1
|
Hill G, Gauci C, Assis J, Jueterbock A. Turning the Tide: A 2°C Increase in Heat Tolerance Can Halve Climate Change-Induced Losses in Four Cold-Adapted Kelp Species. Ecol Evol 2025; 15:e71271. [PMID: 40276242 PMCID: PMC12019690 DOI: 10.1002/ece3.71271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Kelp forests are susceptible to climate change, as their sessile nature and low dispersal capacity hinder tracking of suitable conditions. The emergence of a wide array of approaches to increasing thermal tolerance seeks to change the outlook of biodiversity in a changing climate but lacks clear targets of impactful thermal resilience. Here, we utilize species distribution models (SDMs) to evaluate the potential of enhanced thermal tolerance to buffer the effects of climate change on cold-adapted kelp species: Saccharina latissima, Alaria esculenta, Laminaria hyperborea, and Laminaria digitata. For each species, we compared a baseline model-where the thermal niche remained unchanged-to models where the simulated maximum sea surface temperature tolerance was increased by 1°C-5°C. These models were projected into three climate change scenarios: sustainability (Shared Socioeconomic Pathway (SSP) 1-1.9, Paris Agreement), regional rivalry (SSP3-7.0), and fossil-fuel development (SSP 5-8.5). Our SDMs demonstrate that an increase of 1°C-2°C in thermal tolerance could recover over 50% of predicted losses of suitable habitat for cold-adapted kelps. However, A. esculenta, a species of growing commercial interest, still faced persistent habitat contraction across all climate change scenarios and simulated tolerance increases, including up to 15% unrecovered losses under SSP5-8.5, even with a simulated 5°C increase in thermal tolerance. Our findings highlight the need for a two-pronged approach to conserve cold-adapted kelp forests: stringent reductions in greenhouse gas emission reductions in line with the SSP1-1.9 scenario, and strategies to boost kelp's thermal tolerance by at least 1°C-2°C. This dual approach is crucial to maintain 90% of the current suitable habitat of S. latissima and L. digitata, and 70% for A. esculenta and L. hyperborea. Relying on mitigation or adaptation alone will likely be insufficient to maintain their historic range under projected climate change.
Collapse
Affiliation(s)
- Griffin Hill
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Clément Gauci
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Jorge Assis
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- CCMARUniversity of AlgarveFaroPortugal
| | | |
Collapse
|
2
|
Kong TM, Taylor B, Graham V. Why partner? Harnessing value from collaborative sustainable business models to restore coral reefs at scale. PLoS One 2024; 19:e0315094. [PMID: 39680544 DOI: 10.1371/journal.pone.0315094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Tropical coral reefs provide a wide range of ecosystem services that benefit millions worldwide. However, the current scale of coral reef restoration is a long way from matching the extent needed to protect coral reefs globally, and this implementation gap presents a complex challenge to overcome. Cross-sectoral collaborative sustainable business models (CSBMs) present an interesting opportunity to scale up coral restoration, though this area is yet to be explored in the literature. In this paper, we use the Reef Restoration and Adaptation Program in the Great Barrier Reef as a case study to examine potential collaborators, their roles, and what benefits motivate them to partner for scaling coral restoration. We identified a diverse range of potential collaborators from 10 sectors offering different combinations of physical, human and organisational capitals. Participants described nine roles they could play in such a partnership, and many of these roles relate to ecosystem growth scaling strategies. Benefits that motivate collaboration fall into seven categories: environmental benefit, business opportunity and value, employment opportunity, knowledge and technology, innovation, hope, and reputation. Our findings contribute to designing CSBMs for coral restoration by enriching our understanding of collaborators, value creation and their potential roles in alternative pathways to scale up coral restoration beyond reducing unit cost and increasing funding.
Collapse
Affiliation(s)
- Taryn M Kong
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Brisbane, QLD, Australia
| | - Bruce Taylor
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Brisbane, QLD, Australia
| | - Victoria Graham
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, TAS, Australia
- The Cairns Institute, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
3
|
Eger AM, Blain CO, Brown AL, Chan SSW, Miller KI, Vergés A. Kelp forests versus urchin barrens: a comparison of ecosystem functions and services provided by two alternative stable marine habitats. Proc Biol Sci 2024; 291:20241539. [PMID: 39501886 PMCID: PMC11538989 DOI: 10.1098/rspb.2024.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Kelp forests and urchin barrens are two stable states in rocky reef ecosystems, each providing unique ecosystem functions like habitat for marine species and primary production. While studies frequently show that kelp forests support higher levels of some ecosystem functions than urchin barren habitats, no research has yet compared average differences. To address this gap, we first conducted a meta-analysis of studies that directly compared the ecosystem functions, services and general attributes provided by each habitat. We also compiled individual studies on ecosystem properties from both habitats and qualitatively assessed the benefits provided. The meta-analysis included 388 observations from 55 studies across 14 countries. We found that kelp forests consistently delivered higher levels of ecosystem properties such as biodiversity, species richness, abalone abundance and sea urchin roe quality. Urchin barrens supported higher urchin density and crustose coralline algae cover. The qualitative review further supported these findings, showing that kelp forests ranked higher in 11 out of 15 ecosystem properties. These findings can help guide decisions on managing rocky reef habitats and demonstrate the benefits of preserving or expanding kelp forests.
Collapse
Affiliation(s)
- Aaron M. Eger
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
- Kelp Forest Alliance, Sydney2034, Australia
| | - Caitlin O. Blain
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
- Coastal People Southern Skies Centre of Research Excellence, University of Otago, Dunedin, New Zealand
| | - Amelia L. Brown
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Sharon S. W. Chan
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| | - Kelsey I. Miller
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh0985, New Zealand
| | - Adriana Vergés
- Center for Marine Science and Innovation, University of New South Wales, Sydney2052, Australia
| |
Collapse
|
4
|
Bolton JJ, Rothman MD. The potential for kelp (order Laminariales) aquaculture in South Africa: a biological review. BOTANICA MARINA 2024; 67:525-541. [DOI: 10.1515/bot-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The Benguela upwelling region on the west coast of South Africa/Namibia has the only major kelp forests on the African continent. South Africa has four species of laminarian kelps; Ecklonia maxima, Laminaria pallida dominate kelp forests in the west coast Benguela upwelling system, with Macrocystis pyrifera occurring rarely in this region and Ecklonia radiata largely confined to the more nutrient-poor south and east coasts. Growth studies on these species have been limited to laboratory experiments and very few initial, small-scale coastal studies. As in other Atlantic regions, there is growing interest in the potential for kelp aquaculture in Southern Africa, and recent pilot initiatives. A comprehensive summary of available literature on South African kelps, their biology and ecology, distribution and growth parameters, is presented, and the potential for kelp aquaculture discussed in relation to recent developments elsewhere on Atlantic and Eastern Pacific coastlines. Recommendations are made with respect to the choice of potential species and sites.
Collapse
Affiliation(s)
- John J. Bolton
- Department of Biological Sciences , University of Cape Town , Private Bag X3 , Rondebosch 7701 , South Africa
| | - Mark D. Rothman
- Department of Biological Sciences , University of Cape Town , Private Bag X3 , Rondebosch 7701 , South Africa
- Department of Forestry, Fisheries and the Environment , Private Bag X2 , Vlaeberg 8018 , Cape Town , South Africa
| |
Collapse
|
5
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
6
|
Diehl N, Li H, Scheschonk L, Burgunter-Delamare B, Niedzwiedz S, Forbord S, Sæther M, Bischof K, Monteiro C. The sugar kelp Saccharina latissima I: recent advances in a changing climate. ANNALS OF BOTANY 2024; 133:183-212. [PMID: 38109285 PMCID: PMC10921839 DOI: 10.1093/aob/mcad173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative impacts of anthropogenically induced environmental change and by the increased commercial interest in cultivating the species, with several industrial applications for the resulting biomass. SCOPE We used a variety of sources published between 2009 to May 2023 (but including some earlier literature where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular biology of S. latissima. In so doing we aimed to better understand the species' response to stressors in natural communities, but also inform the sustainable cultivation of the species. CONCLUSION Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others summarized in this review. This is particularly important because massive changes in the abundance and distribution of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to environmental variability and how to predict future distribution and persistence under climate change.
Collapse
Affiliation(s)
- Nora Diehl
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Huiru Li
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| | | | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean AS, 7465 Trondheim, Norway
| | - Maren Sæther
- Seaweed Solutions AS, Bynesveien 50C, 7018 Trondheim, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Catia Monteiro
- CIBIO, Research Centre in Biodiversity and Genetic Resources – InBIO Associate Laboratory, Campus of Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus of Vairão, Vairão, Portugal
| |
Collapse
|
7
|
Wernberg T, Thomsen MS, Baum JK, Bishop MJ, Bruno JF, Coleman MA, Filbee-Dexter K, Gagnon K, He Q, Murdiyarso D, Rogers K, Silliman BR, Smale DA, Starko S, Vanderklift MA. Impacts of Climate Change on Marine Foundation Species. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:247-282. [PMID: 37683273 DOI: 10.1146/annurev-marine-042023-093037] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Marine foundation species are the biotic basis for many of the world's coastal ecosystems, providing structural habitat, food, and protection for myriad plants and animals as well as many ecosystem services. However, climate change poses a significant threat to foundation species and the ecosystems they support. We review the impacts of climate change on common marine foundation species, including corals, kelps, seagrasses, salt marsh plants, mangroves, and bivalves. It is evident that marine foundation species have already been severely impacted by several climate change drivers, often through interactive effects with other human stressors, such as pollution, overfishing, and coastal development. Despite considerable variation in geographical, environmental, and ecological contexts, direct and indirect effects of gradual warming and subsequent heatwaves have emerged as the most pervasive drivers of observed impact and potent threat across all marine foundation species, but effects from sea level rise, ocean acidification, and increased storminess are expected to increase. Documented impacts include changes in the genetic structures, physiology, abundance, and distribution of the foundation species themselves and changes to their interactions with other species, with flow-on effects to associated communities, biodiversity, and ecosystem functioning. We discuss strategies to support marine foundation species into the Anthropocene, in order to increase their resilience and ensure the persistence of the ecosystem services they provide.
Collapse
Affiliation(s)
- Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - John F Bruno
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Coleman
- National Marine Science Centre, New South Wales Department of Primary Industries, Coffs Harbour, New South Wales, Australia
| | - Karen Filbee-Dexter
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Karine Gagnon
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Daniel Murdiyarso
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Bogor, Indonesia
- Department of Geophysics and Meteorology, IPB University, Bogor, Indonesia
| | - Kerrylee Rogers
- School of Earth, Atmospheric, and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom
| | - Samuel Starko
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
| | - Mathew A Vanderklift
- Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, Western Australia, Australia
| |
Collapse
|
8
|
Pessarrodona A, Franco-Santos RM, Wright LS, Vanderklift MA, Howard J, Pidgeon E, Wernberg T, Filbee-Dexter K. Carbon sequestration and climate change mitigation using macroalgae: a state of knowledge review. Biol Rev Camb Philos Soc 2023; 98:1945-1971. [PMID: 37437379 DOI: 10.1111/brv.12990] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The conservation, restoration, and improved management of terrestrial forests significantly contributes to mitigate climate change and its impacts, as well as providing numerous co-benefits. The pressing need to reduce emissions and increase carbon removal from the atmosphere is now also leading to the development of natural climate solutions in the ocean. Interest in the carbon sequestration potential of underwater macroalgal forests is growing rapidly among policy, conservation, and corporate sectors. Yet, our understanding of whether carbon sequestration from macroalgal forests can lead to tangible climate change mitigation remains severely limited, hampering their inclusion in international policy or carbon finance frameworks. Here, we examine the results of over 180 publications to synthesise evidence regarding macroalgal forest carbon sequestration potential. We show that research efforts on macroalgae carbon sequestration are heavily skewed towards particulate organic carbon (POC) pathways (77% of data publications), and that carbon fixation is the most studied flux (55%). Fluxes leading directly to carbon sequestration (e.g. carbon export or burial in marine sediments) remain poorly resolved, likely hindering regional or country-level assessments of carbon sequestration potential, which are only available from 17 of the 150 countries where macroalgal forests occur. To solve this issue, we present a framework to categorize coastlines according to their carbon sequestration potential. Finally, we review the multiple avenues through which this sequestration can translate into climate change mitigation capacity, which largely depends on whether management interventions can increase carbon removal above a natural baseline or avoid further carbon emissions. We find that conservation, restoration and afforestation interventions on macroalgal forests can potentially lead to carbon removal in the order of 10's of Tg C globally. Although this is lower than current estimates of natural sequestration value of all macroalgal habitats (61-268 Tg C year-1 ), it suggests that macroalgal forests could add to the total mitigation potential of coastal blue carbon ecosystems, and offer valuable mitigation opportunities in polar and temperate areas where blue carbon mitigation is currently low. Operationalizing that potential will necessitate the development of models that reliably estimate the proportion of production sequestered, improvements in macroalgae carbon fingerprinting techniques, and a rethinking of carbon accounting methodologies. The ocean provides major opportunities to mitigate and adapt to climate change, and the largest coastal vegetated habitat on Earth should not be ignored simply because it does not fit into existing frameworks.
Collapse
Affiliation(s)
- Albert Pessarrodona
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Rita M Franco-Santos
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Luka Seamus Wright
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Mathew A Vanderklift
- CSIRO Environment, Indian Ocean Marine Research Centre, Crawley, 6009, Western Australia, Australia
| | - Jennifer Howard
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Emily Pidgeon
- Conservation International, 2011 Crystal Dr., Suite 600, Arlington, VA, USA
- International Blue Carbon Institute, 42B Boat Quay, Singapore, 049831, Singapore
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| | - Karen Filbee-Dexter
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, 6009, Western Australia, Australia
- Institute of Marine Research, Nye Flødevigveien 20, His, 4817, Norway
| |
Collapse
|
9
|
Augyte S, Sims NA, Martin K, Van Wychen S, Panczak B, Alt H, Nelson R, Laurens LML. Tropical Red Macroalgae Cultivation with a Focus on Compositional Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3524. [PMID: 37895988 PMCID: PMC10609988 DOI: 10.3390/plants12203524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
To create carbon efficient sources of bioenergy feedstocks and feedstuff for aquaculture and terrestrial livestock, it is critical to develop and commercialize the most efficient seaweed cultivation approach with a sustainable nutrient input supply. Here, we present data for a novel, onshore tropical macroalgae cultivation system, based on influent deep seawater as the nutrient and carbon sources. Two red algal species were selected, Agardhiella subulata and Halymenia hawaiiana, as the basis for growth optimization. Highest productivity in small-scale cultivation was demonstrated with A. subulata in the 10% deep seawater (64.7 µg N L-1) treatment, growing at up to 26% specific growth rate day-1 with highest yields observed at 247.5 g m-2 day-1 fresh weight. The highest yields for H. hawaiiana were measured with the addition of 10% deep seawater up to 8.8% specific growth rate day-1 and yields at 63.3 g fresh weight m-2 day-1 equivalent. Biomass should be culled weekly or biweekly to avoid density limitations, which likely contributed to a decrease in SGR over time. With a measured 30-40% carbon content of the ash-free dry weight (20-30% of the dry weight) biomass, this translates to an almost 1:1 CO2 capture to biomass ratio. The compositional fingerprint of the high carbohydrate content of both Agardhiella and Halymenia makes for an attractive feedstock for downstream biorefinery applications. By focusing on scaling and optimizing seaweed farming technologies for large-scale onshore farms, the opportunities for yield potential, adaptability to cultivation conditions, and meeting global sustainability goals through novel, carbon-negative biomass sources such as seaweed can be realized.
Collapse
Affiliation(s)
- Simona Augyte
- Ocean Era, Inc., Kailua-Kona, HI 96740, USA; (N.A.S.); (K.M.)
| | - Neil A. Sims
- Ocean Era, Inc., Kailua-Kona, HI 96740, USA; (N.A.S.); (K.M.)
| | - Keelee Martin
- Ocean Era, Inc., Kailua-Kona, HI 96740, USA; (N.A.S.); (K.M.)
| | - Stefanie Van Wychen
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA; (S.V.W.); (B.P.); (H.A.); (R.N.); (L.M.L.L.)
| | - Bonnie Panczak
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA; (S.V.W.); (B.P.); (H.A.); (R.N.); (L.M.L.L.)
| | - Hannah Alt
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA; (S.V.W.); (B.P.); (H.A.); (R.N.); (L.M.L.L.)
| | - Robert Nelson
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA; (S.V.W.); (B.P.); (H.A.); (R.N.); (L.M.L.L.)
| | - Lieve M. L. Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, Golden, CO 80401, USA; (S.V.W.); (B.P.); (H.A.); (R.N.); (L.M.L.L.)
| |
Collapse
|
10
|
Rotter A, Giannakourou A, Argente García JE, Quero GM, Auregan C, Triantaphyllidis G, Venetsanopoulou A, De Carolis R, Efstratiou C, Aboal M, Abad MÁE, Grigalionyte-Bembič E, Kotzamanis Y, Kovač M, Ljubić Čmelar M, Luna GM, Aguilera C, Acién Fernández FG, Gómez Pinchetti JL, Manzo S, Milašinčić I, Nadarmija A, Parrella L, Pinat M, Roussos E, Ruel C, Salvatori E, Sánchez Vázquez FJ, Semitiel García M, Skarmeta Gómez AF, Ulčar J, Chiavetta C. Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region. Mar Drugs 2023; 21:416. [PMID: 37504947 PMCID: PMC10381324 DOI: 10.3390/md21070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Marine (blue) biotechnology is an emerging field enabling the valorization of new products and processes with massive potential for innovation and economic growth. In the Mediterranean region, this innovation potential is not exploited as well as in other European regions due to a lack of a clear identification of the different value chains and the high fragmentation of business innovation initiatives. As a result, several opportunities to create an innovative society are being missed. To address this problem, eight Northern Mediterranean countries (Croatia, France, Greece, Italy, Montenegro, Portugal, Slovenia and Spain) established five national blue biotechnology hubs to identify and address the bottlenecks that prevent the development of marine biotechnology in the region. Following a three-step approach (1. Analysis: setting the scene; 2. Transfer: identification of promising value chains; 3. Capitalization: community creation), we identified the three value chains that are most promising for the Northern Mediterranean region: algae production for added-value compounds, integrated multi-trophic aquaculture (IMTA) and valorization aquaculture/fisheries/processing by-products, unavoidable/unwanted catches and discards. The potential for the development and the technical and non-technical skills that are necessary to advance in this exciting field were identified through several stakeholder events which provided valuable insight and feedback that should be addressed for marine biotechnology in the Northern Mediterranean region to reach its full potential.
Collapse
Affiliation(s)
- Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Antonia Giannakourou
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Avenue, 19013 Anavyssos, Greece
| | - Jesús E Argente García
- Department of Information and Communication Engineering, University of Murcia, Avda. Teniente Flomesta, 30003 Murcia, Spain
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council-Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Charlène Auregan
- Pôle Mer Méditerranée, Toulon Var Technologies, 93 Forum de la Méditerranée, 83190 Ollioules, France
| | - George Triantaphyllidis
- Laboratory of Fish Nutrition and Omics Technologies, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Iera Odos 86, 11855 Athens, Greece
| | - Amalia Venetsanopoulou
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Avenue, 19013 Anavyssos, Greece
| | - Roberta De Carolis
- Department for Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Via Anguillarese, 301, 00196 Rome, Italy
| | - Chrysa Efstratiou
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Avenue, 19013 Anavyssos, Greece
| | - Marina Aboal
- Department of Plant Biology, Faculty of Biology, University of Murcia, Avda. Teniente Flomesta, 30003 Murcia, Spain
| | - María Ángeles Esteban Abad
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Avda. Teniente Flomesta, 30003 Murcia, Spain
| | | | - Yannis Kotzamanis
- Laboratory of Fish Nutrition and Omics Technologies, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Iera Odos 86, 11855 Athens, Greece
| | - Mate Kovač
- Croatian Agency for SMEs, Innovations and Investments-HAMAG-BICRO, Ksaver 208, 10000 Zagreb, Croatia
| | - Maja Ljubić Čmelar
- Croatian Agency for SMEs, Innovations and Investments-HAMAG-BICRO, Ksaver 208, 10000 Zagreb, Croatia
| | - Gian Marco Luna
- CNR IRBIM, National Research Council-Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Cristóbal Aguilera
- Institute of Agri Food Research and Technology, Crta. Poble Nou 5.5 km, 43540 La Ràpita, Spain
| | | | - Juan Luis Gómez Pinchetti
- Spanish Bank of Algae, Institute of Oceanography and Global Change, University of Las Palmas de Gran Canaria, Muelle de Taliarte, 35214 Telde, Spain
| | - Sonia Manzo
- Department for Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Via Anguillarese, 301, 00196 Rome, Italy
| | - Iva Milašinčić
- Croatian Agency for SMEs, Innovations and Investments-HAMAG-BICRO, Ksaver 208, 10000 Zagreb, Croatia
| | - Antun Nadarmija
- Croatian Agency for SMEs, Innovations and Investments-HAMAG-BICRO, Ksaver 208, 10000 Zagreb, Croatia
| | - Luisa Parrella
- Department for Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Via Anguillarese, 301, 00196 Rome, Italy
| | - Massimiliano Pinat
- CNR IRBIM, National Research Council-Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Efstratios Roussos
- Laboratory of Fish Nutrition and Omics Technologies, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Iera Odos 86, 11855 Athens, Greece
| | - Colin Ruel
- Pôle Mer Méditerranée, Toulon Var Technologies, 93 Forum de la Méditerranée, 83190 Ollioules, France
| | - Elisabetta Salvatori
- Department for Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Via Anguillarese, 301, 00196 Rome, Italy
| | - Francisco Javier Sánchez Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Avda. Teniente Flomesta, 30003 Murcia, Spain
| | - María Semitiel García
- Department of Applied Economics, University of Murcia, Avda. Teniente Flomesta, 30003 Murcia, Spain
| | - Antonio F Skarmeta Gómez
- Department of Information and Communication Engineering, University of Murcia, Avda. Teniente Flomesta, 30003 Murcia, Spain
| | - Jan Ulčar
- Marine Biology Station Piran, National Institute of Biology, Fornače 41, 6330 Piran, Slovenia
| | - Cristian Chiavetta
- Department for Sustainability, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Via Anguillarese, 301, 00196 Rome, Italy
| |
Collapse
|