1
|
Jiang L, Yuan Z, Yan W, Tang P, Yuan P, Zheng P, Chu J, Xin P, Cheng S, Kang Z, Liu J. Transcriptomic and metabolomic analyses unveil TaASMT3-mediated wheat resistance against stripe rust by promoting melatonin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70182. [PMID: 40298361 DOI: 10.1111/tpj.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Plants have evolved a series of complicated defense mechanisms to counteract pathogen invasions. Although many studies have provided molecular evidence of resistance proteins and downstream signal transduction networks, the mechanisms by which plants resist pathogens remain poorly understood at the metabolite level. Here, we performed transcriptomic analyses of wheat leaves infected with Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. Functional enrichment analysis of identified differentially expressed genes (DEGs) revealed the strongest resistance responses at 24 h post-inoculation (hpi) in the incompatible wheat-Pst interaction system. Integrated with the metabolomics data at 24 hpi, we found that the amino acid metabolic pathways appeared to be directly involved in stripe rust resistance. Among these, five differentially abundant metabolites (DAMs) indole, tryptophan, tryptamine, N-Methylserotonin, and 5-Methoxyindoleacetate were enriched to the biosynthesis pathway of melatonin, a branch of tryptophan metabolism. Subsequent UPLC-MS/MS analysis confirmed that melatonin was highly accumulated in the incompatible wheat-Pst system, but not in the compatible interaction system. Exogenous melatonin treatment induced wheat resistance to Pst. The most significantly upregulated melatonin biosynthesis-related gene in the incompatible wheat-Pst system was TaASMT3, which encodes an acetylserotonin O-methyltransferase. Virus-induced gene silencing analysis revealed that knocking down TaASMT3 reduced wheat resistance to stripe rust, further suggesting a positive role of melatonin in wheat resistance to Pst. Taken together, these data suggest that melatonin was accumulated during Pst infection to activate wheat defense responses, offering a new perspective for elucidation of wheat stripe rust resistance based on metabolic dynamics.
Collapse
Affiliation(s)
- Lihua Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zekai Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenting Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei Tang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Pu Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Peijing Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peiyong Xin
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shujing Cheng
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Wang XF, Dong FX, Jiang YS, Wei JF, Zhao QF, Ji W. Exogenous melatonin and salicylic acid enhance postharvest quality and boost antioxidant capacity in Vitis vinifera cv. 'Cuibao seedless' grape berries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109850. [PMID: 40184905 DOI: 10.1016/j.plaphy.2025.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The quality of table grape is a key factor influencing consumer purchasing decisions and market prices. However, grape is soft, juicy, and prone to rotting and deterioration, making them unsuitable for storage. To ensure grape quality and extend its shelf life, this study applied salicylic acid (SA), melatonin (MT), and SA + MT treatments to postharvest mature grape. The appearance index, antioxidant content, enzyme activity, and gene expression levels of fruits stored at low temperatures for varying durations were measured. The results showed that SA, MT, and SA + MT treatments effectively reduced the browning index(BI), minimized weight loss(WL), and preserved the contents of ascorbic acid (AsA), soluble sugars (SS), and soluble proteins (SP). Compared to the control group, the contents of total phenols (TP), flavonoids (TF), proline (Pro), and the activities of superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia lyase (PAL) were higher in each hormone treatment group, while malondialdehyde (MDA) levels and the activities of polyphenol oxidase (PPO) and peroxidase (POD) were lower. Principal component analysis (PCA) revealed that MT treatment was most effective, followed by SA and SA + MT treatments. Correlation analysis indicated a positive correlation between the contents of TP and TF and their associated structural enzymes. Furthermore, the expression levels of genes related to phenolic and flavonoid synthesis (VvPAL, VvCHI, VvF3H2, VvANR) were significantly upregulated in all treatment groups. This study provides a foundation for further exploring the effects of hormones on postharvest grape.
Collapse
Affiliation(s)
- Xiao-Fang Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Feng-Xia Dong
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Yong-Shan Jiang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Jiu-Feng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030800, PR China
| | - Qi-Feng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, 030800, PR China.
| | - Wei Ji
- College of Horticulture, Shanxi Agricultural University, Taigu, 030800, PR China.
| |
Collapse
|
3
|
Wang T, Yang J, Cao J, Zhang Q, Liu H, Li P, Huang Y, Qian W, Bi X, Wang H, Zhang Y. MsbZIP55 regulates salinity tolerance by modulating melatonin biosynthesis in alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40081875 DOI: 10.1111/pbi.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Soil salinity is a severe abiotic stress that damages plant growth and development. As an antioxidant and free radical scavenger, melatonin is well known for helping plants survive abiotic conditions, including salinity stress. Here, we report that the salt-related gene MsSNAT1, encoding a rate-limiting melatonin biosynthesis enzyme, is located in the chloroplast and contributes to salinity stress tolerance in alfalfa. We found that the MsSNAT1 overexpressing alfalfa lines exhibited higher endogenous melatonin levels and increased tolerance to salt stress by promoting antioxidant systems and improving ion homeostasis. Furthermore, through a combination of transcriptome sequencing, dual-luciferase assays and transgenic analysis, we identified that the basic leucine zipper (bZIP) transcription factor, MsbZIP55, is associated with salt response and MsSNAT1 expression. EMSA analysis and ChIP-qPCR uncovered that MsbZIP55 can recognize and directly bind to the MsSNAT1 promoter in vitro and in vivo. MsbZIP55 acts as a negative regulator of MsSNAT1 expression, thereby reducing melatonin biosynthesis. Morphological analysis revealed that overexpressing MsbZIP55 conferred salt sensitivity to transgenic alfalfa through a higher Na+/K+ ratio and lower antioxidant activities, which could be alleviated by applying exogenous melatonin. Silencing of MsbZIP55 by RNA interference in alfalfa resulted in higher expression of MsSNAT1 and promoted salt tolerance by enhancing the antioxidant system enzyme activities and ion homeostasis. Our findings indicate that the MsbZIP55-MsSNAT1 module plays a crucial role in regulating melatonin biosynthesis in alfalfa while facilitating protection against salinity stress. These results shed light on the regulatory mechanism of melatonin biosynthesis related to the salinity stress response in alfalfa.
Collapse
Affiliation(s)
- Tingting Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - JiaQi Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - JiaMin Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Qi Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - HuaYue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Peng Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - YiZhi Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - WenWu Qian
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhang H, Huang C, Gao C, Yan W, Song W, Hu X, Li L, Wei Z, Li Y, Chen J, Sun Z. Evolutionary-Distinct Viral Proteins Subvert Rice Broad-Spectrum Antiviral Immunity Mediated by the RAV15-MYC2 Module. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412835. [PMID: 39903806 PMCID: PMC11948057 DOI: 10.1002/advs.202412835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
A variety of plant viruses employ different virulence strategies to achieve successful infection, resulting in abnormal plant development. However, the common pathogenicity of distinct viruses has rarely been studied. Here, it is shown that a plant-specific RAV-type transcription factor, OsRAV15, is specifically targeted by several distinct viral proteins for facilitating viral infection. OsRAV15 is found to activate jasmonic acid (JA)-mediated broad-spectrum antiviral immunity by physically associating with JA signaling essential components OsMYC2-OsJAZ complex. To facilitate viral infection, evolutionarily distinct viral proteins encoded by diverse rice viruses generally disrupt the OsRAV15-OsMYC2 complex to attenuate activation of JA signaling. Together, the results reveal a common counter-defense strategy used by different viruses to suppress the OsRAV15-OsMYC2 module that plays a vital role in fine-tuning JA-mediated antiviral defense.
Collapse
Affiliation(s)
- Hehong Zhang
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Chaorui Huang
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Chenfei Gao
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Wenkai Yan
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Weiqi Song
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Xiaodi Hu
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Lulu Li
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Zhongyan Wei
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Yanjun Li
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Zongtao Sun
- State Key Laboratory for Quality and Safety of Agro‐ProductsKey Laboratory of Biotechnology in Plant Protection of MARAZhejiang Key Laboratory of Green Plant ProtectionInstitute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
5
|
Yu P, Tang X, Chen B, Chen Z, Cui W, Xing Y, Li Y, Zhang F, Barroso JB, Rodriguez LG, Yao Y, Gao Y. The melatonin synthase-encoding gene ASMT mediates poplar resistance to drought stress and fungi Dothiorella gregaria. Gene 2025; 937:149154. [PMID: 39647802 DOI: 10.1016/j.gene.2024.149154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In recent years, the increase in extreme climates, such as persistent high temperatures and drought, has adversely affected the growth and development of fast-growing trees. Melatonin (MT) plays an important role in plant responses to biotic and abiotic stresses, yet there is a lack of research on the specific role of limiting enzyme genes for MT biosynthesis in fast-growing woody plants. In this study, we investigated the function of PtoASMT, a key rate-limiting enzyme encoding gene for MT biosynthesis, which can be induced by drought, salt, and the phytohormones ABA, SA and JA. Our results show that: (1) PtoASMT was widely expressed in all tissues of poplar, but was highly expressed in petioles, moderately expressed in roots, stems, shoots and young leaves, exhibiting a typical diurnal expression rhythm in leaves, with the encoded protein localized on chloroplasts; (2) the content of MT was significantly promoted in overexpressing PtoASMT transgenic poplar plants, but there were no obvious differences in their growth and development; (3) overexpressing PtoASMT plants exhibited stronger drought tolerance, accumulating less reactive oxygen species (ROS) under drought stress relative to wild-type plants, whereas knockout PtoASMT plants were more sensitive and accumulated more ROS; (4) overexpressing PtoASMT plants were more resistant to fungi Dothiorella gregaria than WT plants, while knockout plants showed higher sensitivity; meanwhile, the expression of disease resistance-related genes (PRs and JAZ10) was significantly altered. We conclude that PtoASMT enhances the resistance of poplar to drought and Dothiorella gregaria by mediating MT biosynthesis in poplar. These findings contribute to a better understanding the role of ASMT gene in MT accumulation and stress resistance in poplar.
Collapse
Affiliation(s)
- Peizhi Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Ying Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Fangfang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Faculty of Experimental Sciences, University Institute of Research in Olive Groves and Olive Oils, University of Jaén, E-23071 Jaén, Spain
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China.
| |
Collapse
|
6
|
Lu Z, Hu B, He J, Yuan T, Wu Q, Yang K, Zheng W, Huang Y, Xu Y, Wang X, Xu Q. The transcription factor CitPH4 regulates plant defense-related metabolite biosynthesis in citrus. PLANT PHYSIOLOGY 2025; 197:kiaf027. [PMID: 39996402 DOI: 10.1093/plphys/kiaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 02/26/2025]
Abstract
Wild citrus (Citrus L.) exhibits high disease resistance accompanied by high-acidity fruit, whereas cultivated citrus produces tastier fruit but is more susceptible to disease. This is a common phenomenon, but the underlying molecular mechanisms remain unknown. Citrus PH4 (CitPH4) is a key transcription factor promoting citric acid accumulation in fruits. Accordingly, CitPH4 expression decreased during citrus domestication, along with a reduction in citric acid levels. Here, we demonstrate that a CitPH4-knockout mutant exhibits an acidless phenotype and displays substantially lower resistance to citrus diseases. Metabolome and transcriptome analyses of CitPH4-overexpressing citrus callus, Arabidopsis, and CitPH4-knockout citrus fruits revealed that quercetin, pipecolic acid (Pip), and N-hydroxypipecolic acid (NHP) are pivotal defense-related metabolites. Application of quercetin and Pip inhibited the growth of Xcc and Penicillium italicum, while NHP inhibited the growth of P. italicum and Huanglongbing. Biochemical experiments demonstrated that CitPH4 enhances the expression of quercetin and NHP biosynthesis genes by binding to their promoters. Moreover, Pip and quercetin contents were positively associated with citric acid content in the pulp of fruits from natural citrus populations. Finally, the heterologous expression of CitPH4 in Arabidopsis promoted the expression of stress response genes and enhanced its resistance to the fungal pathogen Botrytis cinerea. The overexpression of CitPH4 in tobacco (Nicotiana tabacum) enhanced disease resistance. This study reveals the mechanism by which CitPH4 regulates disease resistance and fruit acidity, providing a conceptual strategy to control fruit acidity and resistance to devastating diseases.
Collapse
Affiliation(s)
- Zhihao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxian He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinchun Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Xu L, Zhu Y, Wang Y, Zhang L, Li L, Looi LJ, Zhang Z. The potential of melatonin and its crosstalk with other hormones in the fight against stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1492036. [PMID: 39703548 PMCID: PMC11655240 DOI: 10.3389/fpls.2024.1492036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Climate change not only leads to high temperatures, droughts, floods, storms and declining soil quality, but it also affects the spread and mutation of pests and diseases, which directly influences plant growth and constitutes a new challenge to food security. Numerous hormones like auxin, ethylene and melatonin, regulate plant growth and development as well as their resistance to environmental stresses. To mitigate the impact of diverse biotic and abiotic stressors on crops, single or multiple phytohormones in combination have been applied. Melatonin is a multifunctional signaling molecule engaged in the development and stress response of plants. In the current review, we discuss the synthesis and action of melatonin, as well as its utilization for plant resistance to different stresses from the perspective of practical application. Simultaneously, we elucidate the regulatory effects and complex mechanisms of melatonin and other plant hormones on the growth of plants, explore the practical applications of melatonin in combination with other phytohormones in crops. This will aid in the planning of management strategies to protect plants from damage caused by environmental stress.
Collapse
Affiliation(s)
- Lina Xu
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang, Henan, China
| | - Yafei Zhu
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang, Henan, China
| | - Yakun Wang
- Henan Institute of Science and Technology, School of Agriculture, Xinxiang, Henan, China
| | - Luyan Zhang
- Kaifeng Meteorological Service, Agricultural Meteorological Observation Station, Kaifeng, Henan, China
| | - Lijie Li
- Henan Institute of Science and Technology, School of Life Sciences, Xinxiang, Henan, China
| | - Ley Juen Looi
- Faculty of Forestry and Environment, Department of Environment, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zhiyong Zhang
- Henan Institute of Science and Technology, School of Life Sciences, Xinxiang, Henan, China
| |
Collapse
|
8
|
Guo Y, Liu L, Shi X, Yu P, Zhang C, Liu Q. Overexpression of the RAV Transcription Factor OsAAT1 Confers Enhanced Arsenic Tolerance by Modulating Auxin Hemostasis in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24576-24586. [PMID: 39436822 DOI: 10.1021/acs.jafc.4c04334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Characterization of arsenic (As)-responsive genes is fundamental to solving the issue of As contamination in rice. Herein, we establish the involvement of an RAV transcription factor OsAAT1 (Arsenic Accumulation and Tolerance 1) in regulating As response in rice. The expression of OsAAT1 is significantly higher in roots and stems of rice seedlings and is clearly upregulated by higher concentrations of arsenite [As(III)]. Compared with wild-type (WT) plants, OsAAT1-overexpressed transgenic lines (OE-OsAAT1) exhibit tolerance, while OsAAT1-knockout mutants (Osaat1) are sensitive to As(III) stress. Notably, the application of exogenous 1-naphthylacetic acid (NAA) greatly enhances the As tolerance of WT and transgenic lines, with stronger effects on OE-OsAAT1. The change in OsAAT1 expression leads to the alteration of As and auxin accumulation in transgenic plants by regulating the expression of OsLsi1, OsLsi2, OsCRL4, and OsAUX1 genes. Moreover, overexpression of OsAAT1 accelerates ROS scavenging and phytochelatins (PCs) synthesis, especially with the addition of exogenous NAA. OsAAT1 localizes in the nucleus and works as a transcriptional suppressor. OsGH3-12, belonging to the auxin-responsive GH3 gene family, is the downstream target gene of OsAAT1, whose expression is extensively downregulated by As(III). These findings provide new insights into As response via auxin signaling pathway in rice.
Collapse
Affiliation(s)
- Yao Guo
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Linlin Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Xinyu Shi
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Peiyao Yu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Chen Zhang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Qingpo Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| |
Collapse
|
9
|
Wang YH, Zhao BY, Ye X, Du J, Song JL, Wang WJ, Huang XL, Ouyang KX, Zhang XQ, Liao FX, Zhong TX. Genome-wide analysis of the AP2/ERF gene family in Pennisetum glaucum and the negative role of PgRAV_01 in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109112. [PMID: 39265240 DOI: 10.1016/j.plaphy.2024.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
APETALA2/ethylene-responsive (AP2/ERF) plays crucial roles in resisting diverse stresses and in regulating plant growth and development. However, little is known regarding the structure and function of the AP2/ERF genes in pearl millet (Pennisetum glaucum). The AP2/ERF gene family may be involved in the development and maintenance of P. glaucum resilience to abiotic stresses, central to its role as a vital forage and cereal crop. In this study, PgAP2/ERF family members were identified and comprehensive bioinformatics analyses were performed, including determination of phylogenetic relationships, gene structures, conserved motifs, chromosomal localization, gene duplication, expression pattern, protein interaction network, and functional characterization of PgRAV_01 (Related to ABI3/VP1). In total, 78 PgAP2/ERF members were identified in the P. glaucum genome and classified into five subfamilies: AP2, ERF, DREB, RAV, and soloist. Members within the same clade of the PgAP2/ERF family showed similar gene structures and motif compositions. Six duplication events were identified in the PgAP2/ERF family; calculation of Ka/Ks values showed that purification selection dominated the evolution of PgAP2/ERFs. Subsequently, a potential interaction network of PgAP2/ERFs was generated to predict the interaction relationships. Additionally, abiotic stress expression analysis showed that most PgAP2/ERFs were induced in response to drought and heat stresses. Furthermore, overexpression of PgRAV_01 negatively regulated drought tolerance in Nicotiana benthamiana by reducing its antioxidant capacity and osmotic adjustment. Taken together, these results provide valuable insights into the characteristics and functions of PgAP2/ERF genes, with implications for abiotic stress tolerance, and will ultimately contribute to the genetic improvement of cereal crop breeding.
Collapse
Affiliation(s)
- Yin-Hua Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Bi-Yao Zhao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Xing Ye
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Juan Du
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Jian-Ling Song
- College of biology and chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Wen-Jing Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ling Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kun-Xi Ouyang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Fei-Xiong Liao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Xie YS, Zeng Q, Huang WT, Wang JY, Li HW, Yu SZ, Liu C, Zhang XQ, Feng CL, Zhang WH, Li TZ, Cheng YQ. A novel RAV transcription factor from pear interacts with viral RNA-silencing suppressors to inhibit viral infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1079-1093. [PMID: 39312631 DOI: 10.1111/tpj.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
In plants, RNA silencing constitutes a strong defense against viral infection, which viruses counteract with RNA-silencing suppressors (RSSs). Understanding the interactions between viral RSSs and host factors is crucial for elucidating the molecular arms race between viruses and host plants. We report that the helicase motif (Hel) of the replicase encoded by apple stem grooving virus (ASGV)-the main virus affecting pear trees in China-is an RSS that can inhibit both local and systemic RNA silencing, possibly by binding double-stranded (ds) siRNA. The transcription factor related to ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 from pear (PbRAV1) enters the cytoplasm and binds Hel through its C terminus, thereby attenuating its RSS activity by reducing its binding affinity to 21- and 24-nt ds siRNA, and suppressing ASGV infection. PbRAV1 can also target p24, an RSS encoded by grapevine leafroll-associated virus 2 (GLRaV-2), with similar negative effects on p24's suppressive function and inhibition of GLRaV-2 infection. Moreover, like the positive role of the PbRAV1 homolog from grapevine (VvRAV1) in p24's previously reported RSS activity, ASGV Hel can also hijack VvRAV1 and employ the protein to sequester 21-nt ds siRNA, thereby enhancing its own RSS activity and promoting ASGV infection. Furthermore, PbRAV1 neither interacts with CP, an RSS encoded by grapevine inner necrosis virus, nor has any obvious effect on CP's RSS activity. Our results identify an RSS encoded by ASGV and demonstrate that PbRAV1, representing a novel type of RAV transcription factor, plays a defensive role against viral infection by targeting viral RSSs.
Collapse
Affiliation(s)
- Yin-Shuai Xie
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Qi Zeng
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Wen-Ting Huang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Jin-Ying Wang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Han-Wei Li
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Shang-Zhen Yu
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Can Liu
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Xue-Qing Zhang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Chen-Lu Feng
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Wen-Hao Zhang
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Tian-Zhong Li
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| | - Yu-Qin Cheng
- Department of Pomology, Lab of Stress Physiology and Molecular Biology for Tree Fruits, a Key Lab of Beijing Municipality, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Cao L, Fahim AM, Liang X, Fan S, Song Y, Liu H, Ye F, Ma C, Zhang D, Lu X. Melatonin Enhances Heat Tolerance via Increasing Antioxidant Enzyme Activities and Osmotic Regulatory Substances by Upregulating zmeno1 Expression in Maize ( Zea mays L.). Antioxidants (Basel) 2024; 13:1144. [PMID: 39334803 PMCID: PMC11429225 DOI: 10.3390/antiox13091144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Heat stress severely affects the yield and quality of maize. Melatonin (N-acetyl-5-methoxy-tryptamin, MT) plays an important role in various types of stress resistance in plants, including heat tolerance. Enolase (ENO, 2-phospho-D-glycerate hydrolyase) contributes to plant growth, development, and stress response. As of now, the molecular mechanisms by which MT and ENO1 affect heat tolerance are unknown. In our research, we have revealed that heat stress (H) and heat stress + MT (MH) treatment upregulate ZmENO1 expression levels by 15 and 20 times, respectively. ZmENO1 overexpression and mutant maize lines were created by transgenic and genome editing. These results illustrate that heat stress has a significant impact on the growth of maize at the seedling stage. However, ZmENO1-OE lines showed a lower degree of susceptibility to heat stress, whereas the mutant exhibited the most severe effects. Under heat stress, exogenous application of MT improves heat resistance in maize. The ZmENO1-OE lines exhibited the best growth and highest survival rate, while the zmeno1 mutants showed the least desirable results. Following treatment with H and MH, the level of MT in ZmENO1-OE lines exhibited the greatest increase and reached the maximum value, whereas the level of MT in the zmeno1 mutant was the lowest. Heat stress decreased the maize's relative water content and fresh weight, although ZmENO1-OE lines had the highest and zmeno1 mutants had the lowest. Heat stress led to an increase in the levels of MDA, hydrogen peroxide, and superoxide in all plants. Additionally, the ionic permeability and osmotic potential of the plants were significantly increased. However, the levels of MT were decreased in all plants, with the greatest decrease observed in the ZmENO1-OE lines. Interestingly, the zmeno1 mutant plants had the highest expression levels of MT. Heat stress-induced upregulation of ZmSOD, ZmPOD, ZmAPX, ZmCAT, ZmP5CS, and ZmProDH in all plants. However, the ZmENO1-OE lines exhibited the greatest increase in expression levels, while the zmeno1 mutants showed the lowest increase following MT spraying. The patterns of SOD, POD, APX, and CAT enzyme activity, as well as proline and soluble protein content, aligned with the variations in the expression levels of these genes. Our findings indicate that MT can upregulate the expression of the ZmENO1 gene. Upregulating the ZmENO1 gene resulted in elevated expression levels of ZmSOD, ZmPOD, ZmAPX, ZmCAT, ZmP5CS, and ZmProDH. This led to increased activity of antioxidant enzymes and higher levels of osmoregulatory substances. Consequently, it mitigated the cell membrane damage caused by heat stress and ultimately improved the heat resistance of maize. The results of this study provide genetic resources for molecular design breeding and lay a solid foundation for further exploring the molecular mechanism of MT regulation of heat stress tolerance in maize.
Collapse
Affiliation(s)
- Liru Cao
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | | | - Xiaohan Liang
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Senmiao Fan
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Yinghui Song
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Huafeng Liu
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Feiyu Ye
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Chenchen Ma
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Dongling Zhang
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| | - Xiaomin Lu
- The Shennong Laboratory, Grain Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (L.C.); (X.L.); (S.F.); (Y.S.); (H.L.); (F.Y.); (C.M.); (D.Z.)
| |
Collapse
|
12
|
Guo Y, Zhang G, Li Z, Liao X, Sun W, Jiang X. Revealing the Effects of Zinc Sulphate Treatment on Melatonin Synthesis and Regulatory Gene Expression in Germinating Hull-Less Barley through Transcriptomic Analysis. Genes (Basel) 2024; 15:1077. [PMID: 39202436 PMCID: PMC11354046 DOI: 10.3390/genes15081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This study investigated the transcriptomic mechanisms underlying melatonin accumulation and the enhancement of salt tolerance in hull-less barley seeds subjected to zinc sulphate stress. Following zinc sulphate treatment, hull-less barley seeds demonstrated increased melatonin accumulation and improved salt tolerance. Through transcriptome analysis, the study compared gene expression alterations in seeds (using the first letter of seed, this group is marked as 'S'), seeds treated with pure water (as the control group, is marked as 'C'), and germinated seeds exposed to varying concentrations of zinc sulphate (0.2 mM and 0.8 mM, the first letter of zinc sulphate, 'Z', is used to mark groups 'Z1' and 'Z2'). The analysis revealed that 8176, 759, and 622 differentially expressed genes (DEGs) were identified in the three comparison groups S.vs.C, C.vs.Z1, and C.vs.Z2, respectively. Most of the DEGs were closely associated with biological processes, including oxidative-stress response, secondary metabolite biosynthesis, and plant hormone signaling. Notably, zinc sulphate stress influenced the expression levels of Tryptophan decarboxylase 1 (TDC1), Acetylserotonin O-methyltransferase 1 (ASMT1), and Serotonin N-acetyltransferase 2 (SNAT2), which are key genes involved in melatonin synthesis. Furthermore, the expression changes of genes such as Probable WRKY transcription factor 75 (WRKY75) and Ethylene-responsive transcription factor ERF13 (EFR13) exhibited a strong correlation with fluctuations in melatonin content. These findings contribute to our understanding of the mechanisms underlying melatonin enrichment in response to zinc sulphate stress.
Collapse
Affiliation(s)
| | - Guoqiang Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (Y.G.); (Z.L.); (X.L.); (W.S.); (X.J.)
| | | | | | | | | |
Collapse
|
13
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
14
|
Park YS, Cho HJ, Kim S. Identification and expression analyses of B3 genes reveal lineage-specific evolution and potential roles of REM genes in pepper. BMC PLANT BIOLOGY 2024; 24:201. [PMID: 38500065 PMCID: PMC10949715 DOI: 10.1186/s12870-024-04897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND The B3 gene family, one of the largest plant-specific transcription factors, plays important roles in plant growth, seed development, and hormones. However, the B3 gene family, especially the REM subfamily, has not been systematically and functionally studied. RESULTS In this study, we performed genome-wide re-annotation of B3 genes in five Solanaceae plants, Arabidopsis thaliana, and Oryza sativa, and finally predicted 1,039 B3 genes, including 231 (22.2%) newly annotated genes. We found a striking abundance of REM genes in pepper species (Capsicum annuum, Capsicum baccatum, and Capsicum chinense). Comparative motif analysis revealed that REM and other subfamilies (ABI3/VP1, ARF, RAV, and HSI) consist of different amino acids. We verified that the large number of REM genes in pepper were included in the specific subgroup (G8) through the phylogenetic analysis. Chromosome location and evolutionary analyses suggested that the G8 subgroup genes evolved mainly via a pepper-specific recent tandem duplication on chromosomes 1 and 3 after speciation between pepper and other Solanaceae. RNA-seq analyses suggested the potential functions of REM genes under salt, heat, cold, and mannitol stress conditions in pepper (C. annuum). CONCLUSIONS Our study provides evolutionary and functional insights into the REM gene family in pepper.
Collapse
Affiliation(s)
- Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hye Jeong Cho
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
15
|
Wei Y, Xie H, Xu L, Cheng X, Zhu B, Zeng H, Shi H. Coat protein of cassava common mosaic virus targets RAV1 and RAV2 transcription factors to subvert immunity in cassava. PLANT PHYSIOLOGY 2024; 194:1218-1232. [PMID: 37874769 DOI: 10.1093/plphys/kiad569] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.
Collapse
Affiliation(s)
- Yunxie Wei
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haoqi Xie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Lulu Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Xiao Cheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Binbin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Hongqiu Zeng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haitao Shi
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| |
Collapse
|
16
|
Divya K, Thangaraj M, Krishna Radhika N. CRISPR/Cas9: an advanced platform for root and tuber crops improvement. Front Genome Ed 2024; 5:1242510. [PMID: 38312197 PMCID: PMC10836405 DOI: 10.3389/fgeed.2023.1242510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Root and tuber crops (RTCs), which include cassava, potato, sweet potato, and yams, principally function as staple crops for a considerable fraction of the world population, in addition to their diverse applications in nutrition, industry, and bioenergy sectors. Even then, RTCs are an underutilized group considering their potential as industrial raw material. Complexities in conventional RTC improvement programs curb the extensive exploitation of the potentials of this group of crop species for food, energy production, value addition, and sustainable development. Now, with the advent of whole-genome sequencing, sufficient sequence data are available for cassava, sweet potato, and potato. These genomic resources provide enormous scope for the improvement of tuber crops, to make them better suited for agronomic and industrial applications. There has been remarkable progress in RTC improvement through the deployment of new strategies like gene editing over the last decade. This review brings out the major areas where CRISPR/Cas technology has improved tuber crops. Strategies for genetic transformation of RTCs with CRISPR/Cas9 constructs and regeneration of edited lines and the bottlenecks encountered in their establishment are also discussed. Certain attributes of tuber crops requiring focus in future research along with putative editing targets are also indicated. Altogether, this review provides a comprehensive account of developments achieved, future lines of research, bottlenecks, and major experimental concerns regarding the establishment of CRISPR/Cas9-based gene editing in RTCs.
Collapse
Affiliation(s)
- K Divya
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | | | - N Krishna Radhika
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| |
Collapse
|
17
|
Cui T, Zang S, Sun X, Zhang J, Su Y, Wang D, Wu G, Chen R, Que Y, Lin Q, You C. Molecular identification and functional characterization of a transcription factor GeRAV1 from Gelsemium elegans. BMC Genomics 2024; 25:22. [PMID: 38166591 PMCID: PMC10759518 DOI: 10.1186/s12864-023-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.
Collapse
Affiliation(s)
- Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinlu Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guran Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiqi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| |
Collapse
|
18
|
Ding J, Yao B, Yang X, Shen L. SmRAV1, an AP2 and B3 Transcription Factor, Positively Regulates Eggplant's Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4174. [PMID: 38140500 PMCID: PMC10747502 DOI: 10.3390/plants12244174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Salt stress is a lethal abiotic stress threatening global food security on a consistent basis. In this study, we identified an AP2 and B3 domain-containing transcription factor (TF) named SmRAV1, and its expression levels were significantly up-regulated by NaCl, abscisic acid (ABA), and hydrogen peroxide (H2O2) treatment. High expression of SmRAV1 was observed in the roots and sepal of mature plants. The transient expression assay in Nicotiana benthamiana leaves revealed that SmRAV1 was localized in the nucleus. Silencing of SmRAV1 via virus-induced gene silencing (VIGS) decreased the tolerance of eggplant to salt stress. Significant down-regulation of salt stress marker genes, including SmGSTU10 and SmNCED1, was observed. Additionally, increased H2O2 content and decreased catalase (CAT) enzyme activity were recorded in the SmRAV1-silenced plants compared to the TRV:00 plants. Our findings elucidate the functions of SmRAV1 and provide opportunities for generating salt-tolerant lines of eggplant.
Collapse
Affiliation(s)
| | | | | | - Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (J.D.); (B.Y.); (X.Y.)
| |
Collapse
|
19
|
Cheng H, Wang Q, Zhang Z, Cheng P, Song A, Zhou L, Wang L, Chen S, Chen F, Jiang J. The RAV transcription factor TEMPRANILLO1 involved in ethylene-mediated delay of chrysanthemum flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1652-1666. [PMID: 37696505 DOI: 10.1111/tpj.16453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingguo Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
20
|
Qi X, Liu L, Liu C, Song L, Dong Y, Chen L, Li M. Sweet cherry AP2/ERF transcription factor, PavRAV2, negatively modulates fruit size by directly repressing PavKLUH expression. PHYSIOLOGIA PLANTARUM 2023; 175:e14065. [PMID: 38148242 DOI: 10.1111/ppl.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 10/13/2023] [Indexed: 12/28/2023]
Abstract
For sweet cherry, fruit size is one of the main targets in breeding programs owing to the high market value of larger fruits. KLUH/CYP78A5 is an important regulator of seed/fruit size in several plant species, but its molecular mechanism is largely unknown. In this study, we characterized the function of PavKLUH in the regulation of sweet cherry fruit size. The ectopic overexpression of PavKLUH in Arabidopsis increased the size of its siliques and seeds, whereas virus-induced gene silencing of PavKLUH in sweet cherry significantly decreased fruit size by restricting mesocarp cell expansion. We screened out an AP2/ERF transcription factor containing a B3-like domain, designated as PavRAV2, which was able to physically interact with PavKLUH promoter in a yeast one-hybrid (Y1H) system. In Y1H assays, electrophoretic mobility shift assays, and dual-luciferase reporter analyses, PavRAV2 directly bound to the promoter of PavKLUH in vitro and in vivo, and suppressed PavKLUH expression. Silencing of PavRAV2 resulted in enlarged fruit as a result of enhanced mesocarp cell expansion. Together, our results provide new insights into signaling pathways related to fruit size, and outline a possible mechanism for how the RAV transcription factor directly regulates CYP78A family members to influence fruit size and development.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanxin Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Horticultural Germplasm Resources Center, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
21
|
El-Esawi MA, Alayafi AA. Enhancing the Biological Control of Mite Species Infesting Olive Trees through Application of Predatory Mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae) and Eco-Friendly Natural Compounds. PHYSIOLOGIA PLANTARUM 2023; 175:e14097. [PMID: 38148192 DOI: 10.1111/ppl.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/27/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Olive (Olea europaea L.) is a subtropical tree cultivated in arid, dry and temperate regions. Olive orchards in Al-Jouf of Saudi Arabia are the largest worldwide and currently face harmful pest infestation. The present study aimed at evaluating the efficiency of the predatory mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae) and the exogenously applied melatonin (MT), glycine betaine (GB) and 5-aminolevulinic acid (ALA) as eco-friendly approaches for enhancing the biological control of four mite species (Tegolophus hassani, Oxycenus niloticus, Aceria olivi and Tetranychus urticae) infesting olive trees in Al-Jouf under laboratory and field conditions. Field experiment was conducted on 6-year-old Manzanillo olive trees grown in a private orchard farm in Al-Jouf during two seasons, 2020 and 2021. Results revealed that A. exsertus developed successfully from egg to adult. The females of T. hassani, O. niloticus, A. olivi, and T. urticae required 7.36, 8.89, 9.98 and 8.38 days, respectively, to develop from egg to adult at 28°C and 65 ± 5% relative humidity. O. niloticus was the most preferred prey of A. exsertus. The net reproductive rate (R0 ) was 42.1, 38.7, 34.6 and 36.8 females/female/generation, the intrinsic rate of increase (rm ) was 0.27, 0.26, 0.23 and 0.20 females/female/day, and the mean generation time (T) was 16.2, 17.1, 18.6 and 17.2 days when a predator consumed T. hassani, O. niloticus, A. olivi and T. urticae, respectively. The adult female consumed daily about 114 O. niloticus, 105 A. olivi, 95 T. hassani and 15.2 T. urticae individuals, respectively. A. exsertus proved to be an effective biocontrol agent against mites infesting olive trees. In addition, the exogenous application of 1 mM MT, 15 mM GB and 25 mg/L ALA, alone or in combination, caused significant mortality for the four mites. Application of these natural compounds, alone or in combination, also significantly enhanced the growth, relative water content, relative chlorophyll, content of flavonoid and nutrients, antioxidant enzymes activities, stress-related genes expression and fruit yield and quality of the infested olive trees compared to non-treated infested trees. This study is the first that demonstrates the efficiency of these eco-friendly approaches for controlling mites infesting olive trees, and could be used as a replacement for the harmful chemical acaricides.
Collapse
Affiliation(s)
- Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biological Sciences, Faculty of Science, New Mansoura University, Egypt
| | - Aisha A Alayafi
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Zheng L, Assane Hamidou A, Zhao X, Ouyang Z, Lin H, Li J, Zhang X, Luo K, Chen Y. Superoxide dismutase gene family in cassava revealed their involvement in environmental stress via genome-wide analysis. iScience 2023; 26:107801. [PMID: 37954140 PMCID: PMC10638475 DOI: 10.1016/j.isci.2023.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/29/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Superoxide dismutase (SOD) is a crucial metal-containing enzyme that plays a vital role in catalyzing the dismutation of superoxide anions, converting them into molecular oxygen and hydrogen peroxide, essential for enhancing plant stress tolerance. We identified 8 SOD genes (4 CSODs, 2 FSODs, and 2 MSODs) in cassava. Bioinformatics analyses provided insights into chromosomal location, phylogenetic relationships, gene structure, conserved motifs, and gene ontology annotations. MeSOD genes were classified into two groups through phylogenetic analysis, revealing evolutionary connections. Promoters of these genes harbored stress-related cis-elements. Duplication analysis indicated the functional significance of MeCSOD2/MeCSOD4 and MeMSOD1/MeMSOD2. Through qRT-PCR, MeCSOD2 responded to salt stress, MeMSOD2 to drought, and cassava bacterial blight. Silencing MeMSOD2 increased XpmCHN11 virulence, indicating MeMSOD2 is essential for cassava's defense against XpmCHN11 infection. These findings enhance our understanding of the SOD gene family's role in cassava and contribute to strategies for stress tolerance improvement.
Collapse
Affiliation(s)
- Linling Zheng
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Abdoulaye Assane Hamidou
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Xuerui Zhao
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Zhiwei Ouyang
- HNU-ASU Joint International Tourism College, Hainan University, Haikou 570228, China
| | - Hongxin Lin
- Soil Fertilizer and Resources Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Junyi Li
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Xiaofei Zhang
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
| | - Kai Luo
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| | - Yinhua Chen
- Sanya Nanfan Research Institute of Hainan University, School of Life Sciences, Hainan University, Sanya 572025, China
| |
Collapse
|
23
|
Zhang Z, Zhang X, Chen Y, Jiang W, Zhang J, Wang J, Wu Y, Wang S, Yang X, Liu M, Zhang Y. Understanding the mechanism of red light-induced melatonin biosynthesis facilitates the engineering of melatonin-enriched tomatoes. Nat Commun 2023; 14:5525. [PMID: 37684283 PMCID: PMC10491657 DOI: 10.1038/s41467-023-41307-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Melatonin is a functionally conserved broad-spectrum physiological regulator found in most biological organisms in nature. Enrichment of tomato fruit with melatonin not only enhances its agronomic traits but also provides extra health benefits. In this study, we elucidate the full melatonin biosynthesis pathway in tomato fruit by identifying biosynthesis-related genes that encode caffeic acid O-methyltransferase 2 (SlCOMT2) and N-acetyl-5-hydroxytryptamine-methyltransferases 5/7 (SlASMT5/7). We further reveal that red light supplementation significantly enhances the melatonin content in tomato fruit. This induction relies on the "serotonin-N-acetylserotonin-melatonin" biosynthesis route via the SlphyB2-SlPIF4-SlCOMT2 module. Based on the regulatory mechanism, we design a gene-editing strategy to target the binding motif of SlPIF4 in the promoter of SlCOMT2, which significantly enhances the production of melatonin in tomato fruit. Our study provides a good example of how the understanding of plant metabolic pathways responding to environmental factors can guide the engineering of health-promoting foods.
Collapse
Affiliation(s)
- Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yuting Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Wenqian Jiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jiayu Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yanjun Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Shouchuang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu, 610213, China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
24
|
Luo M, Wang D, Delaplace P, Pan Y, Zhou Y, Tang W, Chen K, Chen J, Xu Z, Ma Y, Chen M. Melatonin enhances drought tolerance by affecting jasmonic acid and lignin biosynthesis in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107974. [PMID: 37632996 DOI: 10.1016/j.plaphy.2023.107974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
Drought severely affects the yield of wheat (Triticum aestivum L.), which is mainly grown in arid and semi-arid regions. Melatonin plays an important role in various types of stress resistance in plants, including drought resistance. However, the molecular mechanism through which melatonin affects drought tolerance remains largely unknown. In this study, we revealed that melatonin (100 μM) significantly improved drought resistance during the maturation stage of Chinese Spring, Shi4185, and Hanxuan10 varieties, but not Chang6878. Further physiological, transcriptomic, and proteomic data analysis at the wheat seedling stage revealed that melatonin increased jasmonic acid (JA) content, upregulating the expression of JA genes (LOX1.5 and LOX2.1) and two transcription factors (HY5 and MYB86) under drought conditions. It also upregulated genes related to lignin biosynthesis (4CL2, P5CS1, and CCR2) as well as starch and sucrose metabolism (PME53 and SUS4). Additionally, melatonin alleviated photosynthetic and cell membrane damage caused by drought stress through maintaining low levels of hydrogen peroxide. The current results elucidate melatonin-regulated pathways in wheat and provide evidence for using melatonin as a potential biostimulant to improve wheat drought resistance under field conditions in the future.
Collapse
Affiliation(s)
- Mingzhao Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; University of Liege-GxABT, Agricultural Sciences Department, Plant Sciences and Productions Axis, Plant Biology Laboratory, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Daoping Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Pierre Delaplace
- University of Liege-GxABT, Agricultural Sciences Department, Plant Sciences and Productions Axis, Plant Biology Laboratory, Passage des Déportés, 2, 5030, Gembloux, Belgium
| | - Yinghong Pan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Yongbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Wensi Tang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Kai Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhaoshi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Youzhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
25
|
Gupta R. Melatonin: A promising candidate for maintaining food security under the threat of phytopathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107691. [PMID: 37031544 DOI: 10.1016/j.plaphy.2023.107691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Plant immune response is tightly controlled by an interplay of various phytohormones and plant growth regulators. Among them, the role of salicylic acid, jasmonic acid, and ethylene is well established while some others such as nitric oxide, polyamines, and hydrogen sulfide have appeared to be key regulators of plant immunity. In addition, some other chemicals, such as melatonin (N-acetyl-5-methoxytryptamine), are apparently turning out to be the novel regulators of plant defense responses. Melatonin has shown promising results in enhancing resistance of plants to a variety of pathogens including fungi, bacteria, and viruses, however, the molecular mechanism of melatonin-mediated plant immune regulation is currently elusive. Evidence gathered so far indicates that melatonin regulates plant immunity by (1) facilitating the maintenance of ROS homeostasis, (2) interacting with other phytohormones and growth regulators, and (3) inducing the accumulation of defense molecules. Therefore, engineering crops with improved melatonin production could enhance crop productivity under stress conditions. This review extends our understanding of the multifaceted role of melatonin in the regulation of plant defense response and presents a putative pathway of melatonin functioning and its interaction with phytohormones during biotic stress.
Collapse
Affiliation(s)
- Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea.
| |
Collapse
|
26
|
Suzen S, Saso L. Melatonin as mitochondria-targeted drug. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:249-276. [PMID: 37437980 DOI: 10.1016/bs.apcsb.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oxidative damage is associated to numerous diseases as well as aging development. Mitochondria found in most eukaryotic organisms to create the energy of the cell, generate free radicals during its action and they are chief targets of the oxidants. Mitochondrial activities outspread outside the borders of the cell and effect human physiology by modulating interactions among cells and tissues. Therefore, it has been implicated in several human disorders and conditions. Melatonin (MLT) is an endogenously created indole derivative that modifies several tasks, involving mitochondria-associated activities. These possessions make MLT a powerful defender against a selection of free radical-linked disorders. MLT lessens mitochondrial anomalies causing from extreme oxidative stress and may improve mitochondrial physiology. It is a potent and inducible antioxidant for mitochondria. MLT is produced in mitochondria of conceivably of all cells and it also appears to be a mitochondria directed antioxidant which has related defensive properties as the synthesized antioxidant molecules. This chapter summarizes the suggestion that MLT is produced in mitochondria as well as disorders of mitochondrial MLT production that may associate to a number of mitochondria-linked diseases. MLT as a mitochondria-targeted drug is also discussed.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
28
|
Li J, Song C, Li H, Wang S, Hu L, Yin Y, Wang Z, He W. Comprehensive analysis of cucumber RAV family genes and functional characterization of CsRAV1 in salt and ABA tolerance in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1115874. [PMID: 36818828 PMCID: PMC9933981 DOI: 10.3389/fpls.2023.1115874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The RAV (related to ABI3 and VP1) transcription factors are specific and exist in plants, which contain a B3 DNA binding domain and/or an APETALA2 (AP2) DNA binding domain. RAVs have been extensively studied in plants, and more and more evidences show that RAVs are involved in various aspects of plant growth and development, stress resistance and hormone signal transduction. However, the systematic analysis of RAV family in cucumber is rarely reported. In this study, eight CsRAV genes were identified in cucumber genome and we further comprehensively analyzed their protein physicochemical properties, conserved domains, gene structure and phylogenetic relationships. The synteny analysis and gene duplications of CsRAV genes were also analysed. Cis-element analysis revealed that the CsRAVs promoter contained several elements related to plant hormones and abiotic stress. Expression analysis showed that NaCl and ABA could significantly induce CsRAV genes expression. Subcellular localization revealed that all CsRAVs were localized in the nucleus. In addition, 35S:CsRAV1 transgenic Arabidopsis and cucumber seedlings enhanced NaCl and ABA tolerance, revealing CsRAV1 may be an important regulator of abiotic stress response. In conclusion, comprehensive analysis of CsRAVs would provide certain reference for understanding the evolution and function of the CsRAV genes.
Collapse
Affiliation(s)
- Jialin Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chunying Song
- Xilin Gol League Agricultural and Animal Product Quality and Safety Monitoring Center, Xilinhot, China
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Siqi Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Linyue Hu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yanlei Yin
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Zenghui Wang
- Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
29
|
Aghdam MS, Mukherjee S, Flores FB, Arnao MB, Luo Z, Corpas FJ. Functions of Melatonin during Postharvest of Horticultural Crops. PLANT & CELL PHYSIOLOGY 2023; 63:1764-1786. [PMID: 34910215 DOI: 10.1093/pcp/pcab175] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 05/14/2023]
Abstract
Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.
Collapse
Affiliation(s)
- Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| | - Francisco Borja Flores
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Espinardo-Murcia 30100, Spain
| | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia 30100, Spain
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
30
|
Liu X, Du C, Yue C, Tan Y, Fan H. Exogenously applied melatonin alleviates the damage in cucumber plants caused by Aphis goosypii through altering the insect behavior and inducing host plant resistance. PEST MANAGEMENT SCIENCE 2023; 79:140-151. [PMID: 36107970 DOI: 10.1002/ps.7183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aphis gossypii Glover is the main pest found in most cucumber-producing areas. Melatonin (MT) has been widely studied in protecting plants from environmental stresses and pathogens. However, little knowledge is available on the impact of MT on insect resistance. RESULTS The fecundity of aphids on MT-treated cucumber leaves was inhibited. Interestingly, MT-treated plants were more attractive to aphids, which would prevent the large-scale transmission of viruses caused by the random movement of aphids. Meanwhile, MT caused varying degrees of change in enzyme activities related to methylesterified HG degradation, antioxidants, defense systems and membrane lipid peroxidation. Furthermore, transcriptomic analysis showed that MT induced 2360 differentially expressed genes (DEGs) compared with the control before aphid infection. These DEGs mainly were enriched in hormone signal transduction, MAPK signaling pathway, and plant-pathogen interaction, revealing that MT can help plants acquire inducible resistance and enhance plant immunity. Subsequently, 2397 DEGs were identified after aphid infection. Further analysis showed that MT-treated plants possessed stronger JA signal, reactive oxygen species stability, and the ability of flavonoid synthesis under aphid infection, while mediating plant growth and sucrose metabolism. CONCLUSION In summary, MT as an environmentally friendly substance mitigated aphid damage to cucumbers by affecting the aphids themselves and enhancing plant resistance. This will facilitate exploring sustainable MT-based strategies for cucumber aphid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
31
|
Ren L, Yang Y, Li W, Zheng X, Liu J, Li S, Yang H, Zhang Y, Ge B, Zhang S, Fu W, Dong D, Du G, Wang J. CDK1 serves as a therapeutic target of adrenocortical carcinoma via regulating epithelial-mesenchymal transition, G2/M phase transition, and PANoptosis. Lab Invest 2022; 20:444. [PMID: 36184616 PMCID: PMC9528181 DOI: 10.1186/s12967-022-03641-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022]
Abstract
Background Adrenocortical carcinoma (ACC) is an extremely rare, aggressive tumor with few effective therapeutic options or drugs. Mitotane (Mtn), which is the only authorized therapeutic drug, came out in 1970 and is still the only first-line treatment for ACC in spite of serious adverse reaction and a high recurrence rate. Methods By in silico analysis of the ACC dataset in the cancer genome atlas (TCGA), we determined that high expression levels of cyclin-dependent kinase-1 (CDK1) were significantly related to the adverse clinical outcomes of ACC. In vitro and in vivo experiments were performed to evaluate the role of CDK1 in ACC progression through gain and loss of function assays in ACC cells. CDK1 inhibitors were screened to identify potential candidates for the treatment of ACC. RNA sequencing, co-immunoprecipitation, and immunofluorescence assays were used to elucidate the mechanism. Results Overexpression of CDK1 in ACC cell lines promoted proliferation and induced the epithelial-to-mesenchymal transition (EMT), whereas knockdown of CDK1 expression inhibited growth of ACC cell lines. The CDK1 inhibitor, cucurbitacin E (CurE), had the best inhibitory effect with good time-and dose-dependent activity both in vitro and in vivo. CurE had a greater inhibitory effect on ACC xenografts in nude mice than mitotane, without obvious adverse effects. Most importantly, combined treatment with CurE and mitotane almost totally eliminated ACC tumors. With respect to mechanism, CDK1 facilitated the EMT of ACC cells via Slug and Twist and locked ACC cells into the G2/M checkpoint through interaction with UBE2C and AURKA/B. CDK1 also regulated pyroptosis, apoptosis, and necroptosis (PANoptosis) of ACC cells through binding with the PANoptosome in a ZBP1-dependent way. Conclusions CDK1 could be exploited as an essential therapeutic target of ACC via regulating the EMT, the G2/M checkpoint, and PANoptosis. Thus, CurE may be a potential candidate drug for ACC therapy with good safety and efficacy, which will meet the great need of patients with ACC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03641-y.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Dexin Dong
- Department of Urology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
32
|
Liu G, Hu Q, Zhang X, Jiang J, Zhang Y, Zhang Z. Melatonin biosynthesis and signal transduction in plants in response to environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5818-5827. [PMID: 35522986 DOI: 10.1093/jxb/erac196] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Melatonin, the most widely distributed hormone in nature, plays important roles in plants. Many physiological processes in plants are linked to melatonin, including seed germination, anisotropic cell growth, and senescence. Compared with animals, different plants possess diverse melatonin biosynthetic pathways and regulatory networks. Whereas melatonin biosynthesis in animals is known to be regulated by ambient signals, little is known about how melatonin biosynthesis in plants responds to environmental signals. Plants are affected by numerous environmental factors, such as light, temperature, moisture, carbon dioxide, soil conditions, and nutrient availability at all stages of development and in different tissues. Melatonin content exhibits dynamic changes that affect plant growth and development. Melatonin plays various species-specific roles in plant responses to different environmental conditions. However, much remains to be learned, as not all environmental factors have been studied, and little is known about the mechanisms by which these factors influence melatonin biosynthesis. In this review, we provide a detailed, systematic description of melatonin biosynthesis and signaling and of the roles of melatonin in plant responses to different environmental factors, providing a reference for in-depth research on this important issue.
Collapse
Affiliation(s)
- Gaofeng Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zixin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Liu Y, Wang X, Lv H, Cao M, Li Y, Yuan X, Zhang X, Guo YD, Zhang N. Anabolism and signaling pathways of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5801-5817. [PMID: 35430630 DOI: 10.1093/jxb/erac158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a small multifunctional molecule found ubiquitously in plants, which plays an important role in plant growth, development, and biotic and abiotic stress responses. The classical biosynthetic and metabolic pathways of phytomelatonin have been elucidated, and uncovering alternative pathways has deepened our understanding of phytomelatonin synthesis. Phytomelatonin functions mainly via two pathways. In the direct pathway, phytomelatonin mediates the stress-induced reactive oxygen species burst through its strong antioxidant capacity. In the indirect pathway, phytomelatonin acts as a signal to activate signaling cascades and crosstalk with other plant hormones. The phytomelatonin receptor PMTR1/CAND2 was discovered in 2018, which enhanced our understanding of phytomelatonin function. This review summarizes the classical and potential pathways involved in phytomelatonin synthesis and metabolism. To elucidate the functions of phytomelatonin, we focus on the crosstalk between phytomelatonin and other phytohormones. We propose two models to explain how PMTR1 transmits the phytomelatonin signal through the G protein and MAPK cascade. This review will facilitate the identification of additional signaling molecules that function downstream of the phytomelatonin signaling pathway, thus improving our understanding of phytomelatonin signal transmission.
Collapse
Affiliation(s)
- Ying Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yongchong Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Yuan
- Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing, 102206, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
34
|
Chen Q, Arnao MB. Phytomelatonin: an emerging new hormone in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5773-5778. [PMID: 36178429 PMCID: PMC9523825 DOI: 10.1093/jxb/erac307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
|
35
|
Zeng H, Bai Y, Wei Y, Reiter RJ, Shi H. Phytomelatonin as a central molecule in plant disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5874-5885. [PMID: 35298631 DOI: 10.1093/jxb/erac111] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Melatonin is an essential phytohormone in the regulation of many plant processes, including during plant development and in response to stress. Pathogen infections cause serious damage to plants and reduce agricultural production. Recent studies indicate that melatonin plays important roles in alleviating bacterial, fungal, and viral diseases in plants and post-harvest fruits. Herein, we summarize information related to the effects of melatonin on plant disease resistance. Melatonin, reactive oxygen species, and reactive nitrogen species form a complex loop in plant-pathogen interaction to regulate plant disease resistance. Moreover, crosstalk of melatonin with other phytohormones including salicylic acid, jasmonic acid, auxin, and abscisic acid further activates plant defense genes. Melatonin plays an important role not only in plant immunity but also in alleviating pathogenicity. We also summarize the known processes by which melatonin mediates pathogenicity via negatively regulating the expression levels of genes related to cell viability as well as virulence-related genes. The multiple mechanisms underlying melatonin influences on both plant immunity and pathogenicity support the recognition of the essential nature of melatonin in plant-pathogen interactions, highlighting phytomelatonin as a critical molecule in plant immune responses.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| |
Collapse
|
36
|
Genome-Wide Analysis of the RAV Gene Family in Wheat and Functional Identification of TaRAV1 in Salt Stress. Int J Mol Sci 2022; 23:ijms23168834. [PMID: 36012100 PMCID: PMC9408559 DOI: 10.3390/ijms23168834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
RAV transcription factors (TFs) are unique to higher plants and contain both B3 and APETALA2 (AP2) DNA binding domains. Although sets of RAV genes have been identified from several species, little is known about this family in wheat. In this study, 26 RAV genes were identified in the wheat genome. These wheat RAV TFs were phylogenetically clustered into three classes based on their amino acid sequences. A TaRAV gene located on chromosome 1D was cloned and named TaRAV1. TaRAV1 was expressed in roots, stems, leaves, and inflorescences, and its expression was up-regulated by heat while down-regulated by salt, ABA, and GA. Subcellular localization analysis revealed that the TaRAV1 protein was localized in the nucleus. The TaRAV1 protein showed DNA binding activity in the EMSA assay and transcriptional activation activity in yeast cells. Overexpressing TaRAV1 enhanced the salt tolerance of Arabidopsis and upregulated the expression of SOS genes and other stress response genes. Collectively, our data suggest that TaRAV1 functions as a transcription factor and is involved in the salt stress response by regulating gene expression in the SOS pathway.
Collapse
|
37
|
Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H, Reiter RJ, Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 2022; 73:e12804. [PMID: 35488179 DOI: 10.1111/jpi.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.
Collapse
Affiliation(s)
- Yujing Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan province, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Jingru Guo
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yabin Dong
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Liyan Zheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| |
Collapse
|
38
|
Wang X, You J, Liu A, Qi X, Li D, Zhao Y, Zhang Y, Zhang L, Zhang X, Li P. Variation in Melatonin Contents and Genetic Dissection of Melatonin Biosynthesis in Sesame. PLANTS (BASEL, SWITZERLAND) 2022; 11:2005. [PMID: 35956483 PMCID: PMC9370803 DOI: 10.3390/plants11152005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, people have become increasingly interested in bioactive molecules in plants that are beneficial to human health, and melatonin (N-acetyl-5-methoxytryptamine) has attracted research attention due to its excellent performance. In this study, the content of melatonin in oilseeds was investigated. From the results, it was found that sesame is an important natural food source of melatonin intake. Furthermore, the variation in melatonin content was explored in a natural sesame population, and its contents varied from 0.04 to 298.62 ng g-1. Through a genome-wide association study (GWAS), a candidate gene SiWRKY67 was screened that regulates melatonin content in sesame. The sesame hairy root transformation system was developed and used to verify this gene, and it was found that the overexpression of SiWRKY67 could positively promote the melatonin content in the hairy roots. Our results provide not only a foundation for understanding the genetic structure of melatonin content in sesame seeds but also a reference for the marker-assisted breeding of sesame varieties with high melatonin content.
Collapse
Affiliation(s)
- Xiao Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
| | - Jun You
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Aili Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xin Qi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
| | - Donghua Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Ya Zhao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
| | - Yanxin Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiurong Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
39
|
Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M. Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. PLANT MOLECULAR BIOLOGY 2022; 109:385-399. [PMID: 34783977 DOI: 10.1007/s11103-021-01202-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/24/2021] [Indexed: 05/11/2023]
Abstract
Melatonin plays a crucial role in the mitigation of plant biotic stress through induced defense responses and pathogen attenuation. Utilizing the current knowledge of signaling and associated mechanism of this phytoprotectant will be invaluable in sustainable plant disease management. Biotic stress in plants involves complex regulatory networks of various sensory and signaling molecules. In this context, the polyfunctional, ubiquitous-signaling molecule melatonin has shown a regulatory role in biotic stress mitigation in plants. The present review conceptualized the current knowledge concerning the melatonin-mediated activation of the defense signaling network that leads to the resistant or tolerant phenotype of the infected plants. Fundamentals of signaling networks involved in melatonin-induced reactive oxygen species (ROS) or reactive nitrogen species (RNS) scavenging through enzymatic and non-enzymatic antioxidants have also been discussed. Increasing evidence has suggested that melatonin acts upstream of mitogen-activated proteinase kinases in activation of defense-related genes and heat shock proteins that provide immunity against pathogen attack. Besides, the direct application of melatonin on virulent fungi and bacteria showed disrupted spore morphology, destabilization of cell ultrastructure, reduced biofilm formation, and enhanced mortality that led to attenuate disease symptoms on melatonin-treated plants. The transcriptome analysis has revealed the down-regulation of pathogenicity genes, metabolism-related genes, and up-regulation of fungicide susceptibility genes in melatonin-treated pathogens. The activation of melatonin-mediated systemic acquired resistance (SAR) through cross-talk with salicylic acid (SA), jasmonic acid (JA) has been essential for viral disease management. The high endogenous melatonin concentration has also been correlated with the up-regulation of genes involved in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The present review highlights the versatile functions of melatonin towards direct inhibition of pathogen propagule along with active participation in mediating oxidative burst and simulating PTI, ETI and SAR responses. The hormonal cross-talk involving melatonin mediated biotic stress tolerance through defense signaling network suggests its suitability in a sustainable plant protection system.
Collapse
Affiliation(s)
- Rahul Kumar Tiwari
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Milan Kumar Lal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | | | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Regional Station, Modipuram, UP, 250 110, India
| |
Collapse
|
40
|
Xie X, Han Y, Yuan X, Zhang M, Li P, Ding A, Wang J, Cheng T, Zhang Q. Transcriptome Analysis Reveals that Exogenous Melatonin Confers Lilium Disease Resistance to Botrytis elliptica. Front Genet 2022; 13:892674. [PMID: 35774503 PMCID: PMC9237519 DOI: 10.3389/fgene.2022.892674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf blight, caused by Botrytis elliptica (Berk.) Cooke, is a devastating disease that limits the production of Lilium in China and in other countries worldwide. Numerous studies have indicated that plants have evolved sophisticated and effective signal transduction and defense-related pathways in response to pathogen invasion. Recently, particular attention has been given to the action(s) of melatonin in plants in response to biotic stress, and the role of melatonin in plant–pathogen interactions has also been discussed. In this study, RNA-seq was applied to analyze the transcriptomic changes in Lilium leaves that were pre-treated and post-treated with melatonin after B. elliptica infection for 0, 12, 24, 36, and 72 h and then compare those changes with those of the control. Treatment with exogenous melatonin and infection with B. elliptica caused differential expression of a large number of genes in Lilium leaves. KEGG pathway analysis showed that, after melatonin treatment, the defense-related DEGs were mainly enriched in plant–pathogen interactions, plant hormone signal transduction, MAPK signaling pathways, phenylpropanoid biosynthesis, and phenylalanine metabolism. RT–qPCR was used to verify the expression changes of 12 DEGs, the results of which were consistent with the RNA-seq analysis results. The expression of DEGs related to the MAPK pathway were significantly different between the MB group and the HB group, suggesting that, via the MAPK signaling cascade, melatonin may play a role in the disease resistance of Lilium to B. elliptica. This study provides a new perspective and information for molecular-based breeding of Lilium disease resistance.
Collapse
Affiliation(s)
- Xuehua Xie
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xi Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ping Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Aiqin Ding
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
- Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Qixiang Zhang,
| |
Collapse
|
41
|
Wang Y, Wang G, Xu W, Zhang Z, Sun X, Zhang S. Exogenous Melatonin Improves Pear Resistance to Botryosphaeria dothidea by Increasing Autophagic Activity and Sugar/Organic Acid Levels. PHYTOPATHOLOGY 2022; 112:1335-1344. [PMID: 34989595 DOI: 10.1094/phyto-11-21-0489-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pear is an important fruit tree worldwide, but it is often infected by the pathogen Botryosphaeria dothidea, which causes pear ring rot disease. To explore the effect of exogenous melatonin on the disease resistance of pear, we treated inoculated pear fruits with different concentrations of melatonin. The results showed that 100 μΜ of melatonin had the most significant effect with resistance to B. dothidea. In addition, melatonin treatment significantly reduced the diameter of disease lesions and enhanced the endogenous melatonin content in pears inoculated with B. dothidea. Compared with the control treatment, melatonin treatment suppressed increases in reactive oxygen species (ROS) and activated ROS-scavenging enzymes. Treatment with exogenous melatonin maintained ascorbic acid-glutathione at more reductive status. The expression levels of core autophagic genes and autophagosome formation were elevated by melatonin treatment in pear fruits. Silencing of PbrATG5 in Pyrus pyrifolia conferred sensitivity to inoculation that was only slightly attenuated by melatonin treatment. After inoculation with B. dothidea, exogenous melatonin treatment led to higher levels of soluble sugars and organic acids in pear fruits than H2O treatment. Overall, our results demonstrate that melatonin enhances resistance to B. dothidea by increasing autophagic activity and soluble sugar/organic acid accumulation.
Collapse
Affiliation(s)
- Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoming Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwu Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Li J, Liu J, Yu Y, Liu Y, Guan X. NF-κB/ABCA1 pathway aggravates ox-LDL-induced cell pyroptosis by activation of NLRP3 inflammasomes in THP-1-derived macrophages. Mol Biol Rep 2022; 49:6161-6171. [PMID: 35579737 DOI: 10.1007/s11033-022-07408-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE NF-κB (nuclear transcription factor-kappa B) plays a well-known function in the regulation of immune responses and inflammation, but growing evidences support a major role of it in atherosclerosis. Currently, the regulatory mechanism of NF-κB pathway involved in atherosclerosis remains unclear. METHODS To investigate the role of ox-LDL (oxidized low-density lipoprotein) in NF-κB regulation, the protein expression of phosphorylated NF-κB, a marker of NF-κB pathway activation was measured. The pyroptosis of macrophage was evaluated by western blot and fluorescence microscope. Cholesterol efflux capacity was determined by fluorescence assay and oil red O staining. The inhibitor of activation of NF-κB signal was used to assess the effect of NF-κB signal on macrophage pyroptosis and cholesterol efflux in macrophage. Small interfering RNA of ABCA1 (cholesterol transporters ATP binding boxes A1) was used to assess the effect of ABCA1 on macrophage pyroptosis. RESULTS In this study, we reported THP-1 derived macrophage can be stimulated to increase pyroptosis by ox-LDL in a concentration-dependent manner. Macrophage pyroptosis was correlated with enhanced activation of NF-κB signal. After using inhibitor of NF-κB phosphorylation to attenuate activation of NF-κB signal, we identified and confirmed the decrease of macrophage pyroptosis and the occurrence of ox-LDL-induced cholesterol efflux disorder. Furthermore, we found that the downregulation of ABCA1 led to increased cell inflammation death. But pyroptosis was blocked, may led to cholesterol efflux dysfunction. CONCLUSION Taken together, the present results indicate that the mechanism of NF-κB involved in the development of atherosclerosis depends on mediating cell pyroptosis and cholesterol efflux and provide significant light on macrophage NF-κB signal in atherosclerosis.
Collapse
Affiliation(s)
- Jiashan Li
- , Harbin, China
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaru Liu
- , Harbin, China
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Yu
- , Harbin, China
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuee Liu
- , Harbin, China
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuru Guan
- Harbin Medical University, Harbin, China.
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
43
|
Wang P, Yan Y, Lu Y, Liu G, Liu J, Shi H. The co-modulation of RAV transcription factors in ROS burst and extensive transcriptional reprogramming underlies disease resistance in cassava. PLANT CELL REPORTS 2022; 41:1261-1272. [PMID: 35275280 DOI: 10.1007/s00299-022-02855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
MeRAVs positively regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam. Cassava (Manihot esculenta Crantz) is an important food crop and energy crop, but its yield is seriously affected by cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam). Related to ABI3/VP1 (RAV) transcription factor family belongs to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, which plays an important role in plant growth, development and response to biotic and abiotic stresses. In this study, we found that MeRAVs positively co-regulates the resistance to Xam and stimulates the innate immune response by regulating reactive oxygen species (ROS) burst in cassava. Dual-luciferase assay showed that seven MeRAVs exhibited transcriptional activate activity by binding CAACA motif and CACCTG motif. A large number of differentially expressed genes (DEGs) were identified through RNA-seq analysis of MeRAVs-silenced lines, and the DEGs co-regulated by seven MeRAVs accounted for more than 45% of the total DEGs. In addition, seven MeRAVs positively regulate expression of disease resistance-related genes through directly binding to their promoters. In summary, MeRAVs co-regulate ROS burst and the expression of downstream disease resistance-related genes, which underlie improved disease resistance to Xam.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China
| | - Jinping Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
44
|
Li L, Du C, Wang L, Lai M, Fan H. Exogenous melatonin improves the resistance to cucumber bacterial angular leaf spot caused by Pseudomonas syringae pv. Lachrymans. PHYSIOLOGIA PLANTARUM 2022; 174:e13724. [PMID: 35611707 DOI: 10.1111/ppl.13724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas syringae pv. Lachrymans (Psl) is a bacterial pathogen that causes cucumber bacterial angular leaf spot (BALS). It is known that melatonin (MT), as a pleiotropic signal molecule, can improve plant stress tolerance, but less information is available about the function of MT on plant resistance to bacteria disease. Here, we investigated the effect of MT on cucumber BALS. Our results show that MT inhibited the bacteria Psl growth significantly in vitro and attenuated cucumber BALS remarkably in vivo. The concentration of bacteria in leaves treated with 0.1 mM MT was approximately 10,000 times reduced at 5 days-post-inoculation (dpi), compared to the control without MT. Transcriptomic analysis showed that 225 differentially expressed genes (DEGs) were induced in leaves after just MT treatment for 3 h. The functions of these DEGs were mainly associated with hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway, and photosynthesis, suggesting that MT could regulate plant growth and induce plant immunity. Moreover, 665 DEGs were induced when leaves were treated with exogenous MT in combination with the bacteria inoculation for 12 h. The functions of these DEGs were much related to plant-pathogen interaction, hormone signal transduction, and amino acids biosynthesis pathways. Many MT-induced DEGs were involved in some distinct signal transduction pathways, such as calmodulin (CaM), polyamines (PAs), nitric oxide (NO), and salicylic acid (SA). The physiological analysis shows that exogenous MT spray reduced the stomatal aperture and enhanced the activities of antioxidant and defense enzymes, which were in consistent with the results of the transcriptome analysis. In addition, MT may function in regulating the metabolic balance between plant growth and defense. In conclusion, our results demonstrate that MT could alleviate the cucumber BALS via inhibiting propagation and invasion of Psl, activating plant signaling, enhancing antioxidative and defense systems, inducing stress-related genes expression, and regulating the plant growth-defense balance.
Collapse
Affiliation(s)
- Lele Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Lu Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mengxia Lai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Guo J, Bai Y, Wei Y, Dong Y, Zeng H, Reiter RJ, Shi H. Fine-tuning of pathogenesis-related protein 1 (PR1) activity by the melatonin biosynthetic enzyme ASMT2 in defense response to cassava bacterial blight. J Pineal Res 2022; 72:e12784. [PMID: 34936113 DOI: 10.1111/jpi.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.
Collapse
Affiliation(s)
- Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
46
|
Hu P, Zhang K, Yang C. Functional roles of the birch BpRAV1 transcription factor in salt and osmotic stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111131. [PMID: 35067301 DOI: 10.1016/j.plantsci.2021.111131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
RAV (Related to ABI3/VP1) transcription factors play vital roles in regulating plant response to abiotic stresses; however, the regulatory mechanisms underlying stress response are still poorly understood for most of the RAVgenes. In this study, a novel gene BpRAV1 was cloned from white birch (Betula platyphylla). BpRAV1 protein is localized in the nucleus and serves as a transcriptional activator. The expression of BpRAV1 was induced by salt and osmotic stress treatments. BpRAV1-overexpression birch seedlings exhibited dramatically less ROS accumulation and reduced cell death in response to salt and osmotic stresses. BpRAV1 can specifically bind to the known RAV1A element. In addition, a novel cis-acting element (termed RBS1) bound by BpRAV1 was identified by transcription factor (TF)- centered Y1H assay. BpRAV1 activated the RAV1A and RBS1 elements to induce the expression of SOD and POD genes, resulting in increased SOD and POD activities to enhance ROS scavenging ability, thus improving salt and osmotic stress tolerance. These results indicate that BpRAV1 is a positive regulator governing abiotic stress response.
Collapse
Affiliation(s)
- Ping Hu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Kaimin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
47
|
Wang P, Yan Y, Bai Y, Dong Y, Wei Y, Zeng H, Shi H. Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Rep 2021; 37:110119. [PMID: 34910906 DOI: 10.1016/j.celrep.2021.110119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/11/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Related to ABI3/VP1 (RAV) transcription factors have important roles in plant stress responses; however, it is unclear whether RAVs regulates oxidative stress response in cassava (Manihot esculenta). In this study, we report that MeRAV1/2 positively regulate oxidative stress resistance and catalase (CAT) activity in cassava. Consistently, RNA sequencing (RNA-seq) identifies three MeCATs that are differentially expressed in MeRAV1/2-silenced cassava leaves. Interestingly, MeCAT6 and MeCAT7 are identified as direct transcriptional targets of MeRAV1/2 via binding to their promoters. In addition, protein kinase MeKIN10 directly interacts with MeRAV1/2 to phosphorylate them at Ser45 and Ser44 residues, respectively, to promote their direct transcriptional activation on MeCAT6 and MeCAT7. Site mutation of MeRAV1S45A or MeRAV2S44A has no significant effect on the activities of MeCAT6 and MeCAT7 promoters or on oxidative stress resistance. In summary, this study demonstrates that the phosphorylation of MeRAV1/2 by MeKIN10 is essential for its direct transcriptional activation of MeCAT6/7 in response to oxidative stress.
Collapse
Affiliation(s)
- Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
48
|
Zárate‐Chaves CA, Gómez de la Cruz D, Verdier V, López CE, Bernal A, Szurek B. Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. MOLECULAR PLANT PATHOLOGY 2021; 22:1520-1537. [PMID: 34227737 PMCID: PMC8578842 DOI: 10.1111/mpp.13094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
Xanthomonas phaseoli pv. manihotis (Xpm) and X. cassavae (Xc) are two bacterial pathogens attacking cassava. Cassava bacterial blight (CBB) is a systemic disease caused by Xpm, which might have dramatic effects on plant growth and crop production. Cassava bacterial necrosis is a nonvascular disease caused by Xc with foliar symptoms similar to CBB, but its impacts on the plant vigour and the crop are limited. In this review, we describe the epidemiology and ecology of the two pathogens, the impacts and management of the diseases, and the main research achievements for each pathosystem. Because Xc data are sparse, our main focus is on Xpm and CBB.
Collapse
Affiliation(s)
| | | | - Valérie Verdier
- PHIMUniversité MontpellierCIRADINRAeIRDInstitut AgroMontpellierFrance
| | - Camilo E. López
- Manihot Biotec, Departamento de BiologíaUniversidad Nacional de ColombiaBogotáColombia
| | - Adriana Bernal
- Laboratorio de Interacciones Moleculares de Microorganismos AgrícolasDepartamento de Ciencias BásicasUniversidad de los AndesBogotáColombia
| | - Boris Szurek
- PHIMUniversité MontpellierCIRADINRAeIRDInstitut AgroMontpellierFrance
| |
Collapse
|
49
|
Cui M, Haider MS, Chai P, Guo J, Du P, Li H, Dong W, Huang B, Zheng Z, Shi L, Zhang X, Han S. Genome-Wide Identification and Expression Analysis of AP2/ERF Transcription Factor Related to Drought Stress in Cultivated Peanut ( Arachis hypogaea L.). Front Genet 2021; 12:750761. [PMID: 34721538 PMCID: PMC8548641 DOI: 10.3389/fgene.2021.750761] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
APETALA2/ethylene response element-binding factor (AP2/ERF) transcription factors (TFs) have been found to regulate plant growth and development and response to various abiotic stresses. However, detailed information of AP2/ERF genes in peanut against drought has not yet been performed. Herein, 185 AP2/ERF TF members were identified from the cultivated peanut (A. hypogaea cv. Tifrunner) genome, clustered into five subfamilies: AP2 (APETALA2), ERF (ethylene-responsive-element-binding), DREB (dehydration-responsive-element-binding), RAV (related to ABI3/VP), and Soloist (few unclassified factors)). Subsequently, the phylogenetic relationship, intron-exon structure, and chromosomal location of AhAP2/ERF were further characterized. All of these AhAP2/ERF genes were distributed unevenly across the 20 chromosomes, and 14 tandem and 85 segmental duplicated gene pairs were identified which originated from ancient duplication events. Gene evolution analysis showed that A. hypogaea cv. Tifrunner were separated 64.07 and 66.44 Mya from Medicago truncatula L. and Glycine max L., respectively. Promoter analysis discovered many cis-acting elements related to light, hormones, tissues, and stress responsiveness process. The protein interaction network predicted the exitance of functional interaction among families or subgroups. Expression profiles showed that genes from AP2, ERF, and dehydration-responsive-element-binding subfamilies were significantly upregulated under drought stress conditions. Our study laid a foundation and provided a panel of candidate AP2/ERF TFs for further functional validation to uplift breeding programs of drought-resistant peanut cultivars.
Collapse
Affiliation(s)
- Mengjie Cui
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | | | - Pengpei Chai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Junjia Guo
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Pei Du
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Hongyan Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Wenzhao Dong
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Bingyan Huang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Zheng Zheng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Lei Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Xinyou Zhang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| | - Suoyi Han
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Science/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, China
| |
Collapse
|
50
|
Hernández-Ruiz J, Cano A, Arnao MB. A Phytomelatonin-Rich Extract Obtained from Selected Herbs with Application as Plant Growth Regulator. PLANTS 2021; 10:plants10102143. [PMID: 34685952 PMCID: PMC8540480 DOI: 10.3390/plants10102143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
The animal hormone melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule with multiple and various functions. Phytomelatonin is the melatonin from plants and was discovered in 1995 in some species. Phytomelatonin is considered an interesting molecule in the physiology of plants, as it seems to be involved in many actions, such as germination, growth, rooting and parthenocarpy, including fruit set and ripening; it also seems to play a role during postharvest. It has been studied in processes such as primary and secondary metabolism, photosynthesis and senescence, as well as in the nitrogen and sulfur cycles. Phytomelatonin up- and down-regulates many relevant genes related to plant hormones and key genes related to the above-mentioned aspects. One of the most decisive aspects of phytomelatonin is its relevant role as a bioprotective and alleviating agent against both biotic and abiotic stressors, which has opened up the possibility of using melatonin as a phytoprotector and biostimulant in agriculture. In this respect, using material of plant origin to obtain extracts rich in phytomelatonin instead of using synthetic melatonin (thus avoiding unwanted by-products) has become a topic of discussion. This work characterized the phytomelatonin-rich extracts obtained from selected herbs and determined their contents of phytomelatonin, phenols and flavonoids; the antioxidant activity was also measured. Finally, two melatonin-specific bioassays in plants were applied to demonstrate the excellent biological properties of the natural phytomelatonin-rich extracts obtained. The herb composition and the protocols for obtaining the extracts rich in phytomelatonin are in the process of registration for their legal protection.
Collapse
|