1
|
Terraneo TI, Benzoni F, Arrigoni R, Berumen ML, Mariappan KG, Antony CP, Harrison HB, Payri C, Huang D, Baird AH. A genomic approach to Porites (Anthozoa: Scleractinia) megadiversity from the Indo-Pacific. Mol Phylogenet Evol 2025; 203:108238. [PMID: 39551223 DOI: 10.1016/j.ympev.2024.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Porites corals are vital components of tropical reef ecosystems worldwide, serving as ecosystem engineers and hubs of biodiversity in shallow water coral reefs. Despite their ecological significance and the widespread use of Porites spp. as models for research, the richness and evolutionary relationships of species within the genus remain elusive. In this study, we analyzed genomic data from 330 colonies of Porites from 17 localities across the Indo-Pacific region based on the reduced representation genomic approach ezRAD. We retrieved 25,163 SNPs and provided a phylogenomic hypothesis for 29 nominal species and 10 unknown morphologies, recovering 15 deeply rooted molecular clades. Among these, 12 clades included samples corresponding to single distinct morphospecies. One did not match any nominal species. The remaining two clades comprised species complexes, which included various massive and encrusting morphologies commonly used in experimental biology. Within these complexes, we observed additional geographic or morphological structure, indicating complex evolutionary dynamics, possibly reflecting distinct species, isolated populations or hybridization. Additionally, a series of divergent samples underscored the importance of more sampling to define species boundaries and refine phylogenomic relationships. We also integrated our findings with previous phylogenetic datasets and their respective sampling localities, challenging traditional notions about Porites species geographic distributions. Overall, our findings indicate a need to revise past synonymies and to formally establish new species. A precise understanding of Porites species and their diversity and distributions is necessary for effective reef conservation and management.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Francesca Benzoni
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM), Genoa Marine Centre (GMC), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa 16126, Italy
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chakkiath P Antony
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hugo B Harrison
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Claude Payri
- UMR ENTROPIE (IRD, UR, CNRS), Institut de Recherche pour le Développement, Nouméa, New-Caledonia, France
| | - Danwei Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
2
|
Gomez-Campo K, Sanchez R, Martínez-Rugerio I, Yang X, Maher T, Osborne CC, Enriquez S, Baums IB, Mackenzie SA, Iglesias-Prieto R. Phenotypic plasticity for improved light harvesting, in tandem with methylome repatterning in reef-building corals. Mol Ecol 2024; 33:e17246. [PMID: 38153177 PMCID: PMC10922902 DOI: 10.1111/mec.17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
Acclimatization through phenotypic plasticity represents a more rapid response to environmental change than adaptation and is vital to optimize organisms' performance in different conditions. Generally, animals are less phenotypically plastic than plants, but reef-building corals exhibit plant-like properties. They are light dependent with a sessile and modular construction that facilitates rapid morphological changes within their lifetime. We induced phenotypic changes by altering light exposure in a reciprocal transplant experiment and found that coral plasticity is a colony trait emerging from comprehensive morphological and physiological changes within the colony. Plasticity in skeletal features optimized coral light harvesting and utilization and paralleled significant methylome and transcriptome modifications. Network-associated responses resulted in the identification of hub genes and clusters associated to the change in phenotype: inter-partner recognition and phagocytosis, soft tissue growth and biomineralization. Furthermore, we identified hub genes putatively involved in animal photoreception-phototransduction. These findings fundamentally advance our understanding of how reef-building corals repattern the methylome and adjust a phenotype, revealing an important role of light sensing by the coral animal to optimize photosynthetic performance of the symbionts.
Collapse
Affiliation(s)
- Kelly Gomez-Campo
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Robersy Sanchez
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Xiaodong Yang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Tom Maher
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - C. Cornelia Osborne
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Susana Enriquez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 77580, México
| | - Iliana B. Baums
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sally A. Mackenzie
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
3
|
Peterson CR, Scott CB, Ghaffari R, Dixon G, Matz MV. Mixed Patterns of Intergenerational DNA Methylation Inheritance in Acropora. Mol Biol Evol 2024; 41:msae008. [PMID: 38243377 PMCID: PMC11079325 DOI: 10.1093/molbev/msae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.
Collapse
Affiliation(s)
| | - Carly B Scott
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Rashin Ghaffari
- Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mikhail V Matz
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Yu X, Yu K, Chen B, Liao Z, Liang J, Qin Z, Gao X. Metabolic and immune costs balance during natural acclimation of corals in fluctuating environments. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106284. [PMID: 38048660 DOI: 10.1016/j.marenvres.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Epigenetic modifications based on DNA methylation can rapidly improve the potential of corals to adapt to environmental pressures by increasing their phenotypic plasticity, a factor important for scleractinian corals to adapt to future global warming. However, the extent to which corals develop similar adaptive mechanisms and their specific adaptation processes remain unclear. Here, to reveal the regulatory mechanism by which DNA methylation improves thermal tolerance in Pocillopora damicornis under fluctuating environments, we analyzed genome-wide DNA methylation signatures in P. damicornis and compared the differences in the methylation and transcriptional responses of P. damicornis from fluctuating and stable environments using whole-genome bisulfite sequencing and nanopore-based RNA sequencingtranscriptome sequencing. We discovered low methylation levels in P. damicornis (average methylation 4.14%), with CpG accounting for 74.88%, CHH for 13.27%, and CHG for 11.85% of this methylation. However, methylation levels did not change between coral samples from the fluctuating and stable environments. The varied methylation levels in different regions of the gene revealed that the overall methylation level of the gene body was relatively high and showed a bimodal methylation pattern. Methylation occurs primarily in exons rather than introns within the gene body In P. damicornis, there was only a weak correlation between methylation and transcriptional changes at the individual gene level, and the methylation and gene expression levels generally exhibited a bell-shaped relationship, which we speculate may be due to the specificity of cnidarian species. Correlation analysis between methylation levels and the transcriptome revealed that the highest proportion of the top 20 enriched KEGG pathways was related to immunity. Additionally, P. damicornis collected from a high-temperature pool had a lower metabolic rate than those collected from a low-temperature pool. We hypothesize that the dynamic balance of energy-expenditure costs between immunity and metabolism is an important strategy for increasing P. damicornis tolerance. The fluctuating environment of high-temperature pools may increase the heat tolerance in corals by increasing their immunity and thus lowering their metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
5
|
Caruso C, Rocha de Souza M, Ruiz‐Jones L, Conetta D, Hancock J, Hobbs C, Hobbs C, Kahkejian V, Kitchen R, Marin C, Monismith S, Madin J, Gates R, Drury C. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i. Mol Ecol 2022; 31:5201-5213. [PMID: 35962751 PMCID: PMC9825948 DOI: 10.1111/mec.16655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kāne'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.
Collapse
Affiliation(s)
- Carlo Caruso
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | | | - Joshua Hancock
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | - Valerie Kahkejian
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Rebecca Kitchen
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Christian Marin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | - Joshua Madin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Ruth Gates
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Crawford Drury
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| |
Collapse
|
6
|
Trigg SA, Venkataraman YR, Gavery MR, Roberts SB, Bhattacharya D, Downey-Wall A, Eirin-Lopez JM, Johnson KM, Lotterhos KE, Puritz JB, Putnam HM. Invertebrate methylomes provide insight into mechanisms of environmental tolerance and reveal methodological biases. Mol Ecol Resour 2021; 22:1247-1261. [PMID: 34709728 DOI: 10.1111/1755-0998.13542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome-wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base-pair resolution-whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl-CpG binding domain bisulfite sequencing (MBDBS)-using multiple individuals from two reef-building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation in Montipora capitata (11.4%) than the more sensitive Pocillopora acuta (2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross-species comparisons. As genome-wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.
Collapse
Affiliation(s)
- Shelly A Trigg
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Yaamini R Venkataraman
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Mackenzie R Gavery
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Alan Downey-Wall
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, North Miami, Florida, USA
| | - Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California, USA.,California Sea Grant, University of California San Diego, La Jolla, California, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
7
|
Rodriguez-Casariego JA, Cunning R, Baker AC, Eirin-Lopez JM. Symbiont shuffling induces differential DNA methylation responses to thermal stress in the coral Montastraea cavernosa. Mol Ecol 2021; 31:588-602. [PMID: 34689363 DOI: 10.1111/mec.16246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Algal symbiont shuffling in favour of more thermotolerant species has been shown to enhance coral resistance to heat-stress. Yet, the mechanistic underpinnings and long-term implications of these changes are poorly understood. This work studied the modifications in coral DNA methylation, an epigenetic mechanism involved in coral acclimatization, in response to symbiont manipulation and subsequent heat stress exposure. Symbiont composition was manipulated in the great star coral Montastraea cavernosa through controlled thermal bleaching and recovery, producing paired ramets of three genets dominated by either their native symbionts (genus Cladocopium) or the thermotolerant species (Durusdinium trenchi). Single-base genome-wide analyses showed significant modifications in DNA methylation concentrated in intergenic regions, introns and transposable elements. Remarkably, DNA methylation changes in response to heat stress were dependent on the dominant symbiont, with twice as many differentially methylated regions found in heat-stressed corals hosting different symbionts (Cladocopium vs. D. trenchii) compared to all other comparisons. Interestingly, while differential gene body methylation was not correlated with gene expression, an enrichment in differentially methylated regions was evident in repetitive genome regions. Overall, these results suggest that changes in algal symbionts favouring heat tolerant associations are accompanied by changes in DNA methylation in the coral host. The implications of these results for coral adaptation, along with future avenues of research based on current knowledge gaps, are discussed in the present work.
Collapse
Affiliation(s)
- Javier A Rodriguez-Casariego
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
| |
Collapse
|
8
|
Barno AR, Villela HDM, Aranda M, Thomas T, Peixoto RS. Host under epigenetic control: A novel perspective on the interaction between microorganisms and corals. Bioessays 2021; 43:e2100068. [PMID: 34463364 DOI: 10.1002/bies.202100068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Coral reefs have been challenged by the current rate and severity of environmental change that might outpace their ability to adapt and survive. Current research focuses on understanding how microbial communities and epigenetic changes separately affect phenotypes and gene expression of corals. Here, we provide the hypothesis that coral-associated microorganisms may directly or indirectly affect the coral's phenotypic response through the modulation of its epigenome. Homologs of ankyrin-repeat protein A and internalin B, which indirectly cause histone modifications in humans, as well as Rv1988 histone methyltransferase, and the DNA methyltransferases Rv2966c, Mhy1, Mhy2, and Mhy3 found in coral-associated bacteria indicate that there are potential host epigenome-modifying proteins in the coral microbiome. With the ideas presented here, we suggest that microbiome manipulation may be a means to alter a coral's epigenome, which could aid the current efforts to protect coral reefs. Also see the video abstract here: https://youtu.be/CW9GbChjKM4.
Collapse
Affiliation(s)
- Adam R Barno
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Helena D M Villela
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
| | - Raquel S Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.,Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Liebl AL, Wesner JS, Russell AF, Schrey AW. Methylation patterns at fledging predict delayed dispersal in a cooperatively breeding bird. PLoS One 2021; 16:e0252227. [PMID: 34086730 PMCID: PMC8177507 DOI: 10.1371/journal.pone.0252227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.
Collapse
Affiliation(s)
- Andrea L Liebl
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Jeff S Wesner
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Andrew F Russell
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Aaron W Schrey
- Department of Biology, Georgia Southern University, Armstrong, Georgia, United States of America
| |
Collapse
|
10
|
Lord KS, Barcala A, Aichelman HE, Kriefall NG, Brown C, Knasin L, Secor R, Tone C, Tsang L, Finnerty JR. Distinct Phenotypes Associated with Mangrove and Lagoon Habitats in Two Widespread Caribbean Corals, Porites astreoides and Porites divaricata. THE BIOLOGICAL BULLETIN 2021; 240:169-190. [PMID: 34129438 DOI: 10.1086/714047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractAs coral reefs experience dramatic declines in coral cover throughout the tropics, there is an urgent need to understand the role that non-reef habitats, such as mangroves, play in the ecological niche of corals. Mangrove habitats present a challenge to reef-dwelling corals because they can differ dramatically from adjacent reef habitats with respect to key environmental parameters, such as light. Because variation in light within reef habitats is known to drive intraspecific differences in coral phenotype, we hypothesized that coral species that can exploit both reef and mangrove habitats will exhibit predictable differences in phenotypes between habitats. To investigate how intraspecific variation, driven by either local adaptation or phenotypic plasticity, might enable particular coral species to exploit these two qualitatively different habitat types, we compared the phenotypes of two widespread Caribbean corals, Porites divaricata and Porites astreoides, in mangrove versus lagoon habitats on Turneffe Atoll, Belize. We document significant differences in colony size, color, structural complexity, and corallite morphology between habitats. In every instance, the phenotypic differences between mangrove prop root and lagoon corals exhibited consistent trends in both P. divaricata and P. astreoides. We believe this study is the first to document intraspecific phenotypic diversity in corals occupying mangrove prop root versus lagoonal patch reef habitats. A difference in the capacity to adopt an alternative phenotype that is well suited to the mangrove habitat may explain why some reef coral species can exploit mangroves, while others cannot.
Collapse
|
11
|
Terraneo TI, Benzoni F, Arrigoni R, Baird AH, Mariappan KG, Forsman ZH, Wooster MK, Bouwmeester J, Marshell A, Berumen ML. Phylogenomics of Porites from the Arabian Peninsula. Mol Phylogenet Evol 2021; 161:107173. [PMID: 33813021 DOI: 10.1016/j.ympev.2021.107173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.
Collapse
Affiliation(s)
- Tullia I Terraneo
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia.
| | - Francesca Benzoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Roberto Arrigoni
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; European Commission, Joint Research Centre (JRC), Ispra, Italy; Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, QLD, Australia
| | - Kiruthiga G Mariappan
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zac H Forsman
- Hawaii Institute of Marine Biology, Kaneohe 96744, HI, USA
| | - Michael K Wooster
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Michael L Berumen
- Red Sea Research Centre, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Arrigoni R, Huang D, Berumen ML, Budd AF, Montano S, Richards ZT, Terraneo TI, Benzoni F. Integrative systematics of the scleractinian coral genera
Caulastraea
,
Erythrastrea
and
Oulophyllia. ZOOL SCR 2021. [DOI: 10.1111/zsc.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM) Stazione Zoologica Anton Dohrn Napoli Italy
| | - Danwei Huang
- Department of Biological Sciences and Tropical Marine Science Institute National University of Singapore Singapore Singapore
| | - Michael L. Berumen
- Reef Ecology Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Ann F. Budd
- Department of Earth and Environmental Sciences University of Iowa Iowa City IA USA
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT) University of Milano − Bicocca Milano Italy
- Marine Research and High Education Center Magoodhoo Island Faafu Atoll Maldives
| | - Zoe T. Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory School of Molecular and Life Sciences Curtin University Bentley WA Australia
- Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia
| | - Tullia I. Terraneo
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| | - Francesca Benzoni
- Habitat and Benthic Biodiversity Laboratory Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology Thuwal Saudi Arabia
| |
Collapse
|
13
|
Bonito VE, Baird AH, Bridge T, Cowman PF, Fenner D. Types, topotypes and vouchers are the key to progress in coral taxonomy: Comment on Wepfer et al. (2020). Mol Phylogenet Evol 2021; 159:107104. [PMID: 33609706 DOI: 10.1016/j.ympev.2021.107104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Victor E Bonito
- Coral Coast Conservation Center, Votua Village, Baravi, Nadroga, Fiji.
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Tom Bridge
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Douglas Fenner
- NOAA Fisheries Service, Pacific Islands Regional Office, Honolulu, HI 96817, USA
| |
Collapse
|
14
|
Chan WY, Chung J, Peplow LM, Hoffmann AA, van Oppen MJH. Maternal effects in gene expression of interspecific coral hybrids. Mol Ecol 2020; 30:517-527. [PMID: 33179328 DOI: 10.1111/mec.15727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
Maternal effects have been well documented for offspring morphology and life history traits in plants and terrestrial animals, yet little is known about maternal effects in corals. Further, few studies have explored maternal effects in gene expression. In a previous study, F1 interspecific hybrid and purebred larvae of the coral species Acropora tenuis and Acropora loripes were settled and exposed to ambient or elevated temperature and pCO2 conditions for 7 months. At this stage, the hybrid coral recruits from both ocean conditions exhibited strong maternal effects in several fitness traits. We conducted RNA-sequencing on these corals and showed that gene expression of the hybrid Acropora also exhibited clear maternal effects. Only 40 genes were differentially expressed between hybrids and their maternal progenitor. In contrast, ~2000 differentially expressed genes were observed between hybrids and their paternal progenitors, and between the reciprocal F1 hybrids. These results indicate that maternal effects in coral gene expression can be long-lasting. Unlike findings from most short-term stress experiments in corals, no genes were differentially expressed in the hybrid nor purebred offspring after seven months of exposure to elevated temperature and pCO2 conditions.
Collapse
Affiliation(s)
- Wing Yan Chan
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Jessica Chung
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia.,Melbourne Bioinformatics, University of Melbourne, Parkville, VIC, Australia
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Ary A Hoffmann
- Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Forsman ZH, Ritson-Williams R, Tisthammer KH, Knapp ISS, Toonen RJ. Host-symbiont coevolution, cryptic structure, and bleaching susceptibility, in a coral species complex (Scleractinia; Poritidae). Sci Rep 2020; 10:16995. [PMID: 33046719 PMCID: PMC7550562 DOI: 10.1038/s41598-020-73501-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
The 'species' is a key concept for conservation and evolutionary biology, yet the lines between population and species-level variation are often blurred, especially for corals. The 'Porites lobata species complex' consists of branching and mounding corals that form reefs across the Pacific. We used reduced representation meta-genomic sequencing to examine genetic relationships within this species complex and to identify candidate loci associated with colony morphology, cryptic genetic structure, and apparent bleaching susceptibility. We compared existing Porites data with bleached and unbleached colonies of the branching coral P. compressa collected in Kāne'ohe Bay Hawai'i during the 2015 coral bleaching event. Loci that mapped to coral, symbiont, and microbial references revealed genetic structure consistent with recent host-symbiont co-evolution. Cryptic genetic clades were resolved that previous work has associated with distance from shore, but no genetic structure was associated with bleaching. We identified many candidate loci associated with morphospecies, including candidate host and symbiont loci with fixed differences between branching and mounding corals. We also found many loci associated with cryptic genetic structure, yet relatively few loci associated with bleaching. Recent host-symbiont co-evolution and rapid diversification suggests that variation and therefore the capacity of these corals to adapt may be underappreciated.
Collapse
Affiliation(s)
- Z H Forsman
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA.
| | | | - K H Tisthammer
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - I S S Knapp
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - R J Toonen
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| |
Collapse
|
16
|
Crotti M, Adams CE, Elmer KR. Population genomic SNPs from epigenetic RADs: Gaining genetic and epigenetic data from a single established next‐generation sequencing approach. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Crotti
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Colin E. Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
- Scottish Centre for Ecology and the Natural Environment University of Glasgow Rowardennan UK
| | - Kathryn R. Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| |
Collapse
|
17
|
Terraneo TI, Benzoni F, Baird AH, Arrigoni R, Berumen ML. Morphology and molecules reveal two new species ofPorites(Scleractinia, Poritidae) from the Red Sea and the Gulf of Aden. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1643806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tullia I. Terraneo
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Francesca Benzoni
- Department of Biotechnologies and Bioscience, University of Milano – Bicocca, Milan, 20126, Italy
| | - Andrew H. Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Roberto Arrigoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- European Commission, Joint Research Centre, Directorate A – Strategy, Work Programme and Resources, Exploratory Research, Ispra, 21027, Italy
| | - Michael L. Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| |
Collapse
|
18
|
De Jesús-Bonilla VS, Meza-Lázaro RN, Zaldívar-Riverón A. 3RAD-based systematics of the transitional Nearctic-Neotropical lubber grasshopper genus Taeniopoda (Orthoptera: Romaleidae). Mol Phylogenet Evol 2019; 137:64-75. [DOI: 10.1016/j.ympev.2019.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/01/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
|
19
|
Durante MK, Baums IB, Williams DE, Vohsen S, Kemp DW. What drives phenotypic divergence among coral clonemates of Acropora palmata? Mol Ecol 2019; 28:3208-3224. [PMID: 31282031 PMCID: PMC6852117 DOI: 10.1111/mec.15140] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
Evolutionary rescue of populations depends on their ability to produce phenotypic variation that is heritable and adaptive. DNA mutations are the best understood mechanisms to create phenotypic variation, but other, less well-studied mechanisms exist. Marine benthic foundation species provide opportunities to study these mechanisms because many are dominated by isogenic stands produced through asexual reproduction. For example, Caribbean acroporid corals are long lived and reproduce asexually via breakage of branches. Fragmentation is often the dominant mode of local population maintenance. Thus, large genets with many ramets (colonies) are common. Here, we observed phenotypic variation in stress responses within genets following the coral bleaching events in 2014 and 2015 caused by high water temperatures. This was not due to genetic variation in their symbiotic dinoflagellates (Symbiodinium "fitti") because each genet of this coral species typically harbours a single strain of S. "fitti". Characterization of the microbiome via 16S tag sequencing correlated the abundance of only two microbiome members (Tepidiphilus, Endozoicomonas) with a bleaching response. Epigenetic changes were significantly correlated with the host's genetic background, the location of the sampled polyps within the colonies (e.g., branch vs. base of colony), and differences in the colonies' condition during the bleaching event. We conclude that long-term microenvironmental differences led to changes in the way the ramets methylated their genomes, contributing to the differential bleaching response. However, most of the variation in differential bleaching response among clonemates of Acropora palmata remains unexplained. This research provides novel data and hypotheses to help understand intragenet variability in stress phenotypes of sessile marine species.
Collapse
Affiliation(s)
| | | | - Dana E. Williams
- National Oceanic and Atmospheric AdministrationSoutheast Fisheries Science CenterMiamiFLUSA
| | - Sam Vohsen
- The Pennsylvania State UniversityUniversity ParkPAUSA
| | - Dustin W. Kemp
- The Pennsylvania State UniversityUniversity ParkPAUSA
- Present address:
University of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
20
|
The Active Reef Restoration Toolbox is a Vehicle for Coral Resilience and Adaptation in a Changing World. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7070201] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accelerating marks of climate change on coral-reef ecosystems, combined with the recognition that traditional management measures are not efficient enough to cope with climate change tempo and human footprints, have raised a need for new approaches to reef restoration. The most widely used approach is the “coral gardening” tenet; an active reef restoration tactic based on principles, concepts, and theories used in silviculture. During the relatively short period since its inception, the gardening approach has been tested globally in a wide range of reef sites, and on about 100 coral species, utilizing hundreds of thousands of nursery-raised coral colonies. While still lacking credibility for simulating restoration scenarios under forecasted climate change impacts, and with a limited adaptation toolkit used in the gardening approach, it is still deficient. Therefore, novel restoration avenues have recently been suggested and devised, and some have already been tested, primarily in the laboratory. Here, I describe seven classes of such novel avenues and tools, which include the improved gardening methodologies, ecological engineering approaches, assisted migration/colonization, assisted genetics/evolution, assisted microbiome, coral epigenetics, and coral chimerism. These are further classified into three operation levels, each dependent on the success of the former level. Altogether, the seven approaches and the three operation levels represent a unified active reef restoration toolbox, under the umbrella of the gardening tenet, focusing on the enhancement of coral resilience and adaptation in a changing world.
Collapse
|
21
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
22
|
Devlin-Durante MK, Baums IB. Genome-wide survey of single-nucleotide polymorphisms reveals fine-scale population structure and signs of selection in the threatened Caribbean elkhorn coral, Acropora palmata. PeerJ 2017; 5:e4077. [PMID: 29181279 PMCID: PMC5701561 DOI: 10.7717/peerj.4077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
The advent of next-generation sequencing tools has made it possible to conduct fine-scale surveys of population differentiation and genome-wide scans for signatures of selection in non-model organisms. Such surveys are of particular importance in sharply declining coral species, since knowledge of population boundaries and signs of local adaptation can inform restoration and conservation efforts. Here, we use genome-wide surveys of single-nucleotide polymorphisms in the threatened Caribbean elkhorn coral, Acropora palmata, to reveal fine-scale population structure and infer the major barrier to gene flow that separates the eastern and western Caribbean populations between the Bahamas and Puerto Rico. The exact location of this break had been subject to discussion because two previous studies based on microsatellite data had come to differing conclusions. We investigate this contradiction by analyzing an extended set of 11 microsatellite markers including the five previously employed and discovered that one of the original microsatellite loci is apparently under selection. Exclusion of this locus reconciles the results from the SNP and the microsatellite datasets. Scans for outlier loci in the SNP data detected 13 candidate loci under positive selection, however there was no correlation between available environmental parameters and genetic distance. Together, these results suggest that reef restoration efforts should use local sources and utilize existing functional variation among geographic regions in ex situ crossing experiments to improve stress resistance of this species.
Collapse
Affiliation(s)
- Meghann K Devlin-Durante
- Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Iliana B Baums
- Department of Biology, Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|