1
|
Almeida-Saá AC, Umanzor S, Zertuche-González JA, Cruz-López R, Muñiz-Salazar R, Ferreira-Arrieta A, Bonet Melià P, García-Pantoja JA, Rangel-Mendoza LK, Vivanco-Bercovich M, Ruiz-Montoya L, Guzmán-Calderón JM, Sandoval-Gil JM. Bathymetric origin shapes the physiological responses of Pterygophora californica (Laminariales, Phaeophyceae) to deep marine heatwaves. JOURNAL OF PHYCOLOGY 2024; 60:483-502. [PMID: 38264946 DOI: 10.1111/jpy.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8-10 vs. 25-27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.
Collapse
Affiliation(s)
- Antonella C Almeida-Saá
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Schery Umanzor
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | | | - Ricardo Cruz-López
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Raquel Muñiz-Salazar
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Paula Bonet Melià
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Laura K Rangel-Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Manuel Vivanco-Bercovich
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Leonardo Ruiz-Montoya
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Jose Miguel Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
2
|
Veenhof RJ, Champion C, Dworjanyn SA, Schwoerbel J, Visch W, Coleman MA. Projecting kelp (Ecklonia radiata) gametophyte thermal adaptation and persistence under climate change. ANNALS OF BOTANY 2024; 133:153-168. [PMID: 37665952 PMCID: PMC10921825 DOI: 10.1093/aob/mcad132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS Kelp forests underpin temperate marine ecosystems but are declining due to ocean warming, causing loss of associated ecosystem services. Projections suggest significant future decline but often only consider the persistence of adult sporophytes. Kelps have a biphasic life cycle, and the haploid gametophyte can be more thermally tolerant than the sporophyte. Therefore, projections may be altered when considering the thermal tolerance of gametophytes. METHODS We undertook thermal tolerance experiments to quantify the effect of temperature on gametophyte survival, relative growth rate (RGR) and sex ratio for three genetically distinct populations of Ecklonia radiata gametophytes from comparatively high, mid- and low latitudes (43°, 33° and 30°S). We then used these data to project the likely consequences of climate-induced thermal change on gametophyte persistence and performance across its eastern Australian range, using generalized additive and linear models. KEY RESULTS All populations were adapted to local temperatures and their thermal maximum was 2-3 °C above current maximum in situ temperatures. The lowest latitude population was most thermally tolerant (~70 % survival up to 27 °C), while survival and RGR decreased beyond 25.5 and 20.5 °C for the mid- and low-latitude populations, respectively. Sex ratios were skewed towards females with increased temperature in the low- and high-latitude populations. Spatially explicit model projections under future ocean warming (2050-centred) revealed a minimal decline in survival (0-30 %) across populations, relative to present-day predictions. RGRs were also projected to decline minimally (0-2 % d-1). CONCLUSIONS Our results contrast with projections for the sporophyte stage of E. radiata, which suggest a 257-km range contraction concurrent with loss of the low-latitude population by 2100. Thermal adaptation in E. radiata gametophytes suggests this life stage is likely resilient to future ocean warming and is unlikely to be a bottleneck for the future persistence of kelp.
Collapse
Affiliation(s)
- R J Veenhof
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - C Champion
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| | - S A Dworjanyn
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - J Schwoerbel
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - W Visch
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - M A Coleman
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia
| |
Collapse
|
3
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA. Urchin grazing of kelp gametophytes in warming oceans. JOURNAL OF PHYCOLOGY 2023; 59:838-855. [PMID: 37432133 DOI: 10.1111/jpy.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer-gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.
Collapse
Affiliation(s)
- Reina J Veenhof
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Curtis Champion
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
4
|
Tatsumi M, Mabin CJT, Layton C, Shelamoff V, Cameron MJ, Johnson CR, Wright JT. Density-dependence and seasonal variation in reproductive output and sporophyte production in the kelp, Ecklonia radiata. JOURNAL OF PHYCOLOGY 2022; 58:92-104. [PMID: 34612512 DOI: 10.1111/jpy.13214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The kelp, Ecklonia radiata, is an abundant subtidal ecosystem engineer in southern Australia. Density-dependent changes in the abiotic environment engineered by Ecklonia may feedback to affect reproduction and subsequent recruitment. Here, we examined: 1) how the reproductive capacity of Ecklonia individuals in the field (zoospores released · mm-2 reproductive tissue) varied with adult density and time, and 2) how the recruitment of microscopic gametophytes and sporophytes was influenced by zoospore density at two times. Zoospore production did not vary with adult density, with only one month out of ten sampled over a 2-y period showing a significant effect of density. However, zoospore production varied hugely over time, being generally highest in mid-autumn and lowest in mid-late summer. There were strong effects of initial zoospore density on gametophyte and sporophyte recruitment with both a minimum and an optimum zoospore density for sporophyte recruitment, but these varied in time. Almost no sporophytes developed when initial zoospore density was <6.5 · mm-2 in spring or <0.5 · mm-2 in winter with optimum densities of 90-355 · mm-2 in spring and 21-261 · mm-2 in winter, which resulted in relatively high recruitment of 4-7 sporophytes · mm-2 . Sporophyte recruitment declined at initial zoospore densities >335 · mm-2 in spring and >261 · mm-2 in winter and was zero at very high zoospore densities. These findings suggest that although adult Ecklonia density does not affect per-capita zoospore production, because there is a minimum zoospore density for sporophyte production, a decline in population-level output could feedback to impact recruitment.
Collapse
Affiliation(s)
- Masayuki Tatsumi
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| | - Christopher J T Mabin
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| | - Victor Shelamoff
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| | - Matthew J Cameron
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| | - Craig R Johnson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Australia
| |
Collapse
|
5
|
Oyarzo-Miranda C, Latorre N, Meynard A, Rivas J, Bulboa C, Contreras-Porcia L. Coastal pollution from the industrial park Quintero bay of central Chile: Effects on abundance, morphology, and development of the kelp Lessonia spicata (Phaeophyceae). PLoS One 2020; 15:e0240581. [PMID: 33057390 PMCID: PMC7561192 DOI: 10.1371/journal.pone.0240581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
The industrial park of Quintero Bay (QB) in the central coast of Chile was established in the 1960s, presents high levels of pollution due to the industrial activity, and it is known as one of the five Chilean "sacrifice zones". Lessonia spicata is the most important habitat-forming kelp species in the intertidal along the central and south shores of Chile, and currently there are no morphometric and population studies of L. spicata (or other seaweed species) nor studies about the effects of pollution on its development in QB and neighbouring sites. In this context, the aims of this study were (i) to register the abundance and morphological features of L. spicata populations from Ventanas, Horcón and Cachagua (sites with different pollution histories and located only up to 40 km from the QB); ii) to determine the heavy metals (HMs) concentration in seawater and marine sediments; and (iii) to evaluate in vitro the effects of exposure to seawater from the three sampling sites on spore release and early developmental stages, up to the juvenile sporophyte. Results showed that the chronically exposed Ventanas kelp population had the smallest adult individuals in comparison with the other sites. Ventanas and Horcón registered high HMs concentration in the seawater and marine sediments exceeding the international permissible limits (e.g in seawater Cu 20-859 μg L-1; sediments Cu > 50,000 μg kg-1). Unexpectedly in Cachagua, a site often considered unpolluted, high concentrations of Cu and As were also registered in the seawater (859 and 1,484 μg L-1, respectively) and of As in marine sediments (20,895 μg kg-1). Exposure of gametophytes to the seawater from Ventanas resulted in a developmental delay compared to the other treatments; however, low sporophyte production was determined in all treatments. Our results indicate that QB, more notably Ventanas, induce highly negative effects on individual development, and consequently on seaweed populations, which suggest a long-term negative impact on the community structure of these marine zones. Furthermore, the high concentrations of HMs reported here at Cachagua suggest a recent expansion of pollution along the central coast of Chile, evidencing effects on the marine ecosystem health even on sites far from the pollution source.
Collapse
Affiliation(s)
- Carolina Oyarzo-Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Nicolás Latorre
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Programa de Doctorado Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Bulboa
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| |
Collapse
|