1
|
Feng Q, Zhao Q, Qu S, Zhao Y, Li K, Yuan B, Chang Q, Xu J, Wang H, Zhu Y, Fu K, Liu J. Qianggan Ruanjian Pill ameliorates liver fibrosis through regulation of the TGF-β1/Smad and PI3K/AKT signalling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118893. [PMID: 39362322 DOI: 10.1016/j.jep.2024.118893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a critical pathological process in the progression of chronic liver injury, ultimately resulting in cirrhosis, for which currently available therapeutic interventions remain inadequate. Among these, the Qianggan Ruanjian Pill (QGRJP) has emerged as a clinically experienced formula with notable therapeutic efficacy against liver fibrosis. However, the precise underlying mechanisms require further investigation. AIM OF THE STUDY In this study, we investigated the key pathways and target genes of QGRJP that attenuate liver fibrosis and elucidated the underlying mechanisms. MATERIALS AND METHODS High-performance liquid chromatography-mass spectrometry (HPLC-MS) was used to identify the major components of the QGRJP. Mouse models of liver fibrosis were established by injecting olive oil containing 25% carbon tetrachloride (CCl4), which was administered at different doses of QGRJP by gavage. Liver damage and function were assessed using serum biochemical detection, ultrasound imaging, and histopathological examination. The anti-fibrosis effect was assessed using immunohistochemistry, western blotting, and quantitative real-time PCR (qRT-PCR). The in vivo safety of the QGRJP was evaluated using weight monitoring and biopsy. Potential anti-liver fibrosis signalling pathways and key targets of QGRJP were identified using RNA-seq analysis and network pharmacology. The predicted targets and pathways were validated using in vitro and in vivo experiments. RESULTS QGRJP significantly ameliorated CCl4-induced liver fibrosis, and its mechanism was correlated with the inhibition of hepatic stellate cell (HSC) activation and the inflammatory response via inhibition of the TGF-β1/Smad and PI3K/AKT pathways, leading to a significant reduction in the expression of collagen and other fibrosis-related proteins. Additionally, no obvious toxic side effects were observed in the major organs of the mice or in activated HSCs (aHSCs). CONCLUSION This study demonstrated that QGRJP mitigated liver injury, inflammation, and fibrosis by inhibiting the TGF-β1/Smad and PI3K/AKT signalling pathways.
Collapse
Affiliation(s)
- Qunying Feng
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Qinghua Zhao
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Shuaiyong Qu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Yiju Zhao
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Kunlun Li
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Bo Yuan
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Qinzheng Chang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Jingjiang Xu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Hongxia Wang
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Yongqin Zhu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Kai Fu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China
| | - Jingsheng Liu
- Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Wang L, Zhou J, Wang J, Wang X, Dong H, Zhao L, Wu J, Peng J. Hepatic Stellate Cell-Targeting Micelle Nanomedicine for Early Diagnosis and Treatment of Liver Fibrosis. Adv Healthc Mater 2024; 13:e2303710. [PMID: 38293743 DOI: 10.1002/adhm.202303710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Diagnosing and treating liver fibrosis is a challenging yet crucial endeavor due to its complex pathogenesis and risk of deteriorating into cirrhosis, liver failure, and even hepatic cancer. Herein, a silica cross-linked micelles (SCLMs) based nano-system is developed for both diagnosing and treating liver fibrosis. The SCLMs are first modified with peptide CTCE9908 (CT-SCLMs) and can actively target CXCR4, which is overexpressed in activated hepatic stellate cells (HSCs). To enable diagnosis, an ONOO--responded near-infrared fluorescent probe NOF2 is loaded into the CT-SCLMs. This nano-system can target the aHSCs and diagnose the liver fibrosis particularly in CCl4-induced liver damage, by monitoring the reactive nitrogen species. Furthermore, a step is taken toward treatment by co-encapsulating two anti-fibrosis drugs, silibinin and sorafenib, within the CT-SCLMs. This combined approach results in a significant alleviation of liver injury. Symptoms associated with liver fibrosis, such as deposition of collagen, expression of hydroxyproline, and raised serological indicators show notable improvement. In summary, the CXCR4-targeted nano-system can serve as a promising theragnostic system of early warning and diagnosis for liver fibrosis, offering hope against progression of this serious liver condition.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Jian Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Junchen Wu
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
3
|
Roh Y, Lee SB, Kim M, Kim MH, Kim HJ, Cho KO. Alleviation of hippocampal necroptosis and neuroinflammation by NecroX-7 treatment after acute seizures. Front Pharmacol 2023; 14:1187819. [PMID: 37601059 PMCID: PMC10433749 DOI: 10.3389/fphar.2023.1187819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common neurological disorders, but still one-third of patients cannot be properly treated by current medication. Thus, we investigated the therapeutic effects of a novel small molecule, NecroX-7, in TLE using both a low [Mg2+]o-induced epileptiform activity model and a mouse model of pilocarpine-induced status epilepticus (SE). NecroX-7 post-treatment enhanced the viability of primary hippocampal neurons exposed to low [Mg2+]o compared to controls in an MTT assay. Application of NecroX-7 after pilocarpine-induced SE also reduced the number of degenerating neurons labelled with Fluoro-Jade B. Immunocytochemistry and immunohistochemistry showed that NecroX-7 post-treatment significantly alleviated ionized calcium-binding adaptor molecule 1 (Iba1) intensity and immunoreactive area, while the attenuation of reactive astrocytosis by glial fibrillary acidic protein (GFAP) staining was observed in cultured hippocampal neurons. However, NecroX-7-mediated morphologic changes of astrocytes were seen in both in vitro and in vivo models of TLE. Finally, western blot analysis demonstrated that NecroX-7 post-treatment after acute seizures could decrease the expression of mixed lineage kinase domain-like pseudokinase (MLKL) and phosphorylated MLKL (p-MLKL), markers for necroptosis. Taken all together, NecroX-7 has potential as a novel medication for TLE with its neuroprotective, anti-inflammatory, and anti-necroptotic effects.
Collapse
Affiliation(s)
- Yihyun Roh
- College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Bin Lee
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Minseo Kim
- College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Hye Kim
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan, Republic of Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, Catholic Neuroscience Institute, Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Yin X, Guo X, Liu Z, Wang J. Advances in the Diagnosis and Treatment of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032844. [PMID: 36769165 PMCID: PMC9917647 DOI: 10.3390/ijms24032844] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that affects approximately one-quarter of the global adult population, posing a significant threat to human health with wide-ranging social and economic implications. The main characteristic of NAFLD is considered that the excessive fat is accumulated and deposited in hepatocytes without excess alcohol intake or some other pathological causes. NAFLD is a progressive disease, ranging from steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma, liver transplantation, and death. Therefore, NAFLD will probably emerge as the leading cause of end-stage liver disease in the coming decades. Unlike other highly prevalent diseases, NAFLD has received little attention from the global public health community. Liver biopsy is currently considered the gold standard for the diagnosis and staging of NAFLD because of the absence of noninvasive and specific biomarkers. Due to the complex pathophysiological mechanisms of NAFLD and the heterogeneity of the disease phenotype, no specific pharmacological therapies have been approved for NAFLD at present, although several drugs are in advanced stages of development. This review summarizes the current evidence on the pathogenesis, diagnosis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangyu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Correspondence: (Z.L.); (J.W.)
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York, NY 11794-3400, USA
- Correspondence: (Z.L.); (J.W.)
| |
Collapse
|
5
|
The Effect of Necrosis Inhibitor on Dextran Sulfate Sodium Induced Chronic Colitis Model in Mice. Pharmaceutics 2023; 15:pharmaceutics15010222. [PMID: 36678851 PMCID: PMC9862178 DOI: 10.3390/pharmaceutics15010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Uncontrolled chronic inflammation and necrosis is characteristic of inflammatory bowel disease (IBD). This study aimed to investigate the effect of necrosis inhibitor (NI, NecroX-7) on a dextran sulfate sodium (DSS) induced chronic colitis model of mice. DSS was administered on days 1-5, and the NI was administered intraperitoneally (3 mg/kg, 30 mg/kg) on days 1, 3, and 5 as well as every other day during the first five days of a three-week cycle. Three cycles of administration were performed. Colitis was evaluated based on the disease activity index (DAI) score, colon length, and histological score. Reverse transcription polymerase chain reaction testing, the Western blot assay, and immunohistochemical staining were performed to determine inflammatory cytokine levels. The NI reduced body weight change and the DAI score. Colon length and the histological score were longer and lower in the NI-treated groups, respectively. The NI decreased the expression of pro-inflammatory cytokines, particularly in tumor necrosis factor alpha (TNF-α) and phosphorylated nuclear factor kappa B (p-NF-κB). Immunohistochemical staining revealed decreased inducible nitric oxide synthase (iNOS) and high mobility group box 1 (HMGB1) levels. Overall, the NI improved DSS induced chronic colitis by attenuating the mRNA expression of pro-inflammatory cytokines such as TNF-α. Therefore, NI use is a potential, novel treatment approach for IBD.
Collapse
|
6
|
Guo J, Shi CX, Zhang QQ, Deng W, Zhang LY, Chen Q, Zhang DM, Gong ZJ. Interventions for non-alcoholic liver disease: a gut microbial metabolites perspective. Therap Adv Gastroenterol 2022; 15:17562848221138676. [PMID: 36506748 PMCID: PMC9730013 DOI: 10.1177/17562848221138676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, non-alcoholic fatty liver disease (NAFLD) has become a leading burden of hepatocellular carcinoma and liver transplantation. Although the exact pathogenesis of NAFLD has not been fully elucidated, recent hypotheses placed more emphasis on the crucial role of the gut microbiome and its derivatives. Reportedly, microbial metabolites such as short-chain fatty acids, amino acid metabolites (indole and its derivatives), bile acids (BAs), trimethylamine N-oxide (TMAO), and endogenous ethanol exhibit sophisticated bioactive properties. These molecules regulate host lipid, glucose, and BAs metabolic homeostasis via modulating nutrient absorption, energy expenditure, inflammation, and the neuroendocrine axis. Consequently, a broad range of research has studied the therapeutic effects of microbiota-derived metabolites. In this review, we explore the interaction of microbial products and NAFLD. We also discuss the regulatory role of existing NAFLD therapies on metabolite levels and investigate the potential of targeting those metabolites to relieve NAFLD.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Qi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Deng
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan-Mei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | | |
Collapse
|
7
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
8
|
Kim YJ, Lee SH, Jeon SM, Silwal P, Seo JY, Hanh BTB, Park JW, Whang J, Lee MJ, Heo JY, Kim SH, Kim JM, Song GY, Jang J, Jo EK. Sirtuin 3 is essential for host defense against Mycobacterium abscessus infection through regulation of mitochondrial homeostasis. Virulence 2021; 11:1225-1239. [PMID: 32835604 PMCID: PMC7549921 DOI: 10.1080/21505594.2020.1809961] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The global incidence of Mycobacterium abscessus (Mabc), a rapidly growing nontuberculous mycobacterial strain that causes treatment-refractory pulmonary diseases, is increasing. Despite this, the host factors that allow for protection against infection are largely unknown. In this study, we found that sirtuin 3 (SIRT3), a mitochondrial protein deacetylase, plays a critical role in host defense against Mabc infection. Mabc decreased SIRT3 and upregulated mitochondrial oxidative stress in macrophages. SIRT3 deficiency led to increased bacterial loads, histopathological, and mitochondrial damage, and pathological inflammation during Mabc infection. Administration of scavengers of mitochondrial reactive oxygen species significantly decreased the in vivo Mabc burden and excessive inflammation, and induced SIRT3 expression in infected lungs. Notably, SIRT3 agonist (resveratrol) significantly decreased Mabc growth and attenuated inflammation in mice and zebrafishes, indicating the key role for SIRT3 in metazoan host defense. Collectively, these data strongly suggest that SIRT3 is a host-directed therapeutic target against Mabc infection by controlling mitochondrial homeostasis.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute , Cheongju, Chungbuk, South Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea
| | - Ju-Young Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,College of Pharmacy, Chungnam National University , Daejeon, Republic of Korea
| | - Bui Thi Bich Hanh
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University , Jinju, Korea.,Division of Applied Life Science (Bk21plus Program), Gyeongsang National University , Jinju, Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology , Jinju, Korea.,Human and Environmental Toxicology Program, Korea University of Science and Technology (UST) , Daejeon, Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC) & Basic Research Section, The Korean Institute of Tuberculosis (KIT) 168-5 , Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min Joung Lee
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Biochemistry, Chungnam National University College of Medicine , Korea
| | - Jun Young Heo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Biochemistry, Chungnam National University College of Medicine , Korea.,Department of Medical Science, Chungnam National University College of Medicine , Daejeon, Korea
| | - Soon Ha Kim
- MitoImmune Therapeutics, Inc ., Ganhnam-gu, Seoul, Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Pathology; Chungnam National University College of Medicine , Korea
| | - Gyu Yong Song
- Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,College of Pharmacy, Chungnam National University , Daejeon, Republic of Korea
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University , Jinju, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine , Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine , Daejeon, Korea.,Department of Medical Science, Chungnam National University College of Medicine , Daejeon, Korea
| |
Collapse
|
9
|
Dai X, Hou H, Zhang W, Liu T, Li Y, Wang S, Wang B, Cao H. Microbial Metabolites: Critical Regulators in NAFLD. Front Microbiol 2020; 11:567654. [PMID: 33117316 PMCID: PMC7575719 DOI: 10.3389/fmicb.2020.567654] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease throughout the world. The relationship between gut microbiota and NAFLD has been extensively investigated. The gut microbiota is involved in the regulation of NAFLD by participating in the fermentation of indigestible food, interacting with the intestinal mucosal immune system, and influencing the intestinal barrier function, leading to signaling alteration. Meanwhile, the microbial metabolites not only affect the signal transduction pathway in the gut but also reach the liver far away from gut. In this review, we focus on the effects of certain key microbial metabolites such as short-chain fatty acids, trimethylamine-N-oxide, bile acids, and endogenous ethanol and indole in NAFLD, and also summarize several potential therapies targeting the gut-liver axis and modulation of gut microbiota metabolites including antibiotics, prebiotics, probiotics, bile acid regulation, and fecal microbiota transplantation. Understanding the complex interactions between microbial metabolites and NAFLD may provide crucial insight into the pathogenesis and treatment of NAFLD.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yun Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
10
|
Kim E, Hwang I, Lee S, Oh J, Chung H, Jin M, Kim SH, Yu KS. Pharmacokinetics and Tolerability of LC28-0126, a Novel Necrosis Inhibitor, After Multiple Ascending Doses: A Phase I Randomized, Double-blind, Placebo-controlled Study in Healthy Male Subjects. Clin Ther 2020; 42:1946-1954.e2. [PMID: 32980184 DOI: 10.1016/j.clinthera.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE LC28-0126 is a reactive oxygen species scavenger being developed for the treatment of various conditions caused by oxidative stress, such as oral mucositis, graft-versus-host disease, and lethal reperfusion injury in acute myocardial infarction. The aim of this study was to assess the tolerability and pharmacokinetic properties of LC28-0126 with multiple IV administrations in healthy male subjects. METHODS A dose-block-randomized, double-blind, placebo-controlled, multiple ascending-dose study was conducted. Subjects received 3-, 10-, 20-, or 30-mg doses of LC28-0126 or inactive control vehicle, infused over 30 min, once daily for 7 days. Blood and urine samples were collected for pharmacokinetics assessment. Tolerability was assessed by the documentation of adverse events, including abnormal findings on physical examination, vital sign measurements, blood oxygen saturation monitoring, 12-lead ECG, continuous ECG monitoring, and clinical laboratory testing. FINDINGS A total of 32 subjects completed the study. After multiple dosing, the plasma concentration of LC28-0126 showed a steep decrease after infusion, followed by slow elimination. Systemic exposure of LC28-0126 was increased proportionally to doses ranging from 3 to 30 mg. The accumulation ratios were 2.58-2.79 on multiple dosing. The fractions excreted unchanged in urine were found to be <5%. All reported drug-related adverse events were injection-site reactions, and no serious adverse events were reported. IMPLICATIONS Multiple administrations of LC28-0126 exhibited a dose-proportional pharmacokinetic profile and were well tolerated at a dose range of 3-30 mg. ClinicalTrials.gov identifier: NCT03196804.
Collapse
Affiliation(s)
- Eunwoo Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Inyoung Hwang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Clinical Trials Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea; Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Myungwon Jin
- Life Sciences Research and Development, LG Chem Ltd, Seoul, Republic of Korea
| | - Soon Ha Kim
- Life Sciences Research and Development, LG Chem Ltd, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Remedying the Mitochondria to Cure Human Diseases by Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5232614. [PMID: 32733635 PMCID: PMC7376439 DOI: 10.1155/2020/5232614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are the ‘engine' of cells. Mitochondrial dysfunction is an important mechanism in many human diseases. Many natural products could remedy the mitochondria to alleviate mitochondria-involved diseases. In this review, we summarized the current knowledge of the relationship between the mitochondria and human diseases and the regulation of natural products to the mitochondria. We proposed that the development of mitochondrial regulators/nutrients from natural products to remedy mitochondrial dysfunction represents an attractive strategy for a mitochondria-involved disorder therapy. Moreover, investigating the mitochondrial regulation of natural products can potentiate the in-depth comprehension of the mechanism of action of natural products.
Collapse
|
12
|
Zhang L, She ZG, Li H, Zhang XJ. Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2020; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
- Basic Medical School, Wuhan University, Wuhan 430071, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Institute of Model Animal of Wuhan University, Luojia Mount Wuchang, Wuhan 430072, China
| |
Collapse
|
13
|
Sharkawi SMZ, El-Shoura EAM, Abo-Youssef AM, Hemeida RAM. The potential hepatoprotective effects of lovastatin combined with oral hypoglycemic agents in streptozotocin-induced diabetes in rats. Immunopharmacol Immunotoxicol 2020; 42:165-173. [PMID: 32114843 DOI: 10.1080/08923973.2020.1733013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aims: Epidemiologic studies have shown that individuals with diabetes have a higher risk of hepatic diseases which represent a true clinical problem. The purpose of the present study was to assess the possible modulatory effect of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor lovastatin on therapeutic efficiency of traditional antidiabetics, as metformin and gliclazide, regarding hepatic complications in streptozotocin (STZ)-induced diabetes in rats.Methods: Animals were divided into seven groups; normal control group, STZ control group (50 mg/kg, i.p., single dose), lovastatin group, metformin group, gliclazide group, lovastatin plus metformin group and lovastatin plus gliclazide group. Serum HMG-CoA reductase, in addition to serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) as hepatocyte integrity loss markers, hepatic tissue thiobarbituric acid reactive substances (TBARS), glutathione reduced (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase as oxidative stress markers, as well as serum tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP) and hepatic nitric oxide end products (NOx) as inflammatory markers were assessed, coupled with a confirmatory histopathological study.Results: The combined effect of lovastatin with metformin or gliclazide was significantly better than either drug alone regarding serum AST, ALP and TNF-α, and hepatic TBARS, GSH, GST, SOD and NOx levels.Conclusions: Hepatic complications associated with diabetes could be improved by combination of metformin or gliclazide with lovastatin.
Collapse
Affiliation(s)
- Souty M Z Sharkawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Menia, Egypt
| |
Collapse
|
14
|
Chloramphenicol Mitigates Oxidative Stress by Inhibiting Translation of Mitochondrial Complex I in Dopaminergic Neurons of Toxin-Induced Parkinson's Disease Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4174803. [PMID: 31534621 PMCID: PMC6732590 DOI: 10.1155/2019/4174803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Paraquat (PQ), an herbicide considered an environmental contributor to the development of Parkinson's disease (PD), induces dopaminergic neuronal loss through reactive oxygen species (ROS) production and oxidative stress by mitochondrial complex I. Most patients with PQ-induced PD are affected by chronic exposure and require a preventive strategy for modulation of disease progression. To identify drugs that are effective in preventing PD, we screened more than 1000 drugs that are currently used in clinics and in studies employing PQ-treated cells. Of these, chloramphenicol (CP) showed the most powerful inhibitory effect. Pretreatment with CP increased the viability of PQ-treated SN4741 dopaminergic neuronal cells and rat primary cultured dopaminergic neurons compared with control cells treated with PQ only. CP pretreatment also reduced PQ-induced ROS production, implying that mitochondrial complex I is a target of CP. This effect of CP reflected downregulation of the mitochondrial complex I subunit ND1 and diminished PQ recycling, a major mechanism of ROS production, and resulted in the prevention of cell loss. Notably, these effects of CP were not observed in rotenone-pretreated SN4741 cells and Rho-negative cells, in which mitochondrial function is defective. Consistent with these results, CP pretreatment of MPTP-treated PD model mice also ameliorated dopaminergic neuronal cell loss. Our findings indicate that the inhibition of mitochondrial complex I with CP protects dopaminergic neurons and may provide a strategy for preventing neurotoxin-induced PD.
Collapse
|
15
|
Zhang WF, Jin YC, Li XM, Yang Z, Wang D, Cui JJ. Protective effects of leptin against cerebral ischemia/reperfusion injury. Exp Ther Med 2019; 17:3282-3290. [PMID: 30988703 PMCID: PMC6447799 DOI: 10.3892/etm.2019.7377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
In recent years, the use of thrombolytic therapy for treating ischemia/reperfusion injury has resulted in damage to the self-regulatory mechanisms of the brain. This is due to the increased production of free radicals, excitatory amino acids and pro-inflammatory cytokines causing secondary damage to the brain. Simple thrombolytic therapy has not been the best approach for treating ischemia/reperfusion injury. Excessive perfusion leads to failure of the body's self-regulatory functions, which in turn increases the area of cerebral edema and aggravates cerebral ischemia. Previous studies have evaluated the satiety hormone leptin as a link between energy expenditure and obesity. Of note, leptin, which is involved in brain development, synaptic transmission and angiogenesis following ischemia/reperfusion injury, has been considered an important factor for treating ischemia/reperfusion injury. The present review outlines the discovery of leptin and discusses its association with cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Wen-Fang Zhang
- Department of Biomedical Research Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Yin-Chuan Jin
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Zhi Yang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Dong Wang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing-Jing Cui
- Department of Medical Affairs, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
16
|
Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15:349-364. [PMID: 29740166 DOI: 10.1038/s41575-018-0009-6] [Citation(s) in RCA: 638] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is considered the progressive form of nonalcoholic fatty liver disease (NAFLD) and is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. A central issue in this field relates to the identification of those factors that trigger inflammation, thus fuelling the transition from nonalcoholic fatty liver to NASH. These triggers of liver inflammation might have their origins outside the liver (such as in adipose tissue or the gut) as well as inside the organ (for instance, lipotoxicity, innate immune responses, cell death pathways, mitochondrial dysfunction and endoplasmic reticulum stress), both of which contribute to NASH development. In this Review, we summarize the currently available information on the key upstream triggers of inflammation in NASH. We further delineate the mechanisms by which liver inflammation is resolved and the implications of a defective pro-resolution process. A better knowledge of these mechanisms should help to design targeted therapies able to halt or reverse disease progression.
Collapse
Affiliation(s)
- Susanne Schuster
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Daniel Cabrera
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centre for Aging and Regeneration (CARE), Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, CA, USA.
| |
Collapse
|
17
|
Hwang IC, Kim JY, Kim JH, Lee JE, Seo JY, Lee JW, Park J, Yang HM, Kim SH, Cho HJ, Kim HS. Therapeutic Potential of a Novel Necrosis Inhibitor, 7-Amino-Indole, in Myocardial Ischemia-Reperfusion Injury. Hypertension 2018; 71:1143-1155. [PMID: 29661840 PMCID: PMC5959205 DOI: 10.1161/hypertensionaha.117.09405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/04/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Supplemental Digital Content is available in the text. Opening of mitochondrial permeability transition pore and Ca2+ overload are main contributors to myocardial ischemia–reperfusion injury, which paradoxically causes a wide variety of myocardial damage. We investigated the protective role of a novel necrosis inhibitor (NecroX-7; NecX) against myocardial ischemia–reperfusion injury using in vitro and in vivo models. H9C2 rat cardiomyoblasts and neonatal cardiomyocytes were exposed to hypoxia–reoxygenation stress after pre-treatment with NecX, vitamin C, a combination of vitamin C and E, N-acetylcysteine, an apoptosis inhibitor (Z-VAD-fmk), or cyclosporine A. The main mechanism of cell death after hypoxia–reoxygenation stress was not apoptosis but necrosis, which was prevented by NecX. Protective effect of NecX was based on its potent reactive oxygen species scavenging activity, especially on mitochondrial reactive oxygen species. NecX preserved mitochondrial membrane potential through prevention of Ca2+ influx and inhibition of mitochondrial permeability transition pore opening, which was more potent than that by cyclosporine A. Using Sprague-Dawley rats exposed to myocardial ischemia for 45 minutes followed by reperfusion, we compared therapeutic efficacies of NecX with cyclosporine A, vitamin C, a combination of vitamin C and E, and 5% dextrose, each administered 5 minutes before reperfusion. NecX markedly inhibited myocardial necrosis and reduced fibrotic area to a greater extent than did cyclosporine A and other treated groups. In addition, NecX preserved systolic function and prevented pathological dilatory remodeling of left ventricle. The novel necrosis inhibitor has a significant protective effect against myocardial ischemia–reperfusion injury through inhibition of mitochondrial permeability transition pore opening, indicating that it is a promising candidate for cardioprotective adjunctive measure on top of reperfusion therapy.
Collapse
Affiliation(s)
- In-Chang Hwang
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Ju-Young Kim
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Ji-Hyun Kim
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.)
| | - Joo-Eun Lee
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Ji-Yun Seo
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Jae-Won Lee
- National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.)
| | - Jonghanne Park
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.)
| | - Han-Mo Yang
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Soon-Ha Kim
- R&D Campus, LG Chem/Ltd., Daejeon, Republic of Korea (S.-H.K.)
| | - Hyun-Jai Cho
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.).,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,Strategic Center of Cell and Bio Therapy for Heart, Diabetes, and Cancer, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-Y.K., J.-E.L., J.-W.L., H.-M.Y., H.-J.C., H.-S.K.)
| | - Hyo-Soo Kim
- From the Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital, Republic of Korea (I.-C.H., J.-H.K., J.P., H.-M.Y., H.-J.C., H.-S.K.) .,National Leading Laboratory for Cardiovascular Stem Cell, Seoul National University College of Medicine, Republic of Korea (I.-C.H., J.-Y.K., J.-H.K., J.-E.L., J.-Y.S., J.-W.L., J.P., H.-M.Y., H.-J.C., H.-S.K.).,and Department of Molecular Medicine and Biopharmaceutical Science, Seoul National University, Republic of Korea (H.-S.K.).,R&D Campus, LG Chem/Ltd., Daejeon, Republic of Korea (S.-H.K.)
| |
Collapse
|
18
|
Chung HK, Kim JT, Kim HW, Kwon M, Kim SY, Shong M, Kim KS, Yi HS. GDF15 deficiency exacerbates chronic alcohol- and carbon tetrachloride-induced liver injury. Sci Rep 2017; 7:17238. [PMID: 29222479 PMCID: PMC5722931 DOI: 10.1038/s41598-017-17574-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) has recently been shown to have an important role in the regulation of mitochondrial function and in the pathogenesis of complex human diseases. Nevertheless, the role of GDF15 in alcohol-induced or fibrotic liver diseases has yet to be determined. In this study, we demonstrate that alcohol- or carbon tetrachloride (CCl4)-mediated hepatic GDF15 production ameliorates liver inflammation and fibrosis. Alcohol directly enhanced GDF15 expression in primary hepatocytes, which led to increased oxygen consumption. Moreover, GDF15 reduced the expression of pro-inflammatory cytokines in liver-resident macrophages, leading to an improvement in inflammation and fibrosis in the liver. GDF15 knockout (KO) mice had more TNF-α-producing T cells and more activated CD4+ and CD8+ T cells in the liver than wild-type mice. Liver-infiltrating monocytes and neutrophils were also increased in the GDF15 KO mice during liver fibrogenesis. These changes in hepatic immune cells were associated with increased tissue inflammation and fibrosis. Finally, recombinant GDF15 decreased the expression of pro-inflammatory cytokines and fibrotic mediators and prevented the activation of T cells in the livers of mice with CCl4-induced liver fibrosis. These results suggest that GDF15 could be a potential therapeutic target for the treatment of alcohol-induced and fibrotic liver diseases.
Collapse
Affiliation(s)
- Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Research Institute for Medical Sciences, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Minjoo Kwon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea.
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
19
|
Chung HK, Ryu D, Kim KS, Chang JY, Kim YK, Yi HS, Kang SG, Choi MJ, Lee SE, Jung SB, Ryu MJ, Kim SJ, Kweon GR, Kim H, Hwang JH, Lee CH, Lee SJ, Wall CE, Downes M, Evans RM, Auwerx J, Shong M. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. J Cell Biol 2017; 216:149-165. [PMID: 27986797 PMCID: PMC5223607 DOI: 10.1083/jcb.201607110] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/09/2016] [Accepted: 11/30/2016] [Indexed: 01/06/2023] Open
Abstract
Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and -non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle-specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell-non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Dongryeol Ryu
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Min Jeong Ryu
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-338, South Korea
| | - Jung Hwan Hwang
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-764, South Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-764, South Korea
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Michael Downes
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 34134, South Korea
| |
Collapse
|
20
|
Kopalli SR, Kang TB, Koppula S. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opin Ther Pat 2016; 26:1239-1256. [PMID: 27568917 DOI: 10.1080/13543776.2016.1230201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Collapse
Affiliation(s)
| | - Tae-Bong Kang
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Sushruta Koppula
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| |
Collapse
|
21
|
Grootaert MO, Schrijvers DM, Van Spaendonk H, Breynaert A, Hermans N, Van Hoof VO, Takahashi N, Vandenabeele P, Kim SH, De Meyer GR, Martinet W. NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis 2016; 252:166-174. [DOI: 10.1016/j.atherosclerosis.2016.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
|
22
|
Biswas SK. NecroX-7 may appear as a new molecule to stabilize atherosclerotic plaques. Atherosclerosis 2016; 252:190-191. [DOI: 10.1016/j.atherosclerosis.2016.07.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
|
23
|
Jacobs A, Warda A, Verbeek J, Cassiman D, Spincemaille P. An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present. ACTA ACUST UNITED AC 2016; 6:185-200. [DOI: 10.1002/cpmo.3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ans Jacobs
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
| | - Anne‐Sophie Warda
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
| | - Jef Verbeek
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center Maastricht The Netherlands
| | - David Cassiman
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
- Metabolic Center, University Hospitals KU Leuven Leuven Belgium
| | - Pieter Spincemaille
- Department of Laboratory Medicine, University Hospitals KU Leuven Leuven Belgium
| |
Collapse
|
24
|
Degterev A, Linkermann A. Generation of small molecules to interfere with regulated necrosis. Cell Mol Life Sci 2016; 73:2251-67. [PMID: 27048812 PMCID: PMC11108466 DOI: 10.1007/s00018-016-2198-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
Abstract
Interference with regulated necrosis for clinical purposes carries broad therapeutic relevance and, if successfully achieved, has a potential to revolutionize everyday clinical routine. Necrosis was interpreted as something that no clinician might ever be able to prevent due to the unregulated nature of this form of cell death. However, given our growing understanding of the existence of regulated forms of necrosis and the roles of key enzymes of these pathways, e.g., kinases, peroxidases, etc., the possibility emerges to identify efficient and selective small molecule inhibitors of pathologic necrosis. Here, we review the published literature on small molecule inhibition of regulated necrosis and provide an outlook on how combination therapy may be most effective in treatment of necrosis-associated clinical situations like stroke, myocardial infarction, sepsis, cancer and solid organ transplantation.
Collapse
Affiliation(s)
- Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, University-Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Fleckenstr. 4, 24105, Kiel, Germany.
| |
Collapse
|
25
|
Jin S, Kim S, Seo H, Jeong J, Ahn K, Kim J, Choi D, Park J, Lee J, Choi S, Seong I, Kim S, Suh K, Jeong JO. Beneficial Effects of Necrosis Modulator, Indole Derivative NecroX-7, on Renal Ischemia-Reperfusion Injury in Rats. Transplant Proc 2016; 48:199-204. [DOI: 10.1016/j.transproceed.2015.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/22/2015] [Indexed: 01/03/2023]
|
26
|
Drug Signature-based Finding of Additional Clinical Use of LC28-0126 for Neutrophilic Bronchial Asthma. Sci Rep 2015; 5:17784. [PMID: 26626943 PMCID: PMC4667219 DOI: 10.1038/srep17784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022] Open
Abstract
In recent decades, global pharmaceutical companies have suffered from an R&D innovation gap between the increased cost of a new drug’s development and the decreased number of approvals. Drug repositioning offers another opportunity to fill the gap because the approved drugs have a known safety profile for human use, allowing for a reduction of the overall cost of drug development by eliminating rigorous safety assessment. In this study, we compared the transcriptional profile of LC28-0126, an investigational drug for acute myocardial infarction (MI) at clinical trial, obtained from healthy male subjects with molecular activity profiles in the Connectivity Map. We identified dyphilline, an FDA-approved drug for bronchial asthma, as a top ranked connection with LC28-0126. Subsequently, we demonstrated that LC28-0126 effectively ameliorates the pathophysiology of neutrophilic bronchial asthma in OVALPS-OVA mice accompanied with a reduction of inflammatory cell counts in the bronchoalveolar lavage fluid (BALF), inhibition of the release of proinflammatory cytokines, relief of airway hyperactivity, and improvement of histopathological changes in the lung. Taken together, we suggest that LC28-0126 could be a potential therapeutic for bronchial asthma. In addition, this study demonstrated the potential general utility of computational drug repositioning using clinical profiles of the investigational drug.
Collapse
|
27
|
Abstract
Obesity and metabolic syndrome pose significant risk for the progression of many types of chronic illness, including liver disease. Hormones released from adipocytes, adipocytokines, associated with obesity and metabolic syndrome, have been shown to control hepatic inflammation and fibrosis. Hepatic fibrosis is the final common pathway that can result in cirrhosis, and can ultimately require liver transplantation. Initially, two key adipocytokines, leptin and adiponectin, appeared to control many fundamental aspects of the cell and molecular biology related to hepatic fibrosis and its resolution. Leptin appears to act as a profibrogenic molecule, while adiponectin has strong-antifibrotic properties. In this review, we emphasize pertinent data associated with these and other recently discovered adipocytokines that may drive or halt the fibrogenic response in the liver.
Collapse
Affiliation(s)
- Neeraj K Saxena
- University of Maryland School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Howard Hall, Room 301, 660W. Redwood Street, Baltimore, MD 21201, USA.
| | - Frank A Anania
- Emory University School of Medicine, Division of Digestive Diseases, Suite 201, 615 Michael Street, NE, Atlanta, GA 30322, USA.
| |
Collapse
|