1
|
Crowell RM, Shainker-Connelly SJ, Krueger-Hadfield SA, Vis ML. Population genetics of the freshwater red alga Batrachospermum gelatinosum (Rhodophyta) II: Phylogeographic analyses reveal spatial genetic structure among and within five major drainage basins in eastern North America. JOURNAL OF PHYCOLOGY 2024; 60:1437-1455. [PMID: 39432367 DOI: 10.1111/jpy.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
The freshwater red alga Batrachospermum gelatinosum has a well-documented distribution spanning historically glaciated and unglaciated eastern North America. This alga has no known desiccation-resistant propagule; thus, long-distance dispersal events are likely rare. We predicted strong genetic structure among drainage basins and admixture among sites within basins. We predicted greater genetic diversity at lower latitude sites because they likely serve as refugia and the origin of northward, post-Pleistocene range expansion. We used 10 microsatellite loci to investigate genetic diversity from 311 gametophytes from 18 sites in five major drainage basins: South Atlantic Gulf, Mid-Atlantic, Ohio River, Great Lakes, and Northeast. Our data showed strong genetic partitioning among drainage basins and among sites within basins, yet no isolation by distance was detected. Genetic diversity varied widely among sites and was not strictly related to latitude as predicted. The results from B. gelatinosum provide strong support that each stream site contributes to the unique genetic variation within the species, potentially due to limited dispersal and the prevailing reproductive mode of intragametophytic selfing. Simulations of migration suggested post-Pleistocene dispersal from the Mid-Atlantic. Batrachospermum gelatinosum potentially persisted in refugia that were just south of the ice margins rather than in the southernmost part of its range. Research of other taxa with similar ranges could determine whether these results are generally applicable for freshwater red algae. Nevertheless, these results from B. gelatinosum add to the growing literature focused on the patterns and genetic consequences of post-Pleistocene range expansion by eastern North American biota.
Collapse
Affiliation(s)
- Roseanna M Crowell
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | | | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Virginia Institute of Marine Science Eastern Shore Laboratory, Wachapreague, Virginia, USA
- William & Mary's Batten School of Coastal and Marine Science, Gloucester Point, Virginia, USA
| | - Morgan L Vis
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| |
Collapse
|
2
|
Krueger-Hadfield SA. Let's talk about sex: Why reproductive systems matter for understanding algae. JOURNAL OF PHYCOLOGY 2024; 60:581-597. [PMID: 38743848 DOI: 10.1111/jpy.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Sex is a crucial process that has molecular, genetic, cellular, organismal, and population-level consequences for eukaryotic evolution. Eukaryotic life cycles are composed of alternating haploid and diploid phases but are constrained by the need to accommodate the phenotypes of these different phases. Critical gaps in our understanding of evolutionary drivers of the diversity in algae life cycles include how selection acts to stabilize and change features of the life cycle. Moreover, most eukaryotes are partially clonal, engaging in both sexual and asexual reproduction. Yet, our understanding of the variation in their reproductive systems is largely based on sexual reproduction in animals or angiosperms. The relative balance of sexual versus asexual reproduction not only controls but also is in turn controlled by standing genetic variability, thereby shaping evolutionary trajectories. Thus, we must quantitatively assess the consequences of the variation in life cycles on reproductive systems. Algae are a polyphyletic group spread across many of the major eukaryotic lineages, providing powerful models by which to resolve this knowledge gap. There is, however, an alarming lack of data about the population genetics of most algae and, therefore, the relative frequency of sexual versus asexual processes. For many algae, the occurrence of sexual reproduction is unknown, observations have been lost in overlooked papers, or data on population genetics do not yet exist. This greatly restricts our ability to forecast the consequences of climate change on algal populations inhabiting terrestrial, aquatic, and marine ecosystems. This perspective summarizes our extant knowledge and provides some future directions to pursue broadly across micro- and macroalgal species.
Collapse
|
3
|
Bonthond G, Barilo A, Allen RJ, Cunliffe M, Krueger-Hadfield SA. Fungal endophytes vary by species, tissue type, and life cycle stage in intertidal macroalgae. JOURNAL OF PHYCOLOGY 2022; 58:330-342. [PMID: 35090190 DOI: 10.1111/jpy.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Fungal symbionts of terrestrial plants are among the most widespread and well-studied symbioses, relatively little is known about fungi that are associated with macroalgae. To fill the gap in marine fungal taxonomy, we combined simple culture methods with amplicon sequencing to characterize the fungal communities associated with three brown (Sargassum muticum, Pelvetia canaliculata, and Himanthalia elongata) and two red (Mastocarpus stellatus and Chondrus crispus) macroalgae from one intertidal zone. In addition to characterizing novel fungal diversity, we tested three hypotheses: fungal diversity and community composition vary (i) among species distributed at different tidal heights, (ii) among tissue types (apices, mid-thallus, and stipe), and (iii) among "isomorphic" C. crispus life cycle stages. Almost 70% of our reads were classified as Ascomycota, 29% as Basidiomycota, and 1% that could not be classified to a phylum. Thirty fungal isolates were obtained, 18 of which were also detected with amplicon sequencing. Fungal communities differed by host and tissue type. Interestingly, P. canaliculata, a fucoid at the extreme high intertidal, did not show differences in fungal diversity across the thallus. As found in filamentous algal endophytes, fungal diversity varied among the three life cycle stages in C. crispus. Female gametophytes were also compositionally more dispersed as compared to the fewer variable tetrasporophytes and male gametophytes. We demonstrate the utility of combining relatively simple cultivation and sequencing approaches to characterize and study macroalgal-fungal associations and highlight the need to understand the role of fungi in near-shore marine ecosystems.
Collapse
Affiliation(s)
- Guido Bonthond
- Institute for Chemistry and Biology of the Marine environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, Wilhelmshaven, 26382, Germany
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel, 24105, Germany
| | - Anastasiia Barilo
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Ro J Allen
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35294, USA
| |
Collapse
|
4
|
Vieira VMNCS, Engelen AH, Huanel OR, Guillemin ML. An Individual-Based Model of the Red Alga Agarophyton chilense Unravels the Complex Demography of Its Intertidal Stands. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.797350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Algal demographic models have been developed mainly to study their life cycle evolution or optimize their commercial exploitation. Most commonly, structured-aggregated population models simulate the main life cycle stages considering their fertility, growth and survival. Their coarse resolution results in weak predictive abilities since neglected details may still impact the whole. In our case, we need a model of Agarophyton chilense natural intertidal populations that unravels the complex demography of isomorphic biphasic life cycles and be further used for: (i) introduction of genetics, aimed at studying the evolutionary stability of life cycles, (ii) optimizing commercial exploitation, and (iii) adaptation for other species. Long-term monitoring yield 6,066 individual observations and 40 population observations. For a holistic perspective, we developed an Individual-Based Model (IBM) considering ploidy stage, sex stage, holdfast age and survival, frond size, growth and breakage, fecundity, spore survival, stand biomass, location and season. The IBM was calibrated and validated comparing observed and estimated sizes and abundances of gametophyte males, gametophyte females and tetrasporophytes, stand biomass, haploid:dipoid ratio (known as H:D or G:T), fecundity and recruitment. The IBM replicated well the respective individual and population properties, and processes such as winter competition for light, self-thinning, summer stress from desiccation, frond breakage and re-growth, and different niche occupation by haploids and diploids. Its success depended on simulating with precision details such as the holdfasts’ dynamics. Because “details” often occur for a reduced number of individuals, inferring about them required going beyond statistically significant evidences and integrating these with parameter calibration aimed at maximized model fit. On average, the population was haploid-dominated (H:D > 1). In locations stressed by desiccation, the population was slightly biased toward the diploids and younger individuals due to the superior germination and survival of the diploid sporelings. In permanently submerged rock pools the population was biased toward the haploids and older individuals due to the superior growth and survival of the haploid adults. The IBM application demonstrated that conditional differentiation among ploidy stages was responsible for their differential niche occupation, which, in its turn, has been argued as the driver of the evolutionary stability of isomorphic biphasic life cycles.
Collapse
|
5
|
Camus C, Solas M, Martínez C, Vargas J, Garcés C, Gil-Kodaka P, Ladah LB, Serrão EA, Faugeron S. Mates Matter: Gametophyte Kinship Recognition and Inbreeding in the Giant Kelp, Macrocystis pyrifera (Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2021; 57:711-725. [PMID: 33583038 DOI: 10.1111/jpy.13146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Inbreeding, the mating between genetically related individuals, often results in reduced survival and fecundity of offspring, relative to outcrossing. Yet, high inbreeding rates are commonly observed in seaweeds, suggesting compensatory reproductive traits may affect the costs and benefits of the mating system. We experimentally manipulated inbreeding levels in controlled crossing experiments, using gametophytes from 19 populations of Macrocystis pyrifera along its Eastern Pacific coastal distribution (EPC). The objective was to investigate the effects of male-female kinship on female fecundity and fertility, to estimate inbreeding depression in the F1 progeny, and to assess the variability of these effects among different regions and habitats of the EPC. Results revealed that the presence and kinship of males had a significant effect on fecundity and fertility of female gametophytes. Females left alone or in the presence of sibling males express the highest gametophyte size, number, and size of oogonia, suggesting they were able to sense the presence and the identity of their mates before gamete contact. The opposite trend was observed for the production of embryos per female gametes, indicating higher costs of selfing and parthenogenesis than outcrossing on fertility. However, the increased fecundity compensated for the reduced fertility, leading to a stable overall reproductive output. Inbreeding also affected morphological traits of juvenile sporophytes, but not their heatwave tolerance. The male-female kinship effect was stronger in high-latitude populations, suggesting that females from low-latitude marginal populations might have evolved to mate with any male gamete to guarantee reproductive success.
Collapse
Affiliation(s)
- Carolina Camus
- Centro i~mar and CeBiB, Universidad de Los Lagos, Puerto Montt, Chile
| | - Maribel Solas
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Jaime Vargas
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | | | | | - Lydia B Ladah
- Department of Biological Oceanography, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, México
| | | | - Sylvain Faugeron
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- UMI3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| |
Collapse
|
6
|
Stoeckel S, Arnaud-Haond S, Krueger-Hadfield SA. The Combined Effect of Haplodiplonty and Partial Clonality on Genotypic and Genetic Diversity in a Finite Mutating Population. J Hered 2021; 112:78-91. [PMID: 33710350 DOI: 10.1093/jhered/esaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023] Open
Abstract
Partial clonality is known to affect the genetic composition and evolutionary trajectory of diplontic (single, free-living diploid stage) populations. However, many partially clonal eukaryotes exhibit life cycles in which somatic development occurs in both haploid and diploid individuals (haplodiplontic life cycles). Here, we studied how haplodiplontic life cycles and partial clonality structurally constrain, as immutable parameters, the reshuffling of genetic diversity and its dynamics in populations over generations. We assessed the distribution of common population genetic indices at different proportions of haploids, rates of clonality, mutation rates, and sampling efforts. Our results showed that haplodiplontic life cycles alone in finite populations affect effective population sizes and the ranges of distributions of population genetic indices. With nonoverlapping generations, haplodiplonty allowed the evolution of 2 temporal genetic pools that may diverge in sympatry due to genetic drift under full sexuality and clonality. Partial clonality in these life cycles acted as a homogenizing force between those 2 pools. Moreover, the combined effects of proportion of haploids, rate of clonality, and the relative strength of mutation versus genetic drift impacts the distributions of population genetics indices, rendering it difficult to transpose and use knowledge accumulated from diplontic or haplontic species. Finally, we conclude by providing recommendations for sampling and analyzing the population genetics of partially clonal haplodiplontic taxa.
Collapse
Affiliation(s)
- Solenn Stoeckel
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | | | | |
Collapse
|
7
|
Krueger-Hadfield SA, Guillemin ML, Destombe C, Valero M, Stoeckel S. Exploring the Genetic Consequences of Clonality in Haplodiplontic Taxa. J Hered 2021; 112:92-107. [PMID: 33511982 DOI: 10.1093/jhered/esaa063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022] Open
Abstract
Partially clonality is an incredibly common reproductive mode found across all the major eukaryotic lineages. Yet, population genetic theory is based on exclusive sexuality or exclusive asexuality, and partial clonality is often ignored. This is particularly true in haplodiplontic eukaryotes, including algae, ferns, mosses, and fungi, where somatic development occurs in both the haploid and diploid stages. Haplodiplontic life cycles are predicted to be correlated with asexuality, but tests of this prediction are rare. Moreover, there are unique consequences of having long-lived haploid and diploid stages in the same life cycle. For example, clonal processes uncouple the life cycle such that the repetition of the diploid stage via clonality leads to the loss of the haploid stage. Here, we surveyed the literature to find studies that had genotyped both haploid and diploid stages and recalculated population genetic summary metrics for seven red algae, one green alga, three brown algae, and three mosses. We compared these data to recent simulations that explicitly addressed the population genetic consequences of partial clonality in haplodiplontic life cycles. Not only was partial clonality found to act as a homogenizing force, but the combined effects of proportion of haploids, rate of clonality, and the relative strength of mutation versus genetic drift impacts the distributions of population genetic indices. We found remarkably similar patterns across commonly used population genetic metrics between our empirical and recent theoretical expectations. To facilitate future studies, we provide some recommendations for sampling and analyzing population genetic parameters for haplodiplontic taxa.
Collapse
Affiliation(s)
| | - Marie-Laure Guillemin
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, IRL 3614, Station Biologique de Roscoff, Roscoff, France
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla, Valdivia, Chile
| | - Christophe Destombe
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, IRL 3614, Station Biologique de Roscoff, Roscoff, France
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, IRL 3614, Station Biologique de Roscoff, Roscoff, France
| | - Solenn Stoeckel
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, Le Rheu, France
| |
Collapse
|
8
|
Krueger-Hadfield SA, Flanagan BA, Godfroy O, Hill-Spanik KM, Nice CC, Murren CJ, Strand AE, Sotka EE. Using RAD-seq to develop sex-linked markers in a haplodiplontic alga. JOURNAL OF PHYCOLOGY 2021; 57:279-294. [PMID: 33098662 DOI: 10.1111/jpy.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35294, USA
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Kristina M Hill-Spanik
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, Texas, 78666, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Allan E Strand
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| | - Erik E Sotka
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| |
Collapse
|
9
|
Stoeckel S, Porro B, Arnaud-Haond S. The discernible and hidden effects of clonality on the genotypic and genetic states of populations: Improving our estimation of clonal rates. Mol Ecol Resour 2021; 21:1068-1084. [PMID: 33386695 DOI: 10.1111/1755-0998.13316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
Partial clonality is widespread across the tree of life, but most population genetic models are designed for exclusively clonal or sexual organisms. This gap hampers our understanding of the influence of clonality on evolutionary trajectories and the interpretation of population genetic data. We performed forward simulations of diploid populations at increasing rates of clonality (c), analysed their relationships with genotypic (clonal richness, R, and distribution of clonal sizes, Pareto β) and genetic (FIS and linkage disequilibrium) indices, and tested predictions of c from population genetic data through supervised machine learning. Two complementary behaviours emerged from the probability distributions of genotypic and genetic indices with increasing c. While the impact of c on R and Pareto β was easily described by simple mathematical equations, its effects on genetic indices were noticeable only at the highest levels (c > 0.95). Consequently, genotypic indices allowed reliable estimates of c, while genetic descriptors led to poorer performances when c < 0.95. These results provide clear baseline expectations for genotypic and genetic diversity and dynamics under partial clonality. Worryingly, however, the use of realistic sample sizes to acquire empirical data systematically led to gross underestimates (often of one to two orders of magnitude) of c, suggesting that many interpretations hitherto proposed in the literature, mostly based on genotypic richness, should be reappraised. We propose future avenues to derive realistic confidence intervals for c and show that, although still approximate, a supervised learning method would greatly improve the estimation of c from population genetic data.
Collapse
Affiliation(s)
- Solenn Stoeckel
- Institute for Genetics, Environment and Plant Protection, INRAE, Le Rheu, France
| | - Barbara Porro
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France.,MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| | - Sophie Arnaud-Haond
- MARBEC - Marine Biodiversity Exploitation and Conservation, University of Montpellier, CNRS, Ifremer, IRD, MARBEC, Sète, France
| |
Collapse
|
10
|
McCoy SJ, Krueger‐Hadfield SA, Mieszkowska N. Evolutionary Phycology: Toward a Macroalgal Species Conceptual Framework. JOURNAL OF PHYCOLOGY 2020; 56:1404-1413. [PMID: 32726874 PMCID: PMC7883729 DOI: 10.1111/jpy.13059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Species concepts formalize evolutionary and ecological processes, but often conflict with one another when considering the mechanisms that ultimately lead to species delimitation. Evolutionary biologists are, however, recognizing that the conceptualization of a species is separate and distinct from the delimitation of species. Indeed, if species are generally defined as separately evolving metapopulation lineages, then characteristics, such as reproductive isolation or monophyly, can be used as evidence of lineage separation and no longer conflict with the conceptualization of a species. However, little of this discussion has addressed the formalization of this evolutionary conceptual framework for macroalgal species. This may be due to the complexity and variation found in macroalgal life cycles. While macroalgal mating system variation and patterns of hybridization and introgression have been identified, complex algal life cycles generate unique eco-evolutionary consequences. Moreover, the discovery of frequent macroalgal cryptic speciation has not been accompanied by the study of the evolutionary ecology of those lineages, and, thus, an understanding of the mechanisms underlying such rampant speciation remain elusive. In this perspective, we aim to further the discussion and interest in species concepts and speciation processes in macroalgae. We propose a conceptual framework to enable phycological researchers and students alike to portray these processes in a manner consistent with dialogue at the forefront of evolutionary biology. We define a macroalgal species as an independently evolving metapopulation lineage, whereby we can test for reproductive isolation or the occupation of distinct adaptive zones, among other mechanisms, as secondary lines of supporting evidence.
Collapse
Affiliation(s)
- Sophie J. McCoy
- Department of Biological ScienceFlorida State University319 Stadium Dr.TallahasseeFlorida32312USA
| | - Stacy A. Krueger‐Hadfield
- Department of BiologyUniversity of Alabama at Birmingham1300 University BlvdBirminghamAlabama35294USA
| | - Nova Mieszkowska
- Department of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPUK
- Marine Biological Association of the United KingdomThe LaboratoryCitadel HillPlymouthDevonPL1 2PBUK
| |
Collapse
|
11
|
Krueger-Hadfield SA, Ryan WH. Influence of nutrients on ploidy-specific performance in an invasive, haplodiplontic red macroalga. JOURNAL OF PHYCOLOGY 2020; 56:1114-1120. [PMID: 32348550 DOI: 10.1111/jpy.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Worldwide, macroalgae have invaded near-shore marine ecosystems. However, their haplodiplontic life cycles have complicated efforts to predict patterns of growth and spread, particularly since most theoretical predictions are derived from diplontic taxa (i.e., animals). To complete one revolution of the life cycle, two separate ploidy stages, often including separate haploid sexes, must pass through development and reproduction. In the case of the invasive, red macroalga Agarophyton vermiculophyllum, during the invasion of soft-sediment estuaries throughout the Northern Hemisphere, diploid tetrasporophytes came to dominate all free-floating populations and haploid gametophytes were consistently lost. The ecological hypothesis of nutrient limitation might contribute to an explanation of this pattern of tetrasporophytic dominance in free-floating populations. Under this hypothesis, gametophytes should outperform tetrasporophytes under nutrient limited conditions, but tetrasporophytes should be better able to exploit optimal or even abundant nutrient conditions, such as in eutrophic estuaries. We sampled tetrasporophytes, male gametophytes, and female gametophytes from two sites each located on either side of the Delmarva Peninsula that separates the Chesapeake Bay from the Atlantic Ocean. We subjected apices excised from multiple thalli from each life cycle stage to a nutrient-enriched and a nutrient-poor seawater treatment and assessed growth and survival. While nutrient addition increased growth rates, there was no significant difference among ploidies or sexes. Gametophytes did, however, suffer higher mortality than tetrasporophytes. We discuss how nutrient-dependent differences in growth and survival may contribute to observed patterns of tetrasporophytic dominance in soft-sediment A. vermiculophyllum populations.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35924, USA
| | - Will H Ryan
- Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35924, USA
| |
Collapse
|
12
|
Schoenrock KM, Chan KM, O'Callaghan T, O'Callaghan R, Golden A, Krueger‐Hadfield SA, Power AM. A review of subtidal kelp forests in Ireland: From first descriptions to new habitat monitoring techniques. Ecol Evol 2020; 10:6819-6832. [PMID: 32724553 PMCID: PMC7381581 DOI: 10.1002/ece3.6345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022] Open
Abstract
AIM Kelp forests worldwide are important marine ecosystems that foster high primary to secondary productivity and multiple ecosystem services. These ecosystems are increasingly under threat from extreme storms, changing ocean temperatures, harvesting, and greater herbivore pressure at regional and global scales, necessitating urgent documentation of their historical to present-day distributions. Species range shifts to higher latitudes have already been documented in some species that dominate subtidal habitats within Europe. Very little is known about kelp forest ecosystems in Ireland, where rocky coastlines are dominated by Laminaria hyperborea. In order to rectify this substantial knowledge gap, we compiled historical records from an array of sources to present historical distribution, kelp and kelp forest recording effort over time, and present rational for the monitoring of kelp habitats to better understand ecosystem resilience. LOCATION Ireland (Northern Ireland and Éire). METHODS Herbaria, literature from the Linnaean society dating back to late 1700s, journal articles, government reports, and online databases were scoured for information on L. hyperborea. Information about kelp ecosystems was solicited from dive clubs and citizen science groups that are active along Ireland's coastlines. RESULTS Data were used to create distribution maps and analyze methodology and technology used to record L. hyperborea presence and kelp ecosystems within Ireland. We discuss the recent surge in studies on Irish kelp ecosystems, fauna associated with kelp ecosystems that may be used as indicators of ecosystem health and suggest methodologies for continued monitoring. MAIN CONCLUSIONS While there has been a steady increase in recording effort of the dominant subtidal kelp forest species, L. hyperborea, only recently have studies begun to address other important eco-evolutionary processes at work in kelp forests including connectivity among kelp populations in Ireland. Further monitoring, using suggested methodologies, is required to better understand the resilience of kelp ecosystems in Ireland.
Collapse
Affiliation(s)
- Kathryn M. Schoenrock
- Department of ZoologySchool of Natural SciencesRyan InstituteNUI GalwayGalwayIreland
| | - Kenan M. Chan
- Department of ZoologySchool of Natural SciencesRyan InstituteNUI GalwayGalwayIreland
| | | | | | - Aaron Golden
- Áras de BrúnSchool of Mathematics, Statistics and Applied MathematicsNUI GalwayGalwayIreland
| | | | - Anne Marie Power
- Department of ZoologySchool of Natural SciencesRyan InstituteNUI GalwayGalwayIreland
| |
Collapse
|
13
|
Heiser S, Amsler CD, McClintock JB, Shilling AJ, Baker BJ. Every Rule Has an Exception: a Cheater in the Community-Wide Mutualism in Antarctic Seaweed Forests. Integr Comp Biol 2020; 60:1358-1368. [DOI: 10.1093/icb/icaa058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synopsis
Dense macroalgal forests on the Western Antarctic Peninsula serve important ecological roles both in terms of considerable biomass for primary production as well as in being ecosystem engineers. Their function within the Antarctic ecosystem has been described as a crucial member of a community-wide mutualism which benefits macroalgal species and dense assemblages of associated amphipod grazers. However, there is a cheater within the system that can feed on one of the most highly chemically defended macroalgal hosts. The amphipod Paradexamine fissicauda has been found to readily consume the finely branched red macroalga Plocamium cartilagineum. This amphipod grazer not only feeds on its host, but also appears to sequester its host’s chemical defenses for its own utilization. This review summarizes what we know about both of these exceptions to the community-wide mutualism.
Collapse
Affiliation(s)
- Sabrina Heiser
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH 464, Birmingham, AL 35294-1170, USA
| | - Charles D Amsler
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH 464, Birmingham, AL 35294-1170, USA
| | - James B McClintock
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH 464, Birmingham, AL 35294-1170, USA
| | - Andrew J Shilling
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620-5250, USA
| | - Bill J Baker
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620-5250, USA
| |
Collapse
|
14
|
Olsen KC, Ryan WH, Winn AA, Kosman ET, Moscoso JA, Krueger-Hadfield SA, Burgess SC, Carlon DB, Grosberg RK, Kalisz S, Levitan DR. Inbreeding shapes the evolution of marine invertebrates. Evolution 2020; 74:871-882. [PMID: 32191349 PMCID: PMC7383701 DOI: 10.1111/evo.13951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
Inbreeding is a potent evolutionary force shaping the distribution of genetic variation within and among populations of plants and animals. Yet, our understanding of the forces shaping the expression and evolution of nonrandom mating in general, and inbreeding in particular, remains remarkably incomplete. Most research on plant mating systems focuses on self-fertilization and its consequences for automatic selection, inbreeding depression, purging, and reproductive assurance, whereas studies of animal mating systems have often assumed that inbreeding is rare, and that natural selection favors traits that promote outbreeding. Given that many sessile and sedentary marine invertebrates and marine macroalgae share key life history features with seed plants (e.g., low mobility, modular construction, and the release of gametes into the environment), their mating systems may be similar. Here, we show that published estimates of inbreeding coefficients (FIS ) for sessile and sedentary marine organisms are similar and at least as high as noted in terrestrial seed plants. We also found that variation in FIS within invertebrates is related to the potential to self-fertilize, disperse, and choose mates. The similarity of FIS for these organismal groups suggests that inbreeding could play a larger role in the evolution of sessile and sedentary marine organisms than is currently recognized. Specifically, associations between traits of marine invertebrates and FIS suggest that inbreeding could drive evolutionary transitions between hermaphroditism and separate sexes, direct development and multiphasic life cycles, and external and internal fertilization.
Collapse
Affiliation(s)
- Kevin C Olsen
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32304
| | - Will H Ryan
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Alice A Winn
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32304
| | - Ellen T Kosman
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32304
| | - Jose A Moscoso
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | | | - Scott C Burgess
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32304
| | - David B Carlon
- The Biology Department, Bowdoin College, Brunswick, Maine, 04011.,Schiller Coastal Studies Center, Bowdoin College, Orr's Island, Maine, 04066
| | - Richard K Grosberg
- Coastal and Marine Sciences Institute, University of California Davis, Davis, California, 95616
| | - Susan Kalisz
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, Tennessee, 37996
| | - Don R Levitan
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32304
| |
Collapse
|
15
|
Krueger‐Hadfield SA. What's ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evol Appl 2020; 13:486-499. [PMID: 32431731 PMCID: PMC7045718 DOI: 10.1111/eva.12843] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/09/2019] [Accepted: 07/06/2019] [Indexed: 01/04/2023] Open
Abstract
Biological invasions represent grave threats to terrestrial, aquatic, and marine ecosystems, but our understanding of the role of evolution during invasions remains rudimentary. In marine environments, macroalgae account for a large percentage of invaders, but their complicated life cycles render it difficult to move methodologies and predictions wholesale from species with a single, free-living ploidy stage, such as plants or animals. In haplodiplontic macroalgae, meiosis and fertilization are spatiotemporally separated by long-lived, multicellular haploid and diploid stages, and gametes are produced by mitosis, not meiosis. As a consequence, there are unique eco-evolutionary constraints that are not typically considered in invasions. First, selfing can occur in both monoicious (i.e., hermaphroditic) and dioicious (i.e., separate sexes) haplodiplontic macroalgae. In the former, fertilization between gametes produced by the same haploid thallus results in instantaneous, genome-wide homozygosity. In the latter, cross-fertilization between separate male and female haploids that share the same diploid parent is analogous to selfing in plants or animals. Separate sexes, therefore, cannot be used as a proxy for outcrossing. Second, selfing likely facilitates invasions (i.e., Baker's law) and the long-lived haploid stage may enable purging of deleterious mutations, further contributing to invasion success. Third, asexual reproduction will result in the dominance of one ploidy and/or sex and the loss of the other(s). Whether or not sexual reproduction can be recovered depends on which stage is maintained. Finally, fourth, haplodiplontic life cycles are predicted to be maintained through niche differentiation in the haploid and diploid stages. Empirical tests are rare, but fundamental to our understanding of macroalgal invasion dynamics. By highlighting these four phenomena, we can build a framework with which to empirically and theoretically address important gaps in the literature on marine evolutionary ecology, of which biological invasions can serve as unnatural laboratories.
Collapse
|
16
|
Krueger-Hadfield SA, Blakeslee AMH, Fowler AE. Incorporating Ploidy Diversity into Ecological and Community Genetics. JOURNAL OF PHYCOLOGY 2019; 55:1198-1207. [PMID: 31349373 DOI: 10.1111/jpy.12906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Studies in ecological and community genetics have advanced our understanding of the role of intraspecific diversity in structuring communities and ecosystems. However, in near-shore marine communities, these studies have mostly been restricted to seagrasses, marsh plants, and oysters. Yet, macroalgae are critically important ecosystem engineers in these communities. Greater intraspecific diversity in a macroalgal ecosystem engineer should result in higher primary and secondary production and community resilience. The paucity of studies investigating the consequences of macroalgal intraspecific genetic variation might be due, in part, to the complexity of macroalgal life cycles. The majority of macroalgae have seemingly subtle, but in actuality, profoundly different life cycles than the more typical animal and angiosperm models. Here, we develop a novel genetic diversity metric, PHD , that incorporates the ratio of gametophytic to sporophytic thalli in natural populations. This metric scales from 0 to 1 like many common genetic diversity metrics, such as genotypic richness, enabling comparisons among metrics. We discuss PHD and examples from the literature, with specific reference to the widespread, red seaweed Agarophyton vermiculophyllum. We also discuss a sex diversity metric, PFM , which also scales from 0 to 1, but fewer studies have identified males and females in natural populations. Nevertheless, by incorporating these novel metrics into the repertoire of diversity metrics, we can explore the role of genetic diversity in community and ecosystem dynamics with an emphasis on the unique biology of many macroalgae, as well as other haplodiplontic taxa such as ferns, foraminiferans, and some fungi.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd CH464, Birmingham, Alabama, 35294, USA
| | - April M H Blakeslee
- Department of Biology, East Carolina University, E 10th Street, Greenville, North Carolina, 27858, USA
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, 4400 University Dr, Fairfax, Virginia, 22030, USA
| |
Collapse
|
17
|
Lees LE, Krueger-Hadfield SA, Clark AJ, Duermit EA, Sotka EE, Murren CJ. Nonnative Gracilaria vermiculophylla tetrasporophytes are more difficult to debranch and are less nutritious than gametophytes. JOURNAL OF PHYCOLOGY 2018; 54:471-482. [PMID: 29676788 DOI: 10.1111/jpy.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Theory predicts that the maintenance of haplodiplontic life cycles requires ecological differences between the haploid gametophytes and diploid sporophytes, yet evidence of such differences remain scarce. The haplodiplontic red seaweed Gracilaria vermiculophylla has invaded the temperate estuaries of the Northern Hemisphere, where it commonly modifies detrital and trophic pathways. In native populations, abundant hard substratum enables spore settlement, and gametophyte:tetrasporophyte ratios are ~40:60. In contrast, many non-native populations persist in soft-sediment habitats without abundant hard substratum, and can be 90%-100% tetrasporophytic. To test for ecologically relevant phenotypic differences, we measured thallus morphology, protein content, organic content, "debranching resistance" (i.e., tensile force required to remove a branch from its main axis node), and material properties between male gametophytes, female gametophytes, and tetrasporophytes from a single, nonnative site in Charleston Harbor, South Carolina, USA in 2015 and 2016. Thallus length and surface area to volume ratio differed between years, but were not significantly different between ploidies. Tetrasporophytes had lower protein content than gametophytes, suggesting the latter may be more attractive to consumers. More force was required to pull a branch from the main axis of tetrasporophytes relative to gametophytes. A difference in debranching resistance may help to maintain tetrasporophyte thallus durability relative to gametophytes, providing a potential advantage in free-floating populations. These data may shed light on the invasion ecology of an important ecosystem engineer, and may advance our understanding of life cycle evolution and the maintenance of life cycle diversity.
Collapse
Affiliation(s)
- Lauren E Lees
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd, Charleston, South Carolina, 29414, USA
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Stacy A Krueger-Hadfield
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd, Charleston, South Carolina, 29414, USA
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35924, USA
| | - Andrew J Clark
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Elizabeth A Duermit
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd, Charleston, South Carolina, 29414, USA
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Erik E Sotka
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd, Charleston, South Carolina, 29414, USA
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| |
Collapse
|
18
|
Kamvar ZN, López-Uribe MM, Coughlan S, Grünwald NJ, Lapp H, Manel S. Developing educational resources for population genetics in R: an open and collaborative approach. Mol Ecol Resour 2016; 17:120-128. [PMID: 27297607 DOI: 10.1111/1755-0998.12558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
The r computing and statistical language community has developed a myriad of resources for conducting population genetic analyses. However, resources for learning how to carry out population genetic analyses in r are scattered and often incomplete, which can make acquiring this skill unnecessarily difficult and time consuming. To address this gap, we developed an online community resource with guidance and working demonstrations for conducting population genetic analyses in r. The resource is freely available at http://popgen.nescent.org and includes material for both novices and advanced users of r for population genetics. To facilitate continued maintenance and growth of this resource, we developed a toolchain, process and conventions designed to (i) minimize financial and labour costs of upkeep; (ii) to provide a low barrier to contribution; and (iii) to ensure strong quality assurance. The toolchain includes automatic integration testing of every change and rebuilding of the website when new vignettes or edits are accepted. The process and conventions largely follow a common, distributed version control-based contribution workflow, which is used to provide and manage open peer review by designated website editors. The online resources include detailed documentation of this process, including video tutorials. We invite the community of population geneticists working in r to contribute to this resource, whether for a new use case of their own, or as one of the vignettes from the 'wish list' we maintain, or by improving existing vignettes.
Collapse
Affiliation(s)
- Zhian N Kamvar
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Margarita M López-Uribe
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Simone Coughlan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.,Horticultural Crops Research Unit, USDA Agricultural Research Service, Corvallis, OR, 97330, USA
| | - Hilmar Lapp
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Stéphanie Manel
- EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, F-34293, Montpellier, France
| |
Collapse
|
19
|
Krueger‐Hadfield SA, Kollars NM, Byers JE, Greig TW, Hammann M, Murray DC, Murren CJ, Strand AE, Terada R, Weinberger F, Sotka EE. Invasion of novel habitats uncouples haplo‐diplontic life cycles. Mol Ecol 2016; 25:3801-16. [DOI: 10.1111/mec.13718] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/23/2016] [Accepted: 05/20/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Stacy A. Krueger‐Hadfield
- Grice Marine Laboratory College of Charleston 205 Fort Johnson Rd Charleston SC 29412 USA
- Department of Biology College of Charleston 66 George St. Charleston SC 29424 USA
| | - Nicole M. Kollars
- Grice Marine Laboratory College of Charleston 205 Fort Johnson Rd Charleston SC 29412 USA
- Department of Biology College of Charleston 66 George St. Charleston SC 29424 USA
| | - James E. Byers
- Odum School of Ecology University of Georgia 130 E. Green St. Athens GA 30602 USA
| | - Thomas W. Greig
- NOAA/National Ocean Service Center for Coastal Environmental Health and Biomolecular Research 219 Fort Johnson Rd Charleston SC 29312 USA
| | - Mareike Hammann
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Düsternbrooker Weg 20 D‐23105 Kiel Germany
| | - David C. Murray
- Grice Marine Laboratory College of Charleston 205 Fort Johnson Rd Charleston SC 29412 USA
| | - Courtney J. Murren
- Department of Biology College of Charleston 66 George St. Charleston SC 29424 USA
| | - Allan E. Strand
- Grice Marine Laboratory College of Charleston 205 Fort Johnson Rd Charleston SC 29412 USA
- Department of Biology College of Charleston 66 George St. Charleston SC 29424 USA
| | - Ryuta Terada
- Department of Fisheries Kagoshima University Shimoarata 3‐50‐20 Kagoshima City 890‐0056 Japan
| | - Florian Weinberger
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Düsternbrooker Weg 20 D‐23105 Kiel Germany
| | - Erik E. Sotka
- Grice Marine Laboratory College of Charleston 205 Fort Johnson Rd Charleston SC 29412 USA
- Department of Biology College of Charleston 66 George St. Charleston SC 29424 USA
| |
Collapse
|