HUVECs by chronic exposure to non-observable acute effect levels of PM 2.5. Toxicol In Vitro 2022; 82:105376. [PMID: 35550414 DOI: 10.1016/j.tiv.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/26/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022]
Abstract
Few studies have reported the accumulation of non-observable acute effect (NOAE) of PM2.5, especially exposure to the NOAE doses (NOAEDs) of PM2.5 in chronic way. To address this issue, HUVECs were cultured from the 1st to 30th generations (G1 to G30) and treated by the NOAED PM2.5 once every three passages. The generational changes of oxidative damage markers, inflammatory factors, and cell adhesion molecules (CAMs) were monitored in HUVECs at G6, G12, G18, G24, and G30, and proteomes at G18 and G30, respectively. The oxidative damages monotonically accumulated with exposure time elongation and PM2.5 dose increases. Similar to the oxidative trends, VCAM1 and ICAM1 significantly and dose-dependently increased at G30. However, many inflammatory factors altered with complex patterns to respond the NOAEDs' PM2.5. Proteomic results demonstrated most proteins expressed stably, and the generational proteome alterations were more apparent than the NOAEDs' PM2.5 induced ones. The PM2.5-related proteins varied much, but only few can cross the doses and generations. These observations suggested that the proteins changed holistically rather than individually. In summary, SOD1, SUMO2, and H3F3A may initiate HUVECs responses to PM2.5, and then broadcast and accumulate the NOAE via DNA repair, immune response, and glycolysis.
Collapse
Affiliation(s)
- Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xi Zhang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, PR China; Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, PR China.
| |
Collapse
|
47
|
Li T, Zhou L, Fan M, Chen Z, Yan L, Lu H, Jia M, Wu H, Shan L. Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Skin Aging of Nude Mice Through Autophagy-Mediated Anti-Senescent Mechanism. Stem Cell Rev Rep 2022; 18:2088-2103. [PMID: 35864432 DOI: 10.1007/s12015-022-10418-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Skin aging is a currently irreversible process, affected by increased oxidative stress, activated cellular senescence, and lacked regeneration of the dermal layer. Mesenchymal stem cells (MSCs), such as human umbilical cord-derived MSCs (hucMSCs), have pro-regeneration and anti-aging potencies. To explore whether hucMSCs can be used to treat skin aging, this study employed skin-aging model of nude mice to conduct in vivo assays, including biochemical analysis of superoxide dismutase (SOD) and malondialdehyde (MDA), gross observation, histopathological observation, and immunohistochemical analysis. To clarify how hucMSCs work on skin aging, this study employed skin-aging model of human dermal fibroblasts (HDFs) to conduct in vitro assays by applying conditional medium of hucMSCs (CMM), including wound healing assay, senescence staining, flow cytometric oxidative detection, real time PCR, and western blot analysis. The in vivo data demonstrated that hucMSCs dose-dependently removed wrinkles, smoothed skin texture, and increased dermal thickness and collagen production of aged skin by reversing SOD and MDA levels and up-regulating Col-1 and VEGF expressions, indicating anti-oxidative and pro-regenerative effects against skin aging. The in vitro data revealed that hucMSCs significantly reversed the senescence of HDFs by promoting cell migration, inhibiting ROS production, and restoring the overexpressions of oxidative and senescent markers through paracrine mode of action, and the paracrine mechanism was mediated by the inhibition of autophagy. This study provided novel knowledge regarding the anti-aging efficacy and paracrine mechanism of hucMSCs on skin, making hucMSCs-based therapy a promising regime for skin aging treatment.
Collapse
Affiliation(s)
- Ting Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengqiang Fan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China
| | - Haishan Lu
- Department of Dermatology, PLA 903 Hospital, Hangzhou, China
| | - Ming Jia
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiling Wu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China. .,Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China. .,Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd), Hangzhou, China.
| |
Collapse
|
48
|
Nadri P, Ansari-Mahyari S, Jafarpour F, Mahdavi AH, Tanhaei Vash N, Lachinani L, Dormiani K, Nasr-Esfahani MH. Melatonin accelerates the developmental competence and telomere elongation in ovine SCNT embryos. PLoS One 2022; 17:e0267598. [PMID: 35862346 PMCID: PMC9302776 DOI: 10.1371/journal.pone.0267598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
SCNT embryos suffer from poor developmental competence (both in vitro and in vivo) due to various defects such as oxidative stress, incomplete epigenetic reprogramming, and flaws in telomere rejuvenation. It is very promising to ameliorate all these defects in SCNT embryos by supplementing the culture medium with a single compound. It has been demonstrated that melatonin, as a multitasking molecule, can improve the development of SCNT embryos, but its function during ovine SCNT embryos is unclear. We observed that supplementation of embryonic culture medium with 10 nM melatonin for 7 days accelerated the rate of blastocyst formation in ovine SCNT embryos. In addition, the quality of blastocysts increased in the melatonin-treated group compared with the SCNT control groups in terms of ICM, TE, total cell number, and mRNA expression of NANOG. Mechanistic studies in this study revealed that the melatonin-treated group had significantly lower ROS level, apoptotic cell ratio, and mRNA expression of CASPASE-3 and BAX/BCL2 ratio. In addition, melatonin promotes mitochondrial membrane potential and autophagy status (higher number of LC3B dots). Our results indicate that melatonin decreased the global level of 5mC and increased the level of H3K9ac in the treated blastocyst group compared with the blastocysts in the control group. More importantly, we demonstrated for the first time that melatonin treatment promoted telomere elongation in ovine SCNT embryos. This result offers the possibility of better development of ovine SCNT embryos after implantation. We concluded that melatonin can accelerate the reprogramming of telomere length in sheep SCNT embryos, in addition to its various beneficial effects such as increasing antioxidant capacity, reducing DNA damage, and improving the quality of derived blastocysts, all of which led to a higher in vitro development rate.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Saeid Ansari-Mahyari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- * E-mail: (SAM); , (MHNE)
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (SAM); , (MHNE)
| |
Collapse
|
49
|
Melatonin Attenuates Methotrexate-Induced Reduction of Antioxidant Activity Related to Decreases of Neurogenesis in Adult Rat Hippocampus and Prefrontal Cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1596362. [PMID: 35873801 PMCID: PMC9307408 DOI: 10.1155/2022/1596362] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023]
Abstract
Previous studies have revealed that the side effects of anticancer drugs induce a decrease of neurogenesis. Methotrexate (MTX), one of anticancer drugs, can induce lipid peroxidation as an indicator of oxidative stress in the brain. Melatonin has been presented as an antioxidant that can prevent oxidative stress-induced neuronal damage via the activation of antioxidant enzymes associated with the increase of neurogenesis. The aims of the present study are to examine the neuroprotective effect of melatonin on the neurotoxicity of MTX on neurogenesis and the changes of protein expression and antioxidant enzyme levels in adult rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were assigned into four groups: vehicle, MTX, melatonin, and melatonin+MTX groups. The vehicle group received saline solution and 10% ethanol solution, whereas the experimental groups received MTX (75 mg/kg, i.v.) and melatonin (8 mg/kg, i.p.) treatments. After the animal examination, the brains were removed for p21 immunofluorescence staining. The hippocampus and PFC were harvested for Western blot analysis and biochemical assessments of malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). The immunofluorescence result showed that coadministration with melatonin diminished p21-positive cells in the hippocampal dentate gyrus, indicating a decrease of cell cycle arrest. Melatonin reduced the levels of MDA and prevented the decline of antioxidant enzyme activities in rats receiving MTX. In the melatonin+MTX group, the protein expression results showed that melatonin treatment significantly upregulated synaptic plasticity and an immature neuron marker through enhancing brain derived neurotrophic factor (BDNF) and doublecortin (DCX), respectively. Moreover, melatonin ameliorated the antioxidant defense system by improving the nuclear factor erythroid 2-related factor 2 (Nrf2) in rats receiving MTX. These findings suggested that the effects of melatonin can ameliorate MTX toxicity by several mechanisms, including an increase of endogenous antioxidants and neurogenesis in adult rat hippocampus and PFC.
Collapse
|
50
|
Yuksel Egrilmez M, Kocturk S, Aktan S, Oktay G, Resmi H, Simsek Keskin H, Guner Akdogan G, Ozkan S. Melatonin Prevents UVB-Induced Skin Photoaging by Inhibiting Oxidative Damage and MMP Expression through JNK/AP-1 Signaling Pathway in Human Dermal Fibroblasts. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070950. [PMID: 35888040 PMCID: PMC9322074 DOI: 10.3390/life12070950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Exposure to ultraviolet (UV) irradiation causes damage to the skin and induces photoaging. UV irradiation stimulates production of reactive oxygen/nitrogen species, which results in activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) in fibroblasts. MAPKs are responsible for activation of activator protein-1 (AP-1), which subsequently upregulates expression of matrix metalloproteinases (MMPs). Melatonin is a potent free radical scavenger which is known to have photoprotective effects. The aim of this study is to investigate the underlying molecular mechanisms for the photoprotective effects of melatonin in UVB-irradiated primary human dermal fibroblasts (HDFs) in terms of EGFR activation, oxidative/nitrosative damage, JNK/AP-1 activation, MMP activities, and the levels of tissue inhibitors of metalloproteinase-1 (TIMP-1) and type I procollagen (PIP-C). In this study, HDFs were pretreated with 1 μM of melatonin and then irradiated with 0.1 J/cm2 of UVB. Changes in the molecules were analyzed at different time points. Melatonin inhibited UVB-induced oxidative/nitrosative stress damage by reducing malondialdehyde, the ratio of oxidized/reduced glutathione, and nitrotyrosine. Melatonin downregulated UV-induced activation of EGFR and the JNK/AP-1 signaling pathway. UVB-induced activities of MMP-1 and MMP-3 were decreased and levels of TIMP-1 and PIP-C were increased by melatonin. These findings suggest that melatonin can protect against the adverse effects of UVB radiation by inhibiting MMP-1 and MMP-3 activity and increasing TIMP-1 and PIP-C levels, probably through the suppression of oxidative/nitrosative damage, EGFR, and JNK/AP-1 activation in HDFs.
Collapse
Affiliation(s)
- Mehtap Yuksel Egrilmez
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Correspondence:
| | - Semra Kocturk
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Sebnem Aktan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.A.); (S.O.)
| | - Gulgun Oktay
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Halil Resmi
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Hatice Simsek Keskin
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Gul Guner Akdogan
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
- Faculty of Medicine, Izmir University of Economics, Izmir 35330, Turkey
| | - Sebnem Ozkan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.A.); (S.O.)
| |
Collapse
|