1
|
Da B, Wu W, Guo W, Xiong K, Chen C, Ke Q, Zhang M, Li T, Xiao J, Wang L, Zhang M, Zhang F, Zhuge Y. External validation of the modified CTP score based on ammonia to predict survival in patients with cirrhosis after TIPS placement. Sci Rep 2024; 14:13886. [PMID: 38880817 PMCID: PMC11180650 DOI: 10.1038/s41598-024-64793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
This study aimed to perform the first external validation of the modified Child-Turcotte-Pugh score based on plasma ammonia (aCTP) and compare it with other risk scoring systems to predict survival in patients with cirrhosis after transjugular intrahepatic portosystemic shunt (TIPS) placement. We retrospectively reviewed 473 patients from three cohorts between January 2016 and June 2022 and compared the aCTP score with the Child-Turcotte-Pugh (CTP) score, albumin-bilirubin (ALBI), model for end-stage liver disease (MELD) and sodium MELD (MELD-Na) in predicting transplant-free survival by the concordance index (C-index), area under the receiver operating characteristic curve, calibration plot, and decision curve analysis (DCA) curve. The median follow-up time was 29 months, during which a total of 62 (20.74%) patients died or underwent liver transplantation. The survival curves for the three aCTP grades differed significantly. Patients with aCTP grade C had a shorter expected lifespan than patients with aCTP grades A and B (P < 0.0001). The aCTP score showed the best discriminative performance using the C-index compared with other scores at each time point during follow-up, it also showed better calibration in the calibration plot and the lowest Brier scores, and it also showed a higher net benefit than the other scores in the DCA curve. The aCTP score outperformed the other risk scores in predicting survival after TIPS placement in patients with cirrhosis and may be useful for risk stratification and survival prediction.
Collapse
Affiliation(s)
- Binlin Da
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, 321#, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wuhua Guo
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiao Ke
- Department of Interventional Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Moran Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Taishun Li
- Medical Statistical Analysis Centre, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangqiang Xiao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, 321#, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, 321#, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, 321#, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Feng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, 321#, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, 321#, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Thanapirom K, Treeprasertsuk S, Choudhury A, Verma N, Dhiman RK, Al Mahtab M, Devarbhavi H, Shukla A, Hamid SS, Jafri W, Tan SS, Lee GH, Ghazinyan H, Sood A, Kim DJ, Eapen CE, Tao H, Yuemin N, Dokmeci AK, Sahu M, Arora A, Kumar A, Kumar R, Prasad VGM, Shresta A, Sollano J, Payawal DA, Lau G, Sarin SK. Ammonia is associated with liver-related complications and predicts mortality in acute-on-chronic liver failure patients. Sci Rep 2024; 14:5796. [PMID: 38461166 PMCID: PMC10924893 DOI: 10.1038/s41598-024-56401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
The relationship between ammonia and liver-related complications (LRCs) in acute-on-chronic liver failure (ACLF) patients is not clearly established. This study aimed to evaluate the association between ammonia levels and LRCs in patients with ACLF. The study also evaluated the ability of ammonia in predicting mortality and progression of LRCs. The study prospectively recruited ACLF patients based on the APASL definition from the ACLF Research Consortium (AARC) from 2009 to 2019. LRCs were a composite endpoint of bacterial infection, overt hepatic encephalopathy (HE), and ascites. A total of 3871 cases were screened. Of these, 701 ACLF patients were enrolled. Patients with LRCs had significantly higher ammonia levels than those without. Ammonia was significantly higher in patients with overt HE and ascites, but not in those with bacterial infection. Multivariate analysis found that ammonia was associated with LRCs. Additionally, baseline arterial ammonia was an independent predictor of 30-day mortality, but it was not associated with the development of new LRCs within 30 days. In summary, baseline arterial ammonia levels are associated with 30-day mortality and LRCs, mainly overt HE and ascites in ACLF patients.
Collapse
Affiliation(s)
- Kessarin Thanapirom
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Hepatic Fibrosis and Cirrhosis, Chulalongkorn University, Bangkok, Thailand.
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Krishan Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Akash Shukla
- Department of Gastroenterology, Lokmanya Tilak Municipal General Hospital, and Lokmanya Tilak Municipal Medical College, Sion, Mumbai, India
| | - Saeed Sadiq Hamid
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Wasim Jafri
- Department of Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Soek Siam Tan
- Department of Hepatology, Hospital Selayang, Bata Caves, Selangor, Malaysia
| | - Guan H Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hasmik Ghazinyan
- Department of Hepatology, Nork Clinical Hospital of Infectious Disease, Yerevan, Armenia
| | - Ajit Sood
- Department of Gastroenterology, DMC, Ludhiana, India
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, South Korea
| | - C E Eapen
- Department of Hepatology, CMC, Vellore, India
| | - Han Tao
- Department of Hepatology and Gastroenterology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| | - Nan Yuemin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Manoj Sahu
- Department of Gastroenterology and Hepatology Sciences, IMS and SUM Hospital, Bhubaneswar, Odisha, India
| | - Anil Arora
- Institute of Liver Gastroenterology and Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Ashish Kumar
- Institute of Liver Gastroenterology and Pancreatico Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Bihar, India
| | | | - Ananta Shresta
- Department of Hepatology, Alka Hospital Pvt Ltd, Jawalakhel, Lalitpur, Nepal
| | - Jose Sollano
- Department of Medicine, Cardinal Santos Medical Center, Manila, Philippines
| | | | - George Lau
- Department of Medicine, Humanity, and Health Medical Group, Hong Kong, People's Republic of China
- Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
3
|
Zhu Y, Jian X, Chen S, An G, Jiang D, Yang Q, Zhang J, Hu J, Qiu Y, Feng X, Guo J, Chen X, Li Z, Zhou R, Hu C, He N, Shi F, Huang S, Liu H, Li X, Xie L, Zhu Y, Zhao L, Jiang Y, Li J, Wang J, Qiu L, Chen X, Jia W, He Y, Zhou W. Targeting gut microbial nitrogen recycling and cellular uptake of ammonium to improve bortezomib resistance in multiple myeloma. Cell Metab 2024; 36:159-175.e8. [PMID: 38113887 DOI: 10.1016/j.cmet.2023.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.
Collapse
Affiliation(s)
- Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xingxing Jian
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuping Chen
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Duanfeng Jiang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Yang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jian Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Qiu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xun Chen
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhengjiang Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ruiqi Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Cong Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Nihan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fangming Shi
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Siqing Huang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Xie
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lia Zhao
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yichuan Jiang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Peking Union Medical College Hospital, Chinese Academy Medical Society & Peking Union Medical College, Beijing, China
| | - Jinuo Wang
- Peking Union Medical College Hospital, Chinese Academy Medical Society & Peking Union Medical College, Beijing, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, Bioinformatics Center, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Furong Laboratory, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China; Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Cai YJ, Dong JJ, Chen RC, Xiao QQ, Li XM, Chen DY, Cai C, Lin XL, Shi KQ, Lu MQ. Serum ammonia variation predicts mortality in patients with hepatitis B virus-related acute-on-chronic liver failure. Front Microbiol 2023; 14:1282106. [PMID: 38111648 PMCID: PMC10725913 DOI: 10.3389/fmicb.2023.1282106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Hyperammonemia is critical to the development of hepatic encephalopathy (HE) and is associated with mortality in end-stage liver disease. This study investigated the clinical value of ammonia variation in hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) patients. METHODS A total of 276 patients with HBV-ACLF were retrospectively recruited. Patients' ammonia levels were serially documented. Baseline ammonia, Peak ammonia (highest level), and Trough ammonia (lowest level) were particularly corrected to the upper limit of normal (AMM-ULN). The primary endpoint was 28-day mortality. RESULTS The 28-day, 3-month, and 12-month mortality rates were 19.2, 25.7, and 28.2%, respectively. A total of 51 (18.4%) patients had overt HE (grade 2/3/4). Peak AMM-ULN was significantly higher in patients with overt HE and non-survivors compared with their counterparts (P < 0.001). Following adjustment for significant confounders, high Peak AMM-ULN was an independent predictor of overt HE (hazard ratio, 1.031, P < 0.001) and 28-day mortality (hazard ratio, 1.026, P < 0.001). The cut-off of Peak AMM-ULN was 1.8, determined by using the X-tile. Patients with Peak AMM-ULN appearing on days 1-3 after admission had a higher proportion of overt HE and mortality compared to other groups. Patients with decreased ammonia levels within 7 days had better clinical outcomes than those with increased ammonia. CONCLUSION Serum Peak ammonia was independently associated with overt HE and mortality in HBV-ACLF patients. Serial serum ammonia may have prognostic value.
Collapse
Affiliation(s)
- Yi-Jing Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Jia Dong
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui-Cong Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian-Qian Xiao
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu-Mei Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Yuan Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu-Li Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke-Qing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming-Qin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Zhang Q, Long L, Zhu HL, Peng H, Luo XH, Zhu KS, Wang RP. Predicting disease progression in cirrhotic patients after transjugular intrahepatic portosystemic shunt implantation: A sex-stratified analysis. World J Gastroenterol 2023; 29:5768-5780. [PMID: 38075849 PMCID: PMC10701336 DOI: 10.3748/wjg.v29.i42.5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/30/2023] [Accepted: 10/29/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Transjugular intrahepatic portosystemic shunt (TIPS) has been extensively used to treat portal hypertension-associated complications, including cirrhosis. The prediction of post-TIPS prognosis is important for cirrhotic patients, as more aggressive liver transplantation is needed when the post-TIPS prognosis is poor. AIM To construct a nutrition-based model that could predict the disease progression of cirrhotic patients after TIPS implantation in a sex-dependent manner. METHODS This study retrospectively recruited cirrhotic patients undergoing TIPS implantation for analysis. Muscle quality was assessed by measuring the skeletal muscle index (SMI) by computed tomography. Multivariate Cox proportional hazard models were utilized to determine the association between SMI and disease progression in cirrhotic patients after TIPS implantation. RESULTS This study eventually included 186 cirrhotic patients receiving TIPS who were followed up for 30.5 ± 18.8 mo. For male patients, the 30-mo survival rate was significantly lower and the probability of progressive events was higher (3.257-fold) in the low-level SMI group than in the high-level SMI group. According to the multivariate Cox analysis of male patients, SMI < 32.8 was an independent risk factor for long-term adverse outcomes after TIPS implantation. A model was constructed, which involved creatinine, plasma ammonia, SMI, and acute-on-chronic liver failure and hepatic encephalopathy occurring within half a year after surgery. This model had an area under the receiver operating characteristic curve of 0.852, sensitivity of 0.926, and specificity of 0.652. According to the results of the DeLong test, this model outperformed other models (Child-Turcotte-Pugh, Model for End-Stage Liver Disease, and Freiburg index of post-TIPS survival) (P < 0.05). CONCLUSION SMI is strongly associated with poor long-term outcomes in male patients with cirrhosis who underwent TIPS implantation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
| | - Li Long
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
| | - Hong-Lin Zhu
- Department of Interventional Radiology, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
| | - Hong Peng
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
| | - Xin-Hua Luo
- Department of Infectious Diseases, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
| | - Kang-Shun Zhu
- Department of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Rong-Pin Wang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang 550002, Guizhou Province, China
| |
Collapse
|
6
|
Deutsch-Link S, Moon AM. Response to Ballester et al. Am J Gastroenterol 2023; 118:1297-1299. [PMID: 37377265 PMCID: PMC10321767 DOI: 10.14309/ajg.0000000000002259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Affiliation(s)
- Sasha Deutsch-Link
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
7
|
Wang ZX, Wang MY, Yang RX, Ren TY, Zhao ZH, Xin FZ, Fan JG. Limited role for hyperammonemia in the progression of diet-induced nonalcoholic steatohepatitis. J Dig Dis 2023; 24:408-418. [PMID: 37529891 DOI: 10.1111/1751-2980.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To determine whether hyperammonemia has a direct impact on steatohepatitis in mice fed with a high-fat diet (HFD). METHODS Male C57BL/6 mice were divided into two groups receiving either chow diet or HFD. After 12-week NASH modeling, hyperammonemia was induced by intragastric administration of ammonium chloride solution (NH4 Cl) or liver-specific carbamoyl phosphate synthetase 1 (Cps1) knockdown. In vitro experiments were performed in HepG2 cells induced by free fatty acid (FFA) and NH4 Cl. RESULTS NH4 Cl administration led to increased levels of plasma and hepatic ammonia in NASH mice. NH4 Cl-induced hyperammonemia did not influence liver histological changes in mice fed with HFD; however, elevated plasma cholesterol level, and an increasing trend of liver lipid content were observed. No significant effect of hyperammonemia on hepatic inflammation and fibrosis in NASH mice was found. In vitro cell experiments showed that NH4 Cl treatment failed to increase the lipid droplet content and the expressions of de novo lipogenesis genes in HepG2 cells induced by FFA. The knockdown of Cps1 in HFD-fed mice resulted in elevated plasma ammonia levels but did not cause histological change in the liver. CONCLUSIONS Our study revealed a limited role of ammonia in aggravating the progression of NASH. Further studies are needed to clarify the role and mechanism of ammonia in NASH development.
Collapse
Affiliation(s)
- Zi Xuan Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yu Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Xu Yang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Yi Ren
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Hua Zhao
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Feng Zhi Xin
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
8
|
Balcar L, Krawanja J, Scheiner B, Paternostro R, Simbrunner B, Semmler G, Jachs M, Hartl L, Stättermayer AF, Schwabl P, Pinter M, Szekeres T, Trauner M, Reiberger T, Mandorfer M. Impact of ammonia levels on outcome in clinically stable outpatients with advanced chronic liver disease. JHEP Rep 2023; 5:100682. [PMID: 36873421 PMCID: PMC9976454 DOI: 10.1016/j.jhepr.2023.100682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background & Aims Ammonia levels predicted hospitalisation in a recent landmark study not accounting for portal hypertension and systemic inflammation severity. We investigated (i) the prognostic value of venous ammonia levels (outcome cohort) for liver-related outcomes while accounting for these factors and (ii) its correlation with key disease-driving mechanisms (biomarker cohort). Methods (i) The outcome cohort included 549 clinically stable outpatients with evidence of advanced chronic liver disease. (ii) The partly overlapping biomarker cohort comprised 193 individuals, recruited from the prospective Vienna Cirrhosis Study (VICIS: NCT03267615). Results (i) In the outcome cohort, ammonia increased across clinical stages as well as hepatic venous pressure gradient and United Network for Organ Sharing model for end-stage liver disease (2016) strata and were independently linked with diabetes. Ammonia was associated with liver-related death, even after multivariable adjustment (adjusted hazard ratio [aHR]: 1.05 [95% CI: 1.00-1.10]; p = 0.044). The recently proposed cut-off (≥1.4 × upper limit of normal) was independently predictive of hepatic decompensation (aHR: 2.08 [95% CI: 1.35-3.22]; p <0.001), non-elective liver-related hospitalisation (aHR: 1.86 [95% CI: 1.17-2.95]; p = 0.008), and - in those with decompensated advanced chronic liver disease - acute-on-chronic liver failure (aHR: 1.71 [95% CI: 1.05-2.80]; p = 0.031). (ii) Besides hepatic venous pressure gradient, venous ammonia was correlated with markers of endothelial dysfunction and liver fibrogenesis/matrix remodelling in the biomarker cohort. Conclusions Venous ammonia predicts hepatic decompensation, non-elective liver-related hospitalisation, acute-on-chronic liver failure, and liver-related death, independently of established prognostic indicators including C-reactive protein and hepatic venous pressure gradient. Although venous ammonia is linked with several key disease-driving mechanisms, its prognostic value is not explained by associated hepatic dysfunction, systemic inflammation, or portal hypertension severity, suggesting direct toxicity. Impact and implications A recent landmark study linked ammonia levels (a simple blood test) with hospitalisation/death in individuals with clinically stable cirrhosis. Our study extends the prognostic value of venous ammonia to other important liver-related complications. Although venous ammonia is linked with several key disease-driving mechanisms, they do not fully explain its prognostic value. This supports the concept of direct ammonia toxicity and ammonia-lowering drugs as disease-modifying treatment.
Collapse
Key Words
- ACLD, advanced chronic liver disease
- ACLF, acute-on-chronic liver failure
- ARLD, alcohol-related liver disease
- AUROC, area under the receiver operating characteristic curve
- Acute-on-chronic liver failure
- BAs, Bile acids
- CRP, C-reactive protein
- CTP, Child–Turcotte–Pugh score
- Cirrhosis
- Death
- Decompensation
- ELF®-test, enhanced liver fibrosis-test
- HE, hepatic encephalopathy
- HSC, hepatic stellate cell
- HVPG, hepatic venous pressure gradient
- Hepatic encephalopathy
- MAFLD, metabolic-associated fatty liver disease
- MAP, mean arterial pressure
- NAFLD, non-alcoholic fatty liver disease
- NH3-ULN, ammonia-adjusted for the upper limit of normal
- PCT, procalcitonin
- SHR, subdistribution hazard ratio
- UNOS MELD (2016), United Network for Organ Sharing model for end-stage liver disease (2016)
- aHR, adjusted hazard ratio
- vWF, von Willebrand factor
Collapse
Affiliation(s)
- Lorenz Balcar
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Julia Krawanja
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Jachs
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Hartl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Szekeres
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Deutsch-Link S, Moon AM. The Ongoing Debate of Serum Ammonia Levels in Cirrhosis: the Good, the Bad, and the Ugly. Am J Gastroenterol 2023; 118:10-13. [PMID: 36001400 PMCID: PMC9822843 DOI: 10.14309/ajg.0000000000001966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 02/04/2023]
Abstract
Serum ammonia testing in hepatic encephalopathy (HE) has been long debated in the field of hepatology. Although central to the pathophysiology of HE, serum ammonia testing is fraught with complexities that can lead to challenges in laboratory collection and interpretation. Although there is some disagreement across guideline organizations regarding routine testing of ammonia in HE, all acknowledge that normal values, although possible in HE, may warrant reconsideration of the diagnosis. In this study, we propose a nuanced approach to ammonia testing in HE. Serum ammonia testing provides little additional benefit in clinical scenarios with a high or low pretest probability for HE. However, if the pretest probability for HE is uncertain, a low ammonia level may reduce the posttest probability of HE. In this scenario, other etiologies of altered mental status should be explored. Future research should focus on developing a standardized approach to serum ammonia collection, processing, and interpretation.
Collapse
Affiliation(s)
- Sasha Deutsch-Link
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
10
|
Tranah TH, Ballester MP, Carbonell-Asins JA, Ampuero J, Alexandrino G, Caracostea A, Sánchez-Torrijos Y, Thomsen KL, Kerbert AJC, Capilla-Lozano M, Romero-Gómez M, Escudero-García D, Montoliu C, Jalan R, Shawcross DL. Plasma ammonia levels predict hospitalisation with liver-related complications and mortality in clinically stable outpatients with cirrhosis. J Hepatol 2022; 77:1554-1563. [PMID: 35872326 DOI: 10.1016/j.jhep.2022.07.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Hyperammonaemia is central in the pathogenesis of hepatic encephalopathy. It also has pleiotropic deleterious effects on several organ systems, such as immune function, sarcopenia, energy metabolism and portal hypertension. This study was performed to test the hypothesis that severity of hyperammonaemia is a risk factor for liver-related complications in clinically stable outpatients with cirrhosis. METHODS We studied 754 clinically stable outpatients with cirrhosis from 3 independent liver units. Baseline ammonia levels were corrected to the upper limit of normal (AMM-ULN) for the reference laboratory. The primary endpoint was hospitalisation with liver-related complications (a composite endpoint of bacterial infection, variceal bleeding, overt hepatic encephalopathy, or new onset or worsening of ascites). Multivariable competing risk frailty analyses using fast unified random forests were performed to predict complications and mortality. External validation was carried out using prospective data from 130 patients with cirrhosis in an independent tertiary liver centre. RESULTS Overall, 260 (35%) patients were hospitalised with liver-related complications. On multivariable analysis, AMM-ULN was an independent predictor of both liver-related complications (hazard ratio 2.13; 95% CI 1.89-2.40; p <0.001) and mortality (hazard ratio 1.45; 95% CI 1.20-1.76; p <0.001). The AUROC of AMM-ULN was 77.9% for 1-year liver-related complications, which is higher than traditional severity scores. Statistical differences in survival were found between high and low levels of AMM-ULN both for complications and mortality (p <0.001) using 1.4 as the optimal cut-off from the training set. AMM-ULN remained a key variable for the prediction of complications within the random forests model in the derivation cohort and upon external validation. CONCLUSION Ammonia is an independent predictor of hospitalisation with liver-related complications and mortality in clinically stable outpatients with cirrhosis and performs better than traditional prognostic scores in predicting complications. LAY SUMMARY We conducted a prospective cohort study evaluating the association of blood ammonia levels with the risk of adverse outcomes in 754 patients with stable cirrhosis across 3 independent liver units. We found that ammonia is a key determinant that helps to predict which patients will be hospitalised, develop liver-related complications and die; this was confirmed in an independent cohort of patients.
Collapse
Affiliation(s)
- Thomas H Tranah
- Institute of Liver Studies, Dept of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - María-Pilar Ballester
- Digestive Disease Department, Hospital Clínico Universitario de Valencia, Spain; INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | - Javier Ampuero
- Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Ciberehd, Spain
| | - Gonçalo Alexandrino
- Institute of Liver Studies, Dept of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Gastroenterology and Hepatology Department, Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
| | - Andra Caracostea
- Institute of Liver Studies, Dept of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Yolanda Sánchez-Torrijos
- Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Ciberehd, Spain
| | - Karen L Thomsen
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, United Kingdom; Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, United Kingdom
| | | | - Manuel Romero-Gómez
- Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Ciberehd, Spain
| | | | - Carmina Montoliu
- INCLIVA Biomedical Research Institute, Valencia, Spain; Department of Pathology, Faculty of Medicine, University of Valencia, Spain
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, United Kingdom; European Foundation for the Study of Chronic Liver Failure (EF Clif), Spain.
| | - Debbie L Shawcross
- Institute of Liver Studies, Dept of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Mallet M, Desplats V, Bouzbib C, Sultanik P, Alioua I, Marika Rudler MS, Weiss N, Thabut D. Blood ammonia in patients with chronic liver diseases: A better defined role in clinical practice. Anal Biochem 2022; 657:114873. [PMID: 36108794 DOI: 10.1016/j.ab.2022.114873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/26/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Ammonia is one of the main players in the pathogenesis of hepatic encephalopathy (HE) in patients with chronic liver diseases. The usefulness of measuring ammonemia has been debated since many years. New data reveal that besides helping in the differential diagnosis of HE, ammonemia could be a prognostic marker not only in patients with HE, but also in patients without any neurological symptoms, suggesting a potential toxic role of ammonia beyond the brain. Finally, targeting ammonemia while monitoring therapeutic response could be a way to improve outcomes in patients with HE.
Collapse
Affiliation(s)
- Maxime Mallet
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Victor Desplats
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Charlotte Bouzbib
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Philippe Sultanik
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Imen Alioua
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - M S Marika Rudler
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Nicolas Weiss
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive Réanimation à orientation Neurologique, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France & Groupe de Recherche Clinique en REanimation et Soins intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, France
| | - Dominique Thabut
- Sorbonne Université, AP-HP.Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Service D'hépato-gastroentérologie, Unité de soins intensifs D'hépatologie, Paris, France & Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Maladies Métaboliques, Biliaires et fibro-inflammatoire du Foie, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France.
| |
Collapse
|
12
|
Huang L, He X, Peng W, He X, Xu B, Xu H, Wang Y, Xu W, Chen W, Wang S, Zhou L, Liu N, Xu Y, Lu W. Hyperuricemia induces liver injury by upregulating HIF-1α and inhibiting arginine biosynthesis pathway in mouse liver and human L02 hepatocytes. Biochem Biophys Res Commun 2022; 617:55-61. [PMID: 35696777 DOI: 10.1016/j.bbrc.2022.05.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
The molecular mechanisms of uric acid (UA)-induced liver injury has not been clearly elucidated. In this study, we aimed to investigate the effect and action mechanisms of UA in liver injury. We analyzed the damaging effect of UA on mouse liver and L02 cells and subsequently performed metabolomics studies on L02 cells to identify abnormal metabolic pathways. Finally, we verified transcription factors that regulate related metabolic enzymes. UA directly activated the hepatic NLRP3 inflammasome and Bax apoptosis pathway invivo and invitro. Related metabolites in the arginine biosynthesis pathway (or urea cycle), l-arginine and l-argininosuccinate were decreased, and ammonia was increased in UA-stimulated L02 cells, which was mediated by carbamoyl phosphate synthase 1 (CPS1), argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) downregulation. UA upregulated hypoxia inducible factor-1alpha (HIF-1α) invivo and invitro, and HIF-1α inhibition alleviated the UA-induced ASS downregulation and hepatocyte injury. In conclusion, UA upregulates HIF-1α and inhibits urea cycle enzymes (UCEs). This leads to liver injury, with evidence of hepatocyte inflammation, apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Lei Huang
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xinyu He
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wen Peng
- Department of Oncology, The People's Hospital of Guizhou Province, Guiyang, 550004, China
| | - Xueqing He
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Bei Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hu Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Yaoxing Wang
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wenjun Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Wentong Chen
- Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Rrsearch, Anhui Medical University, Hefei, 230032, China
| | - Lanlan Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Ning Liu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Youzhi Xu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| | - Wenjie Lu
- Basic Medical College, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
13
|
Rodríguez-Agudo R, Goikoetxea-Usandizaga N, Serrano-Maciá M, Fernández-Tussy P, Fernández-Ramos D, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Mercado-Gómez M, Morán L, Bizkarguenaga M, Lopitz-Otsoa F, Petrov P, Bravo M, Van Liempd SM, Falcon-Perez JM, Zabala-Letona A, Carracedo A, Castell JV, Jover R, Martínez-Cruz LA, Delgado TC, Cubero FJ, Lucena MI, Andrade RJ, Mabe J, Simón J, Martínez-Chantar ML. Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants (Basel) 2022; 11:897. [PMID: 35624761 PMCID: PMC9137496 DOI: 10.3390/antiox11050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - David Fernández-Ramos
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - María Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Petar Petrov
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
| | - Amaia Zabala-Letona
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Research Health Institute, 48903 Barakaldo, Spain
| | - Jose Vicente Castell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - María Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| | - Raúl Jesús Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Jon Mabe
- IK4-Tekniker, 20600 Eibar, Spain;
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| |
Collapse
|
14
|
Serum Ammonia in Cirrhosis: Clinical Impact of Hyperammonemia, Utility of Testing, and National Testing Trends. Clin Ther 2022; 44:e45-e57. [DOI: 10.1016/j.clinthera.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
|
15
|
Wang Q, Guan K, Lv Y, Zhang Y, Yu Z, Kan Q. Disturbance of hepatocyte growth and metabolism in a hyperammonemia microenvironment. Arch Biochem Biophys 2021; 716:109109. [PMID: 34932992 DOI: 10.1016/j.abb.2021.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND We found through previous research that hyperammonemia can cause secondary liver damage. However, whether hepatocytes are target cells of ammonia toxicity and whether hyperammonemia affects hepatocyte metabolism remain unknown. AIMS The purpose of the current study is to examine whether the hepatocyte is a specific target cell of ammonia toxicity and whether hyperammonemia can interfere with hepatocyte metabolism. METHODS Cell viability and apoptosis were analyzed in primary hepatocytes and other cells that had been exposed to ammonium chloride. Western blotting was adopted to examine the expression of proteins related to ammonia transport. We also established a metabolomics method based on gas chromatography-mass spectrometry to understand the characteristics of the hepatocyte metabolic spectrum in a hyperammonemia microenvironment, to screen and identify differential metabolites, and to determine the differential metabolic pathway. Different technologies were used to verify the differential metabolic pathways. RESULTS Hepatocytes are target cells of ammonia toxicity. The mechanism is related to the ammonia transporter. Hyperammonemia interferes with hepatocyte metabolism, which leads to TCA cycle, urea cycle, and RNA synthesis disorder. CONCLUSIONS This study demonstrates that hepatocyte growth and metabolism are disturbed in a hyperammonemia microenvironment, which further deteriorates hepatocyte function.
Collapse
Affiliation(s)
- Qiongye Wang
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kelei Guan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanjun Lv
- Department of Respiratory. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingxuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery. the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Departments of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Quancheng Kan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
16
|
Kim JH, Jeon H, Lee SS, Heo IR, Choi JW, Kim HJ, Cha RR, Lee JM, Kim HJ. Impact of non-hepatic hyperammonemia on mortality in intensive care unit patients: a retrospective cohort study. Korean J Intern Med 2021; 36:1347-1355. [PMID: 34256430 PMCID: PMC8588975 DOI: 10.3904/kjim.2021.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS The effect of hyperammonemia on the mortality in patients with liver cirrhosis is well documented. However, little is known about the impact of hyperammonemia on mortality among intensive care unit patients without hepatic disease. We aimed to investigate factors associated with non-hepatic hyperammonemia among intensive care unit patients and to evaluate the factors related to the 7- and 90-day mortality. METHODS Between February 2016 and February 2020, 948 patients without hepatic disease who had 972 episodes of admission to the intensive care unit were retrospectively enrolled and classified as hyperammonemia grades 0 (≤ 80 µg/dL; 585 [60.2%]), 1 (≤ 160 µg/dL; 291 [29.9%]), 2 (≤ 240 µg/dL; 55 [5.7%]), and 3 (> 240 µg/dL; 41 [4.2%]). Factors associated with hyperammonemia and the 7- and 90-day mortality were evaluated by multivariate logistic regression analysis and Cox regression analysis, respectively. Kaplan-Meier survival curves for the 7- and 90-day mortality were constructed. RESULTS The independent risk factors for hyperammonemia were male sex (odds ratio, 1.517), age (0.984/year), acute brain failure (2.467), acute kidney injury (1.437), prothrombin time-international normalized ratio (2.272/unit), and albumin (0.694/g/dL). The 90-day mortality rate in the entire cohort was 24.3% and gradually increased with increasing hyperammonemia grade at admission (17.9%, 28.2%, 43.6%, and 61.0% in patients with grades 0, 1, 2, and 3, respectively). Additionally, non-hepatic hyperammonemia was an independent predictor of the 90- day mortality in intensive care unit patients. CONCLUSION Non-hepatic hyperammonemia is common (39.8%) and associated with the 90-day mortality among intensive care unit patients.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
| | - Hankyu Jeon
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
| | - Sang Soo Lee
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju,
Korea
| | - I Re Heo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
| | - Jung Woo Choi
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
| | - Hee Jin Kim
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju,
Korea
| | - Ra Ri Cha
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju,
Korea
| | - Jae Min Lee
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju,
Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju,
Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon,
Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju,
Korea
| |
Collapse
|
17
|
Lazebnik LB, Golovanova EV, Alekseenko SA, Bueverov AO, Plotnikova EY, Dolgushina AI, Ilchenko LY, Ermolova TV, Tarasova LV, Lee ED, Tsyganova YV, Akhmedov VA, Ageeva EA, Losev VM, Kupriyanova IN, Serikova SN, Korochanskaya NV, Vologzhanina LG, Zimmerman YS, Sas EI, Zhuravel SV, Okovitiy SV, Osipenko MF, Radchenko VG, Soldatova GS, Sitkin SI, Seliverstov PV, Shavkuta GV, Butova EN, Kozhevnikova SA. Russian Consensus “Hyperammonemia in Adults” (Version 2021). EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2021:97-118. [DOI: 10.31146/1682-8658-ecg-187-3-97-118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Justification Given the large number of reports on the peculiarities of liver lesions during the Sars-Cov-2 infection [1], a team of experts who participated in the 23rd Congress of the Scientific Society of Gastroenterologists of Russia and 15 National Congress of Therapists of November 19, 2020 decided to make additions to the Russian Consensus of “Hyperammonemia in Adults” published early 2020 [2, 3].
Collapse
Affiliation(s)
- L. B. Lazebnik
- “Moscow State University of Medicine and Density n. a. A. I. Evdokimov”
| | - E. V. Golovanova
- “Moscow State University of Medicine and Density n. a. A. I. Evdokimov”
| | | | - A. O. Bueverov
- I. M. Sechenov first Moscow state medical university (Sechenov university); Moscow regional research and clinical Institute of M. F. Vladimirsky
| | - E. Yu. Plotnikova
- Federal State Budgetary Institution of Higher Education Kemerovo state medical University of the Ministry of health of Russia
| | - A. I. Dolgushina
- “South-Ural State Medical University” of the Ministry of Health of Russia
| | - L. Yu. Ilchenko
- Pirogov Russian National Research Medical University (RNRMU)
| | - T. V. Ermolova
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - L. V. Tarasova
- BI of HE “The Surgut State University”; “The Chuvashian State University”
| | - E. D. Lee
- Multifocal Medicine Center of The Central Bank of Russian Federation
| | | | - V. A. Akhmedov
- “Omsk State Medical University” of the Ministry of Health
| | | | | | - I. N. Kupriyanova
- “Ural state medical University” of the Ministry of health of the Russian Federation
| | - S. N. Serikova
- State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - N. V. Korochanskaya
- State Budgetary Institution of Health Care “Region Clinic Hospital Nr 2” Health Ministry of Krasnodar Region
| | - L. G. Vologzhanina
- “Perm State Medical University named E. A. Wagner” of the Ministry of Health of Russia
| | - Ya. S. Zimmerman
- “Perm State Medical University named E. A. Wagner” of the Ministry of Health of Russia
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | - S. V. Zhuravel
- “Moscow State University of Medicine and Density n. a. A. I. Evdokimov”; Scientific Research Institute of Emergency Medicine of N. V. Sklifosovskiy of Healthcare Department of Moscow
| | - S. V. Okovitiy
- Saint Petersburg State Chemical Pharmaceutical University (SPCPA)
| | - M. F. Osipenko
- Public budgetary educational institution of higher education “Novosibirsk State Medical University” of the Ministry of Healthcare of the Russia
| | | | | | - S. I. Sitkin
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation; Federal Medical and Biological Agency “State Research Institute of Highly Pure Biopreparations”
| | - P. V. Seliverstov
- North- Western state medical University named after I. I. Mechnikov, Ministry of health of the Russian Federation
| | - G. V. Shavkuta
- Rostov State Medical University of the Ministry of Health of Russia
| | - E. N. Butova
- Rostov State Medical University of the Ministry of Health of Russia
| | | |
Collapse
|
18
|
Shalimar, Rout G, Kumar R, Singh AD, Sharma S, Gunjan D, Saraya A, Nayak B, Acharya SK. Persistent or incident hyperammonemia is associated with poor outcomes in acute decompensation and acute-on-chronic liver failure. JGH Open 2020; 4:843-850. [PMID: 33102753 PMCID: PMC7578315 DOI: 10.1002/jgh3.12314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The effect of elevated ammonia on organ failures (OF), apart from hepatic encephalopathy, in patients with acute decompensation (AD) of cirrhosis and acute-on-chronic liver failure (ACLF) is unclear. We aimed to assess the effect of persistent or incident hyperammonemia on OF and outcomes in patients with AD and ACLF. METHODS A total of 229 patients with ACLF and 83 with AD were included. Arterial ammonia was measured on day 1 and day 3 of admission. Persistent or incident hyperammonemia was defined as a level of ≥79.5 μmol/L on day 3. The changes in ammonia levels during the first 3 days were analyzed with respect to the complications and outcomes. RESULTS At admission, the median level of arterial ammonia was higher in ACLF compared to AD patients (103 vs 86 μmol/L, P < 0.001). Persistent or incident hyperammonemia was noted in 206 (66.0%) patients and was more frequent in ACLF compared to AD patients (70.7 vs 53.0%, P = 0.013). Patients with persistent or incident hyperammonemia, compared to those without it, developed a higher proportion of new-onset OF during hospitalization involving liver (P = 0.018), kidney (P = 0.001), brain (P = 0.005), coagulation (P = 0.036), circulation (P = 0.002), and respiratory (P = 0.003) issues and had higher 28-day mortality (log-rank test, P < 0.001). After adjustment for chronic liver failure consortium ACLF score, persistent or incident hyperammonemia (hazard ratio, 3.174) was independently associated with 28-day mortality. The presence of infection was an independent predictor of persistent or incident hyperammonemia. CONCLUSION Persistent or incident hyperammonemia during first 3 days of hospitalization in patients with AD or ACLF is associated with increased risk of OF and death.
Collapse
Affiliation(s)
- Shalimar
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Gyanranjan Rout
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Ramesh Kumar
- Department of GastroenterologyAll India Institute of Medical SciencesPatnaIndia
| | | | - Sanchit Sharma
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Deepak Gunjan
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Anoop Saraya
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Baibaswata Nayak
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| | - Subrat K Acharya
- Department of Gastroenterology and Human NutritionAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
19
|
Xu Y, Li Z, Zhang S, Zhang H, Teng X. miR-187-5p/apaf-1 axis was involved in oxidative stress-mediated apoptosis caused by ammonia via mitochondrial pathway in chicken livers. Toxicol Appl Pharmacol 2019; 388:114869. [PMID: 31863799 DOI: 10.1016/j.taap.2019.114869] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
Ammonia (NH3), a toxic gas, is an important cause of atmospheric haze and one of the main pollutants in air environment of poultry houses, threatening the health of human beings and poultry. However, little is known about the effect of NH3 on liver apoptotic damage. This study aimed to investigate the mechanism of oxidative stress-mediated apoptosis caused by NH3 in chicken livers and whether miR-187-5p/apaf-1 axis was involved in this mechanism. Here we duplicated NH3 poisoning model of chickens for fattening to study the ultrastructure of chicken livers, apoptosis rate, oxidative stress indexes, miR-187-5p, and apoptosis-related genes. Obvious apoptotic characteristics of liver tissues exposed to excess NH3 were observed, and the apoptosis rate increased. Excess NH3 decreased the activities of catalase (CAT), superoxide dismutase (SOD), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px), and increased the content of malondialdehyde (MDA), suggesting that oxidative stress occurred. miR-187-5p decreased, and apoptotic protease activating factor-1 (apaf-1) increased, indicating that excess NH3 dysregulated miR-187-5p/apaf-1 axis. The expression of tumor protein p53 (p53), Bcl-2 associated X protein (Bax), Bcl-2 homologous antagonist/killer (Bak), Cytochrome-c (Cyt-c), Caspase-9, Caspase-8, and Caspase-3 was promoted, and the expression of B-cell lymphoma-2 (Bcl-2) was inhibited, resulting in apoptosis. Moreover, oxidative stress indexes, miR-187-5p, and apoptosis-related genes changed in dose- and time-dependent manner. Altogether, miR-187-5p/apaf-1 axis participated in oxidative stress-mediated apoptosis caused by NH3 via mitochondrial pathway in the livers of chickens for fattening. This study may provide new ideas to study the mechanism of liver apoptotic damage induced by NH3 exposure.
Collapse
Affiliation(s)
- Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
20
|
Shalimar, Sheikh MF, Mookerjee RP, Agarwal B, Acharya SK, Jalan R. Prognostic Role of Ammonia in Patients With Cirrhosis. Hepatology 2019; 70:982-994. [PMID: 30703853 DOI: 10.1002/hep.30534] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Ammonia is thought to be central to the pathogenesis of hepatic encephalopathy (HE), but its prognostic role in patients with cirrhosis and acute decompensation is unknown. The aims of this study were to determine the relationship between ammonia levels and severity of HE and its association with organ dysfunction and short-term mortality. We identified 498 patients from two institutions as part of prospective observational studies in patients with cirrhosis. Plasma ammonia levels were measured on admission and Chronic Liver Failure-Sequential Organ Failure Assessment criteria were used to determine the presence of organ failures. The 28-day patient survival was determined. Receiver operating characteristic analysis was used to identify the cutoff points for ammonia values, and multivariable analysis was performed using the Cox proportional hazard regression model. The 28-day mortality was 43.4%. Plasma ammonia correlated with severity of HE (P < 0.001), was significantly higher in nonsurvivors (93 [73-121] versus 67 [55-89] µmol/L, P < 0.001), and was an independent predictor of 28-day mortality (hazard ratio, 1.009, P < 0.001). An ammonia level of 79.5 µmol/L had sensitivity of 68.1% and specificity of 67.4% for predicting 28-day mortality. An ammonia level of ≥79.5 µmol/L was associated with a higher frequency of organ failures (liver [P = 0.004], coagulation [P < 0.001], kidney [P = 0.004], and respiratory [P < 0.001]). Lack of improvement in baseline ammonia at day 5 was associated with high mortality (70.6%). Conclusion: Ammonia level correlates with not only the severity of HE but also the failure of other organs and is an independent risk factor for mortality; lack of improvement in ammonia level is associated with high risk of death, making it an important biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed Faisal Sheikh
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
| | - Banwari Agarwal
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK.,Intensive Care Unit, Royal Free Hospital, London, UK
| | - Subrat Kumar Acharya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Jalan
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
| |
Collapse
|
21
|
TLR5 silencing reduced hyperammonaemia-induced liver injury by inhibiting oxidative stress and inflammation responses via inactivating NF-κB and MAPK signals. Chem Biol Interact 2018; 299:102-110. [PMID: 30508503 DOI: 10.1016/j.cbi.2018.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver injury is a serious threat for human health and life. Toll-like receptor 5 (TLR5) has reported to be a vital mediator in flagellin or tetrachloride (CCl4)-induced liver injury. However, the roles and etiology of TLR5 in hyperammonaemia (HA)-induced liver injury are poor defined. METHODS HA rats were generated by intragastric administration using ammonium chloride solution. Liver status was assessed by haematoxylin and eosin (H&E) staining and measuring serum levels of liver injury markers. Immunohistochemistry (IHC) assay was used to visualize protein expression in tissues. Apoptotic index in tissues was determined by TUNEL assay. RT-qPCR assay was employed to test mRNA expression. Oxidative stress responses was assessed by detecting levels of reactive oxygen species (ROS) and related indicators. NF-κB activity was examined by TransAM NF-κB colorimetric kit. RESULTS TLR5 was highly expressed in liver tissues of HA rats. TLR5 knockdown ameliorated HA-induced liver injury by inhibiting liver cell apoptosis. TLR5 depletion inhibited HA-induced pro-inflammatory cytokine expression in liver tissues, but had no effect on the infiltration of T and macrophage cells into liver tissues. TLR5 silencing impaired HA-induced oxidative stress responses in hepatocytes, but not in hepatic stellate cells (HSCs). TLR5 downregulation inhibited HA-induced activation on TLR5/NF-κB and TLR5/MAPK signaling pathways. CONCLUSION TLR5 silencing reduced HA-induced liver injury by inhibiting hepatocyte apoptosis, oxidative stress and inflammation responses via inactivating NF-κB and MAPK signals, deepening our understanding on the molecular mechanism of HA-induced liver injury and providing a potential therapeutic target for alleviating liver injury.
Collapse
|
22
|
Wang P, Wang X, Li L, Kan Q, Yu Z, Feng R, Chen Z, Shi Y, Gao J. Role of sodium-hydrogen exchanger isoform 1 in regulating hepatocyte apoptosis induced by hyperammonaemia. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 41:490-497. [PMID: 30033048 DOI: 10.1016/j.gastrohep.2018.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The "secondary injury" theory of liver failure indicated that hyperammonaemia due to liver failure causes further deterioration of hepatocytes. Our previous studies have demonstrated that high blood ammonia levels may lead to hepatocyte apoptosis, as NH4Cl loading caused metabolic acidosis and an increase in sodium-hydrogen exchanger isoform 1 (NHE1). In this study, we established a hyperammonia hepatocyte model to determine the role of NHE1 in the regulation of hepatocyte apoptosis induced by NH4Cl. MATERIALS AND METHODS In current studies, intracellular pH (pHi) and NHE1 activity were analyzed using the pHi-sensitive dye BCECF-AM. The results showed that intracellular pH dropped and NHE1 activity increased in hepatocytes under NH4Cl treatment. As expected, decreased pHi induced by NH4Cl was associated with increased apoptosis, low cell proliferation and ATP depletion, which was exacerbated by exposure to the NHE1 inhibitor cariporide. We also found that NH4Cl treatment stimulated PI3K and Akt phosphorylation and this effect was considerably reduced by NHE1 inhibition. CONCLUSION This study highlighted the significant role of NHE1 in the regulation of cell apoptosis induced by hyperammonaemia.
Collapse
Affiliation(s)
- Peng Wang
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin Wang
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China.
| | - Ling Li
- Department of Palliative and Hospice Care, The Ninth People's Hospital of Zhengzhou, Henan, PR China
| | - Quancheng Kan
- Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zujiang Yu
- Department of Infectious Disease, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Rongfang Feng
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China
| | - ZiXiao Chen
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Shi
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinling Gao
- Department of Basic Medicine, Nursing College, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
23
|
Pathological Features of Mitochondrial Ultrastructure Predict Susceptibility to Post-TIPS Hepatic Encephalopathy. Can J Gastroenterol Hepatol 2018; 2018:4671590. [PMID: 30079331 PMCID: PMC6069695 DOI: 10.1155/2018/4671590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/25/2018] [Accepted: 05/14/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Post-TIPS hepatic encephalopathy (PSE) is a complex process involving numerous risk factors; the root cause is unclear, but an elevation of blood ammonia due to portosystemic shunt and metabolic disorders in hepatocytes has been proposed as an important risk factor. AIMS The aim of this study was to investigate the impact of pathological features of mitochondrial ultrastructure on PSE via transjugular liver biopsy at TIPS implantation. METHODS We evaluated the pathological damage of mitochondrial ultrastructure on recruited patients by the Flameng classification system. A score ≤2 (no or low damage) was defined as group A, and a score >2 (high damage level) was defined as group B; routine follow-up was required at 1 and 2 years; the incidence of PSE and multiple clinical data were recorded. RESULTS A total of 78 cases in group A and 42 in group B completed the study. The incidence of PSE after 1 and 2 years in group B (35.7% and 45.2%, respectively) was significantly higher than that in group A (16.7% and 24.4%, respectively); the 1- and 2-year OR (95% CI) were 2.778 (1.166-6.615) and 2.565 (1.155-5.696), respectively, for groups A and B. Importantly, group B had worse incidence of PSE than group A [P=0.014, hazard ratio (95%CI): 2.172 (1.190-4.678)]. CONCLUSION Aggressive damage to mitochondrial ultrastructure in liver shunt predicts susceptibility to PSE. The registration number is NCT02540382.
Collapse
|
24
|
Thomsen KL, De Chiara F, Rombouts K, Vilstrup H, Andreola F, Mookerjee RP, Jalan R. Ammonia: A novel target for the treatment of non-alcoholic steatohepatitis. Med Hypotheses 2018. [PMID: 29523305 DOI: 10.1016/j.mehy.2018.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from steatosis, through non-alcoholic steatohepatitis (NASH) to cirrhosis. The development of fibrosis is the most important factor contributing to NASH-associated morbidity and mortality. Hepatic stellate cells (HSCs) are responsible for extracellular matrix deposition in conditions of frank hepatocellular injury and are key cells involved in the development of fibrosis. In experimental models and patients with NASH, urea cycle enzyme gene and protein expression is reduced resulting in functional reduction in the in vivo capacity for ureagenesis and subsequent hyperammonemia at a pre-cirrhotic stage. Ammonia has been shown to activate HSCs in vivo and in vitro. Hyperammonemia in the context of NASH may therefore favour the progression of fibrosis and the disease. We therefore hypothesise that ammonia is a potential target for prevention of fibrosis progression of patients with NASH.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom; Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Francesco De Chiara
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Rajeshwar P Mookerjee
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom.
| |
Collapse
|
25
|
Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, Rose CF. Ammonia toxicity: from head to toe? Metab Brain Dis 2017; 32:529-538. [PMID: 28012068 PMCID: PMC8839071 DOI: 10.1007/s11011-016-9938-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
Abstract
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.
Collapse
Affiliation(s)
- Srinivasan Dasarathy
- Department of Gastroenterology, Hepatology and Pathobiology, Cleveland Clinic, Cleveland, OH, USA
| | - Rajeshwar P Mookerjee
- Liver Failure Group, UCL Institute for Liver and Digestive Health, UCL Medical School, Royal Free Hospital, London, UK
| | - Veronika Rackayova
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vinita Rangroo Thrane
- Department of Ophthalmology, Haukeland University Hospital, 5021, Bergen, Norway
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Pondicherry, India
| | - Peter Ott
- Department of Medicine V (Hepatology and Gastroenterology), Aarhus, Denmark
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Department of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
26
|
Bosoi CR, Oliveira MM, Ochoa-Sanchez R, Tremblay M, Ten Have GA, Deutz NE, Rose CF, Bemeur C. The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis. Metab Brain Dis 2017; 32:513-518. [PMID: 27981407 DOI: 10.1007/s11011-016-9937-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.
Collapse
Affiliation(s)
- Cristina R Bosoi
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - Mariana M Oliveira
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | | | - Mélanie Tremblay
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - Gabriella A Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Nicolaas E Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - Chantal Bemeur
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada.
- Département de nutrition, Faculté de médecine, Université de Montréal, CP 6128 Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
27
|
Gao X, Fan L, Li H, Li J, Liu X, Sun R, Yu Z. Hepatic injury is associated with cell cycle arrest and apoptosis with alteration of cyclin A and D1 in ammonium chloride-induced hyperammonemic rats. Exp Ther Med 2015; 11:427-434. [PMID: 26893626 PMCID: PMC4733954 DOI: 10.3892/etm.2015.2931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/05/2015] [Indexed: 12/16/2022] Open
Abstract
Hyperammonemia is considered to be central to the pathophysiology of hepatic encephalopathy in patients exhibiting hepatic failure (HF). It has previously been determined that hyperammonemia is a serious metabolic disorder commonly observed in patients with HF. However, it is unclear whether hyperammonemia has a direct adverse effect on hepatic cells or serves as a cause and effect of HF. The present study investigated whether hepatic injury is caused by hyperammonemia, and aimed to provide an insight into the causes and mechanisms of HF. Hyperammonemic rats were established via intragastric administration of ammonium chloride solution. Hepatic tissues were assessed using biochemistry, histology, immunohistochemistry, flow cytometry (FCM), semi-quantitative reverse transcription-polymerase chain reaction and western blot analysis. Hyperammonemic rats exhibited significantly increased levels of liver function markers, including alanine transaminase (P<0.01), aspartate aminotransferase (P<0.01), blood ammonia (P<0.01) and direct bilirubin (P<0.05), which indicated hepatic injury. A pathological assessment revealed mild hydropic degeneration, but no necrosis or inflammatory cell infiltration. However, terminal deoxynucleotidyl transferase dUTP nick end-labeling assays confirmed a significant increase in the rate of cellular apoptosis in hyperammonemic rat livers (P<0.01). FCM analysis revealed that there were significantly more cells in the S phase and fewer in the G2/M phase (P<0.01), and the expression levels of cyclin A and D1 mRNA and proteins were significantly increased (P<0.01). In summary, cell cycle arrest, apoptosis and an alteration of cyclin A and D1 levels were all markers of hyperammonemia-induced hepatic injury. These findings provide an insight into the potential mechanisms underlying hyperammonemia-induced hepatic injury, and may be used as potential targets for treating or preventing hepatic damage caused by hyperammonemia, including hepatic encephalopathy.
Collapse
Affiliation(s)
- Xiaojuan Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Fan
- Department of Pharmacy, Children's Hospital of Zhengzhou City, Zhengzhou, Henan 450053, P.R. China
| | - Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
28
|
Zhang J, Li C, Tang X, Lu Q, Sa R, Zhang H. High Concentrations of Atmospheric Ammonia Induce Alterations in the Hepatic Proteome of Broilers (Gallus gallus): An iTRAQ-Based Quantitative Proteomic Analysis. PLoS One 2015; 10:e0123596. [PMID: 25901992 PMCID: PMC4406733 DOI: 10.1371/journal.pone.0123596] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/20/2015] [Indexed: 12/30/2022] Open
Abstract
With the development of the poultry industry, ammonia, as a main contaminant in the air, is causing increasing problems with broiler health. To date, most studies of ammonia toxicity have focused on the nervous system and the gastrointestinal tract in mammals. However, few detailed studies have been conducted on the hepatic response to ammonia toxicity in poultry. The molecular mechanisms that underlie these effects remain unclear. In the present study, our group applied isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis to investigate changes in the protein profile change in hepatic tissue of broilers exposed to high concentrations of atmospheric ammonia, with the goal of characterizing the molecular mechanisms of chronic liver injury from exposure to high ambient levels of ammonia. Overall, 30 differentially expressed proteins that are involved in nutrient metabolism (energy, lipid, and amino acid), immune response, transcriptional and translational regulation, stress response, and detoxification were identified. In particular, two of these proteins, beta-1 galactosidase (GLB1) and a kinase (PRKA) anchor protein 8-like (AKAP8 L), were previously suggested to be potential biomarkers of chronic liver injury. In addition to the changes in the protein profile, serum parameters and histochemical analyses of hepatic tissue also showed extensive hepatic damage in ammonia-exposed broilers. Altogether, these findings suggest that longtime exposure to high concentrations of atmospheric ammonia can trigger chronic hepatic injury in broilers via different mechanisms, providing new information that can be used for intervention using nutritional strategies in the future.
Collapse
Affiliation(s)
- Jize Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingping Lu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Renna Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Gao G, Yu Z, Yan J, Li J, Shen S, Jia B, Guan K, Gao X, Kan Q. Poly (ADP‑ribose) polymerase‑ and cytochrome c‑mediated apoptosis induces hepatocyte injury in a rat model of hyperammonia‑induced hepatic failure. Mol Med Rep 2015; 11:4211-9. [PMID: 25634059 PMCID: PMC4394961 DOI: 10.3892/mmr.2015.3281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/09/2015] [Indexed: 01/04/2023] Open
Abstract
Hepatic failure (HF) is caused by several factors, which induce liver cell damage and dysfunction. However, the specific mechanism of HF remains to be fully elucidated. The present study aimed to investigate the underlying cause of hepatocyte injury and liver dysfunction. Liver cells were isolated from healthy female Sprague-Dawley rats, aged between 6 and 8 weeks, weighing ~230 g. The liver cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum. An MTT assay was used to examine the inhibitory rate of liver growth in each group. Flow cytometric analysis was performed to detect liver cells undergoing apoptosis. The protein expression levels of poly (ADP-ribose) polymerase (PARP) and cytochrome c (Cyt C) were detected by western blotting. The level of calmodulin-dependent kinase (CaMK) was assessed using an ELISA. The results indicated that the growth inhibitory rate of rat liver cells was significantly increased following treatment with increasing concentrations of NH4Cl. The results of flow cytometric analysis demonstrated that the apoptotic rate in the BAPTA-acetoxymethyl ester group was significantly lower compared with the NH4Cl group (P<0.05). Treatment with NH4Cl increased the protein expression levels of PARP and Cyt C in the liver cells. The mRNA expression of CaMK decreased gradually following treatment with increasing concentrations of NH4Cl for 6, 12 and 24 h. The results suggested that hepatocyte injury and liver dysfunction may be caused by inducing apoptosis via the PARP and Cyt C pathways. Additionally, downregulation of CaMK may be associated with the apoptosis observed in hepatocyte injury.
Collapse
Affiliation(s)
- Guanmin Gao
- Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingya Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingjing Li
- Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bin Jia
- Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kelei Guan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojuan Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quancheng Kan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
30
|
Li J, Yu Z, Wang Q, Li D, Jia B, Zhou Y, Ye Y, Shen S, Wang Y, Li S, Bai L, Kan Q. Hyperammonia induces specific liver injury through an intrinsic Ca2+-independent apoptosis pathway. BMC Gastroenterol 2014; 14:151. [PMID: 25145683 PMCID: PMC4236522 DOI: 10.1186/1471-230x-14-151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/15/2014] [Indexed: 02/06/2023] Open
Abstract
Background Numerous pathological processes that affect liver function in patients with liver failure have been identified. Among them, hyperammonia is one of the most common phenomena.The purpose of this study was to determine whether hyperammonia could induced specific liver injury. Methods Hyperammonemic cells were established using NH4Cl. The cells were assessed by MTT, ELISA, and flow cytometric analyses. The expression levels of selected genes and proteins were confirmed by quantitative RT-PCR and western blot analyses. Results The effects of 20 mM NH4Cl pretreatment on the cell proliferation and apoptosis of primary hepatocytes and other cells were performed by MTT assays and flow cytometric analyses. Significant increasing in cytotoxicity and apoptosis were only observed in hepatocytes. The cell damage was reduced after adding BAPTA-AM but unchanged after adding EGTA. The expression levels of caspase-3, cytochrome C, calmodulin, and inducible nitric oxide synthase were increased and that of bcl-2 was reduced. The Na+-K+-ATPase activities in hyperammonia liver cells was no signiaficant difference compaired with the control group, but was decreased in astrocytes. NH4Cl pretreatment of primary hepatocytes promoted the activation of mitochondrial permeability transition pores and the mitochondria swelled irregularly. Conclusions Hyperammonia induces specific liver injury through an intrinsic Ca2+-independent apoptosis pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Quancheng Kan
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
31
|
Wang Q, Wang Y, Yu Z, Li D, Jia B, Li J, Guan K, Zhou Y, Chen Y, Kan Q. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes. Arch Biochem Biophys 2014; 555-556:16-22. [PMID: 24878366 DOI: 10.1016/j.abb.2014.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/19/2014] [Indexed: 12/27/2022]
Abstract
Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis.
Collapse
Affiliation(s)
- Qiongye Wang
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanfang Wang
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Duolu Li
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Jia
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kelei Guan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yubing Zhou
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanling Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quancheng Kan
- Department of Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
|