1
|
Dandi-Labou J, Kengne-Ouafo JA, Mugenzi L, Tchouakui M, Wondji M, Wondji CS. Susceptibility profile of Anopheles and target site resistance mechanism against organophosphates in Cameroon. PLoS One 2025; 20:e0321825. [PMID: 40402942 PMCID: PMC12097638 DOI: 10.1371/journal.pone.0321825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 05/24/2025] Open
Abstract
Escalating pyrethroid resistance in malaria vectors jeopardizes vector control, necessitating the use of alternative insecticides such as pirimiphos-methyl (organophosphate) for indoor residual spraying (IRS). Tracking the spread of resistance and elucidating its molecular basis are essential for effective resistance management against these insecticides. This study monitored resistance to two organophosphates, malathion (MA) and pirimiphos methyl (PM), in three malaria vectors (Anopheles gambiae s.s., An. coluzzii, and An. funestus s.s.) across Cameroon and explored related resistance mechanisms. WHO tube assays revealed that An. funestus s.s. populations were fully susceptible to both organophosphates; An. coluzzii populations were either fully susceptible (North) or potentially resistant (South; 97% mortality). In contrast, the two An. gambiae s.s. populations in this study were resistant: in the rural agricultural hotspots of Mangoum (94% mortality to PM; 50% to MA) and in peri-urban cultivated location of Nkolondom, which exhibited the highest resistance to both PM (80% mortality) and MA (46% mortality), associated with recorded use of organophosphates by farmers. Genotyping the Ace-1 markers revealed a close association with susceptibility profile, as no resistance allele was observed in An. funestus s.s. and in the northern population of An. coluzzii and a very low frequency in Njombe (3%). In contrast, a higher frequency of Ace-1R was observed in An. gambiae s.s. with a significant association observed with resistance (PM: OR = 20.33, P = 0.04; MA: OR = 98.33, P = 0.0019). Furthermore, analysis of 100 Ace-1 clones showed copy number variation was linked to resistance, as resistant mosquitoes displayed higher copy numbers compared to susceptible individuals. These findings suggest that malaria control with organophosphate-based IRS is a viable alternative in Cameroon; however, it will be necessary to consider the distribution of species and the development of resistance.
Collapse
Affiliation(s)
| | | | - Leon Mugenzi
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | | | - Murielle Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- International Institute of Tropical Agriculture, Yaoundé, Cameroon
| |
Collapse
|
2
|
Bharadwaj N, Sharma R, Subramanian M, Ragini G, Nagarajan SA, Rahi M. Omics Approaches in Understanding Insecticide Resistance in Mosquito Vectors. Int J Mol Sci 2025; 26:1854. [PMID: 40076478 PMCID: PMC11899280 DOI: 10.3390/ijms26051854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, the emergence of insecticide resistance has been a major challenge to global public health. Understanding the molecular mechanisms of this phenomenon in mosquito vectors is paramount for the formulation of effective vector control strategies. This review explores the current knowledge of insecticide resistance mechanisms through omics approaches. Genomic, transcriptomic, proteomic, and metabolomics approaches have proven crucial to understand these resilient vectors. Genomic studies have identified multiple genes associated with insecticide resistance, while transcriptomics has revealed dynamic gene expression patterns in response to insecticide exposure and other environmental stimuli. Proteomics and metabolomics offer insights into protein expression and metabolic pathways involved in detoxification and resistance. Integrating omics data holds immense potential to expand our knowledge on the molecular basis of insecticide resistance in mosquitoes via information obtained from different omics platforms to understand regulatory mechanisms and differential expression of genes and protein, and to identify the transcription factors and novel molecules involved in the detoxification of insecticides. Eventually, these data will help construct predictive models, identify novel strategies, and develop targeted interventions to control vector-borne diseases.
Collapse
Affiliation(s)
- Nikhil Bharadwaj
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | - Rohit Sharma
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | | | | | | | | |
Collapse
|
3
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
4
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
5
|
Dyer NA, Lucas ER, Nagi SC, McDermott DP, Brenas JH, Miles A, Clarkson CS, Mawejje HD, Wilding CS, Halfon MS, Asma H, Heinz E, Donnelly MJ. Mechanisms of transcriptional regulation in Anopheles gambiae revealed by allele-specific expression. Proc Biol Sci 2024; 291:20241142. [PMID: 39288798 PMCID: PMC11407855 DOI: 10.1098/rspb.2024.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Malaria control relies on insecticides targeting the mosquito vector, but this is increasingly compromised by insecticide resistance, which can be achieved by elevated expression of detoxifying enzymes that metabolize the insecticide. In diploid organisms, gene expression is regulated both in cis, by regulatory sequences on the same chromosome, and by trans acting factors, affecting both alleles equally. Differing levels of transcription can be caused by mutations in cis-regulatory modules (CRM), but few of these have been identified in mosquitoes. We crossed bendiocarb-resistant and susceptible Anopheles gambiae strains to identify cis-regulated genes that might be responsible for the resistant phenotype using RNAseq, and CRM sequences controlling gene expression in insecticide resistance relevant tissues were predicted using machine learning. We found 115 genes showing allele-specific expression (ASE) in hybrids of insecticide susceptible and resistant strains, suggesting cis-regulation is an important mechanism of gene expression regulation in A. gambiae. The genes showing ASE included a higher proportion of Anopheles-specific genes on average younger than genes with balanced allelic expression.
Collapse
Affiliation(s)
- Naomi A. Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Eric R. Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Sanjay C. Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Daniel P. McDermott
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Jon H. Brenas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Alistair Miles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Chris S. Clarkson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SA, UK
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, PO Box 7475, Kampala, Uganda
| | - Craig S. Wilding
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, LiverpoolL3 3AF, UK
| | - Marc S. Halfon
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Hasiba Asma
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo-State University of New York, 955 Main Street, Buffalo, NY14203, USA
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, GlasgowG4 0RE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, UK
| |
Collapse
|
6
|
Samano A, Kumar N, Liao Y, Ishtiaq F, Chakraborty M. Genome structural variants shape adaptive success of an invasive urban malaria vector Anopheles stephensi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605641. [PMID: 39211149 PMCID: PMC11360885 DOI: 10.1101/2024.07.29.605641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Global changes are associated with the emergence of several invasive species. However, the genomic determinants of the adaptive success of an invasive species in a new environment remain poorly understood. Genomic structural variants (SVs), consisting of copy number variants, play an important role in adaptation. SVs often cause large adaptive shifts in ecologically important traits, which makes SVs compelling candidates for driving rapid adaptations to environmental changes, which is critical to invasive success. To address this problem, we investigated the role SVs play in the adaptive success of Anopheles stephensi , a primary vector of urban malaria in South Asia and an invasive malaria vector in several South Asian islands and Africa. We collected whole genome sequencing data from 115 mosquitoes from invasive island populations and four locations from mainland India, an ancestral range for the species. We identified 2,988 duplication copy number variants and 16,038 deletions in these strains, with ∼50% overlapping genes. SVs are enriched in genomic regions with signatures of selective sweeps in the mainland and invasive island populations, implying a putative adaptive role of SVs. Nearly all high-frequency SVs, including the candidate adaptive variants, in the invasive island populations are present on the mainland, suggesting a major contribution of existing variation to the success of the island populations. Among the candidate adaptive SVs, three duplications involving toxin-resistance genes evolved, likely due to the widespread application of insecticides in India since the 1950s. We also identify two SVs associated with the adaptation of An. stephensi larvae to brackish water in the island and two coastal mainland populations, where the mutations likely originated. Our results suggest that existing SVs play a vital role in the evolutionary success of An. stephensi in new environmental conditions.
Collapse
|
7
|
Claret JL, Di-Liegro M, Namias A, Assogba B, Makoundou P, Koffi A, Pennetier C, Weill M, Milesi P, Labbé P. Despite structural identity, ace-1 heterogenous duplication resistance alleles are quite diverse in Anopheles mosquitoes. Heredity (Edinb) 2024; 132:179-191. [PMID: 38280976 PMCID: PMC10997782 DOI: 10.1038/s41437-024-00670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Anopheles gambiae s.l. has been the target of intense insecticide treatment since the mid-20th century to try and control malaria. A substitution in the ace-1 locus has been rapidly selected for, allowing resistance to organophosphate and carbamate insecticides. Since then, two types of duplication of the ace-1 locus have been found in An. gambiae s.l. populations: homogeneous duplications that are composed of several resistance copies, or heterogeneous duplications that contain both resistance and susceptible copies. The substitution induces a trade-off between resistance in the presence of insecticides and disadvantages in their absence: the heterogeneous duplications allow the fixation of the intermediate heterozygote phenotype. So far, a single heterogeneous duplication has been described in An. gambiae s.l. populations (in contrast with the multiple duplicated alleles found in Culex pipiens mosquitoes). We used a new approach, combining long and short-read sequencing with Sanger sequencing to precisely identify and describe at least nine different heterogeneous duplications, in two populations of An. gambiae s.l. We show that these alleles share the same structure as the previously identified heterogeneous and homogeneous duplications, namely 203-kb tandem amplifications with conserved breakpoints. Our study sheds new light on the origin and maintenance of these alleles in An. gambiae s.l. populations, and their role in mosquito adaptation.
Collapse
Affiliation(s)
| | | | - Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Benoit Assogba
- Medical Research Council, Unit The Gambia at London School of Hygiene and Tropical Medicine, London, UK
| | | | - Alphonsine Koffi
- National Institute of Public Health/Pierre Richet Institute, Bouake, Côte d'Ivoire
| | | | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237, Uppsala, Sweden
| | - Pierrick Labbé
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
8
|
Akuoko OK, Dhikrullahi SB, Hinne IA, Mohammed AR, Owusu-Asenso CM, Coleman S, Dadzie SK, Kyerematen R, Boakye DA, Wilson MD, Afrane YA. Biting behaviour, spatio-temporal dynamics, and the insecticide resistance status of malaria vectors in different ecological zones in Ghana. Parasit Vectors 2024; 17:16. [PMID: 38195546 PMCID: PMC10775458 DOI: 10.1186/s13071-023-06065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND A significant decrease in malaria morbidity and mortality has been attained using long-lasting insecticide-treated nets and indoor residual spraying. Selective pressure from these control methods influences changes in vector bionomics and behavioural pattern. There is a need to understand how insecticide resistance drives behavioural changes within vector species. This study aimed to determine the spatio-temporal dynamics and biting behaviour of malaria vectors in different ecological zones in Ghana in an era of high insecticide use for public health vector control. METHODS Adult mosquitoes were collected during the dry and rainy seasons in 2017 and 2018 from five study sites in Ghana in different ecological zones. Indoor- and outdoor-biting mosquitoes were collected per hour from 18:00 to 06:00 h employing the human landing catch (HLC) technique. Morphological and molecular species identifications of vectors were done using identification keys and PCR respectively. Genotyping of insecticide-resistant markers was done using the TaqMan SNP genotyping probe-based assays. Detection of Plasmodium falciparum sporozoites was determined using PCR. RESULTS A total of 50,322 mosquitoes belonging to four different genera were collected from all the study sites during the sampling seasons in 2017 and 2018. Among the Anophelines were Anopheles gambiae s.l. 93.2%, (31,055/33,334), An. funestus 2.1%, (690/33,334), An. pharoensis 4.6%, (1545/33,334), and An. rufipes 0.1% (44/33,334). Overall, 76.4%, (25,468/33,334) of Anopheles mosquitoes were collected in the rainy season and 23.6%, (7866/33,334) in the dry season. There was a significant difference (Z = 2.410; P = 0.0160) between indoor-biting (51.1%; 15,866/31,055) and outdoor-biting An. gambiae s.l. (48.9%; 15,189/31,055). The frequency of the Vgsc-1014F mutation was slightly higher in indoor-biting mosquitoes (54.9%) than outdoors (45.1%). Overall, 44 pools of samples were positive for P. falciparum CSP giving an overall sporozoite rate of 0.1%. CONCLUSION Anopheles gambiae s.l. were more abundant indoors across all ecological zones of Ghana. The frequency of G119S was higher indoors than outdoors from all the study sites, but with higher sporozoite rates in outdoor mosquitoes in Dodowa and Kpalsogu. There is, therefore, an urgent need for a supplementary malaria control intervention to control outdoor-biting mosquitoes.
Collapse
Affiliation(s)
- Osei K Akuoko
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
| | - Shittu B Dhikrullahi
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A Hinne
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
- Department of Biochemistry and Molecular Biology, CABNR, University of Nevada, Reno, NV, USA
| | - Abdul R Mohammed
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Christopher M Owusu-Asenso
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Sylvester Coleman
- Department of Clinical Microbiology - Vector Biology Laboratory, School of Medicine and Dentistry (SMD)-College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel K Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Rosina Kyerematen
- African Regional Post-Graduate Programme in Insect Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel A Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, Centre for Vector-Borne Diseases Research, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
9
|
Moss S, Pretorius E, Ceesay S, Hutchins H, da Silva ET, Ndiath MO, Jones RT, Vasileva H, Phelan J, Acford-Palmer H, Collins E, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Genomic surveillance of Anopheles mosquitoes on the Bijagós Archipelago using custom targeted amplicon sequencing identifies mutations associated with insecticide resistance. Parasit Vectors 2024; 17:10. [PMID: 38178249 PMCID: PMC10768400 DOI: 10.1186/s13071-023-06085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Insecticide resistance is reducing the efficacy of vector control interventions, consequently threatening efforts to control vector-borne diseases, including malaria. Investigating the prevalence of molecular markers of resistance is a useful tool for monitoring the spread of insecticide resistance in disease vectors. The Bijagós Archipelago (Bijagós) in Guinea-Bissau is a region of stable malaria transmission where insecticide-treated nets are the mainstay for malaria control. However, the prevalence of molecular markers of insecticide resistance in malaria vectors is not well understood. METHODS A total of 214 Anopheles mosquitoes were analysed from 13 islands across the Bijagós. These mosquitoes were collected using CDC light traps in November 2019, during the peak malaria transmission season. High-throughput multiplex amplicon sequencing was used to investigate the prevalence of 17 different molecular markers associated with insecticide resistance in four genes: vgsc, rdl, ace1 and gste2. RESULTS Of the 17 screened mutations, four were identified in mosquitoes from the Bijagós: vgsc L995F (12.2%), N1570Y (6.2%) and A1746S (0.7%) and rdl A269G (1.1%). This study is the first to report the L995F knock-down resistance (kdr)-west allele in Anopheles melas on the Archipelago. An additional eight non-synonymous single-nucleotide polymorphisms were identified across the four genes which have not been described previously. The prevalences of the vgsc L995F and N1570Y mutations were higher on Bubaque Island than on the other islands in this study; Bubaque is the most populous island in the archipelago, with the greatest population mobility and connection to continental Guinea-Bissau. CONCLUSIONS This study provides the first surveillance data for genetic markers present in malaria vectors from islands across the Bijagós Archipelago. Overall prevalence of insecticide resistance mutations was found to be low. However, the identification of the vgsc L995F and N1570Y mutations associated with pyrethroid resistance warrants further monitoring. This is particularly important as the mainstay of malaria control on the islands is the use of pyrethroid insecticide-treated nets.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Sainey Ceesay
- Medical Research Council, The Gambia (MRCG), Fajara, Gambia
| | - Harry Hutchins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eunice Teixeira da Silva
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
| | | | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Hristina Vasileva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University Hospitals NHS Foundation Trust-St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut Für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
10
|
Badzohre A, Oshaghi MA, Enayati AA, Moosa-Kazemi SH, Nikookar SH, Talebzadeh F, Naseri-Karimi N, Hanafi-Bojd AA, Vatandoost H. Ace-1 Target Site Status and Metabolic Detoxification Associated with Bendiocarb Resistance in the Field Populations of Main Malaria Vector, Anopheles stephensi in Iran. J Arthropod Borne Dis 2023; 17:272-286. [PMID: 38860197 PMCID: PMC11162546 DOI: 10.18502/jad.v17i3.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2024] Open
Abstract
Background Anopheles stephensi is the main vector of malaria in Iran. This study aimed to determine the susceptibility of An. stephensi from the south of Iran to bendiocarb and to investigate biochemical and molecular resistance mechanisms in this species. Methods Wild An. stephensi were collected from Hormozgan Province and reared to the adult stage. The susceptibility test was conducted according to the WHO protocols using bendiocarb impregnated papers supplied by WHO. Also, field An. Stephensi specimens were collected from south of Kerman and Sistan and Baluchistan Provinces. To determine the G119S mutation in the acetylcholinesterase (Ace1) gene, PCR-RFLP using AluI restriction enzyme and PCR direct-sequencing were performed for the three field populations and compared with the available GenBank data. Also, biochemical assays were performed to measure alpha and beta esterases, insensitive acetylcholinesterase, and oxidases in the strains. Results The bioassay tests showed that the An. stephensi field strain was resistant to bendiocarb (mortality rate 89%). Ace1 gene analysis revealed no G119S in the three field populations. Blast search of sequences revealed 98-99% identity with the Ace1 gene from Pakistan and India respectively. Also, the results of biochemical tests revealed the high activity of non-sensitive acetylcholinesterase, alpha and beta-esterase in the resistant strain compared to the susceptible strain. No G119S was detected in this study additionally the enhanced enzyme activity of esterases and acetylcholinesterase suggesting that resistance was metabolic. Conclusion The use of alternative malaria control methods and the implementation of resistance management strategies are suggested in the study area.
Collapse
Affiliation(s)
- Abdollah Badzohre
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Nikookar
- Department of Medical Entomology and Vector Control, Health Sciences Research Center, Addiction Institute, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Talebzadeh
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Naseri-Karimi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute of Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Lee DE, Shin J, Kim YH, Choi KS, Choe H, Lee KP, Lee SH, Kim JH. Inference of selection pressures that drive insecticide resistance in Anopheles and Culex mosquitoes in Korea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105520. [PMID: 37532334 DOI: 10.1016/j.pestbp.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pyrethroids are primarily used for mosquito control in Korea. However, high frequencies of mutations conferring resistance to not only pyrethroids but also to other insecticides have been found in mosquito populations. This study aimed to examine the hypothesis that insecticides used outside of public health may play a role in selection. Briefly, the resistance mutation frequencies to three insecticide groups (pyrethroids, organophosphates, and cyclodienes) were estimated in two representative groups of mosquito species (Anopheles Hyrcanus Group and Culex pipiens complex). The relationship between these frequencies and the land-use status of the collection sites was investigated through multiple regression analysis. In the Anopheles Hyrcanus Group, the frequencies of both ace1 (organophosphate resistance) and rdl (cyclodiene resistance) mutations were positively correlated with 'proximity to golf course', possibly be due to the insecticides used for turf maintenance. They also showed positive correlations with field area and rice paddy area, respectively, suggesting the role of agricultural insecticides in the selection of these resistance traits. For the Cx. pipiens complex, the kdr (pyrethroid resistance), ace1, and rdl mutations were positively correlated with the residential area, field, and rice paddy, respectively. Therefore, pyrethroids used for public health could serve as a direct source of resistance selection pressure against kdr, whereas non-public health insecticides may pose primary selection pressure against the ace1 and rdl traits. The current findings suggest that the insecticides used in agriculture and the golf industry play a significant role in mosquito selection, despite variations in the extent of indirect selection pressure according to the mosquito groups and insecticide classes.
Collapse
Affiliation(s)
- Do Eun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeewoo Shin
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Ho Kim
- Department of Entomology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Kwang Shik Choi
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeyeong Choe
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Si Hyeock Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ju Hyeon Kim
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
12
|
Kouamé RM, Lynd A, Kouamé JK, Vavassori L, Abo K, Donnelly MJ, Edi C, Lucas E. Widespread occurrence of copy number variants and fixation of pyrethroid target site resistance in Anopheles gambiae ( s.l.) from southern Côte d'Ivoire. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100117. [PMID: 36970448 PMCID: PMC10031352 DOI: 10.1016/j.crpvbd.2023.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Resistance to pyrethroid and organophosphate insecticides in the malaria vector Anopheles gambiae (s.l.) is conferred by a variety of genetic mutations, including single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Knowledge of the distribution of these mutations in mosquito populations is a prerequisite for establishing better strategies for their management. In this study, a total of 755 Anopheles gambiae (s.l.) from southern Côte d'Ivoire were exposed to deltamethrin or pirimiphos-methyl insecticides and were screened to assess the distribution of SNPs and CNVs known or believed to confer resistance to one or other of the insecticide classes. Most individuals from the An. gambiae (s.l.) complex were identified by molecular tests as Anopheles coluzzii. Survival to deltamethrin (from 94% to 97%) was higher than to pirimiphos-methyl (from 10% to 49%). In An. gambiae (s.s.), the SNP in the Voltage Gated Sodium Channel (Vgsc) at the 995F locus (Vgsc-995F) was fixed, while other target site mutations were rare or absent (Vgsc-402L: 0%; Vgsc-1570Y: 0%, Acetylcholinesterase Acel-280S: 14%). In An. coluzzii, Vgsc-995F was the target site SNP found at highest frequency (65%) followed by other target site mutations (Vgsc-402L: 36%; Vgsc-1570Y: 0.33%; Acel-280S: 45%). The Vgsc-995S SNP was not present. The presence of the Ace1-280S SNP was found to be significantly linked to the presence of the Ace1-CNV, Ace1_AgDup. Significant association was found between the presence of the Ace1_AgDup and pirimiphos-methyl resistance in An. gambiae (s.s.) but not in An. coluzzii. The deletion Ace1_Del97 was found in one specimen of An. gambiae (s.s.). Four CNVs in the Cyp6aa/Cyp6p gene cluster, which contains genes of known importance for resistance, were detected in An. coluzzii, the most frequent being Dup 7 (42%) and Dup 14 (26%). While none of these individual CNV alleles were significantly associated with resistance, copy number in the Cyp6aa gene region in general was associated with increased resistance to deltamethrin. Elevated expression of Cyp6p3 was nearly associated with deltamethrin resistance, although there was no association of resistance with copy number. Use of alternative insecticides and control methods to arrest resistance spread in An. coluzzii populations is merited.
Collapse
Affiliation(s)
- Ruth M.A. Kouamé
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jackson K.I. Kouamé
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
| | - Laura Vavassori
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Kouabénan Abo
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
13
|
Sun X, Hua W, Wang K, Song J, Zhu B, Gao X, Liang P. A novel V263I mutation in the glutamate-gated chloride channel of Plutella xylostella (L.) confers a high level of resistance to abamectin. Int J Biol Macromol 2023; 230:123389. [PMID: 36706876 DOI: 10.1016/j.ijbiomac.2023.123389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The frequent and extensive use of insecticides leads to the evolution of insecticide resistance, which has become one of the constraints on global agricultural production. Avermectins are microbial-derived insecticides that target a wide number of insect pests, including the diamondback moth Plutella xylostella, an important global pest of brassicaceous vegetables. However, field populations of P. xylostella have evolved serious resistance to avermectins, including abamectin, thereby threatening the efficiency of these insecticides. In this study, a novel valine to isoleucine mutation (V263I) was identified in the glutamate-gated chloride channel (GluCl) of field P. xylostella populations, which showed different levels of resistance to abamectin. Electrophysiological analysis revealed that the V263I mutation significantly reduced the sensitivity of PxGluCl to abamectin by 6.9-fold. Genome-modified Drosophila melanogaster carrying the V263I mutation exhibited 27.1-fold resistance to abamectin. Then, a knockin strain (V263I-KI) of P. xylostella expressing the homozygous V263I mutation was successfully constructed using the CRISPR/Cas9. The V263I-KI had high resistance to abamectin (106.3-fold), but significantly reduced fecundity. In this study, the function of V263I mutation in PxGluCl was verified for the first time. These findings provide a more comprehensive understanding of abamectin resistance mechanisms and lay the foundation for providing a new molecular detection method for abamectin resistance monitoring.
Collapse
Affiliation(s)
- Xi Sun
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Wenjuan Hua
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kunkun Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Bin Zhu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Wang L, Soto A, Remue L, Rosales Rosas AL, De Coninck L, Verwimp S, Bouckaert J, Vanwinkel M, Matthijnssens J, Delang L. First Report of Mutations Associated With Pyrethroid (L1014F) and Organophosphate (G119S) Resistance in Belgian Culex (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2072-2079. [PMID: 36130161 DOI: 10.1093/jme/tjac138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.
Collapse
Affiliation(s)
- Lanjiao Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Alina Soto
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Laure Remue
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Sam Verwimp
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Johanna Bouckaert
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mathias Vanwinkel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
16
|
Wang T, Guo Y, Roellig DM, Li N, Santín M, Lombard J, Kváč M, Naguib D, Zhang Z, Feng Y, Xiao L. Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Mol Biol Evol 2022; 39:6625830. [PMID: 35776423 PMCID: PMC9317183 DOI: 10.1093/molbev/msac150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic recombination plays a critical role in the emergence of pathogens with phenotypes such as drug resistance, virulence, and host adaptation. Here, we tested the hypothesis that recombination between sympatric ancestral populations leads to the emergence of divergent variants of the zoonotic parasite Cryptosporidium parvum with modified host ranges. Comparative genomic analyses of 101 isolates have identified seven subpopulations isolated by distance. They appear to be descendants of two ancestral populations, IIa in northwestern Europe and IId from southwestern Asia. Sympatric recombination in areas with both ancestral subtypes and subsequent selective sweeps have led to the emergence of new subpopulations with mosaic genomes and modified host preference. Subtelomeric genes could be involved in the adaptive selection of subpopulations, while copy number variations of genes encoding invasion-associated proteins are potentially associated with modified host ranges. These observations reveal ancestral origins of zoonotic C. parvum and suggest that pathogen import through modern animal farming might promote the emergence of divergent subpopulations of C. parvum with modified host preference.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Jason Lombard
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80526, USA
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
İnak E. Geographical distribution and origin of acetylcholinesterase mutations conferring acaricide resistance in Tetranychus urticae populations from Turkey. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:49-59. [PMID: 34731389 DOI: 10.1007/s10493-021-00673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is a cosmopolitan pest species that can feed on more than 1000 host plant species. Historically, organophosphate (OP) and carbamate insecticides have been used to control this extremely polyphagous pest. However, its ability to develop acaricide resistance rapidly has led to failure in control. Mutations in acetylcholinesterase gene (ace), the target-site of OP and carbamate insecticides, have been reported to be one of the major mechanisms underlying this developing resistance. In this study, mutations previously associated with resistance (G119S, A201S, T280A, G328A, F331W/Y) in ace have been screened in 37 T. urticae populations collected across Turkey. All mutations were found in various populations, except G119S. Almost all populations had F331W/Y mutation (being fixed in 32 populations), whereas only two populations harboured A201S mutation, but not fixed. On the other hand, more than half of the populations contained T280A and G328A mutations. In addition, the presence of same haplotypes in populations originating from distinct geographic locations and a wide variety of ace haplotypes might indicate multiple origins of F331W and F331Y mutations; however, this needs further investigation. The results of area-wide screening showed that ace mutations are widely distributed among T. urticae populations. Therefore, the use of this group of insecticides should be limited or only rotational use might be regarded as a resistance management tool due to its different mode of action from other main acaricide groups in T. urticae control across Turkey.
Collapse
Affiliation(s)
- Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Diskapi, Ankara, Turkey.
| |
Collapse
|
18
|
Koç N, İnak E, Nalbantoğlu S, Alpkent YN, Dermauw W, Van Leeuwen T. Biochemical and molecular mechanisms of acaricide resistance in Dermanyssus gallinae populations from Turkey. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104985. [PMID: 34955178 DOI: 10.1016/j.pestbp.2021.104985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The poultry red mite, Dermanyssus gallinae, is the most important blood sucking ectoparasite of egg laying hens and causes economic losses in poultry farms worldwide. Although various management methods exist, the control of poultry red mites (PRMs) mainly relies on acaricides such as pyrethroids and organophosphates (OPs) in many regions of the world. However, repeated use of these synthetic chemicals has resulted in resistance development causing control failure of PRM. In this study, we investigated acaricide resistance mechanisms of Turkish PRM populations. First, we obtained the COI sequence from 30 PRM populations from different regions in Turkey and identified four different COI haplotypes. Toxicity assays showed that four field-collected PRM populations were highly resistant to the pyrethroid alpha-cypermethrin, with resistance ratios (RRs) varying between 100- and 400-fold, while two of these populations had a RR of more than 24-fold against the OP acaricide phoxim. Biochemical assays showed a relatively higher activity of glutathione-S-transferases and carboxyl-cholinesterases, two well-known classes of detoxification enzymes, in one of these resistant populations. In addition, we also screened for mutations in the gene encoding the voltage-gated sodium channel (vgsc) and acetylcholinesterase 1 (ace-1), the target-site of pyrethroids and OPs, respectively. In all but two PRM populations, at least one vgsc mutation was detected. A total of four target-site mutations, previously associated with pyrethroid resistance, M918T, T929I, F1534L, F1538L were found in domain II and III of the VGSC. The T929I mutation was present in the vgsc of almost all PRM populations, while the other mutations were only found at low frequency. The G119S/A mutation in ace-1, previously associated with OP resistance, was found in PRM for the first time and present in fourteen populations. Last, both alive and dead PRMs were genotyped after pesticide exposure and supported the possible role of target-site mutations, T929I and G119S, in alpha-cypermethrin and phoxim resistance, respectively. To conclude, our study provides a current overview of resistance levels and resistance mutations in Turkish PRM populations and might aid in the design of an effective resistance management program of PRM in Turkey.
Collapse
Affiliation(s)
- Nafiye Koç
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Diskapi 06110, Ankara, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Diskapi 06110, Ankara, Turkey
| | - Serpil Nalbantoğlu
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Diskapi 06110, Ankara, Turkey
| | - Yasin Nazım Alpkent
- Republic of Turkey Ministry of Agriculture and Forestry Directorate of Plant Protection Central Research Institute, Ministry of Agriculture and Forestry, Yenimahalle 06172, Ankara, Turkey
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 8920 Merelbeke, Belgium; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Margus A, Piiroinen S, Lehmann P, Grapputo A, Gilbert L, Chen YH, Lindström L. Sequence variation and regulatory variation in acetylcholinesterase genes contribute to insecticide resistance in different populations of Leptinotarsa decemlineata. Ecol Evol 2021; 11:15995-16005. [PMID: 34824806 PMCID: PMC8601895 DOI: 10.1002/ece3.8269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 01/02/2023] Open
Abstract
Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g., mutation profiles) and regulatory (e.g., the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos-methyl and carbaryl insecticides than Belchow beetles, despite a similar frequency of resistance-associated alleles (i.e., S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S and F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos-methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.
Collapse
Affiliation(s)
- Aigi Margus
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Saija Piiroinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Philipp Lehmann
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of ZoologyStockholm UniversityStockholmSweden
- Zoological Institute and MuseumGreifswald UniversityGreifswaldGermany
| | | | | | - Yolanda H. Chen
- Department of Plant and Soil ScienceUniversity of VermontBurlingtonVermontUSA
| | - Leena Lindström
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
20
|
Andreazza F, Oliveira EE, Martins GF. Implications of Sublethal Insecticide Exposure and the Development of Resistance on Mosquito Physiology, Behavior, and Pathogen Transmission. INSECTS 2021; 12:insects12100917. [PMID: 34680686 PMCID: PMC8539869 DOI: 10.3390/insects12100917] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Mosquitoes are one of the greatest threats to human lives; they transmit a wide range of pathogens, including viruses that cause lethal diseases. Mosquitoes are found in both aquatic (as larvae or pupae) and terrestrial (as adults) environments during their complex life cycle. For decades, insecticides have been systematically used on mosquitoes with the aim to reduce their population. Little is known about how the stress resulting from the exposure of mosquitoes to insecticides impacts the tri-partite relationship between the mosquitoes, their vertebrate hosts, and the pathogens they transmit. In this work, we review existing experimental evidence to obtain a broad picture on the potential effects of the (sub)lethal exposure of hematophagous mosquitoes to different insecticides. We have focused on studies that have advanced our understanding of their physiological and behavioral responses (including the mechanisms behind insecticide resistance) and the spread of pathogens by these vectors—understudied but critically important issues for epidemiology. Studying these exposure-related effects is of paramount importance for predicting how they respond to insecticide exposure and whether this exposure makes them more or less likely to transmit pathogens. Abstract For many decades, insecticides have been used to control mosquito populations in their larval and adult stages. Although changes in the population genetics, physiology, and behavior of mosquitoes exposed to lethal and sublethal doses of insecticides are expected, the relationships between these changes and their abilities to transmit pathogens remain unclear. Thus, we conducted a comprehensive review on the sublethal effects of insecticides and their contributions to insecticide resistance in mosquitoes, with the main focus on pyrethroids. We discuss the direct and acute effects of sublethal concentrations on individuals and populations, the changes in population genetics caused by the selection for resistance after insecticide exposure, and the major mechanisms underlying such resistance. Sublethal exposures negatively impact the individual’s performance by affecting their physiology and behavior and leaving them at a disadvantage when compared to unexposed organisms. How these sublethal effects could change mosquito population sizes and diversity so that pathogen transmission risks can be affected is less clear. Furthermore, despite the beneficial and acute aspects of lethality, exposure to higher insecticide concentrations clearly impacts the population genetics by selecting resistant individuals, which may bring further and complex interactions for mosquitoes, vertebrate hosts, and pathogens. Finally, we raise several hypotheses concerning how the here revised impacts of insecticides on mosquitoes could interplay with vector-mediated pathogens’ transmission.
Collapse
Affiliation(s)
- Felipe Andreazza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (F.A.); (E.E.O.)
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (F.A.); (E.E.O.)
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Correspondence:
| |
Collapse
|
21
|
A survey of insecticide resistance-conferring mutations in multiple targets in Anopheles sinensis populations across Sichuan, China. Parasit Vectors 2021; 14:169. [PMID: 33743789 PMCID: PMC7981990 DOI: 10.1186/s13071-021-04662-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
Background Sichuan province is located in the southwest of China, and was previously a malaria-endemic region. Although no indigenous malaria case has been reported since 2011, the number of imported cases is on the rise. Insecticide-based vector control has played a central role in the prevention of malaria epidemics. However, the efficacy of this strategy is gravely challenged by the development of insecticide resistance. Regular monitoring of insecticide resistance is essential to inform evidence-based vector control. Unfortunately, almost no information is currently available on the status of insecticide resistance and associated mechanisms in Anopheles sinensis, the dominant malaria vector in Sichuan. In this study, efforts were invested in detecting the presence and frequency of insecticide resistance-associated mutations in three genes that encode target proteins of several classes of commonly used insecticides. Methods A total of 446 adults of An. sinensis, collected from 12 locations across Sichuan province of China, were inspected for resistance-conferring mutations in three genes that respectively encode acetylcholinesterase (AChE), voltage-gated sodium channel (VGSC), and GABA receptor (RDL) by DNA Sanger sequencing. Results The G119S mutation in AChE was detected at high frequencies (0.40–0.73). The predominant ace-1 genotype was GGC/AGC (119GS) heterozygotes. Diverse variations at codon 1014 were found in VGSC, leading to three different amino acid substitutions (L1014F/C/S). The 1014F was the predominant resistance allele and was distributed in all 12 populations at varying frequencies from 0.03 to 0.86. The A296S mutation in RDL was frequently present in Sichuan, with 296SS accounting for more than 80% of individuals in six of the 12 populations. Notably, in samples collected from Chengdu (DJY) and Deyang (DYMZ), almost 30% of individuals were found to be resistant homozygotes for all three targets. Conclusions Resistance-related mutations in three target proteins of the four main classes of insecticides were prevalent in most populations. This survey reveals a worrisome situation of multiple resistance genotypes in Sichuan malaria vector. The data strengthen the need for regular monitoring of insecticide resistance and establishing a region-customized vector intervention strategy.
Graphical abstract ![]()
Collapse
|
22
|
Guan F, Hou B, Dai X, Liu S, Liu J, Gu Y, Jin L, Yang Y, Fabrick JA, Wu Y. Multiple origins of a single point mutation in the cotton bollworm tetraspanin gene confers dominant resistance to Bt cotton. PEST MANAGEMENT SCIENCE 2021; 77:1169-1177. [PMID: 33236463 DOI: 10.1002/ps.6192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Transgenic crops producing insecticidal proteins derived from Bacillus thuringiensis (Bt) are used globally to kill key insect pests and provide numerous benefits, including improved pest management, increased profits, reduced insecticide use, and increased biological control. Unfortunately, such benefits are rapidly being lost by the evolution of Bt resistance by pests. RESULTS The main strategy to delay resistance relies on the use of non-Bt refuge plants to produce sufficient susceptible insects that mate with rare resistant insects emerging from Bt crops, essentially diluting and/or removing resistance alleles from pest populations. A key assumption for the success of this refuge strategy is that inheritance of resistance is recessive. In China, dominant resistance to Cry1Ac Bt cotton by the cotton bollworm Helicoverpa armigera is increasing and is associated with a mutation in the tetraspanin HaTSPAN1 gene, conferring more than 125-fold resistance. Here, we used amplicon sequencing to test the hypotheses that the HaTSPAN1 mutation either arose from a single event and spread or that the mutation evolved independently several times throughout northern China. From three laboratory strains and 28 field populations sampled from northern China, we identified six resistant and 50 susceptible haplotypes. Phylogenetic analysis indicates that the HaTSPAN1 mutation arose from at least four independent origins and spread to their current distributions. CONCLUSION The results provide valuable information about the evolutionary origins of dominant resistance to Cry1Ac Bt cotton in northern China and offer rationale for the rapid increase in field-evolved resistance in these areas, where the implementation of additional practical resistance management is needed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fang Guan
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bofeng Hou
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Dai
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sitong Liu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Juanjuan Liu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Gu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey A Fabrick
- USDA ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Grau-Bové X, Lucas E, Pipini D, Rippon E, van ‘t Hof AE, Constant E, Dadzie S, Egyir-Yawson A, Essandoh J, Chabi J, Djogbénou L, Harding NJ, Miles A, Kwiatkowski D, Donnelly MJ, Weetman D, The Anopheles gambiae 1000 Genomes Consortium. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genet 2021; 17:e1009253. [PMID: 33476334 PMCID: PMC7853456 DOI: 10.1371/journal.pgen.1009253] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/02/2021] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arjèn E. van ‘t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc Djogbénou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institut Régional de Santé Publique, Université d’Abomey-Calavi, Benin
| | - Nicholas J. Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Alistair Miles
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
24
|
Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii. Genome Res 2020; 30:1533-1546. [PMID: 32989001 PMCID: PMC7605271 DOI: 10.1101/gr.262790.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023]
Abstract
Mosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with a high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high-quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii We analyzed whole genomes of 1142 individual mosquitoes sampled from the wild in 13 African countries, as well as a further 234 individuals comprising parents and progeny of 11 laboratory crosses. The data resource includes high-confidence single-nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We use these data to analyze genetic population structure and characterize genetic diversity within and between populations. We illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance and for accelerating research and development of new vector control tools. It also provides a unique resource for the study of population genomics and evolutionary biology in eukaryotic species with high levels of genetic diversity under strong anthropogenic evolutionary pressures.
Collapse
|
25
|
Keïta M, Kané F, Thiero O, Traoré B, Zeukeng F, Sodio AB, Traoré SF, Djouaka R, Doumbia S, Sogoba N. Acetylcholinesterase (ace-1 R) target site mutation G119S and resistance to carbamates in Anopheles gambiae (sensu lato) populations from Mali. Parasit Vectors 2020; 13:283. [PMID: 32503614 PMCID: PMC7275337 DOI: 10.1186/s13071-020-04150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) are major malaria vector control strategies in Mali. The success of control strategies depends on a better understanding of the status of malaria vectors with respect to the insecticides used. In this study we evaluate the level of resistance of Anopheles gambiae (sensu lato) to bendiocarb and the molecular mechanism that underlies it. METHODS Larvae of An. gambiae (s.l.) were collected from breeding habitats encountered in the three study sites and bioassayed with bendiocarb. The ace-1 target site substitution G119S was genotyped using a TaqMan assay. RESULTS The three species of the An. gambiae complex in Mali, i.e. An. arabiensis, An. coluzzii and An. gambiae (s.s.) were found in sympatry in the three surveyed localities with different frequencies. We observed a resistance and suspicious resistance of the three species to bendiocarb with a mortality rate ranging from 37% to 86%. The allelic frequency of the G119S mutation was higher in An. gambiae (s.s.) compared to the other two species; 42.86%, 25.61% and 16.67% respectively in Dangassa, Koula, and Karadié. The allelic frequency of G119S in An. coluzzii ranged from 4.5% to 8.33% and from 1.43% to 21.15% for An. arabiensis. After exposure to bendiocarb, the G119S mutation was found only in survivors. The survival of Anopheles gambiae (s.l) populations from the three surveyed localities was associated with the presence of the mutation. CONCLUSIONS The study highlights the implication of G119S mutation in bendiocarb resistance in An. gambiae (s.s.), An. arabiensis and An. coluzzii populations from the three surveyed localities.
Collapse
Affiliation(s)
- Moussa Keïta
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.
| | - Fousseyni Kané
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Oumar Thiero
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Boissé Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Francis Zeukeng
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), 08 Tripostal, P.O. Box 0932, Cotonou, Benin
| | - Ambiélè Bernard Sodio
- Faculty of Science and Technique, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sekou Fantamady Traoré
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Rousseau Djouaka
- The AgroEcohealth Platform, International Institute of Tropical Agriculture (IITA-Benin), 08 Tripostal, P.O. Box 0932, Cotonou, Benin
| | - Seydou Doumbia
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nafomon Sogoba
- Malaria Research and Training Center, International Center for Excellence in Research, Faculty of Medicine and Odonto Stomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
26
|
Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon. Genes (Basel) 2019; 10:genes10100741. [PMID: 31554225 PMCID: PMC6827028 DOI: 10.3390/genes10100741] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/13/2019] [Indexed: 01/29/2023] Open
Abstract
A key factor affecting malaria vector control efforts in Cameroon is the rapid expansion of insecticide resistance in Anopheles gambiae s.l (An. gambiae) populations; however, mechanisms involved in insecticide resistance in forest mosquito populations are still not well documented yet. The present study was conducted to screen molecular mechanisms conferring insecticide resistance in An. gambiae s.l. populations from the South Cameroon forest region. WHO bioassays were conducted with F0 An. gambiae females aged three to four days from forest (Sangmelima, Nyabessan, and Mbandjock) and urban sites (Yaoundé (Bastos and Nkolondom)), against pyrethroids (permethrin 0.75% and deltamethrin 0.05%) and carbamates (bendiocarb 0.1%). Members of the An. Gambiae s.l. species complex were identified using molecular diagnostic tools. TaqMan assays were used to screen for target site mutations. The expression profiles of eight genes implicated in insecticide resistance were assessed using RT-qPCR. Cuticle hydrocarbon lipids were measured to assess their potential implication in insecticide resistance. Both An. Gambiae and An. coluzzii were detected. An. gambiae was highly prevalent in Sangmelima, Nyabessan, Mbandjock, and Nkolondom. An. coluzzii was the only species found in the Yaoundé city center (Bastos). Low mortality rate to both pyrethroids and bendiocarb was recorded in all sites. High frequency of L1014F allele (75.32–95.82%) and low frequencies of L1014S (1.71–23.05%) and N1575Y (5.28–12.87%) were recorded. The G119S mutation (14.22–35.5%) was detected for the first time in An. gambiae populations from Cameroon. This mutation was rather absent from An. coluzzii populations. The detoxification genes Cyp6m2, Cyp9k1, Cyp6p4, Cyp6z1, as well as Cyp4g16 which catalyzes epicuticular hydrocarbon biosynthesis, were found to be overexpressed in at least one population. The total cuticular hydrocarvbon content, a proxy of cuticular resistance, did not show a pattern associated with pyrethroid resistance in these populations. The rapid emergence of multiple resistance mechanisms in An. Gambiae s.l. population from the South Cameroon forest region is of big concern and could deeply affect the sustainability of insecticide-based interventions strategies in this region.
Collapse
|
27
|
Lucas ER, Rockett KA, Lynd A, Essandoh J, Grisales N, Kemei B, Njoroge H, Hubbart C, Rippon EJ, Morgan J, Van't Hof AE, Ochomo EO, Kwiatkowski DP, Weetman D, Donnelly MJ. A high throughput multi-locus insecticide resistance marker panel for tracking resistance emergence and spread in Anopheles gambiae. Sci Rep 2019; 9:13335. [PMID: 31527637 PMCID: PMC6746726 DOI: 10.1038/s41598-019-49892-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/03/2019] [Indexed: 01/11/2023] Open
Abstract
The spread of resistance to insecticides in disease-carrying mosquitoes poses a threat to the effectiveness of control programmes, which rely largely on insecticide-based interventions. Monitoring mosquito populations is essential, but obtaining phenotypic measurements of resistance is laborious and error-prone. High-throughput genotyping offers the prospect of quick and repeatable estimates of resistance, while also allowing resistance markers to be tracked and studied. To demonstrate the potential of highly-mulitplexed genotypic screening for measuring resistance-association of mutations and tracking their spread, we developed a panel of 28 known or putative resistance markers in the major malaria vector Anopheles gambiae, which we used to screen mosquitoes from a wide swathe of Sub-Saharan Africa (Burkina Faso, Ghana, Democratic Republic of Congo (DRC) and Kenya). We found resistance association in four markers, including a novel mutation in the detoxification gene Gste2 (Gste2-119V). We also identified a duplication in Gste2 combining a resistance-associated mutation with its wild-type counterpart, potentially alleviating the costs of resistance. Finally, we describe the distribution of the multiple origins of kdr resistance, finding unprecedented diversity in the DRC. This panel represents the first step towards a quantitative genotypic model of insecticide resistance that can be used to predict resistance status in An. gambiae.
Collapse
Affiliation(s)
- Eric R Lucas
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Amy Lynd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - John Essandoh
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Department of Wildlife and Entomology, University of Cape Coast, Cape Coast, Ghana
| | - Nelson Grisales
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Abt Associates, 6130 Executive BLVD, Rockville, MD, United States
| | - Brigid Kemei
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Harun Njoroge
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Emily J Rippon
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - John Morgan
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Arjen E Van't Hof
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric O Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.,Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - David Weetman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
28
|
Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus. Sci Rep 2019; 9:11406. [PMID: 31388075 PMCID: PMC6684662 DOI: 10.1038/s41598-019-47850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes associated with insecticide resistance. High levels of insecticide resistance were observed for five out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63-3.29%. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly significant association (p < 0.0001; OR = 25) between resistance and Ace1-119S. However, synergist assays using the P450 inhibitor PBO, or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60 K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450 Cyp6z18 showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of detoxification enzymes.
Collapse
|
29
|
Nobre T, Gomes L, Rei FT. A Re-Evaluation of Olive Fruit Fly Organophosphate-Resistant Ace Alleles in Iberia, and Field-Testing Population Effects after in-Practice Dimethoate Use. INSECTS 2019; 10:insects10080232. [PMID: 31374903 PMCID: PMC6723829 DOI: 10.3390/insects10080232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023]
Abstract
The management of the olive fruit fly (Bactrocera oleae) is traditionally based upon the use of organophosphate insecticides, mainly dimethoate. In this evolutionary arms race between man and pest, the flies have adapted a pesticide resistance, implying two point-mutations of the Ace gene -I214V and G488S- and a 9bp deletion -Δ3Q. We revisited 11 Iberian locations to evaluate this adaptation of organophosphate (OP)-resistant alleles through amplicon sequencing. Screening for populations where the wild type is prevalent allows an identification of hotspots for targeted mitigation measures; we have hence refined the scale to the region with the lowest OP-resistant alleles frequency 71 locations were sampled and individuals checked using a fast and low-cost allele-specific-primer polymerase chain reaction (ASP-PCR) method]. An increase in Ace gene point-mutations was observed, and the Δ3Q mutation remains undetected. The lowest frequencies of the OP-resistant alleles remain in the west, underlining the hypothesis of an introduction of resistance from eastern Mediterranean areas. A field test was performed by sampling the fly population before and after in-practice dimethoate application. A clear reduction in olive fruit fly numbers was observed, with no relevant changes in the genotypic frequencies of the resistance alleles. The findings are discussed in frame of the type and intensity of the selection pressure that has led to the adaptation to resistance and its consequences from the producer perspective.
Collapse
Affiliation(s)
- Tânia Nobre
- Laboratory of Entomology, ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, 7006-554 Évora, Portugal.
| | - Luis Gomes
- Laboratory of Entomology, ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, 7006-554 Évora, Portugal
| | - Fernando Trindade Rei
- Laboratory of Entomology, ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, 7006-554 Évora, Portugal
| |
Collapse
|
30
|
Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN, Kwiatkowski DP, Weetman D, Donnelly MJ. Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Res 2019; 29:1250-1261. [PMID: 31345938 PMCID: PMC6673711 DOI: 10.1101/gr.245795.118] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
Abstract
Polymorphisms in genetic copy number can influence gene expression, coding sequence, and zygosity, making them powerful actors in the evolutionary process. Copy number variants (CNVs) are however understudied, being more difficult to detect than single-nucleotide polymorphisms. We take advantage of the intense selective pressures on the major malaria vector Anopheles gambiae, caused by the widespread use of insecticides for malaria control, to investigate the role of CNVs in the evolution of insecticide resistance. Using the whole-genome sequencing data from 1142 samples in the An. gambiae 1000 genomes project, we identified 250 gene-containing CNVs, encompassing a total of 267 genes of which 28 were in gene families linked to metabolic insecticide resistance, representing significant enrichment of these families. The five major gene clusters for metabolic resistance all contained CNVs, with 44 different CNVs being found across these clusters and multiple CNVs frequently covering the same genes. These 44 CNVs are widespread (45% of individuals carry at least one of them) and have been spreading through positive selection, indicated by their high local frequencies and extended haplotype homozygosity. Our results demonstrate the importance of CNVs in the response to selection, highlighting the urgent need to identify the contribution of each CNV to insecticide resistance and to track their spread as the use of insecticides in malaria endemic countries intensifies and as the operational deployment of next-generation bed nets targeting metabolic resistance gathers pace. Our detailed descriptions of CNVs found across the species range provide the tools to do so.
Collapse
Affiliation(s)
- Eric R Lucas
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Nicholas J Harding
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
31
|
Simma EA, Dermauw W, Balabanidou V, Snoeck S, Bryon A, Clark RM, Yewhalaw D, Vontas J, Duchateau L, Van Leeuwen T. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST MANAGEMENT SCIENCE 2019; 75:1808-1818. [PMID: 30740870 DOI: 10.1002/ps.5374] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Vector control is the main intervention in malaria control and elimination strategies. However, the development of insecticide resistance is one of the major challenges for controlling malaria vectors. Anopheles arabiensis populations in Ethiopia showed resistance against both DDT and the pyrethroid deltamethrin. Although an L1014F target-site resistance mutation was present in the voltage gated sodium channel of investigated populations, the levels of resistance indicated the presence of additional resistance mechanisms. In this study, we used genome-wide transcriptome profiling by RNAseq to assess differentially expressed genes between three deltamethrin and DDT resistant An. arabiensis field populations - Asendabo, Chewaka and Tolay - and two susceptible strains - Sekoru and Mozambique. RESULTS Both RNAseq analysis and RT-qPCR showed that a glutathione-S-transferase, gstd3, and a cytochrome P450 monooxygenase, cyp6p4, were significantly overexpressed in the group of resistant populations compared to the susceptible strains, suggesting that the enzymes they encode play a key role in metabolic resistance against deltamethrin or DDT. Furthermore, a gene ontology enrichment analysis showed that expression changes of cuticle related genes were strongly associated with insecticide resistance. Although this did not translate in increased thickness of the procuticle, a higher cuticular hydrocarbon content was observed in a resistant population. CONCLUSION Our transcriptome sequencing of deltamethrin and DDT resistant An. arabiensis populations from Ethiopia suggests non-target site resistance mechanisms and paves the way for further investigation of the role of cuticle composition in insecticide resistance of malaria vectors. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eba A Simma
- Department of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Simon Snoeck
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Astrid Bryon
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard M Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, College of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Luc Duchateau
- Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Dhandapani RK, Gurusamy D, Howell JL, Palli SR. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci Rep 2019; 9:8775. [PMID: 31217512 PMCID: PMC6584730 DOI: 10.1038/s41598-019-45019-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023] Open
Abstract
Mosquito-borne diseases are a major threat to human health and are responsible for millions of deaths globally each year. Vector control is one of the most important approaches used in reducing the incidence of these diseases. However, increasing mosquito resistance to chemical insecticides presents challenges to this approach. Therefore, new strategies are necessary to develop the next generation vector control methods. Because of the target specificity of dsRNA, RNAi-based control measures are an attractive alternative to current insecticides used to control disease vectors. In this study, Chitosan (CS) was cross-linked to sodium tripolyphosphate (TPP) to produce nano-sized polyelectrolyte complexes with dsRNA. CS-TPP-dsRNA nanoparticles were prepared by ionic gelation method. The encapsulation efficiency, protection of dsRNA from nucleases, cellular uptake, in vivo biodistribution, larval mortality and gene knockdown efficiency of CS-TPP-dsRNA nanoparticles were determined. The results showed that at a 5:1 weight ratio of CS-TPP to dsRNA, nanoparticles of less than 200 nm mean diameter and a positive surface charge were formed. Confocal microscopy revealed the distribution of the fed CS-TPP-dsRNA nanoparticles in midgut, fat body and epidermis of yellow fever mosquito, Aedes aegypti larvae. Bioassays showed significant mortality of larvae fed on CS-TPP-dsRNA nanoparticles. These assays also showed knockdown of a target gene in CS-TPP-dsRNA nanoparticle fed larvae. These data suggest that CS-TPP nanoparticles may be used for delivery of dsRNA to mosquito larvae.
Collapse
Affiliation(s)
| | - Dhandapani Gurusamy
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, 40546, USA.
| |
Collapse
|
33
|
Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide resistance. Biol Rev Camb Philos Soc 2019; 94:135-155. [PMID: 29971903 PMCID: PMC6378405 DOI: 10.1111/brv.12440] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 01/24/2023]
Abstract
Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| | - Chris Bass
- Department of BiosciencesUniversity of Exeter, Penryn CampusCornwallTR10 9FEU.K.
| | - Andrea Dixon
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
- Department of Plant BiologyUniversity of GeorgiaAthensGA 30602U.S.A.
| | - Paul Neve
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenAL5 4SEU.K.
| |
Collapse
|
34
|
Shi P, Cao L, Gong Y, Ma L, Song W, Chen J, Hoffmann AA, Wei S. Independently evolved and gene flow-accelerated pesticide resistance in two-spotted spider mites. Ecol Evol 2019; 9:2206-2219. [PMID: 30847105 PMCID: PMC6392376 DOI: 10.1002/ece3.4916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022] Open
Abstract
Pest species are often able to develop resistance to pesticides used to control them, depending on how rapidly resistance can emerge within a population or spread from another resistant population. We examined the evolution of bifenazate resistance in China in the two-spotted spider mite (TSSM) Tetranychus uticae Koch (Acari: Tetranychidae), one of the most resistant arthropods, by using bioassays, detection of mutations in the target cytb gene, and population genetic structure analysis using microsatellite markers. Bioassays showed variable levels of resistance to bifenazate. The cytb mutation G126S, which confers medium resistance in TSSM to bifenazate, had previously been detected prior to the application of bifenazate and was now widespread, suggesting likely resistance evolution from standing genetic variation. G126S was detected in geographically distant populations across different genetic clusters, pointing to the independent origin of this mutation in different TSSM populations. A novel A269V mutation linked to a low-level resistance was detected in two southern populations. Widespread resistance associated with a high frequency of the G126S allele was found in four populations from the Beijing area which were not genetically differentiated. In this case, a high level of gene flows likely accelerated the development of resistance within this local region, as well as into an outlying region distant from Beijing. These findings, therefore, suggest patterns consistent with both local evolution of pesticide resistance as well as an impact of migration, helping to inform resistance management strategies in TSSM.
Collapse
Affiliation(s)
- Pan Shi
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Li‐Jun Cao
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ya‐Jun Gong
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ling Ma
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Wei Song
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jin‐Cui Chen
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Shu‐Jun Wei
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
35
|
Assogba BS, Alout H, Koffi A, Penetier C, Djogbénou LS, Makoundou P, Weill M, Labbé P. Adaptive deletion in resistance gene duplications in the malaria vector Anopheles gambiae. Evol Appl 2018; 11:1245-1256. [PMID: 30151037 PMCID: PMC6099818 DOI: 10.1111/eva.12619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
While gene copy-number variations play major roles in long-term evolution, their early dynamics remains largely unknown. However, examples of their role in short-term adaptation are accumulating: identical repetitions of a locus (homogeneous duplications) can provide a quantitative advantage, while the association of differing alleles (heterogeneous duplications) allows carrying two functions simultaneously. Such duplications often result from rearrangements of sometimes relatively large chromosome fragments, and even when adaptive, they can be associated with deleterious side effects that should, however, be reduced by subsequent evolution. Here, we took advantage of the unique model provided by the malaria mosquito Anopheles gambiae s.l. to investigate the early evolution of several duplications, heterogeneous and homogeneous, segregating in natural populations from West Africa. These duplications encompass ~200 kb and 11 genes, including the adaptive insecticide resistance ace-1 locus. Through the survey of several populations from three countries over 3-4 years, we showed that an internal deletion of all coamplified genes except ace-1 is currently spreading in West Africa and introgressing from An. gambiae s.s. to An. coluzzii. Both observations provide evidences of its selection, most likely due to reducing the gene-dosage disturbances caused by the excessive copies of the nonadaptive genes. Our study thus provides a unique example of the early adaptive trajectory of duplications and underlines the role of the environmental conditions (insecticide treatment practices and species ecology). It also emphasizes the striking diversity of adaptive responses in these mosquitoes and reveals a worrisome process of resistance/cost trade-off evolution that could impact the control of malaria vectors in Africa.
Collapse
Affiliation(s)
- Benoît S. Assogba
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
- Disease Control and Elimination DepartmentMedical Research Council, Unit The GambiaBanjulThe Gambia
- Institut Régional de Santé PubliqueUniversité d'Abomey CalaviCotonouBenin
- Faculté des Sciences et TechniquesLaboratoire de Biologie et de Typage Moléculaire en MicrobiologieUniversité d'Abomey CalaviCotonouBénin
| | - Haoues Alout
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Alphonsine Koffi
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP)BouakéCôte d'Ivoire
| | - Cédric Penetier
- Institut de Recherche pour le Développement (IRD)UMR MIVEGECMontpellierFrance
| | - Luc S. Djogbénou
- Institut Régional de Santé PubliqueUniversité d'Abomey CalaviCotonouBenin
- Faculté des Sciences et TechniquesLaboratoire de Biologie et de Typage Moléculaire en MicrobiologieUniversité d'Abomey CalaviCotonouBénin
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| |
Collapse
|
36
|
Weetman D, Djogbenou LS, Lucas E. Copy number variation (CNV) and insecticide resistance in mosquitoes: evolving knowledge or an evolving problem? CURRENT OPINION IN INSECT SCIENCE 2018; 27:82-88. [PMID: 30025639 PMCID: PMC6056009 DOI: 10.1016/j.cois.2018.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/21/2018] [Accepted: 04/09/2018] [Indexed: 05/10/2023]
Abstract
Copy number variation (CNV) in insect genomes is a rich source of potentially adaptive polymorphism which may help overcome the constraints of purifying selection on conserved genes and/or permit elevated transcription. Classic studies of amplified esterases and acetylcholinesterase duplication in Culex pipiens quantified evolutionary dynamics of CNV driven by insecticidal selection. A more complex and potentially medically impactful form of CNV is found in Anopheles gambiae, with both heterogeneous duplications and homogeneous amplifications strongly linked with insecticide resistance. Metabolic gene amplification, revealed by shotgun sequencing, appears common in Aedes aegypti, but poorly understood in other mosquito species. Many methodologies have been used to detect CNV in mosquitoes, but relatively few can detect both duplications and amplifications, and contrasting methods should be combined. Genome scans for CNV have been rare to date in mosquitoes, but offer immense potential to determine the overall role of CNV as a component of resistance mechanisms.
Collapse
Affiliation(s)
- David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Luc S Djogbenou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Institut Régional de Santé Publique/Université d'Abomey-Calavi, Ouidah, Benin
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
37
|
Clarkson CS, Temple HJ, Miles A. The genomics of insecticide resistance: insights from recent studies in African malaria vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 27:111-115. [PMID: 30025626 PMCID: PMC6060083 DOI: 10.1016/j.cois.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/10/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Over 80% of the world's population is at risk from arthropod-vectored diseases, and arthropod crop pests are a significant threat to food security. Insecticides are our front-line response for controlling these disease vectors and pests, and consequently the increasing prevalence of insecticide resistance is of global concern. Here we provide a brief overview of how genomics can be used to implement effective insecticide resistance management (IRM), with a focus on recent advances in the study of Anopheles gambiae, the major vector of malaria in Africa. These advances unlock the potential for a predictive form of IRM, allowing tractable feedback for stakeholders, where the latest field data and well parameterised models can maximise the lifetime and effectiveness of available insecticides.
Collapse
Affiliation(s)
| | - Helen J Temple
- The Biodiversity Consultancy Ltd, Cambridge CB2 1SJ, United Kingdom
| | | |
Collapse
|
38
|
Bass C, Jones CM. Editorial overview: Pests and resistance: Resistance to pesticides in arthropod crop pests and disease vectors: mechanisms, models and tools. CURRENT OPINION IN INSECT SCIENCE 2018; 27:iv-vii. [PMID: 30025643 DOI: 10.1016/j.cois.2018.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK.
| | - Christopher M Jones
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| |
Collapse
|
39
|
Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae. Sci Rep 2018; 8:2920. [PMID: 29440767 PMCID: PMC5811533 DOI: 10.1038/s41598-018-21265-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/16/2018] [Indexed: 01/13/2023] Open
Abstract
Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype.
Collapse
|
40
|
Fouet C, Atkinson P, Kamdem C. Human Interventions: Driving Forces of Mosquito Evolution. Trends Parasitol 2018; 34:127-139. [PMID: 29301722 DOI: 10.1016/j.pt.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 11/29/2022]
Abstract
One of the most common strategies for controlling mosquito-borne diseases relies on the use of chemical pesticides to repel or kill the mosquito vector. Pesticide exposure interferes with several key biological functions in the mosquito and triggers a variety of adaptive responses whose underlying mechanisms are only partially elucidated. The availability of reference genome sequences opens up the possibility of tracking signatures of evolutionary changes, including the most recent, across the genomes of many vector species. In this review, we highlight the recent genomic changes, which contribute to the fascinating adaptation of malaria vectors of the sub-Saharan African region to intensive insecticide-based interventions. We emphasize the operational significance of detailed genomic knowledge for current monitoring and decision-making.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Peter Atkinson
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Colince Kamdem
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
41
|
Silva Martins WF, Wilding CS, Steen K, Mawejje H, Antão TR, Donnelly MJ. Local selection in the presence of high levels of gene flow: Evidence of heterogeneous insecticide selection pressure across Ugandan Culex quinquefasciatus populations. PLoS Negl Trop Dis 2017; 11:e0005917. [PMID: 28972985 PMCID: PMC5640252 DOI: 10.1371/journal.pntd.0005917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/13/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Culex quinquefasciatus collected in Uganda, where no vector control interventions directly targeting this species have been conducted, was used as a model to determine if it is possible to detect heterogeneities in selection pressure driven by insecticide application targeting other insect species. METHODOLOGY/PRINCIPAL FINDINGS Population genetic structure was assessed through microsatellite analysis, and the impact of insecticide pressure by genotyping two target-site mutations, Vgsc-1014F of the voltage-gated sodium channel target of pyrethroid and DDT insecticides, and Ace1-119S of the acetylcholinesterase gene, target of carbamate and organophosphate insecticides. No significant differences in genetic diversity were observed among populations by microsatellite markers with HE ranging from 0.597 to 0.612 and low, but significant, genetic differentiation among populations (FST = 0.019, P = 0.001). By contrast, the insecticide-resistance markers display heterogeneous allelic distributions with significant differences detected between Central Ugandan (urban) populations relative to Eastern and Southwestern (rural) populations. In the central region, a frequency of 62% for Vgsc-1014F, and 32% for the Ace1-119S resistant allele were observed. Conversely, in both Eastern and Southwestern regions the Vgsc-1014F alleles were close to fixation, whilst Ace1-119S allele frequency was 12% (although frequencies may be underestimated due to copy number variation at both loci). CONCLUSIONS/SIGNIFICANCE Taken together, the microsatellite and both insecticide resistance target-site markers provide evidence that in the face of intense gene flow among populations, disjunction in resistance frequencies arise due to intense local selection pressures despite an absence of insecticidal control interventions targeting Culex.
Collapse
Affiliation(s)
- Walter Fabricio Silva Martins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brasil
| | - Craig Stephen Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Tiago Rodrigues Antão
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Division of Biological Science, University of Montana, Missoula, United States of America
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
42
|
Martins WFS, Subramaniam K, Steen K, Mawejje H, Liloglou T, Donnelly MJ, Wilding CS. Detection and quantitation of copy number variation in the voltage-gated sodium channel gene of the mosquito Culex quinquefasciatus. Sci Rep 2017; 7:5821. [PMID: 28725028 PMCID: PMC5517494 DOI: 10.1038/s41598-017-06080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/07/2017] [Indexed: 01/23/2023] Open
Abstract
Insecticide resistance is typically associated with alterations to the insecticidal target-site or with gene expression variation at loci involved in insecticide detoxification. In some species copy number variation (CNV) of target site loci (e.g. the Ace-1 target site of carbamate insecticides) or detoxification genes has been implicated in the resistance phenotype. We show that field-collected Ugandan Culex quinquefasciatus display CNV for the voltage-gated sodium channel gene (Vgsc), target-site of pyrethroid and organochlorine insecticides. In order to develop field-applicable diagnostics for Vgsc CN, and as a prelude to investigating the possible association of CN with insecticide resistance, three assays were compared for their accuracy in CN estimation in this species. The gold standard method is droplet digital PCR (ddPCR), however, the hardware is prohibitively expensive for widespread utility. Here, ddPCR was compared to quantitative PCR (qPCR) and pyrosequencing. Across all platforms, CNV was detected in ≈10% of mosquitoes, corresponding to three or four copies (per diploid genome). ddPCR and qPCR-Std-curve yielded similar predictions for Vgsc CN, indicating that the qPCR protocol developed here can be applied as a diagnostic assay, facilitating monitoring of Vgsc CN in wild populations and the elucidation of association between the Vgsc CN and insecticide resistance.
Collapse
Affiliation(s)
- Walter Fabricio Silva Martins
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Departamento de Biologia, Universidade Estadual da Paraíba, Campina Grande, Brazil
| | | | - Keith Steen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Henry Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research, Liverpool, UK
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Craig Stephen Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
43
|
Barnes KG, Weedall GD, Ndula M, Irving H, Mzihalowa T, Hemingway J, Wondji CS. Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control. PLoS Genet 2017; 13:e1006539. [PMID: 28151952 PMCID: PMC5289422 DOI: 10.1371/journal.pgen.1006539] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023] Open
Abstract
Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the ‘resistance curve’ and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistance-associated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised. Malaria control currently relies heavily on insecticide-based vector control interventions. Unfortunately, resistance to insecticides threatens the continued effectiveness of these measures. Metabolic resistance, caused by increased detoxification of insecticides, presents the greatest threat to vector control, yet it remains unclear how these mechanisms are linked to underlying genetic changes driven by the massive selection pressure from these interventions, such as the widespread use of Long Lasting Insecticide Nets (LLINs) across Africa. Therefore, understanding the direction and speed at which this operationally important form of resistance spreads through mosquito populations is essential if we are to get ahead of the ‘resistance curve’ and avert a public health catastrophe. Here, using microsatellite markers, whole genome sequencing and fine-scale sequencing at a major resistance locus, we elucidated the Africa-wide population structure of Anopheles funestus, a major African malaria vector, and detected a strong selective sweep occurring in a genomic region controlling cytochrome P450-based metabolic pyrethroid resistance in this species. Furthermore, we demonstrated that this selective sweep is driven by the scale-up of insecticide-based malaria control in Africa, highlighting the risk that if this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Collapse
Affiliation(s)
- Kayla G. Barnes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Miranda Ndula
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Themba Mzihalowa
- Malaria Alert Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Janet Hemingway
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
44
|
Assogba BS, Milesi P, Djogbénou LS, Berthomieu A, Makoundou P, Baba-Moussa LS, Fiston-Lavier AS, Belkhir K, Labbé P, Weill M. The ace-1 Locus Is Amplified in All Resistant Anopheles gambiae Mosquitoes: Fitness Consequences of Homogeneous and Heterogeneous Duplications. PLoS Biol 2016; 14:e2000618. [PMID: 27918584 PMCID: PMC5137868 DOI: 10.1371/journal.pbio.2000618] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022] Open
Abstract
Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides' target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa.
Collapse
Affiliation(s)
- Benoît S. Assogba
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
- Institut Régional de Santé Publique, Université d’Abomey Calavi, Cotonou, Benin
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d’Abomey Calavi, Cotonou, Bénin
| | - Pascal Milesi
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Luc S. Djogbénou
- Institut Régional de Santé Publique, Université d’Abomey Calavi, Cotonou, Benin
| | - Arnaud Berthomieu
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Lamine S. Baba-Moussa
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d’Abomey Calavi, Cotonou, Bénin
| | - Anna-Sophie Fiston-Lavier
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| |
Collapse
|
45
|
Anderson TJC, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, McGready R, Ashley E, Pyae Phyo A, White NJ, Nosten F. Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites. Mol Biol Evol 2016; 34:131-144. [PMID: 28025270 PMCID: PMC5216669 DOI: 10.1093/molbev/msw228] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple kelch13 alleles conferring artemisinin resistance (ART-R) are currently spreading through Southeast Asian malaria parasite populations, providing a unique opportunity to observe an ongoing soft selective sweep, investigate why resistance alleles have evolved multiple times and determine fundamental population genetic parameters for Plasmodium. We sequenced kelch13 (n = 1,876), genotyped 75 flanking SNPs, and measured clearance rate (n = 3,552) in parasite infections from Western Thailand (2001–2014). We describe 32 independent coding mutations including common mutations outside the kelch13 propeller associated with significant reductions in clearance rate. Mutations were first observed in 2003 and rose to 90% by 2014, consistent with a selection coefficient of ∼0.079. ART-R allele diversity rose until 2012 and then dropped as one allele (C580Y) spread to high frequency. The frequency with which adaptive alleles arise is determined by the rate of mutation and the population size. Two factors drive this soft sweep: (1) multiple kelch13 amino-acid mutations confer resistance providing a large mutational target—we estimate the target is 87–163 bp. (2) The population mutation parameter (Θ = 2Neμ) can be estimated from the frequency distribution of ART-R alleles and is ∼5.69, suggesting that short term effective population size is 88 thousand to 1.2 million. This is 52–705 times greater than Ne estimated from fluctuation in allele frequencies, suggesting that we have previously underestimated the capacity for adaptive evolution in Plasmodium. Our central conclusions are that retrospective studies may underestimate the complexity of selective events and the Ne relevant for adaptation for malaria is considerably higher than previously estimated.
Collapse
Affiliation(s)
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Ian H Cheeseman
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Standwell Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Fatma Bilgic
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Antonio-Nkondjio C, Poupardin R, Tene BF, Kopya E, Costantini C, Awono-Ambene P, Wondji CS. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar J 2016; 15:424. [PMID: 27549778 PMCID: PMC4994282 DOI: 10.1186/s12936-016-1483-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022] Open
Abstract
Background Resistance to the carbamate insecticide bendiocarb is emerging in Anopheles gambiae populations from the city of Yaoundé in Cameroon. However, the molecular basis of this resistance remains uncharacterized. The present study objective is to investigate mechanisms promoting resistance to bendiocarb in An. gambiae populations from Yaoundé. Methods The level of susceptibility of An. gambiae s.l. to bendiocarb 0.1 % was assessed from 2010 to 2013 using bioassays. Mosquitoes resistant to bendiocarb, unexposed and susceptible mosquitoes were screened for the presence of the Ace-1R mutation using TaqMan assays. Microarray analyses were performed to assess the pattern of genes differentially expressed between resistant, unexposed and susceptible. Results Bendiocarb resistance was more prevalent in mosquitoes originating from cultivated sites compared to those from polluted and unpolluted sites. Both An. gambiae and Anopheles coluzzii were found to display resistance to bendiocarb. No G119S mutation was detected suggesting that resistance was mainly metabolic. Microarray analysis revealed the over-expression of several cytochrome P450 s genes including cyp6z3, cyp6z1, cyp12f2, cyp6m3 and cyp6p4. Gene ontology (GO) enrichment analysis supported the detoxification role of cytochrome P450 s with several GO terms associated with P450 activity significantly enriched in resistant samples. Other detoxification genes included UDP-glucosyl transferases, glutathione-S transferases and ABC transporters. Conclusion The study highlights the probable implication of metabolic mechanisms in bendiocarb resistance in An. gambiae populations from Yaoundé and stresses the need for further studies leading to functional validation of detoxification genes involved in this resistance.
Collapse
Affiliation(s)
- Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| | - Rodolphe Poupardin
- Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| | - Billy Fossog Tene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Carlo Costantini
- Institut de Recherche pour le Développement (IRD), UR 016, 911, Avenue Agropolis, P.O. Box 64501, 34394, Montpellier Cedex 5, France
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
47
|
Donnelly MJ, Isaacs AT, Weetman D. Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol 2015; 32:197-206. [PMID: 26750864 DOI: 10.1016/j.pt.2015.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022]
Abstract
Insecticide resistance is a major obstacle to control of Anopheles malaria mosquitoes in sub-Saharan Africa and requires an improved understanding of the underlying mechanisms. Efforts to discover resistance genes and DNA markers have been dominated by candidate gene and quantitative trait locus studies of laboratory strains, but with greater availability of genome sequences a shift toward field-based agnostic discovery is anticipated. Mechanisms evolve continually to produce elevated resistance yielding multiplicative diagnostic markers, co-screening of which can give high predictive value. With a shift toward prospective analyses, identification and screening of resistance marker panels will boost monitoring and programmatic decision making.
Collapse
Affiliation(s)
- Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK.
| | - Alison T Isaacs
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
48
|
Djogbénou LS, Assogba B, Essandoh J, Constant EAV, Makoutodé M, Akogbéto M, Donnelly MJ, Weetman D. Estimation of allele-specific Ace-1 duplication in insecticide-resistant Anopheles mosquitoes from West Africa. Malar J 2015; 14:507. [PMID: 26682913 PMCID: PMC4683970 DOI: 10.1186/s12936-015-1026-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/02/2015] [Indexed: 11/25/2022] Open
Abstract
Background
Identification of variation in Ace-1 copy number and G119S mutation genotype from samples of Anopheles gambiae and Anopheles coluzzii across West Africa are important diagnostics of carbamate and organophosphate resistance at population and individual levels. The most widespread and economical method, PCR–RFLP, suffers from an inability to discriminate true heterozygotes from heterozygotes with duplication.
Methods In addition to PCR–RFLP, in this study three different molecular techniques were applied on the same mosquito specimens: TaqMan qPCR, qRTPCR and ddPCR. To group heterozygous individuals recorded from the PCR–RFLP analysis into different assumptive genotypes K-means clustering was applied on the Z-scores of data obtained from both the TaqMan and ddPCR methods. The qRTPCR analysis was used for absolute quantification of copy number variation. Results The results indicate that most heterozygotes are duplicated and that G119S mutation must now be regarded as a complex genotype ranging from primarily single-copy susceptible Glycine homozygotes to balanced and imbalanced heterozygotes, and multiply-amplified resistant Serine allele homozygotes. Whilst qRTPCR-based gene copy analysis suffers from some imprecision, it clearly illustrates differences in copy number among genotype groups identified by TaqMan or ddPCR. Based on TaqMan method properties, and by coupling TaqMan and ddPCR methods simultaneously on the same type of mosquito specimens, it demonstrated that the TaqMan genotype assays associated with the K-means clustering algorithm could provide a useful semi-quantitative estimate method to investigate the level of allele-specific duplication in mosquito populations. Conclusions Ace-1 gene duplication is evidently far more complex in An. gambiae and An. coluzzii than the better-studied mosquito Culex quinquefasciatus, which consequently can no longer be considered an appropriate model for prediction of phenotypic consequences. These require urgent further evaluation in Anopheles. To maintain the sustained effectiveness carbamates and organophosphates as alternative products to pyrethroids for malaria vector control, monitoring of duplicated resistant alleles in natural populations is essential to guide the rational use of these insecticides. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1026-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luc S Djogbénou
- Institut Regional de Santé Publique de Ouidah/Université d'Abomey-Calavi, Cotonou, Benin. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Benoît Assogba
- Institut Regional de Santé Publique de Ouidah/Université d'Abomey-Calavi, Cotonou, Benin.
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Edi A V Constant
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Michel Makoutodé
- Institut Regional de Santé Publique de Ouidah/Université d'Abomey-Calavi, Cotonou, Benin.
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
49
|
Badolo A, Bando H, Traoré A, Ko-Ketsu M, Guelbeogo WM, Kanuka H, Ranson H, Sagnon N, Fukumoto S. Detection of G119S ace-1 (R) mutation in field-collected Anopheles gambiae mosquitoes using allele-specific loop-mediated isothermal amplification (AS-LAMP) method. Malar J 2015; 14:477. [PMID: 26620269 PMCID: PMC4665897 DOI: 10.1186/s12936-015-0968-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/27/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Malaria vectors have developed resistance to the four families of insecticides available for public health purposes. For example, the kdr mutation is associated with organochlorines and pyrethroids resistance. It is of particular concern that organophosphate and carbamate resistance associated with the G119S ace-1 (R) mutation has recently increased in West Africa in extent and frequency, and is now spreading through the Anopheles gambiae malaria vector population. There is an urgent need to improve resistance management using existing insecticides and new tools to quickly assess resistance level for rapid decision-making. METHODS DNA extracted from field-collected mosquitoes was used to develop the method. Specific primers were designed manually to match the mutation region and an additional mismatched nucleotide in the penultimate position to increase specificity. Other primers used are common to both wild and mutant types. The allele specific (AS)-LAMP method was compared to the PCR restriction fragment length polymorphism (PCR-RFLP) and real-time PCR (RT-PCR) methods using the genomic DNA of 104 field-collected mosquitoes. RESULTS The primers designed for LAMP were able to distinguish between the wild type (ace-1 (S) ) and mutated type allele (ace-1 (R) ). Detection time was 50 min for the wild type homozygous and 64 min for the heterozygous. No amplification of the resistant allele took place within the 75-min test period when using the wild type primers. For the ace-1 (R) resistant type, detection time was 51 min for the resistant homozygous and 55 min for the heterozygous. No amplification of the wild type allele took place within the 75-min test period when using the resistant type primers. Gel electrophoresis of LAMP products confirmed that amplification was primer-DNA specific, i.e., primers could only amplify their target specific DNA. AS-LAMP, PCR-RFLP, and RT-PCR showed no significant difference in the sensitivity and specificity of their ace-1 (R) detection ability. CONCLUSIONS The AS-LAMP method could detect the ace-1 (R) mutation within 60 min, which is faster than conventional PCR-RFLP. This method may be used to quickly detect the ace-1 (R) mutation for rapid decision-making, even in less well-equipped laboratories.
Collapse
Affiliation(s)
- Athanase Badolo
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan. .,Centre National de Recherche et de Formation sur le Paludisme (CNRFP), BP 2208, Ouagadougou 01, Burkina Faso. .,Laboratoire d'Entomologie Fondamentale et Appliquée, Université de Ouagadougou, BP 7021, Ouagadougou 03, Burkina Faso.
| | - Hironori Bando
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Alphonse Traoré
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), BP 2208, Ouagadougou 01, Burkina Faso.
| | - Mami Ko-Ketsu
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Wamdaogo Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), BP 2208, Ouagadougou 01, Burkina Faso.
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Hilary Ranson
- Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - N'Falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), BP 2208, Ouagadougou 01, Burkina Faso.
| | - Shinya Fukumoto
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
50
|
Feng X, Yang C, Yang Y, Li J, Lin K, Li M, Qiu X. Distribution and frequency of G119S mutation in ace-1 gene within Anopheles sinensis populations from Guangxi, China. Malar J 2015; 14:470. [PMID: 26608572 PMCID: PMC4660823 DOI: 10.1186/s12936-015-1000-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022] Open
Abstract
Background Malaria is one of the most serious vector-borne diseases in the world. Vector control is an important measure for malaria prevention and elimination. However, this strategy is under threat as disease vectors are developing resistance to insecticides. Therefore, it is important to monitor mechanisms responsible for insecticide resistance. In this study, the presence of G119S mutation in the acetyl cholinesterase-encoding gene (ace-1) was investigated in nine Anopheles sinensis populations sampled across Guangxi Zhuang Autonomous Region China. Methods PCR–RFLP (polymerase chain reaction-restriction fragment length polymorphism) method was used to genotype each individual adult of An. sinensis. Direct sequencing of PCR products was performed to verify the accuracy of PCR–RFLP genotyping result. Population genetics analysis was conducted using Genepop programme. Results The frequencies of susceptible homozygotes, heterozygotes and resistant homozygotes in the nine populations ranged between 0–0.296, 0.143–0.500 and 0.333–0.857, respectively. Overall, a high frequency (0.519–0.929) of mutant 119S allele was observed and the genotype frequency of the ace-1 gene of An. sinensis was at Hardy–Weinberg equilibrium in each of the nine examined populations. Conclusion The G119S mutation has become fixed and is widespread in An. sinensis field populations in Guangxi, China. These findings are useful in helping design strategies for An. sinensis control.
Collapse
Affiliation(s)
- Xiangyang Feng
- Guangxi Zhuang Autonomous Region Centre for Diseases Control and Prevention, Nanning, 530028, China.
| | - Chan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yichao Yang
- Guangxi Zhuang Autonomous Region Centre for Diseases Control and Prevention, Nanning, 530028, China.
| | - Jun Li
- Guangxi Zhuang Autonomous Region Centre for Diseases Control and Prevention, Nanning, 530028, China.
| | - Kangming Lin
- Guangxi Zhuang Autonomous Region Centre for Diseases Control and Prevention, Nanning, 530028, China.
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|