1
|
Li Z, Bai M, Yin S, Yang Y, Dong H, Teng Z, Sun S, Bao E, Guo H. Evaluation of the immune effect of foot-and-mouth disease virus-like particles derived from Pichia Pastoris on mice and pigs. Front Microbiol 2025; 16:1551395. [PMID: 40297291 PMCID: PMC12034696 DOI: 10.3389/fmicb.2025.1551395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Foot-and-mouth disease (FMD) is an acute, highly contagious, infectious disease that affects cloven-hoofed animals and the healthy development of animal husbandry. Despite the pivotal role of the inactivated FMD vaccine in preventing and controlling the disease, the production and preparation of the inactivated vaccine still present certain safety concerns. Virus-like particles (VLPs), which have a shell structure similar to that of the viruses but lack the genetic material of viruses, have emerged as a prominent area of research on developing next-generation FMD vaccines. In this study, co-expression of P1 and 3C was implemented to obtain the capsid protein of FMD virus (FMDV), and VLPs of FMD were prepared using Pichia Pastoris. Given that the enzymatic activity of 3C is not ideal in acidic yeast cells, the HLH pattern structure was added to the N-terminal end of 3C, which can be anchored near the exit of the nascent peptide chain of ribosomes. Furthermore, the alcohol oxidase (AOX) promoter, which regulates the expression of 3C, was enhanced by mutation. Then, FMDV VLPs were successfully produced in yeast. Immunization of mice and pigs with VLPs resulted in high levels of specific and neutralizing antibodies and provided protection against FMDV in pigs. In conclusion, FMDV VLPs can be successfully produced in P. Pastoris. This offers a new way to develop FMDV VLP vaccines.
Collapse
Affiliation(s)
- Zhiyao Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Manyuan Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yan Yang
- Agriculture and Rural Bureau of Yugur Autonomous County of Sunan, Zhangye, China
| | - Hu Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
Cai J, Li Z, Wang Y, Fang S, Fang X, Xue X. Expression and characterization of canine distemper virus hemagglutinin protein in suspension mammalian cells. J Virol Methods 2025; 333:115098. [PMID: 39662744 DOI: 10.1016/j.jviromet.2024.115098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Hundreds of millions of the domestic dogs worldwide are routinely inoculated with the modified live vaccines for canine distemper virus (CDV) every year. However, the corresponding serological diagnostic and detections are always lacking, thus, there is an urgent demand to establish its unique diagnostic technologies to produce high-quality antigenic biomolecules. In the present study, the ectodomain (et) of CDV hemagglutinin (H) protein was firstly expressed in a soluble and secreted forms by an Expi293F transient transfection system based on its antigenic secondary structure analysis. The yields of CDV H(et) protein was 2.6 g/L with purity over 95 % in supernatant of Expi293F cells. The CDV H(et) protein elicited comparative antibodies levels to the CDV virions in rabbit by ELISA and neutralization test. The purified polyclonal antibodies of immunized with CDV H(et) protein recognized both wild-type and vaccine CDV strains. More importantly, the purified polyclonal antibodies of CDV H(et) protein revealed significantly higher viral neutralizing activity than those from CDV-3 virions, which highlighted that the critical role of CDV H protein to elicit viral specific and protective neutralizing antibodies. Taken together, the CDV H(et) protein produced in mammalian expression systems was high-quality and good immunogenicity, and would be with great potential to serve as a serological diagnostic antigen or a novel CDV subunit vaccine in future.
Collapse
Affiliation(s)
- Jiaxi Cai
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zishu Li
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu Wang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuren Fang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaohan Fang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianghong Xue
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
3
|
Sherry L, Grehan K, Bahar MW, Swanson JJ, Fox H, Matthews S, Carlyle S, Qin L, Porta C, Wilkinson S, Robb S, Clark N, Liddell J, Fry EE, Stuart DI, Macadam AJ, Rowlands DJ, Stonehouse NJ. Production of an immunogenic trivalent poliovirus virus-like particle vaccine candidate in yeast using controlled fermentation. NPJ Vaccines 2025; 10:64. [PMID: 40164627 PMCID: PMC11958812 DOI: 10.1038/s41541-025-01111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
The success of the poliovirus (PV) vaccines has enabled the near-eradication of wild PV, however, their continued use post-eradication poses concerns, due to the potential for virus escape during vaccine manufacture. Recombinant virus-like particles (VLPs) that lack the viral genome remove this risk. Here, we demonstrate the production of PV VLPs for all three serotypes by controlled fermentation using Pichia pastoris. We determined the cryo-EM structure of a new PV2 mutant, termed SC5a, in comparison to PV2-SC6b VLPs described previously and investigated the immunogenicity of PV2-SC5a VLPs. Finally, a trivalent immunogenicity trial using bioreactor-derived VLPs of all three serotypes in the presence of Alhydrogel adjuvant, showed that these VLPs outperform the current IPV vaccine in the standard vaccine potency assay, offering the potential for dose-sparing. Overall, these results provide further evidence that yeast-produced VLPs have the potential to be a next-generation polio vaccine in a post-eradication world.
Collapse
Affiliation(s)
- Lee Sherry
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Keith Grehan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mohammad W Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - Jessica J Swanson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Helen Fox
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, EN6 3QG, UK
| | - Sue Matthews
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah Carlyle
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, EN6 3QG, UK
| | - Ling Qin
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | | | - Suzanne Robb
- CPI, 1 Union Square, Central Park, Darlington, DL1 1GL, UK
| | - Naomi Clark
- CPI, 1 Union Square, Central Park, Darlington, DL1 1GL, UK
| | - John Liddell
- CPI, 1 Union Square, Central Park, Darlington, DL1 1GL, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew J Macadam
- Division of Vaccines, Medicines & Healthcare products Regulatory Agency (MHRA), Herts, EN6 3QG, UK
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nicola J Stonehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
4
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
5
|
Norizwan JAM, Tan WS. Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100317. [PMID: 39717209 PMCID: PMC11665419 DOI: 10.1016/j.crmicr.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The threat of influenza A virus (IAV) remains an annual health concern, as almost 500,000 people die each year due to the seasonal flu. Current flu vaccines are highly dependent on embryonated chicken eggs for production, which is time consuming and costly. These vaccines only confer moderate protections in elderly people, and they lack cross-protectivity; thereby requiring annual reformulation to ensure effectiveness against contemporary circulating strains. To address current limitations, new strategies are being sought, with great emphasis given on exploiting IAV's conserved antigens for vaccine development, and by using different vaccine technologies to enhance immunogenicity and expedite vaccine production. Among these technologies, there are growing pre-clinical and clinical studies involving virus-like particles (VLPs), as they are capable to display multiple conserved IAV antigens and augment their immune responses. In this review, we outline recent findings involving broadly effective IAV antigens and strategies to display these antigens on VLPs. Current production systems for IAV VLP vaccines are comprehensively reviewed. Pain-free methods for administration of IAV VLP vaccines through intranasal and transdermal routes, as well as the mechanisms in stimulating immune responses are discussed in detail. The future perspectives of VLPs in IAV vaccine development are discussed, particularly concerning their potentials in overcoming current immunological limitations of IAV vaccines, and their inherent advantages in exploring intranasal vaccination studies. We also propose avenues to expedite VLP vaccine production, as we envision that there will be more clinical trials involving IAV VLP vaccines, leading to commercialization of these vaccines in the near future.
Collapse
Affiliation(s)
- Jaffar Ali Muhamad Norizwan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Chen Y, Wang Y, Fu H, Zeng W, Wang P, Zheng X, Yang F. A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. PLANT MOLECULAR BIOLOGY 2024; 114:110. [PMID: 39361185 DOI: 10.1007/s11103-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.
Collapse
Affiliation(s)
- Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yanbo Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Zeng
- School of Economies and Management, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
7
|
Celitan E, Stanevičienė R, Servienė E, Serva S. Highly stable Saccharomyces cerevisiae L-BC capsids with versatile packing potential. Front Bioeng Biotechnol 2024; 12:1456453. [PMID: 39386045 PMCID: PMC11461329 DOI: 10.3389/fbioe.2024.1456453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Virus-like particles (VLPs) are promising nanoscaffolds in development of vaccines and nanodelivery systems. Along with efficient production in various expression systems, they also offer extensive functionalization options. Nevertheless, the ultimate integrity of VLPs is an important burden for the applicability in nanobiotechnology. In this study, we characterize the Saccharomyces cerevisiae L-BC VLPs synthesized and purified from Escherichia coli and Saccharomyces cerevisiae cells. The particles exhibited prominent size stability in buffers within a range of ionic strength conditions, pH environment and presence of magnesium ions during the long-term storage at temperatures up to 37°C. Bacteria-derived particles exhibited alleviated stability in acidic pH values, higher ionic strength and temperature compared to yeast-derived particles. Taking advantage of gene engineering, 120 copies of red fluorescent protein mCherry were successfully encapsulated into both preparations of L-BC VLPs, while passive diffusion enabled encapsulation of antimicrobial peptide nisin into the yeast-derived unmodified VLPs. Our findings indicate that L-BC VLPs generally exhibit high long-term stability under various conditions, while yeast-derived L-BC VLPs are more stable under the elevated temperatures than bacteria-derived particles. Stability studies and encapsulation of particles by different molecules involving alternative strategies delineate the L-BC VLP potential to be developed into versatile nanodelivery system.
Collapse
Affiliation(s)
- Enrika Celitan
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Vilnius, Lithuania
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
8
|
Molina MA, Cazzaniga A, Sgroppo SC, Milde LB, Zapata PD, Fonseca MI. Bioengineered xylanase from Misiones Argentina rainforest: A bakery enhancement approach. J Food Sci 2024; 89:2124-2136. [PMID: 38462841 DOI: 10.1111/1750-3841.17016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
In this study, we pursued the heterologous expression of the xylanase gene from Trichoderma atroviride, a native fungus in the province of Misiones, and used it to enhance the textural properties of baked goods through varying enzymatic concentrations. This marks the inaugural exploration into its functionality in the context of bread production. The recombinant xylanase exhibited improved activity, reaching 36,292 U L-1, achieved by supplementing the culture medium with dextrose. Following the optimization of recombinant xylanase concentration, promising results emerged, notably reducing hardness and chewiness parameters of bread significantly. Our findings underscore the potential of this native fungal enzyme for industrial processes, offering a sustainable and efficient means to enhance the quality of baked goods with broad implications for the food industry. No prior research has been documented on the heterologous expression of the xylanase gene derived from T. atroviride, from the Misiones rainforest, expressed in Kluyveromyces lactis. PRACTICAL APPLICATION: This research, focusing on the isolation and cloning of xylanase enzyme from Trichoderma atroviride, a native fungus in the province of Misiones, offers a valuable tool for improving the texture of bakery products. By optimizing enzyme concentrations, our findings present a practical approach for the food industry, offering a viable solution to improve the overall quality and consumer satisfaction of bakery products.
Collapse
Affiliation(s)
- Melisa A Molina
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Amanda Cazzaniga
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Sonia C Sgroppo
- Laboratorio de Tecnología Química (FaCENA - IQUIBA - CONICET), Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Laura B Milde
- Departmento de Química, Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNaM), Posadas, Misiones, Argentina
| | - Pedro D Zapata
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| | - Maria I Fonseca
- Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología de Misiones "Dra. Maria Ebbe Reca"(INBIOMIS). Laboratorio de Biotecnología Molecular, Posadas, Misiones, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
9
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
10
|
Damodaran A, Zachariah SM, Nair SC. Novel therapeutic approaches for the management of hepatitis infections. Ther Deliv 2024; 15:211-232. [PMID: 38410933 DOI: 10.4155/tde-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Hepatitis B virus (HBV) & hepatitis C virus (HCV) infection is a substantial reason for morbidity and mortality around the world. Chronic hepatitis B (CHB) infection is connected with an enhanced risk of liver cirrhosis, liver decompensation and hepatocellular carcinoma (HCC). Conventional therapy do face certain challenges, for example, poor tolerability and the growth of active resistance. Thus, novel treatment procedures are essential to accomplish the initiation of strong and stable antiviral immune reactions of the individuals. This review explores the current nanotechnology-based carriers for drug and vaccine delivery to treat HBV and HCV.
Collapse
Affiliation(s)
- Aswin Damodaran
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Subin Mary Zachariah
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| | - Sreeja Chandrasekharan Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, 682041, India
| |
Collapse
|
11
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|
12
|
Mateu MG, Valbuena A. Engineering and Bio/Nanotechnological Applications of Virus Particles. Subcell Biochem 2024; 105:823-878. [PMID: 39738964 DOI: 10.1007/978-3-031-65187-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Virus particles (VPs) are naturally evolved nanomachines. Their outstanding molecular structures, physical and chemical properties, and biological activities make them potentially useful for many biomedical or technological applications. Natural VPs such as virions or capsids must, however, be modified by genetic and/or chemical engineering in order to become adequate for many specific uses. We present first a general overview of the methods used for obtaining virions and viral capsids, and of genetic and chemical engineering approaches to suitably modify VPs. In the second part of the chapter, we present an updated overview on current or developing applications of engineered VPs as tools, materials, reagents, or nanodevices in biomedicine, biotechnology, or nanotechnology.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Ganeva V, Kranz A. Selective extraction of recombinant membrane proteins from Hansenula polymorpha by pulsed electric field and lytic enzyme pretreatment. Microb Cell Fact 2023; 22:251. [PMID: 38066481 PMCID: PMC10704748 DOI: 10.1186/s12934-023-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In yeast, recombinant membrane proteins including viral scaffold proteins used for the formation of enveloped Virus-like particles (eVLPs) typically accumulate intracellularly. Their recovery is carried out by mechanical disruption of the cells, often in combination with detergent treatment. Cell permeabilization is an attractive alternative to mechanical lysis because it allows for milder and more selective recovery of different intracellular products. RESULTS Here, we present a novel approach for extraction of integral membrane proteins from yeast based on cell envelope permeabilization through a combination of pulsed electric field and lytic enzyme pretreatment of the cells. Our primary experiments focused on Hansenula polymorpha strain #25-5 co-expressing the integral membrane small surface protein (dS) of the duck hepatitis B virus and a fusion protein of dS with a trimer of a Human papillomavirus (HPV) L2-peptide (3xL2-dS). Irreversible plasma membrane permeabilization was induced by treating the cell suspension with monopolar rectangular pulses using a continuous flow system. The permeabilized cells were incubated with lyticase and dithiothreitol. This treatment increased the cell wall permeability, resulting in the release of over 50% of the soluble host proteins without causing significant cell lysis. The subsequent incubation with Triton X-100 resulted in the solubilization and release of a significant portion of 3xL2-dS and dS from the cells. By applying two steps: (i) brief heating of the cells before detergent treatment, and (ii) incubation of the extracts with KSCN, an 80% purity on the protein level has been achieved. Experiments performed with H. polymorpha strain T#3-3, co-expressing dS and the fusion protein EDIIIWNV-dS consisting of dS and the antigen from the West Nile virus (WSV), confirmed the applicability of this approach for recovering dS. The treatment, optimal for solubilization of 3xL2-dS and a significant part of dS, was not effective in isolating the fused protein EDIIIWNV-dS from the membranes, resulting in its retention within the cells. CONCLUSIONS This study presents an alternative approach for the recovery and partial purification of viral membrane proteins expressed in H. polymorpha. The factors influencing the effectiveness of this procedure and its potential use for the recovery of other integral membrane proteins are discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Biological Faculty, Department of Biophysics & Radiobiology, Sofia University, 8 Dragan Tzankov blvd, Sofia, 1164, Bulgaria.
| | - Andreas Kranz
- ARTES Biotechnology GmbH, Elizabeth Selbert str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
14
|
Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel) 2023; 11:1828. [PMID: 38140232 PMCID: PMC10747103 DOI: 10.3390/vaccines11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.
Collapse
Affiliation(s)
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India;
| |
Collapse
|
15
|
Tian Q, Huo X, Liu Q, Yang C, Zhang Y, Su J. VP4/VP56/VP35 Virus-like Particles Effectively Protect Grass Carp ( Ctenopharyngodon idella) against GCRV-II Infection. Vaccines (Basel) 2023; 11:1373. [PMID: 37631941 PMCID: PMC10458301 DOI: 10.3390/vaccines11081373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
Grass carp reovirus (GCRV) seriously threatens the grass carp (Ctenopharyngodon idella) industry. Prophylactic GCRV vaccines prepared by virus-like particle (VLP) assembly biotechnology can improve effectiveness and safety. The highly immunogenic candidate antigens of GCRV vaccines that have been generally considered are the outer capsid proteins VP4, VP56, and VP35. In this study, VP4, VP56, and VP35 were expressed in an Escherichia coli expression system and a Pichia pastoris expression system. The successful assembly of uniform, stable, and non-toxic VP4/VP56/VP35 VLPs was confirmed through various assays. After vaccination and GCRV infection, the survival rate in the VLPs + adjuvant Astragalus polysaccharide (APS) group was the highest (62%), 40% higher than that in control group (22%). Through the antibody levels, tissue viral load, and antioxidant immunity assays, the P. pastoris VLP vaccine effectively improved IgM levels, alleviated tissue virus load, and regulated antioxidant immune-related indicators. The treatment with P. pastoris VLPs enhanced the mRNA expression of important immune-related genes in the head kidney, as measured by qRT-PCR assay. Upon hematoxylin-eosin staining examination, relatively reduced tissue pathological damage was observed in the VLPs + APS group. The novel vaccine using P. pastoris VLPs as an effective green biological agent provides a prospective strategy for the control of fish viral diseases.
Collapse
Affiliation(s)
- Qingqing Tian
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xingchen Huo
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Qian Liu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China;
| | - Yongan Zhang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (X.H.); (Q.L.); (Y.Z.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
16
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Meade E, Rowan N, Garvey M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines (Basel) 2023; 11:992. [PMID: 37243096 PMCID: PMC10223144 DOI: 10.3390/vaccines11050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
18
|
Love J, Rodriguez-Aponte S, Tostanoski L, Dalvie N, Johnston R, Jacob-Dolan C, Powers O, Hachmann N, Miller J, Hall K, Siamatu M, Mazurek C, Surve N, Barouch D. SARS-CoV-2 RBD dimers elicit response comparable to VLPs in mice. RESEARCH SQUARE 2023:rs.3.rs-2692315. [PMID: 37163131 PMCID: PMC10168475 DOI: 10.21203/rs.3.rs-2692315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).
Collapse
|
19
|
Srivastava V, Nand KN, Ahmad A, Kumar R. Yeast-Based Virus-like Particles as an Emerging Platform for Vaccine Development and Delivery. Vaccines (Basel) 2023; 11:vaccines11020479. [PMID: 36851356 PMCID: PMC9965603 DOI: 10.3390/vaccines11020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Virus-like particles (VLPs) are empty, nanoscale structures morphologically resembling viruses. Internal cavity, noninfectious, and particulate nature with a high density of repeating epitopes, make them an ideal platform for vaccine development and drug delivery. Commercial use of Gardasil-9 and Cervarix showed the usefulness of VLPs in vaccine formulation. Further, chimeric VLPs allow the raising of an immune response against different immunogens and thereby can help reduce the generation of medical or clinical waste. The economically viable production of VLPs significantly impacts their usage, application, and availability. To this end, several hosts have been used and tested. The present review will discuss VLPs produced using different yeasts as fermentation hosts. We also compile a list of studies highlighting the expression and purification of VLPs using a yeast-based platform. We also discuss the advantages of using yeast to generate VLPs over other available systems. Further, the issues or limitations of yeasts for producing VLPs are also summarized. The review also compiles a list of yeast-derived VLP-based vaccines that are presently in public use or in different phases of clinical trials.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Kripa N. Nand
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Ravinder Kumar
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Correspondence:
| |
Collapse
|
20
|
Gupta R, Arora K, Roy SS, Joseph A, Rastogi R, Arora NM, Kundu PK. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front Immunol 2023; 14:1123805. [PMID: 36845125 PMCID: PMC9947793 DOI: 10.3389/fimmu.2023.1123805] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Prabuddha K. Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Sector IV, Industrial Model Township (IMT), Manesar, Gurgaon, India
| |
Collapse
|
21
|
Govindan P, Manjusha P, Saravanan KM, Natesan V, Salmen SH, Alfarraj S, Wainwright M, Shakila H. RETRACTED ARTICLE: Expression and preliminary characterization of the potential vaccine candidate LipL32 of leptospirosis. APPLIED NANOSCIENCE 2023; 13:1801. [PMID: 34608427 PMCID: PMC8483425 DOI: 10.1007/s13204-021-02097-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Pothiaraj Govindan
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| | - Packiyadass Manjusha
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| | - Konda Mani Saravanan
- Scigen Research and Innovation Pvt Ltd, Periyar Technology Business Incubator, Thanjavur, Tamil Nadu 613403 India
| | - Vijayakumar Natesan
- grid.411408.80000 0001 2369 7742Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608002 India
| | - Saleh H. Salmen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451 Saudi Arabia
| | - Saleh Alfarraj
- grid.56302.320000 0004 1773 5396Zoology Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Milton Wainwright
- grid.11835.3e0000 0004 1936 9262Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN UK
| | - Harshavardhan Shakila
- grid.10214.360000 0001 2186 7912Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai-21, Tamil Nadu India
| |
Collapse
|
22
|
Valiant WG, Cai K, Vallone PM. A history of adventitious agent contamination and the current methods to detect and remove them from pharmaceutical products. Biologicals 2022; 80:6-17. [DOI: 10.1016/j.biologicals.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022] Open
|
23
|
Sherry L, Grehan K, Swanson JJ, Bahar MW, Porta C, Fry EE, Stuart DI, Rowlands DJ, Stonehouse NJ. Production and Characterisation of Stabilised PV-3 Virus-like Particles Using Pichia pastoris. Viruses 2022; 14:2159. [PMID: 36298714 PMCID: PMC9611624 DOI: 10.3390/v14102159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Following the success of global vaccination programmes using the live-attenuated oral and inactivated poliovirus vaccines (OPV and IPV), wild poliovirus (PV) is now only endemic in Afghanistan and Pakistan. However, the continued use of these vaccines poses potential risks to the eradication of PV. The production of recombinant PV virus-like particles (VLPs), which lack the viral genome offer great potential as next-generation vaccines for the post-polio world. We have previously reported production of PV VLPs using Pichia pastoris, however, these VLPs were in the non-native conformation (C Ag), which would not produce effective protection against PV. Here, we build on this work and show that it is possible to produce wt PV-3 and thermally stabilised PV-3 (referred to as PV-3 SC8) VLPs in the native conformation (D Ag) using Pichia pastoris. We show that the PV-3 SC8 VLPs provide a much-improved D:C antigen ratio as compared to wt PV-3, whilst exhibiting greater thermostability than the current IPV vaccine. Finally, we determine the cryo-EM structure of the yeast-derived PV-3 SC8 VLPs and compare this to previously published PV-3 D Ag structures, highlighting the similarities between these recombinantly expressed VLPs and the infectious virus, further emphasising their potential as a next-generation vaccine candidate for PV.
Collapse
Affiliation(s)
- Lee Sherry
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Keith Grehan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jessica J. Swanson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mohammad W. Bahar
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Claudine Porta
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - Elizabeth E. Fry
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
| | - David I. Stuart
- Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Headington, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - David J. Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
24
|
Mejía-Méndez JL, Vazquez-Duhalt R, Hernández LR, Sánchez-Arreola E, Bach H. Virus-like Particles: Fundamentals and Biomedical Applications. Int J Mol Sci 2022; 23:8579. [PMID: 35955711 PMCID: PMC9369363 DOI: 10.3390/ijms23158579] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nanotechnology is a fast-evolving field focused on fabricating nanoscale objects for industrial, cosmetic, and therapeutic applications. Virus-like particles (VLPs) are self-assembled nanoparticles whose intrinsic properties, such as heterogeneity, and highly ordered structural organization are exploited to prepare vaccines; imaging agents; construct nanobioreactors; cancer treatment approaches; or deliver drugs, genes, and enzymes. However, depending upon the intrinsic features of the native virus from which they are produced, the therapeutic performance of VLPs can vary. This review compiles the recent scientific literature about the fundamentals of VLPs with biomedical applications. We consulted different databases to present a general scenario about viruses and how VLPs are produced in eukaryotic and prokaryotic cell lines to entrap therapeutic cargo. Moreover, the structural classification, morphology, and methods to functionalize the surface of VLPs are discussed. Finally, different characterization techniques required to examine the size, charge, aggregation, and composition of VLPs are described.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología UNAM, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico;
| | - Luis R. Hernández
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Eugenio Sánchez-Arreola
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Santa Catarina Mártir s/n, Cholula 72810, Puebla, Mexico; (J.L.M.-M.); (L.R.H.); (E.S.-A.)
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
25
|
Jiménez-Cabello L, Utrilla-Trigo S, Barreiro-Piñeiro N, Pose-Boirazian T, Martínez-Costas J, Marín-López A, Ortego J. Nanoparticle- and Microparticle-Based Vaccines against Orbiviruses of Veterinary Importance. Vaccines (Basel) 2022; 10:vaccines10071124. [PMID: 35891288 PMCID: PMC9319458 DOI: 10.3390/vaccines10071124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are widespread arboviruses that cause important economic losses in the livestock and equine industries, respectively. In addition to these, another arthropod-transmitted orbivirus known as epizootic hemorrhagic disease virus (EHDV) entails a major threat as there is a conducive landscape that nurtures its emergence in non-endemic countries. To date, only vaccinations with live attenuated or inactivated vaccines permit the control of these three viral diseases, although important drawbacks, e.g., low safety profile and effectiveness, and lack of DIVA (differentiation of infected from vaccinated animals) properties, constrain their usage as prophylactic measures. Moreover, a substantial number of serotypes of BTV, AHSV and EHDV have been described, with poor induction of cross-protective immune responses among serotypes. In the context of next-generation vaccine development, antigen delivery systems based on nano- or microparticles have gathered significant attention during the last few decades. A diversity of technologies, such as virus-like particles or self-assembled protein complexes, have been implemented for vaccine design against these viruses. In this work, we offer a comprehensive review of the nano- and microparticulated vaccine candidates against these three relevant orbiviruses. Additionally, we also review an innovative technology for antigen delivery based on the avian reovirus nonstructural protein muNS and we explore the prospective functionality of the nonstructural protein NS1 nanotubules as a BTV-based delivery platform.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
| | - Natalia Barreiro-Piñeiro
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - José Martínez-Costas
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.B.-P.); (T.P.-B.); (J.M.-C.)
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), 28130 Madrid, Spain; (L.J.-C.); (S.U.-T.)
- Correspondence:
| |
Collapse
|
26
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|
27
|
Yang D, Zhang L, Duan J, Huang Q, Yu Y, Zhou J, Lu H. A Single Vaccination of IBDV Subviral Particles Generated by Kluyveromyces marxianus Efficiently Protects Chickens against Novel Variant and Classical IBDV Strains. Vaccines (Basel) 2021; 9:vaccines9121443. [PMID: 34960188 PMCID: PMC8706917 DOI: 10.3390/vaccines9121443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/26/2023] Open
Abstract
Infectious bursal disease (IBD), caused by the infectious bursal disease virus (IBDV), is a highly contagious and immunosuppressive disease in chickens worldwide. The novel variant IBDV (nvIBDV) has been emerging in Chinese chicken farms since 2017, but there are no available vaccines that can provide effective protection. Herein, the capsid protein VP2 from nvIBDV strain FJ-18 was expressed in Kluyveromyces marxianus with the aim to produce nvIBDV subviral particles (SVPs). Two recombinant strains constructed for expression of nvIBDV VP2 (nvVP2) and His-tagged VP2 (nvHVP2) formed two types of nvIBDV subviral particles (SVPs), namely nvVP2-SVPs and nvHVP2-SVPs. TEM scans showed that both SVPs were about 25 nm in diameter, but there was a large portion of nvVP2-SVPs showing non-spherical particles. Molecular dynamics simulations indicate that an N-terminal His tag strengthened the interaction of the nvHVP2 monomer and contributed to the assembly of SVPs. Vaccination of chicks with the nvHVP2-SVPs provided 100% protection against novel variant IBDV infection when challenged with the FJ-18 strain, as well as the classical strain BC6/85. By contrast, vaccination with the nvVP2-SVPs only provided 60% protection against their parent FJ-18 strain, suggesting that the stable conformation of subviral particles posed a great impact on their protective efficacy. Our results showed that the nvHVP2-SVPs produced by the recombinant K. marxianus strain is an ideal vaccine candidate for IBDV eradication.
Collapse
Affiliation(s)
- Deqiang Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; (D.Y.); (Q.H.); (Y.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, 2005 Songhu Road, Shanghai 200438, China
| | - Lixia Zhang
- Tianjin Ruipu Biotechnology Co. Ltd., Tianjin 300350, China; (L.Z.); (J.D.)
| | - Jinkun Duan
- Tianjin Ruipu Biotechnology Co. Ltd., Tianjin 300350, China; (L.Z.); (J.D.)
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; (D.Y.); (Q.H.); (Y.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; (D.Y.); (Q.H.); (Y.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, 2005 Songhu Road, Shanghai 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; (D.Y.); (Q.H.); (Y.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, 2005 Songhu Road, Shanghai 200438, China
- Correspondence: (J.Z.); (H.L.); Tel.: +86-021-31246579 (H.L.)
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China; (D.Y.); (Q.H.); (Y.Y.)
- Shanghai Engineering Research Center of Industrial Microorganisms, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Correspondence: (J.Z.); (H.L.); Tel.: +86-021-31246579 (H.L.)
| |
Collapse
|
28
|
Nervous Necrosis Virus-like Particle (VLP) Vaccine Stimulates European Sea Bass Innate and Adaptive Immune Responses and Induces Long-Term Protection against Disease. Pathogens 2021; 10:pathogens10111477. [PMID: 34832632 PMCID: PMC8623669 DOI: 10.3390/pathogens10111477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
The rapidly increasing Mediterranean aquaculture production of European sea bass is compromised by outbreaks of viral nervous necrosis, which can be recurrent and detrimental. In this study, we evaluated the duration of protection and immune response in sea bass given a single dose of a virus-like particle (VLP)-based vaccine. Examinations included experimental challenge with nervous necrosis virus (NNV), serological assays for NNV-specific antibody reactivity, and immune gene expression analysis. VLP-vaccinated fish showed high and superior survival in challenge both 3 and 7.5 months (1800 and 4500 dd) post-vaccination (RPS 87 and 88, OR (surviving) = 16.5 and 31.5, respectively, p < 0.01). Although not providing sterile immunity, VLP vaccination seemed to control the viral infection, as indicated by low prevalence of virus in the VLP-vaccinated survivors. High titers of neutralizing and specific antibodies were produced in VLP-vaccinated fish and persisted for at least ~9 months post-vaccination as well as after challenge. However, failure of immune sera to protect recipient fish in a passive immunization trial suggested that other immune mechanisms were important for protection. Accordingly, gene expression analysis revealed that VLP-vaccination induced a mechanistically broad immune response including upregulation of both innate and adaptive humoral and cellular components (mx, isg12, mhc I, mhc II, igm, and igt). No clinical side effects of the VLP vaccination at either tissue or performance levels were observed. The results altogether suggested the VLP-based vaccine to be suitable for clinical testing under farming conditions.
Collapse
|
29
|
Kulagina N, Besseau S, Godon C, Goldman GH, Papon N, Courdavault V. Yeasts as Biopharmaceutical Production Platforms. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:733492. [PMID: 37744146 PMCID: PMC10512354 DOI: 10.3389/ffunb.2021.733492] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/26/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Natalja Kulagina
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Sébastien Besseau
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| | - Charlotte Godon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Gustavo H. Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Nicolas Papon
- Université d'Angers, EA3142 Groupe d'Etude des Interactions Hôte-Pathogène, Angers, France
| | - Vincent Courdavault
- Université de Tours, EA2106 Biomolécules et Biotechnologies Végétales, Tours, France
| |
Collapse
|
30
|
Alvandi N, Rajabnejad M, Taghvaei Z, Esfandiari N. New generation of viral nanoparticles for targeted drug delivery in cancer therapy. J Drug Target 2021; 30:151-165. [PMID: 34210232 DOI: 10.1080/1061186x.2021.1949600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanoscale engineering is one of the novel methods to cure multitudes of diseases, such as types of cancers, neurological disorders, and infectious illnesses. Viruses can play a vital role in nanoscale engineering due to their specific properties like minuscule size, high stability in different body conditions, and large-scale production. Viral-like particles (VLPs) as specific nanoscale scaffolds can encapsulate a wide range of cargos, including nucleic acids, proteins, peptides, and drugs. The Exterior portion of VLPs can be changed by genetical or chemical conjugation as well as targeting ligands or peptides. The aforementioned features of VLPs can be used in several applications, such as drug delivery, bioimaging, tissue engineering, vaccine production, and disease detection. This review article attempts to investigate appearance characteristics, modification strategies, and manufacturing methods of VLPs. Additionally, drug delivery to cancer cells as one of the VLPs applications along with different cellular uptake mechanisms of VLPs by cancer cells are chosen for investigation. This review also tries to gather most of the recent studies of drug delivery to cancer cells by VLPs.
Collapse
Affiliation(s)
- Nikta Alvandi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Rajabnejad
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zeynab Taghvaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Neda Esfandiari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
31
|
Karki R, Rimal S, Rieth MD. Predicted N-terminal N-linked glycosylation sites may underlie membrane protein expression patterns in Saccharomyces cerevisiae. Yeast 2021; 38:497-506. [PMID: 34182612 DOI: 10.1002/yea.3657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
N-linked glycosylation is one type of posttranslational modification that proteins undergo during expression. The following describes the effects of N-linked glycosylation on high-level membrane protein expression in yeast with an emphasis on Saccharomyces cerevisiae. N-linked glycosylation is highlighted here as an important consideration when preparing membrane protein gene constructs for expression in S. cerevisiae, which continues to be used as a workhorse in both research and industrial applications. Non-native N-linked glycosylation commonly occurs during the heterologous expression of mammalian proteins in many yeast species which can have important immunological consequences when used in the production of biotherapeutic proteins or peptides. Further, non-native N-linked glycosylation can lead to improper protein folding and premature degradation, which can impede high-level expression yields and hinder downstream analysis. Multiple strategies are presented in this article, which suggest different methods that can be implemented to circumvent the unwanted consequences of N-linked glycosylation during the expression process. These considerations may have long-term benefits for high-level protein production in S. cerevisiae across a broad spectrum of expression targets with special emphasis placed on G-protein coupled receptors, one of the largest families of membrane proteins.
Collapse
Affiliation(s)
- Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Swechha Rimal
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Monica D Rieth
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| |
Collapse
|
32
|
Palm D, Uzoni A, Simon F, Fischer M, Coogan A, Tucha O, Thome J, Faltraco F. Evolutionary conservations, changes of circadian rhythms and their effect on circadian disturbances and therapeutic approaches. Neurosci Biobehav Rev 2021; 128:21-34. [PMID: 34102148 DOI: 10.1016/j.neubiorev.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 12/21/2022]
Abstract
The circadian rhythm is essential for the interaction of all living organisms with their environments. Several processes, such as thermoregulation, metabolism, cognition and memory, are regulated by the internal clock. Disturbances in the circadian rhythm have been shown to lead to the development of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD). Interestingly, the mechanism of the circadian rhythms has been conserved in many different species, and misalignment between circadian rhythms and the environment results in evolutionary regression and lifespan reduction. This review summarises the conserved mechanism of the internal clock and its major interspecies differences. In addition, it focuses on effects the circadian rhythm disturbances, especially in cases of ADHD, and describes the possibility of recombinant proteins generated by eukaryotic expression systems as therapeutic agents as well as CRISPR/Cas9 technology as a potential tool for research and therapy. The aim is to give an overview about the evolutionary conserved mechanism as well as the changes of the circadian clock. Furthermore, current knowledge about circadian rhythm disturbances and therapeutic approaches is discussed.
Collapse
Affiliation(s)
- Denise Palm
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Adriana Uzoni
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frederick Simon
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Matthias Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Andrew Coogan
- Department of Psychology, Maynooth University, National University of Ireland, Ireland
| | - Oliver Tucha
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Frank Faltraco
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| |
Collapse
|
33
|
Pereira R, Ishchuk OP, Li X, Liu Q, Liu Y, Otto M, Chen Y, Siewers V, Nielsen J. Metabolic Engineering of Yeast. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Kuduğ Ceylan H, Erden Tayhan S, Gökçe İ. Secretory Expression of Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis and Characterization of Its Biological Activity. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10227-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Barsøe S, Toffan A, Pascoli F, Stratmann A, Pretto T, Marsella A, Er-Rafik M, Vendramin N, Olesen NJ, Sepúlveda D, Lorenzen N. Long-Term Protection and Serologic Response of European Sea Bass Vaccinated with a Betanodavirus Virus-Like Particle Produced in Pichia pastoris. Vaccines (Basel) 2021; 9:vaccines9050447. [PMID: 34063318 PMCID: PMC8147411 DOI: 10.3390/vaccines9050447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Viral Nervous Necrosis (VNN) causes high mortality and reduced growth in farmed European sea bass (Dicentrarchus labrax) in the Mediterranean. In the current studies, we tested a novel Pichia-produced virus-like particle (VLP) vaccine against VNN in European sea bass, caused by the betanodavirus “Red-Spotted Grouper Nervous Necrosis Virus” (RGNNV). European sea bass were immunized with a VLP-based vaccine formulated with different concentrations of antigen and with or without adjuvant. Antibody response was evaluated by ELISA and serum neutralization. The efficacy of these VLP-vaccine formulations was evaluated by an intramuscular challenge with RGNNV at different time points (1, 2 and 10 months post-vaccination) and both dead and surviving fish were sampled to evaluate the level of viable virus in the brain. The VLP-based vaccines induced an effective protective immunity against experimental infection at 2 months post-vaccination, and even to some degree at 10 months post-vaccination. Furthermore, the vaccine formulations triggered a dose-dependent response in neutralizing antibodies. Serologic response and clinical efficacy, measured as relative percent survival (RPS), seem to be correlated with the administered dose, although for the individual fish, a high titer of neutralizing antibodies prior to challenge was not always enough to protect against disease. The efficacy of the VLP vaccine could not be improved by formulation with a water-in-oil (W/O) adjuvant. The developed RGNNV-VLPs show a promising effect as a vaccine candidate, even without adjuvant, to protect sea bass against disease caused by RGNNV. However, detection of virus in vaccinated survivors means that it cannot be ruled out that survivors can transmit the virus.
Collapse
Affiliation(s)
- Sofie Barsøe
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | | | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | - Andrea Marsella
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Padua, Italy; (A.T.); (F.P.); (T.P.); (A.M.)
| | - Mériem Er-Rafik
- National Center for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Niccolò Vendramin
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Niels J. Olesen
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Dagoberto Sepúlveda
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
| | - Niels Lorenzen
- National Institute of Aquatic Resources (DTU AQUA), Technical University of Denmark, 2800 Lyngby, Denmark; (S.B.); (N.V.); (N.J.O.); (D.S.)
- Correspondence:
| |
Collapse
|
36
|
Wang Q, Xiao Y, Zhu J, Ye L, Zhang L, Wang L, Wang X, Pang H, Li J, Yuan S, Niu L, Chen M, Yan Y, Xu L, Yan J. Design of a Genetically Programmed Biomimetic Lipase Nanoreactor. ACS APPLIED BIO MATERIALS 2021; 4:3518-3523. [DOI: 10.1021/acsabm.1c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingxia Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yi Xiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Luona Ye
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Longyu Zhang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lei Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xuxia Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Huimin Pang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jing Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Sheng Yuan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Niu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Miao Chen
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
37
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
38
|
Characterization of Viral Genome Encapsidated in Adeno-associated Recombinant Vectors Produced in Yeast Saccharomyces cerevisiae. Mol Biotechnol 2021; 63:156-165. [PMID: 33392920 DOI: 10.1007/s12033-020-00294-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Adeno-associated virus (AAV) is a small, non-enveloped virus used as vector in gene therapy, mainly produced in human cells and in baculovirus systems. Intense studies on these platforms led to the production of vectors with titers between 103 and 105 viral genomes (vg) per cells. In spite of this, vector yields need to be improved to satisfy the high product demands of clinical trials and future commercialization. Our studies and those of other groups have explored the possibility to exploit the yeast Saccharomyces cerevisiae to produce rAAV. We previously demonstrated that yeast supports AAV genome replication and capsid assembly. The purpose of this study was to evaluate the quality of the encapsidated AAV DNA. Here, we report the construction of a yeast strain expressing Rep68/40 from an integrated copy of the Rep gene under the control of the yeast constitutive ADH promoter and Capsid proteins from the Cap gene under the control of an inducible GAL promoter. Our results indicate that a portion of AAV particles generated by this system contains encapsidated AAV DNA. However, the majority of encapsidated DNA consists of fragmented regions of the transgene cassette, with ITRs being the most represented sequences. Altogether, these data indicate that, in yeast, encapsidation occurs with low efficiency and that rAAVs resemble pseudo-vectors that are present in clinical-grade rAAV preparations.
Collapse
|
39
|
Chen C, Hua D, Shi J, Tan Z, Zhu M, Tan K, Zhang L, Huang J. Porcine Immunoglobulin Fc Fused P30/P54 Protein of African Swine Fever Virus Displaying on Surface of S. cerevisiae Elicit Strong Antibody Production in Swine. Virol Sin 2020; 36:207-219. [PMID: 32915442 DOI: 10.1007/s12250-020-00278-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
African swine fever virus (ASFV) infects domestic pigs and European wild boars with strong, hemorrhagic and high mortality. The primary cellular targets of ASFV is the porcine macrophages. Up to now, no commercial vaccine or effective treatment available to control the disease. In this study, three recombinant Saccharomyces cerevisiae (S. cerevisiae) strains expressing fused ASFV proteins-porcine Ig heavy chains were constructed and the immunogenicity of the S. cerevisiae-vectored cocktail ASFV feeding vaccine was further evaluated. To be specific, the P30-Fcγ and P54-Fcα fusion proteins displaying on surface of S. cerevisiae cells were produced by fusing the Fc fragment of porcine immunoglobulin IgG1 or IgA1 with p30 or p54 gene of ASFV respectively. The recombinant P30-Fcγ and P54-Fcα fusion proteins expressed by S. cerevisiae were verified by Western blotting, flow cytometry and immunofluorescence assay. Porcine immunoglobulin Fc fragment fused P30/P54 proteins elicited P30/P54-specific antibody production and induced higher mucosal immunity in swine. The absorption and phagocytosis of recombinant S. cerevisiae strains in IPEC-J2 cells or porcine alveolar macrophage (PAM) cells were significantly enhanced, too. Here, we introduce a kind of cheap and safe oral S. cerevisiae-vectored vaccine, which could activate the specific mucosal immunity for controlling ASFV infection.
Collapse
Affiliation(s)
- Chen Chen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jingxuan Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Zheng Tan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Min Zhu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Kun Tan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
40
|
Jeong KH, Kim HJ, Kim HJ. Current status and future directions of fish vaccines employing virus-like particles. FISH & SHELLFISH IMMUNOLOGY 2020; 100:49-57. [PMID: 32130976 DOI: 10.1016/j.fsi.2020.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 05/15/2023]
Abstract
In most breeding schemes, fish are cultured in enclosed spaces, which greatly increases the risk of outbreaks where the onset of infectious diseases can cause massive mortality and enormous economic losses. Vaccination is the most effective and long-term measure for improving the basic make-up of a fish farm. As the relationship between antibody and antigen is similar to that between screw and nut, similarity in the shape or nature of the vaccine antigen to the original pathogen is important for achieving a satisfactory/good/excellent antibody response with a vaccine. Virus-like particles (VLPs) best fulfil this requirement as their tertiary structure mimics that of the native virus. For this reason, VLPs have been attracting attention as next-generation vaccines for humans and animals, and the effects of various types of VLP vaccines on humans and livestock have been examined. Recent studies of VLP-based fish vaccines indicate that these vaccines are promising, and raise hopes of extending their use in the near future. In this review, the structural properties and immunogenicity of VLP-based vaccines against fish viruses such as infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (SAV), nervous necrosis virus (NNV) and iridovirus are introduced/summarized. The NNV VLP vaccine is the most-studied VLP-based vaccine against fish viruses. Therefore, the current status of NNV VLP research is highlighted in this review, which deals with the advantages of using VLPs as vaccines, and the expression systems for producing them. Moreover, the need for lyophilized VLPs and oral VLP delivery is discussed. Finally, future directions for the development of VLP vaccines in the fish vaccine field are considered.
Collapse
Affiliation(s)
- Ki-Ho Jeong
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
41
|
Foerster J, Molęda A. Virus-Like Particle-Mediated Vaccination against Interleukin-13 May Harbour General Anti-Allergic Potential beyond Atopic Dermatitis. Viruses 2020; 12:v12040438. [PMID: 32294982 PMCID: PMC7232523 DOI: 10.3390/v12040438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
Virus-like particle (VLP)-based anti-infective prophylactic vaccination has been established in clinical use. Although validated in proof-of-concept clinical trials in humans, no VLP-based therapeutic vaccination against self-proteins to modulate chronic disease has yet been licensed. The present review summarises recent scientific advances, identifying interleukin-13 as an excellent candidate to validate the concept of anti-cytokine vaccination. Based on numerous clinical studies, long-term elimination of IL-13 is not expected to trigger target-related serious adverse effects and is likely to be safer than combined targeting of IL-4/IL-13. Furthermore, recently published results from large-scale trials confirm that elimination of IL-13 is highly effective in atopic dermatitis, an exceedingly common condition, as well as eosinophilic esophagitis. The distinctly different mode of action of a polyclonal vaccine response is discussed in detail, suggesting that anti-IL-13 vaccination has the potential of outperforming monoclonal antibody-based approaches. Finally, recent data have identified a subset of follicular T helper cells dependent on IL-13 which selectively trigger massive IgE accumulation in response to anaphylactoid allergens. Thus, prophylactic IL-13 vaccination may have broad application in a number of allergic conditions.
Collapse
MESH Headings
- Animals
- Anti-Allergic Agents/administration & dosage
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/immunology
- Cytokines/metabolism
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/prevention & control
- Humans
- Interleukin-13/antagonists & inhibitors
- Interleukin-13/immunology
- Ligands
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Vaccination
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/therapeutic use
Collapse
|
42
|
Comparative Molecular Biology Approaches for the Production of Poliovirus Virus-Like Particles Using Pichia pastoris. mSphere 2020; 5:5/2/e00838-19. [PMID: 32161150 PMCID: PMC7067596 DOI: 10.1128/msphere.00838-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although the current poliovirus immunization program has been extremely successful in reducing the number of cases of paralytic polio worldwide, now more cases are caused by vaccine-derived polioviruses than by wild poliovirus. Switching to inactivated poliovirus vaccines will reduce this over time; however, their production requires the growth of large amounts of virus. This biosafety concern can be addressed by producing just the virus capsid. The capsid serves to protect the genetic material, which causes disease when introduced into a cell. Therefore, empty capsids (virus-like particles [VLPs]), which lack the viral RNA genome, are safe both to make and to use. We exploit yeast as a versatile model expression system to produce VLPs, and here we specifically highlight the potential of this system to supply next-generation poliovirus vaccines to secure a polio-free world for the future. For enteroviruses such as poliovirus (PV), empty capsids, which are antigenically indistinguishable from mature virions, are produced naturally during viral infection. The production of such capsids recombinantly, in heterologous systems such as yeast, have great potential as virus-like particle (VLP) vaccine candidates. Here, using PV as an exemplar, we show the production of VLPs in Pichia pastoris by coexpression of the structural precursor protein P1 and the viral protease 3CD. The level of expression of the potentially cytotoxic protease relative to that of the P1 precursor was modulated by three different approaches: expression of the P1 precursor and protease from different transcription units, separation of the P1 and protease proteins using the Thosea asigna virus (TaV) 2A translation interruption sequence, or separation of the P1 and protease-coding sequences by an internal ribosome entry site sequence from Rhopalosiphum padi virus (RhPV). We also investigate the antigenicity of VLPs containing previously characterized mutations when produced in Pichia. Finally, using transmission electron microscopy and two-dimensional classification, we show that Pichia-derived VLPs exhibited the classical icosahedral capsid structure displayed by enteroviruses. IMPORTANCE Although the current poliovirus immunization program has been extremely successful in reducing the number of cases of paralytic polio worldwide, now more cases are caused by vaccine-derived polioviruses than by wild poliovirus. Switching to inactivated poliovirus vaccines will reduce this over time; however, their production requires the growth of large amounts of virus. This biosafety concern can be addressed by producing just the virus capsid. The capsid serves to protect the genetic material, which causes disease when introduced into a cell. Therefore, empty capsids (virus-like particles [VLPs]), which lack the viral RNA genome, are safe both to make and to use. We exploit yeast as a versatile model expression system to produce VLPs, and here we specifically highlight the potential of this system to supply next-generation poliovirus vaccines to secure a polio-free world for the future.
Collapse
|
43
|
Wang Y, Wang G, Duan WT, Sun MX, Wang MH, Wang SH, Cai XH, Tu YB. Self-assembly into virus-like particles of the recombinant capsid protein of porcine circovirus type 3 and its application on antibodies detection. AMB Express 2020; 10:3. [PMID: 31912330 PMCID: PMC6946787 DOI: 10.1186/s13568-019-0940-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/21/2019] [Indexed: 11/13/2022] Open
Abstract
PCV3 capsid protein (Cap) is an important antigen for diagnosis and vaccine development. To achieve high-level expression of recombinant PCV3 Cap in Escherichia coli (E. coli), the gene of wild-type entire Cap (wt-eCap) was amplified from clinical samples, and three optimized entire Cap (opti-eCap) and one optimized Cap deleted nuclear location signal (NLS) (opti-dCap) gene fragments encoding the same amino acid sequence with wt-eCap were synthesized based on the codon bias of E. coli. Those gene fragments were inserted into the pET30a expression vector. One recombinant strain with the highest expressed soluble eCap from four entire Cap (one wt-eCap and three opti-eCap) and one recombinant strain expressed opti-dCap were selected for further purification. The purified eCap and dCap were identified by transmission electron microscopy (TEM), a large number of round hollow particles with a diameter of 10 nm virus-like particles (VLPs) were observed in eCap, whereas irregular aggregation of proteins observed in dCap. After formation the VLPs were applied as a coating antigen to establish an indirect ELISA (I-ELISA) for detection of PCV3-specific antibody in swine serum. 373 clinical swine serum samples from China collected in 2019 were tested utilizing the VLP-based I-ELISA method under optimized conditions. To the best of our knowledge, this is the first report of self-assembly into VLPs of PCV3 recombinant Cap. Our results demonstrated that the VLP-based I-ELISA will be a valuable tool for detecting the presence of PCV3 antibodies in serum samples and will facilitate screening of large numbers of swine serum for clinical purposes.
Collapse
|
44
|
Venkataraman S, Reddy VS, Khurana SMP. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Xv Z, Lv J, Jiang J, Wang W, Feng F, Zhang L, Xue X, Li W. Effective Neutralizing Antibody Produced in Mice Directly Immunized with Integrated Pichia pastoris Expressing HPV16L1 Protein. Viral Immunol 2019; 32:308-317. [DOI: 10.1089/vim.2019.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Zhen Xv
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Jinhui Lv
- Research Center for Translational Medicine, East Hospital Tongji University School of Medicine, Shanghai, China
| | - Jie Jiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenhuan Wang
- Key Laboratory of Uterology of Wenzhou City People's Hospital, Wenzhou, China
| | - Fangfang Feng
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Wenshu Li
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Sneaking Out for Happy Hour: Yeast-Based Approaches to Explore and Modulate Immune Response and Immune Evasion. Genes (Basel) 2019; 10:genes10090667. [PMID: 31480411 PMCID: PMC6770942 DOI: 10.3390/genes10090667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Many pathogens (virus, bacteria, fungi, or parasites) have developed a wide variety of mechanisms to evade their host immune system. The budding yeast Saccharomyces cerevisiae has successfully been used to decipher some of these immune evasion strategies. This includes the cis-acting mechanism that limits the expression of the oncogenic Epstein–Barr virus (EBV)-encoded EBNA1 and thus of antigenic peptides derived from this essential but highly antigenic viral protein. Studies based on budding yeast have also revealed the molecular bases of epigenetic switching or recombination underlying the silencing of all except one members of extended families of genes that encode closely related and highly antigenic surface proteins. This mechanism is exploited by several parasites (that include pathogens such as Plasmodium, Trypanosoma, Candida, or Pneumocystis) to alternate their surface antigens, thereby evading the immune system. Yeast can itself be a pathogen, and pathogenic fungi such as Candida albicans, which is phylogenetically very close to S. cerevisiae, have developed stealthiness strategies that include changes in their cell wall composition, or epitope-masking, to control production or exposure of highly antigenic but essential polysaccharides in their cell wall. Finally, due to the high antigenicity of its cell wall, yeast has been opportunistically exploited to create adjuvants and vectors for vaccination.
Collapse
|
47
|
Park MH, You JW, Kim HJ, Kim HJ. IgG and IgM responses to human papillomavirus L1 virus-like particle as a function of dosing schedule and vaccine formulation. J Microbiol 2019; 57:821-827. [PMID: 31452045 DOI: 10.1007/s12275-019-9308-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Most commercialized virus-like particle (VLP) vaccines use aluminum salt as adjuvant, even though VLPs provoke adequate antibody responses without adjuvant. We do not have detailed knowledge of how adjuvant affects the profile of anti-VLP antibodies. Meanwhile, there is evidence that differences between vaccination protocols influence the glycosylation of antibodies, which may alter their effector functions. In the present study a murine model was used to investigate the effects of dosing schedule and adjuvant on the antibody profiles and glycosylation levels of antigen-specific antibody responses to human papillomavirus type 16 L1 (HPV16 L1) VLPs. Mice received subcutaneously 2,000 ng of antigen divided into 4 or 7 doses. The HPV16 L1 VLPs elicited > 4 log10 anti-HPV16 L1 IgG titers without adjuvant, and aluminum hydroxide as adjuvant increased IgG titers 1.3- to 4-fold and reduced the anti-HPV16 L1 IgG2a / anti-HPV16 L1 IgG1 ratio value (use of aluminum hydroxide reduced the ratio of the IgG2a). Immunization with HPV16 L1 VLPs in combination with Freund's adjuvant enhanced IgG titers 5- to 12-fold. Seven-dose immunization markedly increased anti-HPV16 L1 IgM titers compared to four-dose immunization, as well as increasing the proportion of glycosylated antibodies. Our results suggest that antibody glycosylation can be controlled immunologically, and IgG and IgM profiles and glycosylation profiles of the vaccine-induced antibodies can be used as indicators reflecting the vaccine characteristics. These results indicate that the HPV16 L1 VLP dosing schedule can affect the quality of antigen-specific antibody responses. We suggest that dosing schedules should be noted in vaccination protocols for VLP-based vaccines.
Collapse
Affiliation(s)
- Min-Hye Park
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Won You
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
48
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
49
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
50
|
Zahid M, Rinas U. Guidelines for Small-Scale Production and Purification of Hepatitis B Surface Antigen Virus-Like Particles from Recombinant Pichia pastoris. Methods Mol Biol 2019; 1923:309-322. [PMID: 30737747 DOI: 10.1007/978-1-4939-9024-5_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Virus-like particle (VLP)-based vaccines have been in the market since decades for preventing viral infection and have proven their usefulness also in other areas of biotechnology. Here, we describe in detail simple small-scale production and purification procedures for the generation of hepatitis B surface antigen (HBsAg) VLPs using Pichia pastoris as expression host. This protocol may also be applicable with variations to other HBsAg-based VLPs additionally carrying antigens of other pathogens.
Collapse
Affiliation(s)
- Maria Zahid
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany.,Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ursula Rinas
- Technical Chemistry-Life Science, Leibniz University of Hannover, Hannover, Germany. .,Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|