1
|
Li Y, Chai Q, Chen Y, Ma Y, Wang Y, Zhao J. Genome-wide investigation of the OR gene family in Helicoverpa armigera and functional analysis of OR48 and OR75 in metamorphosis development. Int J Biol Macromol 2024; 278:134646. [PMID: 39128738 DOI: 10.1016/j.ijbiomac.2024.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The cotton bollworm, Helicoverpa armigera, is a significant global agricultural pest, particularly detrimental during its larval feeding period. Insects' odorant receptors (ORs) are crucial for their crop-feeding activities, yet a comprehensive analysis of H. armigera ORs has been lacking, and the influence of hormones on ORs remain understudied. Herein, we conducted a genome-wide study and identified 81 ORs, categorized into 15 distinct groups. Analyses of protein motifs and gene structures revealed both conservation within groups and divergence among them. Comparative gene duplication analysis between H. armigera and Bombyx mori highlighted different duplication patterns. We further investigated subcellular localization and protein interactions within the odorant receptor family, providing valuable insights for future functional and interaction studies of ORs. Specifically, we identified that OR48 and OR75 were abundantly expressed during molting/metamorphosis and feeding stages, respectively. We demonstrated that 20E induced the upregulation of OR48 via EcR, while insulin upregulated OR75 expression through InR. Moreover, 20E induced the translocation of OR48 to the cell membrane, mediating its effects. Functional studies involving the knockdown of OR48 and OR75 revealed their roles in metamorphosis development, with OR48 knockdown resulting in delayed pupation and OR75 knockdown leading to premature pupation. OR48 can promote autophagy and apoptosis in fat body, while OR75 can significantly inhibit apoptosis and autophagy. These findings significantly contribute to our understanding of OR function in H. armigera and shed light on potential avenues for pest control strategies.
Collapse
Affiliation(s)
- Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Qichao Chai
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ying Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yujia Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, Shandong, China
| | - Yongcui Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
2
|
Xiao X, Yin XH, Hu SY, Miao HN, Wang Z, Li H, Zhang YJ, Liang P, Gu SH. Overexpression of Two Odorant Binding Proteins Confers Chlorpyrifos Resistance in the Green Peach Aphid Myzus persicae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20101-20113. [PMID: 39223077 DOI: 10.1021/acs.jafc.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The green peach aphid, Myzus persicae, is a worldwide agricultural pest. Chlorpyrifos has been widely used to control M. persicae for decades, thus leading to a high resistance to chlorpyrifos. Recent studies have found that insect odorant binding proteins (OBPs) play essential roles in insecticide resistance. However, the potential resistance mechanism underlying the cross-link between aphid OBPs and chlorpyrifos remains unclear. In this study, two OBPs (MperOBP3 and MperOBP7) were found overexpressed in M. persicae chlorpyrifos-resistant strains (CRR) compared to chlorpyrifos-sensitive strains (CSS); furthermore, chlorpyrifos can significantly induce the expression of both OBPs. An in vitro binding assay indicated that both OBPs strongly bind with chlorpyrifos; an in vivo RNAi and toxicity bioassay confirmed silencing either of the two OBPs can increase the susceptibility of aphids to chlorpyrifos, suggesting that overexpression of MperOBP3 and MperOBP7 contributes to the development of resistance of M. persicae to chlorpyrifos. Our findings provide novel insights into insect OBPs-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Xing Xiao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xin-Hui Yin
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shi-Yuan Hu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Hao-Nan Miao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Hu Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shao-Hua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
3
|
Fuentes-Lopez K, Ahumedo-Monterrosa M, Olivero-Verbel J, Caballero-Gallardo K. Essential oil components interacting with insect odorant-binding proteins: a molecular modelling approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:591-610. [PMID: 39101323 DOI: 10.1080/1062936x.2024.2382973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Essential oils (EOs) are natural products currently used to control arthropods, and their interaction with insect odorant-binding proteins (OBPs) is fundamental for the discovery of new repellents. This in silico study aimed to predict the potential of EO components to interact with odorant proteins. A total of 684 EO components from PubChem were docked against 23 odorant binding proteins from Protein Data Bank using AutoDock Vina. The ligands and proteins were optimized using Gaussian 09 and Sybyl-X 2.0, respectively. The nature of the protein-ligand interactions was characterized using LigandScout 4.0, and visualization of the binding mode in selected complexes was carried out by Pymol. Additionally, complexes with the best binding energy in molecular docking were subjected to 500 ns molecular dynamics simulations using Gromacs. The best binding affinity values were obtained for the 1DQE-ferutidine (-11 kcal/mol) and 2WCH-kaurene (-11.2 kcal/mol) complexes. Both are natural ligands that dock onto those proteins at the same binding site as DEET, a well-known insect repellent. This study identifies kaurene and ferutidine as possible candidates for natural insect repellents, offering a potential alternative to synthetic chemicals like DEET.
Collapse
Affiliation(s)
- K Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - M Ahumedo-Monterrosa
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - J Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - K Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
4
|
Blackburn GS, Keeling CI, Prunier J, Keena MA, Béliveau C, Hamelin R, Havill NP, Hebert FO, Levesque RC, Cusson M, Porth I. Genetics of flight in spongy moths (Lymantria dispar ssp.): functionally integrated profiling of a complex invasive trait. BMC Genomics 2024; 25:541. [PMID: 38822259 PMCID: PMC11140922 DOI: 10.1186/s12864-023-09936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/22/2023] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Flight can drastically enhance dispersal capacity and is a key trait defining the potential of exotic insect species to spread and invade new habitats. The phytophagous European spongy moths (ESM, Lymantria dispar dispar) and Asian spongy moths (ASM; a multi-species group represented here by L. d. asiatica and L. d. japonica), are globally invasive species that vary in adult female flight capability-female ASM are typically flight capable, whereas female ESM are typically flightless. Genetic markers of flight capability would supply a powerful tool for flight profiling of these species at any intercepted life stage. To assess the functional complexity of spongy moth flight and to identify potential markers of flight capability, we used multiple genetic approaches aimed at capturing complementary signals of putative flight-relevant genetic divergence between ESM and ASM: reduced representation genome-wide association studies, whole genome sequence comparisons, and developmental transcriptomics. We then judged the candidacy of flight-associated genes through functional analyses aimed at addressing the proximate demands of flight and salient features of the ecological context of spongy moth flight evolution. RESULTS Candidate gene sets were typically non-overlapping across different genetic approaches, with only nine gene annotations shared between any pair of approaches. We detected an array of flight-relevant functional themes across gene sets that collectively suggest divergence in flight capability between European and Asian spongy moth lineages has coincided with evolutionary differentiation in multiple aspects of flight development, execution, and surrounding life history. Overall, our results indicate that spongy moth flight evolution has shaped or been influenced by a large and functionally broad network of traits. CONCLUSIONS Our study identified a suite of flight-associated genes in spongy moths suited to exploration of the genetic architecture and evolution of flight, or validation for flight profiling purposes. This work illustrates how complementary genetic approaches combined with phenotypically targeted functional analyses can help to characterize genetically complex traits.
Collapse
Affiliation(s)
- Gwylim S Blackburn
- Natural Resources Canada, Pacific Forestry Centre, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z 1M5, Canada.
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada.
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| | - Christopher I Keeling
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Julien Prunier
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Melody A Keena
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | - Catherine Béliveau
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
| | - Richard Hamelin
- Forest Sciences Centre, University of British Columbia, 2424 Main Mall, Vancouver, BC, 3032V6T 1Z4, Canada
| | - Nathan P Havill
- United States Department of Agriculture, Northern Research Station, Forest Service, 51 Mill Pond Road, Hamden, CT, 06514, USA
| | | | - Roger C Levesque
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
| | - Michel Cusson
- Natural Resources Canada, Laurentian Forestry Centre, Canadian Forest Service, 1055 Rue du PEPS, Quebec City, Québec, G1V 4C7, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, G1V 0A6, Canada
| | - Ilga Porth
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, Québec, QC, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
5
|
Chen X, Lei Y, Liang C, Lei Q, Wang J, Jiang H. Odorant Binding Protein Expressed in Legs Enhances Malathion Tolerance in Bactrocera dorsalis (Hendel). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4376-4383. [PMID: 38363824 DOI: 10.1021/acs.jafc.3c08458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Bactrocera dorsalis is a highly invasive species and is one of the most destructive agricultural pests worldwide. Organophosphorus insecticides have been widely and chronically used to control it, leading to the escalating development of resistance. Recently, odorant binding proteins (OBPs) have been found to play a role in reducing insecticide susceptibility. In this study, we used RT-qPCR to measure the expression levels of four highly expressed OBP genes in the legs of B. dorsalis at different developmental stages and observed the effect of malathion exposure on their expression patterns. The results showed that OBP28a-2 had a high expression level in 5 day old adults of B. dorsalis, and its expression increased after exposure to malathion. By CRISPR/Cas9 mutagenesis, we generated OBP28a-2-/- null mutants and found that they were more susceptible to malathion than wild-type adults. Furthermore, in vitro direct affinity assays confirmed that OBP28a-2 has a strong affinity for malathion, suggesting that it plays a role in reducing the susceptibility of B. dorsalis to malathion. Our findings enriched our understanding of the function of OBPs. The results highlighted the potential role of OBPs as buffering proteins that help insects survive exposure to insecticides.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yibo Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Changhao Liang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - JinJun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Lei Q, Xu L, Tang KY, Yu JL, Chen XF, Wu SX, Wang JJ, Jiang HB. An Antenna-Enriched Chemosensory Protein Plays Important Roles in the Perception of Host Plant Volatiles in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2888-2897. [PMID: 38294413 DOI: 10.1021/acs.jafc.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Olfaction plays indispensable roles in insect behavior such as host location, foraging, oviposition, and avoiding predators. Chemosensory proteins (CSPs) can discriminate the hydrophobic odorants and transfer them to the odorant receptors. Presently, CSPs have been identified in many insect species. However, their presence and functions remain unknown in Bactrocera dorsalis, a destructive and invasive insect pest in the fruit and vegetable industry. Here, we annotated eight CSP genes in the genome of B. dorsalis. The results of quantitative real-time polymerase chain reaction (RT-qPCR) showed that BdorCSP3 was highly expressed in the antennae. Molecular docking and in vitro binding assays showed that BdorCSP3 had a good binding ability to host volatiles methyl eugenol (ME, male-specific attractant) and β-caryophyllene (potential female attractant). Subsequently, CRISPR/Cas9 was used to generate BdorCSP3-/- mutants. Electroantennograms (EAGs) and behavioral assays revealed that male mutants significantly reduced the preference for ME, while female mutants lost their oviposition preference to β-caryophyllene. Our data indicated that BdorCSP3 played important roles in the perception of ME and β-caryophyllene. The results not only expanded our knowledge of the olfaction perception mechanism of insect CSPs but also provided a potential molecular target for the control of B. dorsalis.
Collapse
Affiliation(s)
- Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Kai-Yue Tang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jie-Ling Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuang-Xiong Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Han WK, Tang FX, Yan YY, Wang Y, Zhang YX, Yu N, Wang K, Liu ZW. An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda. INSECT MOLECULAR BIOLOGY 2024; 33:81-90. [PMID: 37815404 DOI: 10.1111/imb.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Koekemoer LL, Hajkazemian M, Zawada JW, Mirzaie M, Dahan-Moss YL, Emami SN. Data-driven networking of global transcriptomics and male sexual development in the main malaria vector, Anopheles funestus. Sci Rep 2023; 13:16798. [PMID: 37798302 PMCID: PMC10556010 DOI: 10.1038/s41598-023-43914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
Deaths from malaria remain staggering despite global support that drives research into new territories. One major gap is our understanding of the sexual biological aspects of the male mosquito, which maintain the vector population solidity. Although Anopheles funestus s.s. is an extremely efficient African vector, little is known about the network between its sexual physiology and gene expression. The Culicidae male's sexual maturity involves a suite of physiological changes, such as genitalia rotation that is necessary for successful mating to occur. We show that mating success is guided by genes and physiological plasticity. Transcriptome analysis between newly emerged males (immature) versus males with rotating genitalia (maturing) provides insight into possible molecular mechanisms regulating male sexual behaviour. Putative transcripts that were associated with male sexual maturation were identified and validated. The discovery of the functions of these transcripts could lead to identifying potential targets for innovative vector control interventions, and mosquito population suppression.
Collapse
Affiliation(s)
- L L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.
| | - M Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J W Zawada
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - M Mirzaie
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Y L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - S N Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Attraction AB, Elektravägen 10, Hägersten, 126 30, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
9
|
Huang G, Liu Z, Gu S, Zhang B, Sun J. Identification and functional analysis of odorant-binding proteins of the parasitoid wasp Scleroderma guani reveal a chemosensory synergistic evolution with the host Monochamus alternatus. Int J Biol Macromol 2023; 249:126088. [PMID: 37532193 DOI: 10.1016/j.ijbiomac.2023.126088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Scleroderma guani is a generalist ectoparasitoid of wood-boring insects. The chemosensory genes expressed in its antennae play crucial roles in host-seeking. In the present study, we identified 14 OBP genes for the first time from the antennae transcriptomes and genomic data of S. guani. The expression profiles of 14 OBPs were tested by RT-qPCR, and the RT-qPCR results showed that SguaOBP2/5/6/11/12/13 were specifically highly expressed in the female antennae. Then we performed ligand binding assays to test the interactions between six selected SguaOBPs with host specific chemical compounds from M. alternatus and pines. The binding results indicated that SguaOBP12 had a higher binding affinity with longifolene, β-caryophyllene, α-pinene, β-pinene, myrcene, butylated hydroxytoluene, and 3-carene. SguaOBP11 had a high or medium binding affinity with them. Furthermore, both SguaOBP11 and SguaOBP12 had a medium binding affinity with the aggregation pheromone of Monochamus species, 2-undecyloxy-1-ethanol. Finally, by using molecular docking and RNAi, we further explored the molecular interactions and behavioral functions of SguaOBP11 and SguaOBP12 with these vital odor molecules. Our study contributes to the further understanding of chemical communications between S. guani and its host, and further exploration for its role as a more effective biological control agent.
Collapse
Affiliation(s)
- Guangzhen Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhudong Liu
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shaohua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
10
|
Zhang X, Purba ER, Sun J, Zhang QH, Dong SL, Zhang YN, He P, Mang D, Zhang L. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). PEST MANAGEMENT SCIENCE 2023. [PMID: 37103977 DOI: 10.1002/ps.7515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND General odor-binding proteins (GOBPs) play critical roles in insect olfactory recognition of sex pheromones and plant volatiles. Therefore, the identification of GOBPs in Hyphantria cunea (Drury) based on their characterization to pheromone components and plant volatiles is remain unknown. RESULTS In this study, two H. cunea (HcunGOBPs) genes were cloned, and their expression profiles and odorant binding characteristics were systematically analyzed. Firstly, the tissue expression study showed that both HcunGOBP1 and HcunGOBP2 were highly expressed in the antennae of both sexes, indicating their potential involvement in the perception of sex pheromones. Secondly, these two HcunGOBPs genes were expressed in Escherichia coli and ligand binding assays were used to assess the binding affinities to its sex pheromone components including two aldehydes and two epoxides, and some plant volatiles. HcunGOBP2 showed high binding affinities to two aldehyde components (Z9, Z12, Z15-18Ald and Z9, Z12-18Ald), and showed low binding affinities to two epoxide components (1, Z3, Z6-9S, 10R-epoxy-21Hy and Z3, Z6-9S, 10R-epoxy-21Hy), whereas HcunGOBP1 showed weak but significant binding to all four sex pheromone components. Furthermore, both HcunGOBPs demonstrated variable binding affinities to the plant volatiles tested. Thirdly, in silico studies of HcunGOBPs utilized homology, structure modeling, and molecular docking revealed critical hydrophobic residues might be involved in the binding of HcunGOBPs to their sex pheromone components and plant volatiles. CONCLUSION Our study suggests that these two HcunGOBPs may serve as potential targets for future studies of HcunGOBPs ligand binding, providing insight in the mechanism of olfaction in H. cunea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Endang R Purba
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jing Sun
- College of Life Science, Hebei University, Baoding, China
| | | | - Shuang-Lin Dong
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Dingze Mang
- College of Life Science, Hebei University, Baoding, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Liu Y, Luo Y, Du L, Ban L. Antennal Transcriptome Analysis of Olfactory Genes and Characterization of Odorant Binding Proteins in Odontothrips loti (Thysanoptera: Thripidae). Int J Mol Sci 2023; 24:ijms24065284. [PMID: 36982358 PMCID: PMC10048907 DOI: 10.3390/ijms24065284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
To identify odors in complex environments accurately, insects have evolved multiple olfactory proteins. In our study, various olfactory proteins of Odontothrips loti Haliday, an oligophagous pest that primarily affects Medicago sativa (alfalfa), were explored. Specifically, 47 putative olfactory candidate genes were identified in the antennae transcriptome of O. loti, including seven odorant-binding proteins (OBPs), nine chemosensory proteins (CSPs), seven sensory neuron membrane proteins (SNMPs), eight odorant receptors (ORs), and sixteen ionotropic receptors (IRs). PCR analysis further confirmed that 43 out of 47 genes existed in O. loti adults, and O.lotOBP1, O.lotOBP4, and O.lotOBP6 were specifically expressed in the antennae with a male-biased expression pattern. In addition, both the fluorescence competitive binding assay and molecular docking showed that p-Menth-8-en-2-one, a component of the volatiles of the host, had strong binding ability to the O.lotOBP6 protein. Behavioral experiments showed that this component has a significant attraction to both female and male adults, indicating that O.lotOBP6 plays a role in host location. Furthermore, molecular docking reveals potential active sites in O.lotOBP6 that interact with most of the tested volatiles. Our results provide insights into the mechanism of O. loti odor-evoked behavior and the development of a highly specific and sustainable approach for thrip management.
Collapse
Affiliation(s)
- Yanqi Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingning Luo
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixiao Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence:
| |
Collapse
|
12
|
Duan SG, Lv CL, Liu JH, Yi SC, Yang RN, Liu A, Wang MQ. NlugOBP8 in Nilaparvata lugens Involved in the Perception of Two Terpenoid Compounds from Rice Plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16323-16334. [PMID: 36511755 DOI: 10.1021/acs.jafc.2c06419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Odorant binding proteins (OBPs) play an important role in insect peripheral olfactory systems and exploring the physiological function of OBPs could facilitate the understanding of insects' chemical communication. Here, the functional analysis of an antenna-based NlugOBP8 from brown planthopper (BPH) Nilaparvata lugens (Stål) was performed both in vitro and in vivo. Recombinant NlugOBP8 exhibited strong binding affinity to 13 out of 26 rice plant volatiles and could form a stable complex with 9 of them according to the fluorescence binding and fluorescence quenching experiments. Circular dichroism spectra demonstrated that six volatiles could give rise to significant conformational change of recombinant NlugOBP8. H-tube olfactometer bioassay confirmed that BPHs were significantly attracted by nerolidol and significantly repelled by linalool, caryophyllene oxide, and terpinolene, respectively. Antennae of dsNlugOBP8-injected BPHs exhibited significantly lower electrophysiological response to linalool and caryophyllene oxide. Moreover, the repellent responses of BPHs to these two volatiles were also impaired upon silencing NlugOBP8. These data suggest that NlugOBP8 is involved in recognizing linalool and caryophyllene oxide and provide additional target for the sustainable control of BPHs.
Collapse
Affiliation(s)
- Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Cai-Lu Lv
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, Hebei061001, P. R. China
| | - Jia-Hui Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
13
|
Liu H, Sun X, Shi Z, An X, Khashaveh A, Li Y, Gu S, Zhang Y. Identification and functional analysis of odorant-binding proteins provide new control strategies for Apolygus lucorum. Int J Biol Macromol 2022; 224:1129-1141. [DOI: 10.1016/j.ijbiomac.2022.10.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
14
|
Lizana P, Mutis A, Quiroz A, Venthur H. Insights Into Chemosensory Proteins From Non-Model Insects: Advances and Perspectives in the Context of Pest Management. Front Physiol 2022; 13:924750. [PMID: 36072856 PMCID: PMC9441497 DOI: 10.3389/fphys.2022.924750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nowadays, insect chemosensation represents a key aspect of integrated pest management in the Anthropocene epoch. Olfaction-related proteins have been the focus of studies due to their function in vital processes, such ashost finding and reproduction behavior. Hence, most research has been based on the study of model insects, namely Drosophila melanogaster, Bombyx mori or Tribolium castaneum. Over the passage of time and the advance of new molecular techniques, insects considered non-models have been studied, contributing greatly to the knowledge of insect olfactory systems and enhanced pest control methods. In this review, a reference point for non-model insects is proposed and the concept of model and non-model insects is discussed. Likewise, it summarizes and discusses the progress and contribution in the olfaction field of both model and non-model insects considered pests in agriculture.
Collapse
Affiliation(s)
- Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Doyle T, Jimenez‐Guri E, Hawkes WLS, Massy R, Mantica F, Permanyer J, Cozzuto L, Hermoso Pulido T, Baril T, Hayward A, Irimia M, Chapman JW, Bass C, Wotton KR. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Mol Ecol 2022; 31:4332-4350. [PMID: 35801824 PMCID: PMC9546057 DOI: 10.1111/mec.16588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Insects are capable of extraordinary feats of long-distance movement that have profound impacts on the function of terrestrial ecosystems. The ability to undertake these movements arose multiple times through the evolution of a suite of traits that make up the migratory syndrome, however the underlying genetic pathways involved remain poorly understood. Migratory hoverflies (Diptera: Syrphidae) are an emerging model group for studies of migration. They undertake seasonal movements in huge numbers across large parts of the globe and are important pollinators, biological control agents and decomposers. Here, we assembled a high-quality draft genome of the marmalade hoverfly (Episyrphus balteatus). We leveraged this genomic resource to undertake a genome-wide transcriptomic comparison of actively migrating Episyrphus, captured from a high mountain pass as they flew south to overwinter, with the transcriptomes of summer forms which were non-migratory. We identified 1543 genes with very strong evidence for differential expression. Interrogation of this gene set reveals a remarkable range of roles in metabolism, muscle structure and function, hormonal regulation, immunity, stress resistance, flight and feeding behaviour, longevity, reproductive diapause and sensory perception. These features of the migrant phenotype have arisen by the integration and modification of pathways such as insulin signalling for diapause and longevity, JAK/SAT for immunity, and those leading to octopamine production and fuelling to boost flight capabilities. Our results provide a powerful genomic resource for future research, and paint a comprehensive picture of global expression changes in an actively migrating insect, identifying key genomic components involved in this important life-history strategy.
Collapse
Affiliation(s)
- Toby Doyle
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Eva Jimenez‐Guri
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Will L. S. Hawkes
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Richard Massy
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Federica Mantica
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Jon Permanyer
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Luca Cozzuto
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Toni Hermoso Pulido
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
| | - Tobias Baril
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Alex Hayward
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Manuel Irimia
- Centre for Genomic RegulationBarcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- ICREABarcelonaSpain
| | - Jason W. Chapman
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
- Environment and Sustainability InstituteUniversity of Exeter, Cornwall CampusPenrynUK
- Department of Entomology, College of Plant ProtectionNanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Chris Bass
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| | - Karl R. Wotton
- Centre for Ecology and ConservationUniversity of Exeter, Cornwall CampusPenrynUK
| |
Collapse
|
16
|
Li H, Hao E, Li Y, Yang H, Sun P, Lu P, Qiao H. Antennal transcriptome analysis of olfactory genes and tissue expression profiling of odorant binding proteins in Semanotus bifasciatus (cerambycidae: coleoptera). BMC Genomics 2022; 23:461. [PMID: 35733103 PMCID: PMC9219211 DOI: 10.1186/s12864-022-08655-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Insect olfactory proteins can transmit chemical signals in the environment that serve as the basis for foraging, mate searching, predator avoidance and oviposition selection. Semanotus bifasciatus is an important destructive borer pest, but its olfactory mechanism is not clear. We identified the chemosensory genes of S. bifasciatus in China, then we conducted a phylogenetic analysis of the olfactory genes of S. bifasciatus and other species. And the expression profiles of odorant binding proteins (OBPs) genes in different tissues and different genders of S. bifasciatus were determined by quantitative real-time PCR for the first time. Results A total of 32 OBPs, 8 chemosensory proteins (CSPs), 71 odorant receptors (ORs), 34 gustatory receptors (GRs), 18 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs) were identified. In the tissue expression analysis of OBP genes, 7 OBPs were higher expressed in antennae, among them, SbifOBP2, SbifOBP3, SbifOBP6, SbifOBP7 and SbifOBP20 were female-biased expression, while SbifOBP1 was male-biased expression and SbifOBP22 was no-biased expression in antennae. In addition, the expressed levels of SbifOBP4, SbifOBP12, SbifOBP15, SbifOBP27 and SbifOBP29 were very poor in the antennae, and SbifOBP4 and SbifOBP29 was abundant in the head or legs, and both of them were male-biased expression. While SbifOBP15 was highly expressed only at the end of the abdomen with its expression level in females three times than males. Other OBPs were expressed not only in antennae but also in various tissues. Conclusion We identified 166 olfactory genes from S. bifasciatus, and classified these genes into groups and predicted their functions by phylogenetic analysis. The majority of OBPs were antenna-biased expressed, which are involved in odor recognition, sex pheromone detection, and/or host plant volatile detection. However, also some OBPs were detected biased expression in the head, legs or end of the abdomen, indicating that they may function in the different physiological processes in S. bifasciatus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08655-w.
Collapse
Affiliation(s)
- Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yini Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Huan Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Piao Sun
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, 35 Qinghua Dong Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Sims C, Birkett MA, Withall DM. Enantiomeric Discrimination in Insects: The Role of OBPs and ORs. INSECTS 2022; 13:368. [PMID: 35447810 PMCID: PMC9030700 DOI: 10.3390/insects13040368] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023]
Abstract
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
Collapse
Affiliation(s)
- Cassie Sims
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael A. Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| | - David M. Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; (C.S.); (M.A.B.)
| |
Collapse
|
18
|
Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hazem Elewa Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
19
|
Shegelski VA, Evenden ML, Huber DPW, Sperling FAH. Identification of genes and gene expression associated with dispersal capacity in the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae). PeerJ 2021; 9:e12382. [PMID: 34754626 PMCID: PMC8555496 DOI: 10.7717/peerj.12382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Dispersal flights by the mountain pine beetle have allowed range expansion and major damage to pine stands in western Canada. We asked what the genetic and transcriptional basis of mountain pine beetle dispersal capacity is. Using flight mills, RNA-seq and a targeted association study, we compared strong-flying, weak-flying, and non-flying female beetles from the recently colonized northern end of their range. Nearly 3,000 genes were differentially expressed between strong and weak flying beetles, while weak fliers and nonfliers did not significantly differ. The differentially expressed genes were mainly associated with lipid metabolism, muscle maintenance, oxidative stress response, detoxification, endocrine function, and flight behavior. Three variant loci, two in the coding region of genes, were significantly associated with flight capacity but these genes had no known functional link to flight. Several differentially expressed gene systems may be important for sustained flight, while other systems are downregulated during dispersal and likely to conserve energy before host colonization. The candidate genes and SNPs identified here will inform further studies and management of mountain pine beetle, as well as contribute to understanding the mechanisms of insect dispersal flights.
Collapse
Affiliation(s)
- Victor A Shegelski
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dezene P W Huber
- Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Felix A H Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Wang ZQ, Wu C, Li GC, Nuo SM, Yin NN, Liu NY. Transcriptome Analysis and Characterization of Chemosensory Genes in the Forest Pest, Dioryctria abietella (Lepidoptera: Pyralidae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Lepidoptera, RNA sequencing has become a useful tool in identifying chemosensory genes from antennal transcriptomes, but little attention is paid to non-antennal tissues. Though the antennae are primarily responsible for olfaction, studies have found that a certain number of chemosensory genes are exclusively or highly expressed in the non-antennal tissues, such as proboscises, legs and abdomens. In this study, we report a global transcriptome of 16 tissues from Dioryctria abietella, including chemosensory and non-chemosensory tissues. Through Illumina sequencing, totally 952,658,466 clean reads were generated, summing to 142.90 gigabases of data. Based on the transcriptome, 235 chemosensory-related genes were identified, comprising 42 odorant binding proteins (OBPs), 23 chemosensory proteins (CSPs), 75 odorant receptors (ORs), 62 gustatory receptors (GRs), 30 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). Compared to a previous study in this species, 140 novel genes were found. A transcriptome-wide analysis combined with PCR results revealed that except for GRs, the majority of other five chemosensory gene families in Lepidoptera were expressed in the antennae, including 160 chemosensory genes in D. abietella. Using phylogenetic and expression profiling analyses, members of the six chemosensory gene repertoires were characterized, in which 11 DabiORs were candidates for detecting female sex pheromones in D. abietella, and DabiOR23 may be involved in the sensing of plant-derived phenylacetaldehyde. Intriguingly, more than half of the genes were detected in the proboscises, and one fourth of the genes were found to have the expression in the legs. Our study not only greatly extends and improves the description of chemosensory genes in D. abietella, but also identifies potential molecular targets involved in olfaction, gustation and non-chemosensory functions for control of this pest.
Collapse
|
21
|
Nganso BT, Mani K, Eliash N, Rafaeli A, Soroker V. Towards disrupting Varroa -honey bee chemosensing: A focus on a Niemann-Pick type C2 transcript. INSECT MOLECULAR BIOLOGY 2021; 30:519-531. [PMID: 34216416 DOI: 10.1111/imb.12722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
We focused our study on the 12 recently identified putative odorant carrier proteins in the ectoparasitic mite, Varroa destructor. Here we show, via an exclusion of the chemosensory appendages (forelegs and gnathosoma) that transcripts of five of the 12 genes were significantly lower, suggesting that they are likely involved in carrying host volatiles. Specifically, three transcripts were found to be foreleg-specific while the other two transcripts were expressed in both the forelegs and gnathosoma. We focused on one of the highly expressed and foreleg-specific transcript Vd40090, which encodes a Niemann-Pick disease protein type C2 (NPC2) protein. Effects of dsRNA-mediated silencing of Vd40090 were first measured by quantifying the transcript levels of genes that encode other putative odorant carrier proteins as well as reproduction related proteins. In addition, the impact of silencing on mites behaviour and survival was tested. Silencing of Vd40090 effectively disrupted Varroa host selection, acceptance and feeding and significantly impaired the expression of genes that regulate its reproduction in brood cells, resulting in reduced reproduction and survival.
Collapse
Affiliation(s)
- B T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - K Mani
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - N Eliash
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| | - A Rafaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, the Volcani Centre, Rishon LeZion, Israel
| | - V Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
22
|
Stowe HE, Michaud JP, Kim TN. Floral Resources Enhance Fecundity, but Not Flight Activity, in a Specialized Aphid Predator, Hippodamia convergens (Coleoptera: Coccinellidae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.748870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult aphid predators disperse across the landscape seasonally in search of prey aggregations that are patchily distributed and temporally variable. However, flight is energetically costly and consumes resources that could be invested in reproduction. Hippodamia convergens is an important aphid predator in North American cereal crops and other agricultural systems. Consumption of floral resources can enhance adult survival during periods of low prey availability and may improve reproductive success. We tested how an omnivorous adult diet containing floral resources (diluted honey and pulverized bee pollen) interacts with body size to influence reproduction and flight behavior compared to a prey-only diet. Two sizes of beetles were produced by controlling larval access to food—3 h daily access produced small beetles; ad libitum access produced large beetles with faster development. Reproductive performance was tracked for 18 days, and female flight activity was assayed via 3 h bouts of tethered flight. Diet composition and body size interacted to influence preoviposition period, with large females in prey-only treatments delaying oviposition the longest. The omnivorous adult diet improved 18-day fecundity relative to a prey-only diet, but egg fertility was unaffected. Adult size affected oviposition pattern, with small beetles laying smaller, but more numerous, clutches. Females flew up to 7 km in 6 h, but neither body size nor adult diet influenced flight distance, suggesting that all diet treatments generated energy reserves sufficient to power flights of short duration. However, pre-reproductive females flew > 60% further than they did post-reproduction, likely due to the energetic costs of oviposition. Thus, access to pollen and nectar increased reproductive success and altered oviposition patterns in H. convergens, indicating the importance of floral resources in the agricultural landscape to conservation of this predator and its biological control services.
Collapse
|
23
|
Wang L, Yin H, Zhu Z, Yang S, Fan J. A Detailed Spatial Expression Analysis of Wing Phenotypes Reveals Novel Patterns of Odorant Binding Proteins in the Soybean Aphid, Aphis glycines. Front Physiol 2021; 12:702973. [PMID: 34421640 PMCID: PMC8376974 DOI: 10.3389/fphys.2021.702973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 01/20/2023] Open
Abstract
The wide range of insect niches has led to a rapid expansion of chemosensory gene families as well as their relatively independent evolution and a high variation. Previous studies have revealed some functions for odorant-binding proteins (OBPs) in processes beyond olfaction, such as gustation and reproduction. In this study, a comparative transcriptomic analysis strategy was applied for the soybean aphid, Aphis glycines, focusing on various functional tissues and organs of winged aphids, including the antenna, head, leg, wing, thorax, cauda, and cornicle. Detailed spatial OBP expression patterns in winged and wingless parthenogenetic aphids were detected by RT-qPCR. Twelve OBPs were identified, and three new OBPs in A. glycines are first reported. All OBPs showed comparatively higher expression in sensory organs and tissues, such as the antenna, head, or leg. Additionally, we found some novel expression patterns for aphid OBPs (Beckendorf et al., 2008). Five OBPs exhibited high-expression levels in the cauda and four in the cornicle (Biasio et al., 2015). Three genes (OBP2/3/15) were highly expressed in the wing (Calvello et al., 2003). Two (OBP3/15) were significantly more highly expressed in the wingless thorax than in the winged thorax with the wings removed, and these transcripts were significantly enriched in the removed wings. More details regarding OBP spatial expression were revealed under our strategy. These findings supported the existence of carrier transport functions other than for foreign chemicals and therefore broader ligand ranges of aphid OBPs. It is important for understanding how insect OBPs function in chemical perception as well as their other potential physiological functions.
Collapse
Affiliation(s)
- Ling Wang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hang Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Zhu
- Wuhu Institute of Technology, Wuhu, China
| | - Shuai Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jia Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|