1
|
Shimizu K, Shimozuru M, Yamanaka M, Ito G, Nakao R, Tsubota T. Evaluating the vector potential of deer keds Lipoptena fortisetosa for selected pathogens in Hokkaido sika deer (Cervus nippon yesoensis). Parasitol Int 2025; 107:103053. [PMID: 39988082 DOI: 10.1016/j.parint.2025.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Deer keds (Lipoptena fortisetosa) are hematophagous insects that parasitize various ungulates, including Hokkaido sika deer (Cervus nippon yesoensis). Although deer keds are potential vectors for several pathogens, their role in disease transmission in Japan remains unclear. This study aimed to evaluate the potential of L. fortisetosa as a vector for selected pathogens in sika deer. Blood samples were collected from 32 sika deer and 149 deer keds (64 from deer and 85 from the environment) from the Rusha area of the Shiretoko Peninsula, Hokkaido, Japan. Nested PCRs and sequencing were performed to detect 18S rRNA gene of Theileria sp. Thrivae, 16S rRNA gene of Anaplasma sp. AP-sd (AP-sd), and flagellin B gene of Borrelia sp. in deer and deer keds. In sika deer, the infection rate was 84 % for Theileria sp. Thrivae, 75 % of AP-sd, and 3 % of Borrelia sp. The prevalence in deer keds collected from deer was 62 % for Theileria sp. Thrivae, 2 % AP-sd, and 1 % Borrelia sp. No pathogens were detected in nonparasitic deer keds captured from the environment. Notably, Theileria sp. Thrivae and AP-sd were detected in deer keds collected from PCR-negative sika deer, suggesting that deer keds acquired pathogens from a previously infested host. The absence of pathogens in non-parasitized deer keds suggests that they do not play as a biological vector for the tested pathogens. This study suggests a potential role for L. fortisetosa as a mechanical vector, emphasizing the need for additional experiments, including infection studies.
Collapse
Affiliation(s)
- Kotaro Shimizu
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Centre, Hokkaido University, Japan
| | | | | | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Japan.
| |
Collapse
|
2
|
Pearson P, Xu G, Siegel EL, Ryan M, Rich C, Feehan MJR, Dinius B, McAuliffe SM, Roden-Reynolds P, Rich SM. Detection of Anaplasma phagocytophilum DNA in Deer Keds: Massachusetts, USA. INSECTS 2025; 16:42. [PMID: 39859623 PMCID: PMC11765709 DOI: 10.3390/insects16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Deer keds (Lipoptena spp. and Neolipoptena ferrisi) are hematophagous ectoparasites that primarily infest white-tailed deer (Odocoileus virginianus) and other cervids in the United States. The distribution of deer keds in the northeastern United States and the pathogens they harbor remains relatively unexplored. In this study, we examined the geographical distribution and pathogen prevalence of deer keds in Massachusetts by collecting samples from white-tailed deer and testing for tick-borne pathogens. Deer keds were collected across the state, including in four previously unrecorded counties, indicating a wide distribution. Pathogen screening revealed the presence of Anaplasma phagocytophilum DNA in 30% of the keds, but no other pathogens were detected. The medical and biological significance of detecting A. phagocytophilum DNA in deer keds requires future studies. This research provides a baseline for the distribution and pathogen prevalence of deer keds in Massachusetts and highlights the potential of deer keds as sentinels for monitoring deer-associated microbes.
Collapse
Affiliation(s)
- Patrick Pearson
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (E.L.S.); (M.R.); (C.R.)
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
| | - Guang Xu
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (E.L.S.); (M.R.); (C.R.)
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
| | - Eric L. Siegel
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (E.L.S.); (M.R.); (C.R.)
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
| | - Mileena Ryan
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (E.L.S.); (M.R.); (C.R.)
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
| | - Connor Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (E.L.S.); (M.R.); (C.R.)
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
| | - Martin J. R. Feehan
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
- Massachusetts Division of Fisheries and Wildlife, Westborough, MA 01581, USA
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14853, USA
| | - Blake Dinius
- Plymouth County Extension, Plymouth, MA 02360, USA;
| | | | | | - Stephen M. Rich
- Laboratory of Medical Zoology, Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (P.P.); (G.X.); (E.L.S.); (M.R.); (C.R.)
- New England Center of Excellence in Vector-Borne Disease, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
3
|
Skvarla MJ, Poh K, Norman C, Machtinger ET. Commercial products are not effective at repelling European deer keds, Lipoptena cervi (Diptera: Hippoboscidae) but may increase mortality after exposure. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1435-1442. [PMID: 39183458 DOI: 10.1093/jme/tjae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
European deer keds, Lipoptena cervi (Linnaeus, 1758), are hematophagous ectoparasitic flies known to bite cervids and noncervids, including humans. To prevent deer keds from landing and biting hosts, 5 commercially available insect repellents (DEET, IR3535, oil of lemon eucalyptus (OLE), picaridin, and permethrin) and water control were evaluated to determine repellency efficacy and postexposure mortality of deer keds. While there was a significant difference between the groups tested, a post hoc analysis revealed that no treatment was significantly different from the water control. Deer ked survival was different amongst the treatments, with deer keds exposed to permethrin dying much sooner than those exposed to other treatments or control (median survival for permethrin = 0.58 h). Post-hoc pairwise comparisons revealed that deer keds exposed to DEET or IR3535 had similar survival rates (4.82 and 5.15 h, respectively). Still, there were significantly lower survival times for DEET compared to OLE (6.33 h) and picaridin (15.00 h). Deer keds exposed to the water control survived the longest (23.12 h). Overall, deer ked repellency was not significantly different from the control, but permethrin-treated clothes can effectively kill deer keds in a short amount of time, thereby protecting those who recreate outdoors or encounter animals carrying deer keds.
Collapse
Affiliation(s)
- Michael J Skvarla
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Karen Poh
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Calvin Norman
- Department of Ecosystem Science and Management, Penn State University, State College, PA, USA
| | - Erika T Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Yatsuk AA, Triseleva TA, Narchuk EP, Matyukhin AV, Safonkin AF. Morphology of the wings and attachment apparatus in the evolution of the family Hippoboscidae (Diptera). Integr Zool 2024; 19:941-954. [PMID: 38037136 DOI: 10.1111/1749-4877.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Using a complex analysis of the molecular genetics, morphological, and ecological characteristics of Hippoboscidae flies, the phylogenetic structure and trends in the evolution of morphological characters that contribute to the ectoparasitic lifestyle of hippoboscid flies of the north of Eurasia were studied for the first time. The research was carried out on 26 Palearctic species from 10 genera. The analysis of molecular phylogeny revealed the levels of clustering of the family with the species predominantly parasitizing mammals or birds, the time of cluster formation, and the divergence of species in the Palearctic conditions. An independent adaptation to birds occurred in the genera Icosta, Pseudolynchia, Ornithoica, and others. Bird parasites are characterized by bifid tarsal claws, long hooks on pulvilli, and long empodium setae (except genus Ornithoica). Mammalian parasites are characterized by simple tarsal claws, short lobes of hooks on pulvilli, and zones on empodium with short setae. Specialization in empodium and pulvillus morphotypes and wing reduction are higher diverged in mammalian parasites than in bird parasites. The decrease of flight ability and wing reduction independently arose in different subfamilies of Hippoboscidae flies. Our results assume that the tribe Ornithomyini is a paraphyletic group, since, according to the complex of morphological features, the genus Ornithoica can be considered a separate lineage of evolution.
Collapse
Affiliation(s)
| | | | - Emilia P Narchuk
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | | | | |
Collapse
|
5
|
Janiszewska A, Bartos M, Trębicki Ł, Remisiewicz M, Cierlik G, Minias P, Rewicz T. Development of a novel molecular tool to study molecular ecology of Ornithomya (Hippoboscidae) avian louse flies. Exp Parasitol 2023; 255:108652. [PMID: 37939822 DOI: 10.1016/j.exppara.2023.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Louse flies (Diptera: Hippoboscidae) are obligatory hematophagous ectoparasites of birds and mammals. These widely distributed parasitic flies may have a significant impact on wild and farm animals by feeding on their blood and transmitting bloodborne pathogens. However, despite their ecological importance, louse flies are clearly underrepresented in host-parasite research and implementation of genetic approaches in this group is generally hampered by lacking molecular tools. In addition, louse flies that parasitize long-distance migrants can travel long distances with their avian hosts, facilitating the large-scale spread of pathogens across landscapes and geographic regions. Given the wide diversity of louse flies that parasitize a variety of avian hosts, their direct negative impact on host survival, and their high potential to transmit bloodborne pathogens even along avian migration routes, it is surprising that our knowledge of louse fly ecology is rather modest and incomplete. Here, we aimed to develop a novel molecular tool for polyxenous avian louse flies from the genus Ornithomya, which are among the most common and widely distributed representatives of Hippoboscidae family, to improve research of their genetic population structure and molecular ecology. Using the Illumina Mi-seq sequencing, we conducted a genome-wide scan in Ornithomya avicularia to identify putative microsatellite markers. A panel of 26 markers was selected to develop amplification protocols and assess polymorphism in the Central European population of O. avicularia, as well as to test for cross-amplification in a congeneric species (O. chloropus). A genome-scan in O. avicularia identified over 12 thousand putative microsatellite markers. Among 26 markers selected for a population-wide screening; one did not amplify successfully and three were monomorphic. 22 markers were polymorphic with at least two alleles detected. Two markers showed presence of null alleles. A cross-amplification of microsatellite markers in O. chloropus revealed allelic polymorphism at 14 loci, with the mean allelic richness of 3.78 alleles per locus (range: 2-8). Our genome-wide scan in O. avicularia provides a novel and powerful tool for molecular research in Ornithomya louse flies. Our panel of polymorphic microsatellite loci should allow genotyping of louse flies from geographically distinct populations and from a wide spectrum of avian hosts, enhancing population genetic and phylogeographic research in Ornithomya.
Collapse
Affiliation(s)
- Aleksandra Janiszewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, Banacha 1/3, 90-237, Lodz, Poland.
| | - Maciej Bartos
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, Banacha 1/3, 90-237, Lodz, Poland.
| | - Łukasz Trębicki
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237, Lodz, Poland.
| | - Magdalena Remisiewicz
- University of Gdańsk, Bird Migration Research Station, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Grzegorz Cierlik
- Polish Academy of Sciences, Institute of Nature Conservation, Mickiewicza 33, 31-120, Krakow, Poland.
| | - Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, Banacha 1/3, 90-237, Lodz, Poland.
| | - Tomasz Rewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
6
|
Petráš J, Bártová E, Žákovská A. Molecular Detection of Borrelia burgdorferi s.l. ( Borreliella) and Chlamydia-Like Organism DNA in Early Developmental Stages of Arthropod Vector Species. Transbound Emerg Dis 2023; 2023:2511753. [PMID: 40303685 PMCID: PMC12017234 DOI: 10.1155/2023/2511753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 05/02/2025]
Abstract
Borrelia burgdorferi sensu lato (Bbsl) is spirochetes transmitted by ticks and known to cause Lyme disease. Chlamydia-like organisms (CLOs) comprise a large group of bacteria that can lead to serious health disorders, including miscarriage. Recently, CLOs have been found in ticks and patient skin biopsies. Due to the involvement of multiple potential vectors in the spread of these pathogens, the objective of this study was to confirm the presence of both organisms in the early developmental stages of selected vectors. Three potential vectors, Ixodes ricinus larvae, Culex pipiens larvae, and winged (unfed) adults of Lipoptena cervi, were collected in the Czech Republic in years 2019-2020. The presence of Bbsl and panchlamydial DNA was detected by PCR and positive samples were further analyzed by Sanger sequencing and phylogenetic tree construction. Bbsl DNA was proved in 1.5% (2/137) of I. ricinus larvae (identified as Borrelia afzelii and Borrelia garinii), in 1.7% (2/119) of C. pipiens larvae (both identified as B. garinii), and in 11% (3/27) of L. cervi (all identified as B. garinii). CLOs were identified in 0.7% (1/137) of I. ricinus larvae (Candidatus Protochlamydia) and in 7.4% (2/27) of L. cervi (unspecified genus), while C. pipiens larvae could not be evaluated (0%). This research represents the first investigation of the presence of CLOs in L. cervi. The detection of pathogen DNA in the early developmental stages of vectors suggests the potential for transgenerational transmission of Bbsl and CLOs in the selected vectors, although at a low rate.
Collapse
Affiliation(s)
- Jiří Petráš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Bohunice, Brno, Czech Republic
| | - Eva Bártová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Alena Žákovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Bohunice, Brno, Czech Republic
- Department of Biology, Faculty of Education, Masaryk University, Poříčí 7/9, 63900, Brno, Czech Republic
| |
Collapse
|
7
|
Wechtaisong W, Sri-in C, Thongmeesee K, Yurayart N, Akarapas C, Rittisornthanoo G, Bunphungbaramee N, Sipraya N, Bartholomay LC, Maikaew U, Kongmakee P, Saedan A, Tiawsirisup S. Diversity of Anaplasma and novel Bartonella species in Lipoptena fortisetosa collected from captive Eld's deer in Thailand. Front Vet Sci 2023; 10:1247552. [PMID: 37781280 PMCID: PMC10538998 DOI: 10.3389/fvets.2023.1247552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Lipoptena insects are important ectoparasites of cervids and may affect humans that are incidentally bitten. The presence of zoonotic pathogen DNA, such as Anaplasma, and Bartonella, raises the importance of Lipoptena insects in veterinary and human medicine. Eld's deer (Rucervus eldii thamin), an endangered wild ruminant in Thailand, are bred and raised in the open zoo. The semi-wild zoo environment suggests ectoparasite infestation and potential risk for mechanical transmission of pathogens to visitors, zoo workers, or other animals. However, epidemiology knowledge of pathogens related to endangered wild ruminants in Thailand is limited. This study aims to determine the prevalence and diversity of Anaplasma and Bartonella in the L. fortisetosa collected from captive Eld's deer in Chon Buri, Thailand. Of the 91 Lipoptena DNA samples obtained, 42 (46.15%) and 25 (27.47%) were positive for Anaplasma and Bartonella by molecular detection, respectively. Further, 42 sequences of Anaplasma (4 nucleotide sequence types) showed 100% identity to those detected in other ruminants and blood-sucking ectoparasites. Twenty-five sequences of Bartonella (8 nucleotide sequence types) showed 97.35-99.11% identity to the novel Bartonella species from sika deer and keds in Japan. Phylogenetic trees revealed Anaplasma sequences were grouped with the clusters of A. bovis and other ruminant-related Anaplasma, while Bartonella sequences were clustered with the novel Bartonella species lineages C, D, and E, which originated from Japan. Interestingly, a new independent lineage of novel Bartonella species was found in obtained specimens. We report the first molecular detection of Anaplasma and Bartonella on L. fortisetosa, which could represent infectious status of captive Eld's deer in the zoo. Wild animals act as reservoirs for many pathogens, thus preventive measures in surrounding areas should be considered to prevent pathogen infection among animals or potential zoonotic infection among humans.
Collapse
Affiliation(s)
- Wittawat Wechtaisong
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chalida Sri-in
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kritsada Thongmeesee
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nichapat Yurayart
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chatlada Akarapas
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Umaporn Maikaew
- Khao Kheow Open Zoo, Zoological Park Organization of Thailand, Chon Buri, Thailand
| | - Piyaporn Kongmakee
- Khao Kheow Open Zoo, Zoological Park Organization of Thailand, Chon Buri, Thailand
| | - Arpussara Saedan
- Animal Conservation and Research Institute, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Sonthaya Tiawsirisup
- Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Olafson PU, Poh KC, Evans JR, Skvarla MJ, Machtinger ET. Limited detection of shared zoonotic pathogens in deer keds and blacklegged ticks co-parasitizing white-tailed deer in the eastern United States. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:179-188. [PMID: 36286196 DOI: 10.1111/mve.12620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/03/2022] [Indexed: 05/18/2023]
Abstract
Deer keds, such as Lipoptena cervi Linnaeus (Diptera: Hippoboscidae), are blood-feeding flies from which several human and animal pathogens have been detected, including Borrelia burgdorferi sensu lato Johnson (Spirochaetales: Borreliaceae), the causative agent of Lyme disease. Cervids (Artiodactyla: Cervidae), which are the primary hosts of deer keds, are not natural reservoirs of B. burgdorferi sl, and it has been suggested that deer keds may acquire bacterial pathogens via co-feeding near infected ticks. We screened L. cervi (n = 306) and Ixodes scapularis Say (Ixodida: Ixodidae) (n = 315) collected from 38 white-tailed deer in Pennsylvania for the family Anaplasmataceae, Bartonella spp. (Hyphomicrobiales: Bartonellaceae), Borrelia spp., and Rickettsia spp. (Rickettsiales: Rickettsiaceae). Limited similarity in the bacterial DNA detected between these ectoparasites per host suggested that co-feeding may not be a mechanism by which deer keds acquire these bacteria. The feeding biology and life history of deer keds may impact the observed results, as could the season when specimens were collected. We separately screened L. cervi (n = 410), L. mazamae Róndani (n = 13), L. depressa Say (n = 10), and Neolipoptena ferrisi Bequaert (n = 14) collections from locations within the United States and Canada for the same pathogens. These results highlight the need to further study deer ked-host and deer ked-tick relationships.
Collapse
Affiliation(s)
| | - Karen C Poh
- Department of Entomology, Penn State University, University Park, Pennsylvania, USA
- Animal Disease Research Unit, USDA, Pullman, Washington, USA
| | - Jesse R Evans
- Department of Entomology, Penn State University, University Park, Pennsylvania, USA
| | - Michael J Skvarla
- Department of Entomology, Penn State University, University Park, Pennsylvania, USA
| | - Erika T Machtinger
- Department of Entomology, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Defaye B, Moutailler S, Vollot B, Galon C, Gonzalez G, Moraes RA, Leoncini AS, Rataud A, Le Guillou G, Pasqualini V, Quilichini Y. Detection of Pathogens and Ticks on Sedentary and Migratory Birds in Two Corsican Wetlands (France, Mediterranean Area). Microorganisms 2023; 11:microorganisms11040869. [PMID: 37110292 PMCID: PMC10141976 DOI: 10.3390/microorganisms11040869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Birds are one of the most species-diverse vertebrate groups and are susceptible to numerous hematophagous ectoparasites. Migratory birds likely contribute to the circulation of these ectoparasites and their associated pathogens. One of the many migration paths crosses the Mediterranean islands including Corsica and its wetlands, which are migration stopovers. In our study, we collected blood samples and hematophagous ectoparasites in migratory and sedentary bird populations in two coastal lagoons: Biguglia and Gradugine. A total of 1377 birds were captured from which 762 blood samples, 37 louse flies, and 44 ticks were collected. All the louse flies were identified as Ornithomya biloba and all the ticks were from the Ixodes genus: Ixodes sp. (8.5%), I. accuminatus/ventalloi (2.9%), I. arboricola/lividus (14.3%), I. frontalis (5.7%) and I. ricinus (68.6%). Five pathogens were detected: Anaplasma phagocytophilum, Erhlichia chaffeensis, and Rickettsia helvetica in ticks, and Trypanosoma sp. in louse flies. Ehrlichia chaffeensis and the West Nile virus were both detected in bird blood samples in Corsica. This is the first report of these tick, louse fly and pathogen species isolated on the bird population in Corsica. Our finding highlights the importance of bird populations in the presence of arthropod-borne pathogens in Corsican wetlands.
Collapse
|
10
|
A brief review on deer keds of the genus Lipoptena (Diptera: Hippoboscidae). Vet Parasitol 2022; 313:109850. [DOI: 10.1016/j.vetpar.2022.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
|
11
|
Bubanová D, Fučíková AM, Majláth I, Pajer P, Bjelková K, Majláthová V. The first detection of relapsing fever spirochete Borrelia miyamotoi in Ixodes ricinus ticks from the northeast Czech Republic. Ticks Tick Borne Dis 2022; 13:102042. [PMID: 36126494 DOI: 10.1016/j.ttbdis.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Borrelia miyamotoi, a relapsing fever spirochete, is considered a human pathogen. Knowledge of this borrelia is currently limited. Data about its potential impact on public health, circulation in nature, or its occurrence in natural environments are insufficient. For our study, a total of 505 questing Ixodes ricinus ticks (337 nymphs, 85 females and 83 males) from Hradec Králové Region in the Czech Republic were collected. Additionally, 160 winged Lipoptena deer keds from Hradec Králové Region, from Pardubice Region, Czech Republic, and from one location in western Slovakia were collected. The presence of B. miyamotoi in ticks and deer keds was determined using polymerase chain reaction (PCR) targeting a gene encoding glycerophosphodiester phosphodiesterase (glpQ), antigenic protein specific to the relapsing fever spirochetes. Borrelia miyamotoi was identified in six nymphs and four females of I. ricinus ticks. The overall prevalence was 2%. None of the examined Lipoptena specimens were found to be infected. Although no human case of infection with B. miyamotoi has been reported in the Czech Republic yet, this spirochete is widespread in ticks, and therefore the risk of human infection exists.
Collapse
Affiliation(s)
- Dominika Bubanová
- Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice 041 80, Slovak Republic
| | - Alena Myslivcová Fučíková
- Department of Biology, University of Hradec Králové, Hradecká 1285, Hradec Králové 500 03, Czech Republic
| | - Igor Majláth
- Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice 041 80, Slovak Republic.
| | - Petr Pajer
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czech Republic
| | - Karolína Bjelková
- Department of Biology, University of Hradec Králové, Hradecká 1285, Hradec Králové 500 03, Czech Republic
| | - Viktória Majláthová
- Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, Košice 041 80, Slovak Republic
| |
Collapse
|
12
|
Werszko J, Świsłocka M, Witecka J, Szewczyk T, Steiner-Bogdaszewska Ż, Wilamowski K, Asman M. The New Haplotypes of Bartonella spp. and Borrelia burgdorferi Sensu Lato Identified in Lipoptena spp. (Diptera: Hippoboscidae) Collected in the Areas of North-Eastern Poland. Pathogens 2022; 11:1111. [PMID: 36297168 PMCID: PMC9611934 DOI: 10.3390/pathogens11101111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 10/03/2023] Open
Abstract
Deer keds are hematophagous ectoparasites (Diptera: Hippoboscidae) that mainly parasitize Cervidae. These flies are particularly important for animal health due to the occurrence of numerous pathogenic microorganisms. They may also attack humans and their bites may cause allergenic symptoms. The aim of the study was to identify the molecular characteristics of Borrelia burgdorferi sensu lato and Bartonella spp. pathogens detected in Lipoptena spp. sampled both from the hosts and from the environment. For identification of Bartonella spp and B. burgdorferi s. l., the primers specific to the rpoB and flaB gene fragments were used, respectively. The overall prevalence of B. burgdorferi s.l. DNA in Lipoptena cervi was 14.04%, including 14.8% infection in the tested group of winged specimens. The overall prevalence of Bartonella spp. was 57.02%. The presence of these bacteria was detected in 53.5% of specimens of L. cervi and 75.7% of L. fortisetosa. The phylogenetic analysis showed five new haplotypes of the rpoB gene of Bartonella sp. isolated from L. cervi/Lipoptena fortisetosa. We also identified one new haplotype of B. afzelii and three haplotypes of B. burgdorferi isolated from winged specimens of L. cervi. This is the first study to detect the genetic material of B. burgdorferi s.l. in L. cervi in Poland and the first report on the identification of these bacteria in host-seeking specimens in the environment.
Collapse
Affiliation(s)
- Joanna Werszko
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Magdalena Świsłocka
- Department of Zoology and Genetics, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Joanna Witecka
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-218 Sosnowiec, Poland
| | - Tomasz Szewczyk
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | | | - Konrad Wilamowski
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45e, 15-351 Białystok, Poland
| | - Marek Asman
- Department of Parasitology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-218 Sosnowiec, Poland
| |
Collapse
|
13
|
Stevanovic O, Sekulic Z, Nedic D, Pavlovic I, Zdravkovic N. The presence of deer ked (Lipoptena cervi, Linnaeus, 1758) in Balkan chamois from the National Park Sutjeska, Bosnia and Herzegovina. Int J Parasitol Parasites Wildl 2022; 17:158-160. [PMID: 35096524 PMCID: PMC8783113 DOI: 10.1016/j.ijppaw.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022]
Abstract
This case study describes the presence of a deer ked (Lipoptena cervi, Linnaeus, 1758) in the Balkan chamois (Rupicapra rupicapra balcanica) from the area of the National Park „Sutjeska“, Bosnia and Herzegovina (B&H). This is the first finding of this ectoparasite in this animal species in B&H, which indicates that deer ked has significant adaptive abilities to different animal hosts. The first finding of deer ked in Balkan chamois in Bosnia and Herzegovina. New adaptation in host strategy? National park observation study.
Collapse
|
14
|
Poh KC, Evans JR, Skvarla MJ, Kent CM, Olafson PU, Hickling GJ, Mullinax JM, Machtinger ET. Patterns of deer ked (Diptera: Hippoboscidae) and tick (Ixodida: Ixodidae) infestation on white-tailed deer (Odocoileus virginianus) in the eastern United States. Parasit Vectors 2022; 15:31. [PMID: 35057829 PMCID: PMC8772158 DOI: 10.1186/s13071-021-05148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
White-tailed deer (Odocoileus virginianus) host numerous ectoparasitic species in the eastern USA, most notably various species of ticks and two species of deer keds. Several pathogens transmitted by ticks to humans and other animal hosts have also been found in deer keds. Little is known about the acquisition and potential for transmission of these pathogens by deer keds; however, tick-deer ked co-feeding transmission is one possible scenario. On-host localization of ticks and deer keds on white-tailed deer was evaluated across several geographical regions of the eastern US to define tick-deer ked spatial relationships on host deer, which may impact the vector-borne disease ecology of these ectoparasites.
Methods
Ticks and deer keds were collected from hunter-harvested white-tailed deer from six states in the eastern US. Each deer was divided into three body sections, and each section was checked for 4 person-minutes. Differences in ectoparasite counts across body sections and/or states were evaluated using a Bayesian generalized mixed model.
Results
A total of 168 white-tailed deer were inspected for ticks and deer keds across the study sites. Ticks (n = 1636) were collected from all surveyed states, with Ixodes scapularis (n = 1427) being the predominant species. Counts of I. scapularis from the head and front sections were greater than from the rear section. Neotropical deer keds (Lipoptena mazamae) from Alabama and Tennessee (n = 247) were more often found on the rear body section. European deer keds from Pennsylvania (all Lipoptena cervi, n = 314) were found on all body sections of deer.
Conclusions
The distributions of ticks and deer keds on white-tailed deer were significantly different from each other, providing the first evidence of possible on-host niche partitioning of ticks and two geographically distinct deer ked species (L. cervi in the northeast and L. mazamae in the southeast). These differences in spatial distributions may have implications for acquisition and/or transmission of vector-borne pathogens and therefore warrant further study over a wider geographic range and longer time frame.
Graphical Abstract
Collapse
|
15
|
Two New Haplotypes of Bartonella sp. Isolated from Lipoptena fortisetosa (Diptera: Hippoboscidae) in SE Poland. INSECTS 2021; 12:insects12060485. [PMID: 34073765 PMCID: PMC8225173 DOI: 10.3390/insects12060485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Lipoptena fortisetosa is a hematophagous ectoparasite of game animals feeding accidentally on companion animals and humans. Since the presence of numerous pathogenic microorganisms has been described in this species, monitoring its geographic distribution is of great epidemiological importance. To the best of our knowledge, we present two new haplotypes of Bartonella sp. isolated from L. fortisetosa in south-eastern Poland and confirm the presence of this invasive species in Lublin Voivodeship since 2013. Abstract Insects of the genus Lipoptena are parasitic arthropods with a broad host range. Due to the type of parasitism (hematophagy), their potential role as vectors of pathogens, i.e., Bartonella sp., Anaplasma phagocytophilum, Rickettsia spp., and Borrelia burgdorferi is considered. As the range of their occurrence has been changing dynamically in recent years and infestations of humans have increasingly been reported, these organisms are now the subject of numerous studies. Our research aimed to present the molecular characteristics of Bartonella sp. detected in Lipoptena fortisetosa parasitizing wild cervids in south-eastern Poland. Adults of Lipoptena spp. were collected from carcasses of roe deer and red deer between spring and autumn in 2013. The PCR method was used to detect Bartonella sp. in the insects. We report two new haplotypes of the rpoB gene of Bartonella sp. isolated from L. fortisetosa feeding on wild cervids in south-eastern Poland and the presence of this invasive ectoparasitic species in the studied area since 2013. Phylogenetic analyses of newly obtained Bartonella sp. haplotypes confirmed their unique position on the constructed tree and network topology. The rpoB gene sequences found belonging to lineage B support the view that this phylogenetic lineage represents a novel Bartonella species.
Collapse
|
16
|
Gałęcki R, Jaroszewski J, Bakuła T, Galon EM, Xuan X. Molecular Detection of Selected Pathogens with Zoonotic Potential in Deer Keds ( Lipoptena fortisetosa). Pathogens 2021; 10:pathogens10030324. [PMID: 33801932 PMCID: PMC7999563 DOI: 10.3390/pathogens10030324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 12/29/2022] Open
Abstract
Deer keds are obligatory hematophagous ectoparasites of birds and mammals. Cervids serve as specific hosts for these insects. However, ked infestations have been observed in non-specific hosts, including humans, companion animals, and livestock. Lipoptena fortisetosa is a weakly studied ectoparasite, but there is evidence to indicate that it continues to spread across Europe. The existing knowledge on deer keds' impact on wildlife is superficial, and their veterinary importance is enigmatic. Lipoptena fortisetosa is a species with vectorial capacity, but potential pathogen transmission has not been assessed. The objective of this study was to evaluate the prevalence of selected pathogens in L. fortisetosa collected from cervids and host-seeking individuals in the environment. Out of 500 acquired samples, 307 (61.4%) had genetic material from at least one tested pathogen. Our research suggests that L. fortisetosa may be a potential vector of several pathogens, including A. phagocytophilum, Babesia spp., Bartonella spp., Borellia spp., Coxiella-like endosymbionts, Francisiella tularensis, Mycoplasma spp., Rickettsia spp., and Theileria spp.; however, further, more extensive investigations are required to confirm this. The results of the study indicate that keds can be used as biological markers for investigating the prevalence of vector-borne diseases in the population of free-ranging cervids.
Collapse
Affiliation(s)
- Remigiusz Gałęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Eloiza M. Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (E.M.G.); (X.X.)
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (E.M.G.); (X.X.)
| |
Collapse
|
17
|
Exposure of Humans to Attacks by Deer Keds and Consequences of Their Bites-A Case Report with Environmental Background. INSECTS 2020; 11:insects11120859. [PMID: 33287132 PMCID: PMC7761680 DOI: 10.3390/insects11120859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Lipoptena species, also named the deer ked or deer fly, are commonly encountered in temperate areas of Europe, northern China, and North America. Although wild animals seem to be the preferred hosts of these parasitic arthropods, it is increasingly being noted that humans are also directly threatened by their bites. Skin lesions evolving after Lipoptena bites are painful and often lead to the development of inflammation of the skin. Lipoptena species also pose a threat to the health of the host by transferring pathogenic factors, e.g., Bartonella schoenbuchensis, Borrelia burgdorferi, and Anaplasma phagocytophilum. For this reason, knowledge of symptoms caused by Lipoptena bites is worth promoting among not only scientists but also the general public. Abstract Insects of the genus Lipoptena, e.g., Lipoptena cervi and Lipoptena fortisetosa, are hematophagic ectoparasites mainly attacking deer, roe deer, moose, horses, and cattle. Humans may also be incidental hosts for these insects. The species are vectors of numerous pathogens, including Bartonella schoenbuchensis, Borrelia burgdorferi, and Anaplasma phagocytophilum. Due to the short time of feeding on humans, usually painless bites, and an initially small trace at the site of the bite, the symptoms reported by the patient may not be associated with deer ked infestation and infection with pathogens transmitted by these arthropods. The aim of the study was to describe the consequences of L. cervi bites in humans with detailed documentation of the development of skin lesions. The knowledge about skin lesions arising after deer ked bites may be useful in clinical practice for monitoring patients for the presence of pathogens transmitted by the parasites.
Collapse
|
18
|
Skvarla MJ, Poh KC, Evans JR, Machtinger E. A Technique for Dissecting the Salivary Glands From the Abdomens of Deer Keds (Diptera: Hippoboscidae: Lipoptena Nitzsch, 1818 and Neolipoptena Bequaert, 1942). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5948079. [PMID: 33135757 PMCID: PMC7604843 DOI: 10.1093/jisesa/ieaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Deer keds (Diptera: Hippoboscidae: Lipoptena Nitzsch, 1818 and Neolipoptena Bequaert, 1942) are hematophagous ectoparasites of cervids that occasionally bite other mammals, including humans. In recent years, a number of arthropod-borne pathogens have been sequenced from deer keds. However, it is unclear if the pathogens are just present in host blood in the gut or if the pathogens are present in other organs (e.g., salivary glands) that would suggest that keds are competent vectors. Like other hippoboscoid flies, deer keds have extensive salivary glands that extend through the thorax and into the abdomen, so simply disarticulating and sequencing the thorax and abdomen separately does not circumvent the issues surrounding whole-body sequencing. Herein, we describe a technique for dissecting the terminal portion of the salivary glands from the abdomen in order to screen the thorax and salivary glands separately from the abdomen for arthropod-borne pathogens.
Collapse
Affiliation(s)
- Michael J Skvarla
- Department of Entomology, Penn State University, University Park, PA
| | - Karen C Poh
- Department of Entomology, Penn State University, University Park, PA
| | - Jesse R Evans
- Department of Entomology, Penn State University, University Park, PA
| | - Erika Machtinger
- Department of Entomology, Penn State University, University Park, PA
| |
Collapse
|
19
|
Flynn C, Ignaszak A. Lyme Disease Biosensors: A Potential Solution to a Diagnostic Dilemma. BIOSENSORS 2020; 10:E137. [PMID: 32998254 PMCID: PMC7601730 DOI: 10.3390/bios10100137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Over the past four decades, Lyme disease has remained a virulent and pervasive illness, persisting throughout North America and many other regions of the world. Recent increases in illness in many countries has sparked a renewed interest in improved Lyme diagnostics. While current standards of diagnosis are acceptable for the late stages of the disease, it remains difficult to accurately diagnose early forms of the illness. In addition, current diagnostic methods tend to be relatively expensive and require a large degree of laboratory-based analysis. Biosensors represent the fusion of biological materials with chemical techniques to provide simple, inexpensive alternatives to traditional diagnostic methods. Lyme disease biosensors have the potential to better diagnose early stages of the illness and provide possible patients with an inexpensive, commercially available test. This review examines the current state of Lyme disease biosensing, with a focus on previous biosensor development and essential future considerations.
Collapse
Affiliation(s)
- Connor Flynn
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | | |
Collapse
|
20
|
Keds, the enigmatic flies and their role as vectors of pathogens. Acta Trop 2020; 209:105521. [PMID: 32447028 DOI: 10.1016/j.actatropica.2020.105521] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
Hippoboscid flies (Diptera: Hippoboscidae), commonly known as keds or louse flies, have been for long time overlooked by the scientific community, and their vector role of infectious agents to humans and domestic animals has been scantly investigated. This is partly due to the fact that the host range for most species is primarily restricted to wildlife, being rarely reported on domestic animals and humans. This led to a scarce scientific knowledge about their biology, ecology, behaviour, epidemiology as well as vector competence. However, the life history of some hippoboscid species, e.g., Melophagus ovinus, Lipoptena cervi and Hippobosca equina, suggests that these ectoparasites are important candidates to vector infectious disease agents (e.g., Rickettsia spp., Borrelia spp., Bartonella spp., Anaplasma phagocytophilum, Theileria ovis). Indeed, the peculiar biological and behavioural traits (i.e., obligatory blood sucking and reproductive physiology) of many ked species make them a suitable pabulum for pathogen's multiplication and for their transmission to receptive hosts. Therefore, studies focusing on the ked bio-ecological aspects as well as on their vector role are advocated along with the control of keds affecting different animal species. This review discusses current information on keds, highlighting their importance as vectors of pathogens of medical and veterinary concern to all animal species, with a special focus on mammals.
Collapse
|
21
|
The role of different species of wild ungulates and Ixodes ricinus ticks in the circulation of genetic variants of Anaplasma phagocytophilum in a forest biotope in north-western Poland. Ticks Tick Borne Dis 2020; 11:101465. [PMID: 32723651 DOI: 10.1016/j.ttbdis.2020.101465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/31/2023]
Abstract
The aim of this study was to reveal genetic variants of Anaplasma phagocytophilum strains occurring in different species of wild ungulates and in Ixodes ricinus ticks to check the role of the examined species in the circulation of the revealed variants in nature. The aim was also to determine if the detected variants of A. phagocytophilum are specific for particular game species as well as to examine their identity with other strains, including pathogenic ones. Sequences of the amplified groEL heat shock operon and msp2 gene fragments of A. phagocytophilum were obtained from samples collected between 2005 and 2007 from 14 roe deer (Capreolus capreolus), 13 red deer (Cervus elaphus), 1 fallow deer (Dama dama) and 4 wild boar (Sus scrofa) as well as 13 engorged and 11 questing I. ricinus ticks occurring in the area of Puszcza Wkrzańska Forest in north-western Poland. Analysis of the sequences showed the presence of five and four gene variants of groEL and msp2, respectively. The variants showed high identity with sequences derived from strains pathogenic to humans and/or domestic and companion animals. Cervids seem to play a more important role in the circulation of the detected variants in nature than wild boar. Some of the detected variants are not shared by roe and red deer. The results obtained on the basis of groEL and msp2 sequences are discrepant. Analysis of the groEL operon sequence provides more information on A. phagocytophilum strains than the msp2 gene sequence.
Collapse
|
22
|
Buczek W, Buczek AM, Bartosik K, Buczek A. Comparison of Skin Lesions Caused by Ixodes ricinus Ticks and Lipoptena cervi Deer Keds Infesting Humans in the Natural Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093316. [PMID: 32397578 PMCID: PMC7246670 DOI: 10.3390/ijerph17093316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
Background: The territorial expansion and increased population size of haematophagous arthropods (i.e., the castor bean tick Ixodes ricinus (Ixodida: Ixodidae) and the deer ked Lipoptena cervi (Diptera: Hippoboscidae)) has enhanced the risk of human infestations in Europe. The aim of our study was to present skin lesions induced by tick and deer ked bites in patients from recreational forest regions in southeastern Poland and pay attention to features of skin changes that may be useful in differential diagnosis. Methods: We compare the skin lesions after I. ricinus and L. cervi bite and draw attention to the biological and ecological traits of both ectoparasites, which may be diagnostically relevant for determination of the cause of skin symptoms reported by patients. Results: I. ricinus bites lead to development of erythematous-infiltrative poorly demarcated lesions with a centrally located bite mark, which usually disappears within one to several days. In turn, L. cervi bites leave irregularly shaped scattered erythematous papules. The papules may persist for up to one year and are accompanied by itching. Conclusions: Correct assessment of the clinical picture and its association with an arthropod bite (e.g., tick or deer ked) is highly important for further diagnostic procedures (i.e., differentiation of skin lesions developing in tick-borne diseases and, consequently, correct choice of pharmacological therapy). I. ricinus and L. cervi differ in their developmental cycles and rhythms of activity, which indicates that both species should be considered potential causative agents in the differential diagnosis of skin lesions when the patient has been bitten by an arthropod in autumn and winter months.
Collapse
|
23
|
Boucheikhchoukh M, Mechouk N, Benakhla A, Raoult D, Parola P. Molecular evidence of bacteria in Melophagus ovinus sheep keds and Hippobosca equina forest flies collected from sheep and horses in northeastern Algeria. Comp Immunol Microbiol Infect Dis 2019; 65:103-109. [PMID: 31300097 DOI: 10.1016/j.cimid.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 11/25/2022]
Abstract
The sheep ked, Melophagus ovinus, and the forest fly, Hippobosca equina, are parasitic dipteran insects of veterinary importance. As hematophagous insects, they might be considered as potential vectors of diseases which may be transmissible to humans and animals. The purpose of this study was to present initial primary data about these two species in Algeria. To do so, we conducted a molecular survey to detect the presence of bacterial DNA in flies collected in Algeria. A total of 712 flies including, 683 Melophagus ovinus and 29 Hippobosca equina were collected from two regions in northeastern Algeria. Monitoring the monthly kinetics of M. ovinus infestations showed something resembling annual activity, with a high prevalence in January (21.67%) and May (20.94%). Real-time quantitative PCR assays showed that for 311 tested flies, 126 were positive for the Bartonella spp. rRNA intergenic spacer gene and 77 were positive for Anaplasmataceae. A random selection of positive samples was submitted for sequencing. The DNA of Bartonella chomelii and Bartonella melophagi were amplified in, respectively, five and four H. equina. 25 M. ovinus positive samples were infected by Bartonella melophagi. Amplification and sequencing of the Anaplasma spp. 23S rRNA gene revealed that both species were infected by Wolbachia sp. which had previously been detected in Cimex lectularius bed bugs. Overall, this study expanded knowledge about bacteria present in parasitic flies of domestic animals in Algeria.
Collapse
Affiliation(s)
- Mehdi Boucheikhchoukh
- Université Chadli Bendjedid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | | | - Ahmed Benakhla
- Université Chadli Bendjedid, Département des Sciences Vétérinaires, El Tarf, 36000, Algeria.
| | - Didier Raoult
- Aix Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, France.
| |
Collapse
|
24
|
Skvarla MJ, Machtinger ET. Deer Keds (Diptera: Hippoboscidae: Lipoptena and Neolipoptena) in the United States and Canada: New State and County Records, Pathogen Records, and an Illustrated Key to Species. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:744-760. [PMID: 30668798 DOI: 10.1093/jme/tjy238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Deer keds (Diptera: Hippoboscidae: Lipoptena Nitzsch, 1818 and Neolipoptena Bequaert, 1942) are parasitic flies that primarily attack cervids and occasionally bite humans. Recent reports have documented nearly half a dozen pathogens in deer keds, but it is unknown whether keds are competent vectors. Although geographic ranges of the four North American deer ked species are known generally, precise limits are not well understood. If keds are competent vectors, knowing where they occur will inform the risk of pathogen transmission to people and animals. Herein, we report deer ked occurrence by county in the United States and Canada, including 7 new state and 91 new county/parish/administrative district records. We also include a key to North American deer ked species to facilitate specimen identification.
Collapse
Affiliation(s)
- Michael J Skvarla
- Department of Entomology, Penn State University, University Park, PA
| | | |
Collapse
|
25
|
Andreani A, Sacchetti P, Belcari A. Comparative morphology of the deer ked Lipoptena fortisetosa first recorded from Italy. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:140-153. [PMID: 30478849 DOI: 10.1111/mve.12342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/25/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Hippoboscidae flies parasitize various animal species. Knowledge about these insects remains sparse, although they are known to cause stress and damage to their hosts, and can also accidentally infest humans, causing different sanitary risks. Research conducted in Tuscany assessing the biology and distribution of Lipoptena cervi (Linnaeus, 1758) (Diptera: Hippoboscidae), the most common ectoparasite of ungulates in Italy, revealed the presence of Lipoptena fortisetosa Maa, 1965 in Italy for the first time. This study includes a morphological comparative description of L. cervi and L. fortisetosa, emphasizing the peculiar differences between the two species to facilitate their accurate identification. The most pertinent morphological differences between the two species are highlighted, such as the external features of the antennae, distribution of bristles, and different features in the external genitalia. In both species, scanning electron microscopy of mouthparts revealed strong adaptive convergence in the feeding apparatus. Modified palps and a very thin proboscis are described in relation to feeding behaviour.
Collapse
Affiliation(s)
- A Andreani
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
| | - P Sacchetti
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
| | - A Belcari
- Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
| |
Collapse
|
26
|
Regier Y, Komma K, Weigel M, Pulliainen AT, Göttig S, Hain T, Kempf VAJ. Microbiome Analysis Reveals the Presence of Bartonella spp. and Acinetobacter spp. in Deer Keds ( Lipoptena cervi). Front Microbiol 2018; 9:3100. [PMID: 30619179 PMCID: PMC6306446 DOI: 10.3389/fmicb.2018.03100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
The deer ked (Lipoptena cervi) is distributed in Europe, North America, and Siberia and mainly infests cervids as roe deer, fallow deer, and moose. From a one health perspective, deer keds occasionally bite other animals or humans and are a potential vector for Bartonella schoenbuchensis. This bacterium belongs to a lineage of ruminant-associated Bartonella spp. and is suspected to cause dermatitis and febrile diseases in humans. In this study, we analyzed the microbiome from 130 deer keds collected from roe deer, fallow deer and humans in the federal states of Hesse, Baden-Wuerttemberg, and Brandenburg, Germany. Endosymbiontic Arsenophonus spp. and Bartonella spp. represented the biggest portion (~90%) of the microbiome. Most Bartonella spp. (n = 93) were confirmed to represent B. schoenbuchensis. In deer keds collected from humans, no Bartonella spp. were detected. Furthermore, Acinetobacter spp. were present in four samples, one of those was confirmed to represent A. baumannii. These data suggest that deer keds harbor only a very narrow spectrum of bacteria which are potentially pathogenic for animals of humans.
Collapse
Affiliation(s)
- Yvonne Regier
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Kassandra Komma
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Arto T. Pulliainen
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Szewczyk T, Werszko J, Steiner-Bogdaszewska Ż, Jeżewski W, Laskowski Z, Karbowiak G. Molecular detection of Bartonella spp. in deer ked (Lipoptena cervi) in Poland. Parasit Vectors 2017; 10:487. [PMID: 29037227 PMCID: PMC5644074 DOI: 10.1186/s13071-017-2413-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/29/2017] [Indexed: 11/14/2022] Open
Abstract
Background The bacteria of the genus Bartonella are obligate parasites of vertebrates. Their distribution range covers almost the entire world from America, Europe, Asia to Africa and Australia. Some species of Bartonella are pathogenic for humans. Their main vectors are blood-sucking arthropods such as fleas, ticks and blood-feeding flies. One such dipteran able to transfer vector-borne pathogens is the deer ked (Lipoptena cervi) of the family Hippoboscidae. This species acts as a transmitter of Bartonella spp. in cervid hosts in Europe. Methods In the present study, 217 specimens of deer ked (Lipoptena cervi) were collected from 26 red deer (Cervus elaphus) hunted in January 2014. A short fragment (333 bp) of the rpoB gene was used as a marker to identify Bartonella spp. in deer ked tissue by PCR test. A longer fragment (850 bp) of the rpoB gene was amplified from 21 of the positive samples, sequenced and used for phylogenetic analysis. Results The overall prevalence of Lipoptena cervi infection with Bartonella spp. was 75.12% (163/217); 86.67% (104/120) of females and 60.82% (59/97) of males collected from red deer hunted in the Strzałowo Forest District in Poland (53°45′57.03″N, 21°25′17.79″E) were infected. The nucleotide sequences from 14 isolates (Bartonella sp. 1) showed close similarity to Bartonella schoenbuchensis isolated from moose blood from Sweden (GenBank: KB915628) and human blood from France (GenBank: HG977196); Bartonella sp. 2 (5 isolates) and Bartonella sp. 3 (one isolate) were similar to Bartonella sp. from Japanese sika deer (GenBank: AB703149), and Bartonella sp. 4 (one isolate) was almost identical to Bartonella sp. isolated from Japanese sika deer from Japan (GenBank: AB703146). Conclusions To the best of our knowledge, this is the first report to confirm the presence of Bartonella spp. in deer keds (Lipoptena cervi) in Poland by molecular methods. Bartonella sp. 1 isolates were most closely related to B. schoenbuchensis isolated from moose from Sweden and human blood from France. The rest of our isolates (Bartonella spp. 2–4) were similar to Bartonella spp. isolated from Japanese sika deer from Japan. Electronic supplementary material The online version of this article (10.1186/s13071-017-2413-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomasz Szewczyk
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Joanna Werszko
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Żaneta Steiner-Bogdaszewska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Witold Jeżewski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Zdzisław Laskowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Grzegorz Karbowiak
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|