1
|
Kehar M, Klaassen RJ, Sergi CM. Heterozygous missense mutation of the fibrinogen gene associated with cryptogenic liver disease in a 15-months-old Canadian caucasian child. Ultrastruct Pathol 2025; 49:235-242. [PMID: 39739370 DOI: 10.1080/01913123.2024.2447853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Hepatic fibrinogen storage disease is an uncommon autosomal dominant hereditary illness marked by hypofibrinogenemia and the accumulation of variant fibrinogen in the hepatic endoplasmic reticulum. We present an asymptomatic 15-month-old male with elevated liver enzymes. Test results indicate hypofibrinogenemia. The liver biopsy revealed circular eosinophilic inclusion bodies within the hepatocyte cytoplasm. After diastase pretreatment, the inclusion bodies did not stain using the periodic acid - Schiff procedure. Ultrastructural examination revealed the characteristic fibrinogen storage curvilinear inclusions. Sequence analysis using the Blueprint Genetics (BpG) FLEX Bleeding Disorder/Coagulopathy Panel identified a heterozygous missense variant FGG c.1075 G>C, p. (Gly359Arg). Thus, the patient was diagnosed with hepatic fibrinogen storage disease. Our findings suggest that in patients with asymptomatic elevated liver enzymes presenting with unanticipated hypofibrinogenemia, hepatic fibrinogen storage disorder must be included in the differential diagnosis. Furthermore, our results underscore the significance of molecular diagnosis in patients diagnosed with cryptogenic liver disease.
Collapse
Affiliation(s)
- Mohit Kehar
- Division of Pediatric Gastroenterology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Robert J Klaassen
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Consolato M Sergi
- Anatomical Pathology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
2
|
Gunzer S, Kraus A, Buchroth I, Grüneberg M, Westermann C, Biskup S, Reunert J, Grünewald I, Marquardt T. Hypertransaminasemia and liver fibrosis associated with haptoglobin retention and anhaptoglobinemia in a paediatric patient. Liver Int 2021; 41:2427-2432. [PMID: 34358398 DOI: 10.1111/liv.15029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Cryptogenic elevation of transaminases in childhood can in a few instances be linked to rare hereditary causes. In this paper, a 7-year old girl is reported who was diagnosed with elevated transaminases of unknown origin since infancy. A liver biopsy showed bridging fibrosis, pale eosinophilic intracytoplasmic hepatocellular inclusions and enlarged endoplasmic reticulum cisternae in the hepatocytes. Whole-exome sequencing revealed a homozygous in-frame deletion of 3 base pairs in the haptoglobin gene. The patient is anhaptoglobinemic measured by standard laboratory turbidometry, which was confirmed by Western Blotting and thereby shown to affect both protein chains of haptoglobin. A polyclonal antibody revealed haptoglobin retention in hepatocytes suggesting a defect in haptoglobin secretion. A novel, previously unknown haptoglobin storage disease is suspected to be the reason for the elevated liver enzymes and tissue abnormalities in this patient. The pathophysiology appears to be similar to endoplasmic reticulum storage diseases like alpha-1-antitrypsin-deficiency.
Collapse
Affiliation(s)
- Sophia Gunzer
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Muenster, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Inka Buchroth
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Marianne Grüneberg
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Muenster, Germany
| | - Cordula Westermann
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | | | - Janine Reunert
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Muenster, Germany
| | - Inga Grünewald
- Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, Muenster, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Muenster, Germany
| |
Collapse
|
3
|
Callea F, Francalanci P, Giovannoni I. Hepatic and Extrahepatic Sources and Manifestations in Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22115778. [PMID: 34071368 PMCID: PMC8198767 DOI: 10.3390/ijms22115778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) and fibrinogen are secretory acute phase reactant proteins. Circulating AAT and fibrinogen are synthesized exclusively in the liver. Mutations in the encoding genes result in conformational abnormalities of the two molecules that aggregate within the rough endoplasmic reticulum (RER) instead of being regularly exported. That results in AAT-deficiency (AATD) and in hereditary hypofibrinogenemia with hepatic storage (HHHS). The association of plasma deficiency and liver storage identifies a new group of pathologies: endoplasmic reticulum storage disease (ERSD).
Collapse
Affiliation(s)
- Francesco Callea
- Bugando Medical Centre, Department of Molecular Histopathology, Catholic University Health Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Paola Francalanci
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Isabella Giovannoni
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
| |
Collapse
|
4
|
Asselta R, Paraboschi EM, Duga S. Hereditary Hypofibrinogenemia with Hepatic Storage. Int J Mol Sci 2020; 21:ijms21217830. [PMID: 33105716 PMCID: PMC7659954 DOI: 10.3390/ijms21217830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a 340-kDa plasma glycoprotein constituted by two sets of symmetrical trimers, each formed by the Aα, Bβ, and γ chains (respectively coded by the FGA, FGB, and FGG genes). Quantitative fibrinogen deficiencies (hypofibrinogenemia, afibrinogenemia) are rare congenital disorders characterized by low or unmeasurable plasma fibrinogen antigen levels. Their genetic basis is represented by mutations within the fibrinogen genes. To date, only eight mutations, all affecting a small region of the fibrinogen γ chain, have been reported to cause hereditary hypofibrinogenemia with hepatic storage (HHHS), a disorder characterized by protein aggregation in the endoplasmic reticulum, hypofibrinogenemia, and liver disease of variable severity. Here, we will briefly review the clinic characteristics of HHHS patients and the histological feature of their hepatic inclusions, and we will focus on the molecular genetic basis of this peculiar type of coagulopathy.
Collapse
Affiliation(s)
- Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-02-8224-5215
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
5
|
Structural Characteristics in the γ Chain Variants Associated with Fibrinogen Storage Disease Suggest the Underlying Pathogenic Mechanism. Int J Mol Sci 2020; 21:ijms21145139. [PMID: 32698516 PMCID: PMC7404023 DOI: 10.3390/ijms21145139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Particular fibrinogen γ chain mutations occurring in the γ-module induce changes that hamper γ-γ dimerization and provoke intracellular aggregation of the mutant fibrinogen, defective export and plasma deficiency. The hepatic storage predisposes to the development of liver disease. This condition has been termed hereditary hypofibrinogenemia with hepatic storage (HHHS). So far, seven of such mutations in the fibrinogen γ chain have been detected. We are reporting on an additional mutation occurring in a 3.5-year-old Turkish child undergoing a needle liver biopsy because of the concomitance of transaminase elevation of unknown origin and low plasma fibrinogen level. The liver biopsy showed an intra-hepatocytic storage of fibrinogen. The molecular analysis of the three fibrinogen genes revealed a mutation (Fibrinogen Trabzon Thr371Ile) at exon 9 of the γ chain in the child and his father, while the mother and the brother were normal. Fibrinogen Trabzon represents a new fibrinogen γ chain mutation fulfilling the criteria for HHHS. Its occurrence in a Turkish child confirms that HHHS can present in early childhood and provides relevant epidemiological information on the worldwide distribution of the fibrinogen γ chain mutations causing this disease. By analyzing fibrinogen crystal structures and calculating the folding free energy change (ΔΔG) to infer how the variants can affect the conformation and function, we propose a mechanism for the intracellular aggregation of Fibrinogen Trabzon and other γ-module mutations causing HHHS.
Collapse
|
6
|
Zen Y, Nishigami T. Rethinking fibrinogen storage disease of the liver: ground glass and globular inclusions do not represent a congenital metabolic disorder but acquired collective retention of proteins. Hum Pathol 2020; 100:1-9. [PMID: 32330484 DOI: 10.1016/j.humpath.2020.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
Abstract
Three types of intracytoplasmic inclusions immunoreactive to fibrinogen are collectively diagnosed as hepatic fibrinogen storage disease. This study aimed to better characterize ground glass (type II) and globular (type III) fibrinogen inclusions by the pathological examination of 3 cases and a literature review. Three adults (age: 32-64 years; male/female = 2:1) were unexpectedly found to have fibrinogen-positive ground glass changes (type II inclusions) by liver needle biopsy, against a background of acute hepatitis E, resolving acute cholangitis, or severe lobular hepatitis of unknown etiology. One patient also had fibrinogen-positive intracytoplasmic globules (type III inclusions) in the first biopsy, but they were not present in a second biopsy. None had coagulation abnormalities or hypofibrinogenemia. On immunostaining, both inclusions were strongly positive for not only fibrinogen but also C-reactive protein and C4d. Ultrastructurally, ground glass changes corresponded to membrane-bound cytoplasmic inclusions containing amorphous, granular material. The pathological features of type II fibrinogen inclusions were identical to those of pale bodies in hepatocellular carcinoma. The literature review suggested that type I fibrinogen inclusions characterized by a polygonal appearance are strongly associated with mutations in fibrinogen genes, coagulopathy, and family history, whereas type II/III inclusions are immunoreactive to multiple proteins and typically develop in cases of other unrelated liver diseases. In conclusion, type II and III fibrinogen inclusions do not represent a true hereditary storage disease but instead the collective retention of multiple proteins. Given the lack of clinical significance, a less specific name (e.g., pale body) may be more appropriate for those inclusions.
Collapse
Affiliation(s)
- Yoh Zen
- Institute of Liver Studies, King's College Hospital & King's College London, London SE5 9RS, UK; Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Takashi Nishigami
- Department of Diagnostic Pathology, Steel Memorial Hirohata Hospital, Himeji 671-1122, Japan.
| |
Collapse
|
7
|
Gu L, Wang B, Liu L, Gan Q, Liu X, Chen L, Chen L. Hepatic fibrinogen storage disease and hypofibrinogenemia caused by fibrinogen Aguadilla mutation: a case report. J Int Med Res 2020; 48:300060519898033. [PMID: 31965886 PMCID: PMC7169362 DOI: 10.1177/0300060519898033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatic fibrinogen storage disease is a rare autosomal dominant genetic disorder characterized by hypofibrinogenemia, as well as the retention of variant fibrinogen within the hepatocellular endoplasmic reticulum. Here, we describe an asymptomatic 4-year-old boy with abnormal liver function test results and unexpected hypofibrinogenemia. Liver biopsy showed circular eosinophil inclusion bodies in the hepato-cytoplasm. Immunostaining results of eosinophil inclusion bodies were positive for fibrinogen. Following pretreatment with diastase, the inclusion bodies failed to stain with the periodic acid–Schiff technique; moreover, immunostaining results were positive for fibrinogen, but negative for alpha-1-antitrypsin. Genetic analysis identified a heterozygous missense mutation c.1201C > T (p. Arg401Trp) within the fibrinogen γ-chain (FGG) gene and an additional single nucleotide polymorphism c.-58 A > G within the 5′-untranslated region of the fibrinogen Aα-chain (FGA) gene. Thus, the patient was diagnosed with hepatic fibrinogen storage disease. Our results indicate that, for patients who exhibit chronic liver disease with unexpected hypofibrinogenemia, hepatic fibrinogen storage disease should be considered in the differential diagnosis. Moreover, our findings emphasize the importance of molecular diagnosis in patients with cryptogenic liver disease.
Collapse
Affiliation(s)
- Leilei Gu
- Department of Gastroenterology, Ruijin Hospital North, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | - Bin Wang
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, China
- Department of Pathology, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
| | - Lu Liu
- Department of Hepatology, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaolong Liu
- Department of Hepatology, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Lihong Chen
- Department of Pathology, School of Basic Medical Sciences of Fujian Medical University, Fuzhou, China
- Department of Pathology, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Gastroenterology, Ruijin Hospital North, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Callea F, Giovannoni I, Sari S, Guldal E, Dalgic B, Akyol G, Sogo T, Al-Hussaini A, Maggiore G, Bartuli A, Boldrini R, Francalanci P, Bellacchio E. Fibrinogen Gamma Chain Mutations Provoke Fibrinogen and Apolipoprotein B Plasma Deficiency and Liver Storage. Int J Mol Sci 2017; 18:ijms18122717. [PMID: 29244742 PMCID: PMC5751318 DOI: 10.3390/ijms18122717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
p.R375W (Fibrinogen Aguadilla) is one out of seven identified mutations (Brescia, Aguadilla, Angers, Al du Pont, Pisa, Beograd, and Ankara) causing hepatic storage of the mutant fibrinogen γ. The Aguadilla mutation has been reported in children from the Caribbean, Europe, Japan, Saudi Arabia, Turkey, and China. All reported children presented with a variable degree of histologically proven chronic liver disease and low plasma fibrinogen levels. In addition, one Japanese and one Turkish child had concomitant hypo-APOB-lipoproteinemia of unknown origin. We report here on an additional child from Turkey with hypofibrinogenemia due to the Aguadilla mutation, massive hepatic storage of the mutant protein, and severe hypo-APOB-lipoproteinemia. The liver biopsy of the patient was studied by light microscopy, electron microscopy (EM), and immunohistochemistry. The investigation included the DNA sequencing of the three fibrinogen and APOB-lipoprotein regulatory genes and the analysis of the encoded protein structures. Six additional Fibrinogen Storage Disease (FSD) patients with either the Aguadilla, Ankara, or Brescia mutations were investigated with the same methodology. A molecular analysis revealed the fibrinogen gamma p.R375W mutation (Aguadilla) but no changes in the APOB and MTTP genes. APOB and MTTP genes showed no abnormalities in the other study cases. Light microscopy and EM studies of liver tissue samples from the child led to the demonstration of the simultaneous accumulation of both fibrinogen and APOB in the same inclusions. Interestingly enough, APOB-containing lipid droplets were entrapped within the fibrinogen inclusions in the hepatocytic Endoplasmic Reticulum (ER). Similar histological, immunohistochemical, EM, and molecular genetics findings were found in the other six FSD cases associated with the Aguadilla, as well as with the Ankara and Brescia mutations. The simultaneous retention of fibrinogen and APOB-lipoproteins in FSD can be detected in routinely stained histological sections. The analysis of protein structures unraveled the pathomorphogenesis of this unexpected phenomenon. Fibrinogen gamma chain mutations provoke conformational changes in the region of the globular domain involved in the "end-to-end" interaction, thus impairing the D-dimer formation. Each monomeric fibrinogen gamma chain is left with an abnormal exposure of hydrophobic patches that become available for interactions with APOB and lipids, causing their intracellular retention and impairment of export as a secondary unavoidable phenomenon.
Collapse
Affiliation(s)
- Francesco Callea
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Isabella Giovannoni
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Sinan Sari
- Department Pediatric Gastroenterology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Esendagli Guldal
- Department Pathology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Buket Dalgic
- Department Pediatric Gastroenterology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Gulen Akyol
- Department Pathology, Gazi University Ankara, 06560 Ankara, Turkey.
| | - Tsuyoshi Sogo
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Tobu Hospital 3-6-1, Shimosueyoshi, Tsurumi Ward, Yokohama City, Kanagawa, Japan.
| | - Abdulrahman Al-Hussaini
- Division of Pediatric Gastroenterology, Children's Specialized Hospital, King Fahad Medical City, College of Medicine, Alfaisal University Riyadh 11525, Saudi Arabia.
| | - Giuseppe Maggiore
- Section of Pediatrics, Department of Medical Sciences, University of Ferrara, University Hospital Arcispedale Sant'Anna, 44100 Ferrara, Italy.
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Renata Boldrini
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Paola Francalanci
- Department Pathology and Molecular Histopathology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| | - Emanuele Bellacchio
- Genetics and Rare Diseases, Research Division, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.
| |
Collapse
|
9
|
The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen. Int J Hematol 2017; 105:758-768. [PMID: 28161763 DOI: 10.1007/s12185-017-2185-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2-22.7 and 2.1-24.5%, respectively) and large granular (5.4-25.5 and 7.7-23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.
Collapse
|
10
|
Zhang MH, Knisely AS, Wang NL, Gong JY, Wang JS. Fibrinogen storage disease in a Chinese boy with de novo fibrinogen Aguadilla mutation: Incomplete response to carbamazepine and ursodeoxycholic acid. BMC Gastroenterol 2016; 16:92. [PMID: 27520927 PMCID: PMC4981954 DOI: 10.1186/s12876-016-0507-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
Background Fibrinogen storage disease (FSD) is a rare autosomal-dominant disorder caused by mutation in FGG, encoding the fibrinogen gamma chain. Here we report the first Han Chinese patient with FSD, caused by de novo fibrinogen Aguadilla mutation, and his response to pharmacologic management. Case presentation Epistaxis and persistent clinical-biochemistry test-result abnormalities prompted liver biopsy in a boy, with molecular study of FGG in him and his parents. He was treated with the autophagy enhancer carbamazepine, reportedly effective in FSD, and with ursodeoxycholic acid thereafter. Inclusion bodies in hepatocellular cytoplasm stained immune-histochemically for fibrinogen. Selective analysis of FGG found the heterozygous mutation c.1201C > T (p.Arg401Trp), absent in both parents. Over more than one year’s follow-up, transaminase and gamma-glutamyl transpeptidase activities have lessened but not normalized. Conclusion This report expands the epidemiology of FSD and demonstrates idiosyncrasy in response to oral carbamazepine and/or ursodeoxycholic acid in FSD. Electronic supplementary material The online version of this article (doi:10.1186/s12876-016-0507-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.,Present address: Institute of Pathology, Medical University Graz, Auenbruggerplatz 25, 8036, Graz, Austria
| | - Neng-Li Wang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Jian-She Wang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, 201508, China. .,The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China. .,Department of Pediatrics, Shanghai Medical College, Fudan University, Shanghai, 201102, China.
| |
Collapse
|