1
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Carroll J, Chen J, Mittal R, Lemos JRN, Mittal M, Juneja S, Assayed A, Hirani K. Decoding the Significance of Alpha Cell Function in the Pathophysiology of Type 1 Diabetes. Cells 2024; 13:1914. [PMID: 39594662 PMCID: PMC11593172 DOI: 10.3390/cells13221914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha cells in the pancreas, traditionally known for their role in secreting glucagon to regulate blood glucose levels, are gaining recognition for their involvement in the pathophysiology of type 1 diabetes (T1D). In T1D, autoimmune destruction of beta cells results in insulin deficiency, which in turn may dysregulate alpha cell function, leading to elevated glucagon levels and impaired glucose homeostasis. This dysfunction is characterized by inappropriate glucagon secretion, augmenting the risk of life-threatening hypoglycemia. Moreover, insulin deficiency and autoimmunity alter alpha cell physiological responses, further exacerbating T1D pathophysiology. Recent studies suggest that alpha cells undergo transdifferentiation and interact with beta cells through mechanisms involving gamma-aminobutyric acid (GABA) signaling. Despite these advances, the exact pathways and interactions remain poorly understood and are often debated. Understanding the precise role of alpha cells in T1D is crucial, as it opens up avenues for developing new therapeutic strategies for T1D. Potential strategies include targeting alpha cells to normalize glucagon secretion, utilizing glucagon receptor antagonists, enhancing GABA signaling, and employing glucagon-like peptide-1 (GLP-1) receptor agonists. These approaches aim to improve glycemic control and reduce the risk of hypoglycemic events in individuals with T1D. This review provides an overview of alpha cell function in T1D, highlighting the emerging focus on alpha cell dysfunction in the context of historically well-developed beta cell research.
Collapse
Affiliation(s)
| | | | - Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| | | | | | | | | | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.C.); (J.C.); (J.R.N.L.); (M.M.); (S.J.); (A.A.)
| |
Collapse
|
3
|
Vella M, Mohan S, Christie H, Bailey KR, Cobelli C, Dalla Man C, Matveyenko A, Egan AM, Vella A. Diabetes-associated Genetic Variation in MTNR1B and Its Effect on Islet Function. J Endocr Soc 2024; 8:bvae130. [PMID: 39011323 PMCID: PMC11249077 DOI: 10.1210/jendso/bvae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 07/17/2024] Open
Abstract
Context Multiple common genetic variants have been associated with type 2 diabetes, but the mechanism by which they predispose to diabetes is incompletely understood. One such example is variation in MTNR1B, which implicates melatonin and its receptor in the pathogenesis of type 2 diabetes. Objective To characterize the effect of diabetes-associated genetic variation at rs10830963 in the MTNR1B locus on islet function in people without type 2 diabetes. Design The association of genetic variation at rs10830963 with glucose, insulin, C-peptide, glucagon, and indices of insulin secretion and action were tested in a cohort of 294 individuals who had previously undergone an oral glucose tolerance test (OGTT). Insulin sensitivity, β-cell responsivity to glucose, and Disposition Indices were measured using the oral minimal model. Setting The Clinical Research and Translation Unit at Mayo Clinic, Rochester, MN. Participants Two cohorts were utilized for this analysis: 1 cohort was recruited on the basis of prior participation in a population-based study in Olmsted County. The other cohort was recruited on the basis of TCF7L2 genotype at rs7903146 from the Mayo Biobank. Intervention Two-hour, 7-sample OGTT. Main Outcome Measures Fasting, nadir, and integrated glucagon concentrations. Results One or 2 copies of the G-allele at rs10830963 were associated with increased postchallenge glucose and glucagon concentrations compared to subjects with the CC genotype. Conclusion The effects of rs10830963 on glucose homeostasis and predisposition to type 2 diabetes are likely to be partially mediated through changes in α-cell function.
Collapse
Affiliation(s)
- Max Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sneha Mohan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Hannah Christie
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kent R Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Claudio Cobelli
- Department of Women and Children's Health, University of Padova, 35128 Padova, Italy
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, 35128 Padova, Italy
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aoife M Egan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Aluwong T, Sumanu VO, Abdulsalam RA, Emmanuel DS, Ezekiel NG, Aliyu MB, Ayo JO, Ukwenu JO, Yaro JD, Ogbuagu NE. Melatonin and probiotic administration ameliorated hyperglycaemia, oxidative stress, and enhanced cytoprotective effect on beta-cells of diabetic rats. J Diabetes Metab Disord 2023; 22:1537-1549. [PMID: 37975141 PMCID: PMC10638259 DOI: 10.1007/s40200-023-01284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/16/2023] [Indexed: 11/19/2023]
Abstract
Objective The study aimed at investigating the effects of administering melatonin and a probiotic to streptozotocin-induced diabetic rats on hyperglycaemia, oxidative stress biomarkers and beta-cells. Design Type 1 diabetes was induced in 5 months-old male Wistar rats by single intraperitoneal (i.p.) administration of freshly-prepared STZ (60 mg/kg body weight). Six groups of 10 rats were used and treated once daily for six weeks; (1) Healthy control: normal saline only; (2) Pre-treated with Melatonin (MEL); (3) Diabetic control; (4) Diabetic + Treated with MEL; (5) Diabetic + Treated with Probiotic (Prob); (6) Diabetic + Treated with MEL + Prob. Blood glucose, body weight, activities of antioxidant enzymes and malondialdehyde concentration in serum and tissues, reduced glutathione and immunohistochemical assay. Data obtained were expressed as mean ± standard error of the mean (Mean ± SEM) and subjected to ANOVA followed by Tukey's post hoc test. Results Melatonin + Probiotic significantly decreased blood glucose concentrations in diabetic treated rats, compared to the diabetic control rats. MEL + Probiotic increased (p < 0.05) superoxide dismutase activity in serum and liver of diabetic rats. MEL + Probiotic reduced (p < 0.05) malondialdehyde concentration in the serum, liver and kidneys, respectively. MEL + Probiotic treated diabetic rats displayed islets with much greater content of insulin. Conclusion Melatonin + Probiotic combination was more effective in mitigating hyperglycaemia, oxidative stress, and exerted cytoprotective effect on the beta-cells.
Collapse
Affiliation(s)
- Tagang Aluwong
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Victory Osirimade Sumanu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - David Smith Emmanuel
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Nanyil Gunshin Ezekiel
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Muhammad Bello Aliyu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Olusegun Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | | | - Jigo Dangude Yaro
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - Ngozi Ejum Ogbuagu
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
5
|
Roberts FL, Cataldo LR, Fex M. Monoamines' role in islet cell function and type 2 diabetes risk. Trends Mol Med 2023; 29:1045-1058. [PMID: 37722934 DOI: 10.1016/j.molmed.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/20/2023]
Abstract
The two monoamines serotonin and melatonin have recently been highlighted as potent regulators of islet hormone secretion and overall glucose homeostasis in the body. In fact, dysregulated signaling of both amines are implicated in β-cell dysfunction and development of type 2 diabetes mellitus (T2DM). Serotonin is a key player in β-cell physiology and plays a role in expansion of β-cell mass. Melatonin regulates circadian rhythm and nutrient metabolism and reduces insulin release in human and rodent islets in vitro. Herein, we focus on the role of serotonin and melatonin in islet physiology and the pathophysiology of T2DM. This includes effects on hormone secretion, receptor expression, genetic variants influencing β-cell function, melatonin treatment, and compounds that alter serotonin availability and signaling.
Collapse
Affiliation(s)
- Fiona Louise Roberts
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden
| | - Luis Rodrigo Cataldo
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden; The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Malin Fex
- Lund University Diabetes Centre, Department of Clinical Sciences, Unit for Molecular Metabolism, SE-21428 Malmö, Sweden.
| |
Collapse
|
6
|
Alsharif KF, Hamad AA, Alblihd MA, Ali FAZ, Mohammed SA, Theyab A, Al-Amer OM, Almuqati MS, Almalki AA, Albarakati AJA, Alzahrani KJ, Albrakati A, Albarakati MH, Abass D, Lokman MS, Elmahallawy EK. Melatonin downregulates the increased hepatic alpha-fetoprotein expression and restores pancreatic beta cells in a streptozotocin-induced diabetic rat model: a clinical, biochemical, immunohistochemical, and descriptive histopathological study. Front Vet Sci 2023; 10:1214533. [PMID: 37655263 PMCID: PMC10467430 DOI: 10.3389/fvets.2023.1214533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
Background Diabetes mellitus (DM) is a chronic metabolic disorder. Hepatopathy is one of the serious effects of DM Melatonin (MT) is a potent endogenous antioxidant that can control insulin output. However, little information is available about the potential association between melatonin and hepatic alpha-fetoprotein expression in diabetes. Objective This study was conducted to assess the influence of MT on diabetes-related hepatic injuries and to determine how β-cells of the pancreas in diabetic rats respond to MT administration. Materials and methods Forty rats were assigned to four groups at random (ten animals per group). Group I served as a normal control group. Group II was induced with DM, and a single dose of freshly prepared streptozotocin (45 mg/kg body weight) was intraperitoneally injected. In Group III, rats received 10 mg/kg/day of intraperitoneal melatonin (IP MT) intraperitoneally over a period of 4 weeks. In Group IV (DM + MT), following the induction of diabetes, rats received MT (the same as in Group III). Fasting blood sugar, glycosylated hemoglobin (HbA1c), and serum insulin levels were assessed at the end of the experimental period. Serum liver function tests were performed. The pancreas and liver were examined histopathologically and immunohistochemically for insulin and alpha-fetoprotein (AFP) antibodies, respectively. Results MT was found to significantly modulate the raised blood glucose, HbA1c, and insulin levels induced by diabetes, as well as the decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Furthermore, MT attenuated diabetic degenerative changes in the pancreas and the hepatic histological structure, increased the β-cell percentage area, and decreased AFP expression in the liver tissue. It attenuated diabetes-induced hepatic injury by restoring pancreatic β-cells; its antioxidant effect also reduced hepatocyte injury. Conclusion Collectively, the present study confirmed the potential benefits of MT in downregulating the increased hepatic alpha-fetoprotein expression and in restoring pancreatic β-cells in a streptozotocin-induced diabetic rat model, suggesting its promising role in the treatment of diabetes.
Collapse
Affiliation(s)
- Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed A. Alblihd
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | | | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Malik Saad Almuqati
- Department of Laboratory, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A. Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | | | - Doaa Abass
- Zoology Department, Faculty of Sciences, Sohag University, Sohag, Egypt
| | - Maha S. Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
7
|
Ban Q, Chi W, Tan Y, Wang S, Li N, Song L, Huang X, Wang D, Peng W, Granato D, Zhao G. Melatonin improved glucose homeostasis is associated with the reprogrammed gut microbiota and reduced fecal levels of short-chain fatty acids in db/db mice. Food Sci Nutr 2023; 11:2012-2026. [PMID: 37051358 PMCID: PMC10084979 DOI: 10.1002/fsn3.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Accumulated evidence shows that melatonin possesses the potential to improve lipid metabolism by modifying gut microbiota and glucose metabolism via regulating the melatonin receptor signaling pathway. However, the contribution of melatonin consumption on glucose homeostasis by affecting gut microbiota has not been investigated in diabetes. In the current work, we investigated the effect of melatonin administration on gut microbiota and glucose homeostasis in db/db mice, a type 2 diabetes model with leptin receptor deficiency. Administration of melatonin through drinking water (at 0.25% and 0.50%) for 12 weeks decreased diabetic polydipsia and polyuria, increased insulin sensitivity and impeded glycemia. The accumulated fecal levels of total short-chain fatty acids (SCFAs) and acetic acid are positively correlated with diabetes-related parameters-homeostasis model assessment of insulin resistance (HOMA-IR) index and fasting blood glucose (FBG) level. The reprogramming of gut microbiota structure and abundance and the reduction of fecal levels of SCFAs, including acetic acid, butyric acid, isovaleric acid, caproic acid, and isobutyric acid, by melatonin may be beneficial for enhancing insulin sensitivity and lowering FBG, which were verified by the results of correlation analysis between acetic acid or total SCFAs and HOMA-IR and FBG. In addition, the melatonin downregulated hepatic genes, including fructose-1,6-bisphosphatase 1, forkhead box O1 alpha, thioredoxin-interacting protein, phosphoenolpyruvate carboxy-kinase (PEPCK), PEPCK1 and a glucose-6-phosphatase catalytic subunit, that responsible for gluconeogenesis support the result that melatonin improved glucose metabolism. Overall, results showed that the melatonin supplementation reduced fecal SCFAs level via reprogramming of gut microbiota, and the reduction of fecal SCFAs level is associated with improved glucose homeostasis in db/db mice.
Collapse
Affiliation(s)
- Qiuyan Ban
- Department of Tea Science, College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Wenjing Chi
- Department of Tea Science, College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yu Tan
- Department of Cell Biology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Shiqiong Wang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Ning Li
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Lianjun Song
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Xianqing Huang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Dongxu Wang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value‐added Products, School of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and EngineeringUniversity of LimerickLimerickIreland
| | - Guangshan Zhao
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
8
|
Anti-Inflammatory Effects of Melatonin in Rats with Induced Type 2 Diabetes Mellitus. Life (Basel) 2022; 12:life12040574. [PMID: 35455066 PMCID: PMC9029934 DOI: 10.3390/life12040574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction: Insulin resistance is associated with a pro-inflammatory state increasing the risk for complications in patients with type 2 diabetes mellitus (T2DM). In addition to its chronobiotic effects, the pineal hormone melatonin is known to exert anti-inflammatory and antioxidant effects. Melatonin was also suggested to affect insulin secretion. The aim of this study was therefore to investigate the effect of melatonin on inflammation in diabetic rats and to study the possible involvement of the melatonin receptor, MT2. Materials and Methods: Male Sprague Dawley rats were randomly divided into four experimental groups (n = 10 per group): (1) control, (2) streptozotocin/nicotinamide induced diabetes type 2 (T2DM), (3) T2DM treated with melatonin (500 µg/kg/day), and (4) T2DM treated with melatonin (500 µg/kg/day for 6 weeks) and the selective MT2 receptor antagonist luzindole (0.25 g/kg/day for 6 weeks). Blood samples were taken for biochemical parameters and various tissue samples (liver, adipose tissue, brain) were removed for immunohistochemistry (IHC), Western blot (WB), and Q-PCR analyses, respectively. Results: Melatonin significantly reduced increased blood levels of liver transaminases (AST, ALT), blood urea nitrogen (BUN), triglyceride, very low-density lipoprotein (VLDL), and cholesterol in diabetic rats with luzindole treatment partly reversing this effect regarding the lipids. Furthermore, the liver and adipose tissues of T2DM rats treated with melatonin showed lower expression of the inflammatory markers IL-1β, IL-6, TNF-α, and NF-κB as compared to the T2DM group without melatonin. The results also showed that the MT2 receptor is at least partly involved in the protective effects of melatonin. Conclusions: Our results suggest that melatonin exerts relevant anti-inflammatory effects on various tissues in type 2 diabetic rats.
Collapse
|
9
|
Zibolka J, Bähr I, Peschke E, Mühlbauer E, Bazwinsky-Wutschke I. Human and Rodent Cell Lines as Models of Functional Melatonin-Responsive Pancreatic Islet Cells. Methods Mol Biol 2022; 2550:329-352. [PMID: 36180704 DOI: 10.1007/978-1-0716-2593-4_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell culture of different pancreatic islet cell lines, like the murine α-cell line αTC1.9, the rat β-cell lines INS-1 and INS-1 832/13, and the human δ-cell line QGP-1, can serve as valuable cell models for the analysis of melatonin-dependent modulation of hormone secretion. The paper summarizes in detail the requirements of culture for each cell line and includes batch protocols to stimulate hormone secretion and to treat cells with several melatonin concentrations as previously published. We here describe the processing of collected cell pellets or cell culture supernatants as well as different methods to analyze cell experiments after melatonin treatment on the basis of our own experience. Finally, we outlined for each cell line under which conditions the melatonin treatment should be performed to gain reproducible results.
Collapse
Affiliation(s)
- Juliane Zibolka
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elmar Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eckhard Mühlbauer
- Saxon Academy of Sciences and Humanities in Leipzig, Leipzig, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
10
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
11
|
Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME. Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon 2021; 7:e06474. [PMID: 33748504 PMCID: PMC7970364 DOI: 10.1016/j.heliyon.2021.e06474] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathy and pancreatic injury are health issues associated with type 2 diabetes mellitus (T2DM) and are characterized by elevated oxidative stress, inflammation and apoptosis. Melatonin (MLT) is a hormone with multifunctional antioxidant activity. The protective effects of MLT on the heart and pancreas during the early development of diabetic cardiomyopathy and pancreatic injury were investigated in male Wistar rats with T2DM. MLT (10 mg/kg) was administered daily by gavage for 15 days after diabetic induction. Treatment of diabetic rats with MLT significantly normalized the levels of serum glucose, HbA1-c, and the lipid profile and improved the insulin levels and insulin resistance compared with diabetic rats, affirming its antidiabetic effect. MLT significantly prevented the development of oxidative stress and sustained the levels of glutathione and glutathione peroxidase activity in the heart and pancreas of diabetic animals, indicating its antioxidant capacity. Additionally, MLT prevented the increase in proinflammatory cytokines and expression of Bax, caspase-3 and P53. Furthermore, MLT enhanced the anti-inflammatory cytokine IL-10 and antiapoptotic protein Bcl-2. MLT controlled the levels of troponin T and creatine kinase-MB and lactate dehydrogenase activity, indicating its anti-inflammatory and antiapoptotic effects. Histological examinations confirmed the protective effects of MLT on T2DM-induced injury in the myocardium, pancreas and islets of Langerhans. In conclusion, the protective effects of melatonin on the heart and pancreas during the early development of T2DM are attributed to its antihyperglycemic, antilipidemic and antioxidant influences as well as its remarkable anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
| | | | - Sameh Shabana
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I. Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E. Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL. Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends Endocrinol Metab 2020; 31:192-204. [PMID: 31901302 PMCID: PMC7349733 DOI: 10.1016/j.tem.2019.11.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
The past decade has witnessed a revival of interest in the hormone melatonin, partly attributable to the discovery that genetic variation in MTNR1B - the melatonin receptor gene - is a risk factor for impaired fasting glucose and type 2 diabetes (T2D). Despite intensive investigation, there is considerable confusion and seemingly conflicting data on the metabolic effects of melatonin and MTNR1B variation, and disagreement on whether melatonin is metabolically beneficial or deleterious, a crucial issue for melatonin agonist/antagonist drug development and dosing time. We provide a conceptual framework - anchored in the dimension of 'time' - to reconcile paradoxical findings in the literature. We propose that the relative timing between elevated melatonin concentrations and glycemic challenge should be considered to better understand the mechanisms and therapeutic opportunities of melatonin signaling in glycemic health and disease.
Collapse
Affiliation(s)
- Marta Garaulet
- Department of Physiology, University of Murcia and Research Biomedical Institute of Murcia, Murcia, Spain; Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Richa Saxena
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
13
|
Bhattacharya S, Patel KK, Dehari D, Agrawal AK, Singh S. Melatonin and its ubiquitous anticancer effects. Mol Cell Biochem 2019; 462:133-155. [DOI: 10.1007/s11010-019-03617-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/17/2019] [Indexed: 02/06/2023]
|
14
|
Abstract
Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.
- CNRS UMR 8104, Paris, France.
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
15
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Lewczuk B, Prusik M, Ziółkowska N, Dąbrowski M, Martniuk K, Hanuszewska M, Zielonka Ł. Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig. Int J Mol Sci 2018; 19:ijms19103077. [PMID: 30304775 PMCID: PMC6213590 DOI: 10.3390/ijms19103077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
Several observations from experiments in rodents and human patients suggest that diabetes affects pineal gland function, including melatonin secretion; however, the accumulated data are not consistent. The aim of the present study was to determine the effects of streptozotocin-induced diabetes on the pineal gland in the domestic pig, a species widely used as a model in various biomedical studies. The study was performed on 10 juvenile pigs, which were divided into two groups: control and diabetic. Diabetes was evoked by administration of streptozotocin (150 mg/kg of body weight). After six weeks, the animals were euthanized between 12.00 and 14.00, and the pineal glands were removed and divided into two equal parts, which were used for biochemical analyses and for preparation of explants for the superfusion culture. The pineal contents (per 100 μg protein) of serotonin, 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid, 5-methoxytryptophol, and 5-methoxytryptamine were significantly lower in diabetic pigs than in control pigs. In contrast, the level of N-acetylserotonin was significantly higher in diabetic animals. No significant differences were found in the level of melatonin between control and experimental pigs. The amounts of 3,4-dihydroxyphenylalanine, dopamine, norepinephrine, and 3,4-dihydroxyphenylacetic acid were significantly lower in the pineal glands of diabetic animals. The level of vanillylmandelic acid was higher in diabetic pigs. No differences were observed in the level of basal and NE-stimulated release of N-acetylserotonin or melatonin between the pineal explants prepared from control and experimental animals. In vitro treatment with insulin was ineffective. In conclusion, streptozotocin-induced diabetes affects both indole metabolism and adrenergic neurotransmission in the pig pineal gland.
Collapse
Affiliation(s)
- Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Magdalena Prusik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Natalia Ziółkowska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Kamila Martniuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Maria Hanuszewska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| |
Collapse
|
17
|
Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018; 23:molecules23081999. [PMID: 30103453 PMCID: PMC6222335 DOI: 10.3390/molecules23081999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.
Collapse
|