1
|
Miller WG, Lopes BS, Chapman MH, Williams TG, Ramjee M, Wood DF, Bono JL, Forbes KJ. Campylobacter molothri sp. nov. isolated from wild birds. Int J Syst Evol Microbiol 2025; 75:006635. [PMID: 39913296 PMCID: PMC11801493 DOI: 10.1099/ijsem.0.006635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
Twenty-nine hippuricase-positive Campylobacter strains were isolated from wild birds and river water. Previous characterization using atpA typing indicated that these strains were related to Campylobacter jejuni and Campylobacter coli but were most similar to three recently described hippuricase-positive Campylobacter species recovered from zebra finches, i.e. C. aviculae, C. estrildidarum and C. taeniopygiae. Phylogenetic analyses using 330 core genes placed the 29 strains into a clade well separated from the other Campylobacter taxa, indicating that these strains represent a novel Campylobacter species. Pairwise digital DNA-DNA hybridization and average nucleotide identity values were below 70 and 95 %, respectively, thus providing further supporting evidence of a novel taxon. Standard phenotypic testing was performed. All strains are microaerobic or anaerobic, motile, Gram-negative, spiral cells that are oxidase, catalase and nitrate reductase positive, but urease negative. Genomic analyses indicate that the 29 strains can potentially synthesize very few amino acids de novo and are auxotrophic for many amino acids and cofactors, similar to the species composing the Campylobacter lari group. In addition, these strains encode complete Entner-Doudoroff and Leloir pathways, suggesting that they may possess the ability to utilize both glucose and galactose; these pathways were also identified in the genomes of the zebra finch-associated taxa. The data presented here show that these strains represent a novel species within Campylobacter, for which the name Campylobacter molothri sp. nov. (type strain RM10537T=LMG 32306T=CCUG 75331T) is proposed.
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Bruno S. Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
- National Horizons Centre, Teesside University, Darlington, UK
| | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Tina G. Williams
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Meenakshi Ramjee
- Wolfson Wohl Cancer Research Centre, Glasgow. The University of Glasgow, Glasgow, UK
| | - Delilah F. Wood
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - James L. Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA
| | - Ken J. Forbes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Middendorf PS, Zomer AL, Bergval IL, Jacobs-Reitsma WF, den Besten HMW, Abee T. Host associations of Campylobacter jejuni and Campylobacter coli isolates carrying the L-fucose or d-glucose utilization cluster. Int J Food Microbiol 2024; 425:110855. [PMID: 39191191 DOI: 10.1016/j.ijfoodmicro.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter was considered asaccharolytic, but is now known to carry saccharide metabolization pathways for L-fucose and d-glucose. We hypothesized that these clusters are beneficial for Campylobacter niche adaptation and may help establish human infection. We investigated the distribution of d-glucose and L-fucose clusters among ∼9600 C. jejuni and C. coli genomes of different isolation sources in the Netherlands, the United Kingdom, the United States of America and Finland. The L-fucose utilization cluster was integrated at the same location in all C. jejuni and C. coli genomes, and was flanked by the genes rpoB, rpoC, rspL, repsG and fusA, which are associated with functions in transcription as well as translation and in acquired drug resistance. In contrast, the flanking regions of the d-glucose utilization cluster were variable among the isolates, and integration sites were located within one of the three different 16S23S ribosomal RNA areas of the C. jejuni and C. coli genomes. In addition, we investigated whether acquisition of the L-fucose utilization cluster could be due to horizontal gene transfer between the two species and found three isolates for which this was the case: one C. jejuni isolate carrying a C. coli L-fucose cluster, and two C. coli isolates which carried a C. jejuni L-fucose cluster. Furthermore, L-fucose utilization cluster alignments revealed multiple frameshift mutations, most of which were commonly found in the non-essential genes for L-fucose metabolism, namely, Cj0484 and Cj0489. These findings support our hypothesis that the L-fucose cluster was integrated multiple times across the C. coli/C. jejuni phylogeny. Notably, association analysis using the C. jejuni isolates from the Netherlands showed a significant correlation between human C. jejuni isolates and C. jejuni isolates carrying the L-fucose utilization cluster. This correlation was even stronger when the Dutch isolates were combined with the isolates from the UK, the USA and Finland. No such correlations were observed for C. coli or for the d-glucose cluster for both species. This research provides insight into the spread and host associations of the L-fucose and d-glucose utilization clusters in C. jejuni and C. coli, and the potential benefits in human infection and/or proliferation in humans, conceivably after transmission from any reservoir.
Collapse
Affiliation(s)
- Pjotr S Middendorf
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands; National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Aldert L Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands; WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Indra L Bergval
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands.
| |
Collapse
|
3
|
Yoshida-Takashima Y, Takaki Y, Yoshida M, Zhang Y, Nunoura T, Takai K. Genomic insights into phage-host interaction in the deep-sea chemolithoautotrophic Campylobacterota, Nitratiruptor. ISME COMMUNICATIONS 2022; 2:108. [PMID: 37938718 PMCID: PMC9723563 DOI: 10.1038/s43705-022-00194-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2023]
Abstract
The genus Nitratiruptor represents one of the most numerically abundant chemolithoautotrophic Campylobacterota populations in the mixing zones of habitats between hydrothermal fluids and ambient seawater in deep-sea hydrothermal environments. We isolated and characterized four novel temperate phages (NrS-2, NrS-3, NrS-4, and NrS-5) having a siphoviral morphology, infecting Nitratiruptor strains from the Hatoma Knoll hydrothermal field in the southern-Okinawa Trough, Japan, and conducted comparative genomic analyses among Nitratiruptor strains and their phages. The Nitratiruptor temperate phages shared many potential core genes (e.g., integrase, Cro, two structural proteins, lysozyme, and MazG) with each other despite their diverse morphological and genetic features. Some homologs of coding sequences (CDSs) of the temperate phages were dispersed throughout the non-prophage regions of the Nitratiruptor genomes. In addition, several regions of the phage genome sequences matched to spacer sequences within clustered regularly interspaced short palindromic repeats (CRISPR) in Nitratiruptor genomes. Moreover, a restriction-modification system found in a temperate phage affected an epigenetic feature of its host. These results strongly suggested a coevolution of temperate phages and their host genomes via the acquisition of temperate phages, the CRISPR systems, the nucleotide substitution, and the epigenetic regulation during multiple phage infections in the deep-sea environments.
Collapse
Affiliation(s)
- Yukari Yoshida-Takashima
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Mitsuhiro Yoshida
- Deep-Sea Bioresource Research Group, Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yi Zhang
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Deep-Sea Bioresource Research Group, Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| |
Collapse
|
4
|
Rath A, Rautenschlein S, Rzeznitzeck J, Lalk M, Methling K, Rychlik I, Peh E, Kittler S, Waldmann KH, von Altrock A. Investigation on the colonisation of Campylobacter strains in the pig intestine depending on available metabolites. Comp Immunol Microbiol Infect Dis 2022; 88:101865. [PMID: 35914481 DOI: 10.1016/j.cimid.2022.101865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Campylobacter (C.) spp. represent one of the most important causes for food-borne bacterial pathogen in humans worldwide. The aim of this study was to investigate metabolic requirements of two Campylobacter strains of different species based on substrate utilisation (in vitro). Based on these results, a correlation between the colonisation and the available substrates in different intestinal sections was recorded using an animal model. Campylobacter coli (ST-5777) and C. jejuni (ST-122) were used to inoculate 16 pigs, respectively, and one group of 16 pigs was used as control. The strains differed significantly in substrate utilisation - C. coli was able to metabolise various substrates (acetate, asparagine, serine, fucose, and propionate), while C. jejuni only utilised serine. Metabolomic analysis of intestinal content from different gut sections showed the presence of all previously tested metabolites, except for fucose. A significantly larger amount of glucose was found in the jejunum of those pigs infected with C. coli, while neither strain utilised it in vitro. The analysis of the intestinal contents revealed a very low proportion of Campylobacterales in the total microbiome, suggesting that the small percentage of the inoculated Campylobacter strains in the gut microflora of the animals is too low to cause differences between the control and infected groups in the composition of the metabolome. Nevertheless, knowledge of specific nutritional requirements of the pathogens combined with proof of different metabolites in the intestinal segments may provide clues about the site of colonisation in the host and improve our understanding of this zoonotic germ.
Collapse
Affiliation(s)
- Alexandra Rath
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Janina Rzeznitzeck
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Michael Lalk
- Institute for Pharmaceutical Biology, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute for Pharmaceutical Biology, University of Greifswald, Greifswald, Germany
| | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - Alexandra von Altrock
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| |
Collapse
|
5
|
Middendorf PS, Jacobs-Reitsma WF, Zomer AL, den Besten HMW, Abee T. Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Front Microbiol 2022; 13:872207. [PMID: 35572645 PMCID: PMC9100392 DOI: 10.3389/fmicb.2022.872207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Heidy M. W. den Besten
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- Heidy M. W. den Besten,
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Tjakko Abee,
| |
Collapse
|
6
|
Gaowa N, Li W, Gelsinger S, Murphy B, Li S. Analysis of Host Jejunum Transcriptome and Associated Microbial Community Structure Variation in Young Calves with Feed-Induced Acidosis. Metabolites 2021; 11:414. [PMID: 34201826 PMCID: PMC8303401 DOI: 10.3390/metabo11070414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022] Open
Abstract
Diet-induced acidosis imposes a health risk to young calves. In this study, we aimed to investigate the host jejunum transcriptome changes, along with its microbial community variations, using our established model of feed-induced ruminal acidosis in young calves. Eight bull calves were randomly assigned to two diet treatments beginning at birth (a starch-rich diet, Aci; a control diet, Con). Whole-transcriptome RNA sequencing was performed on the jejunum tissues collected at 17 weeks of age. Ribosomal RNA reads were used for studying microbial community structure variations in the jejunum. A total of 853 differentially expressed genes were identified (402 upregulated and 451 downregulated) between the two groups. The cell cycle and the digestion and absorption of protein in jejunal tissue were affected by acidosis. Compared to the control, genera of Campylobacter, Burkholderia, Acidaminococcus, Corynebacterium, and Olsenella significantly increased in abundance in the Aci group, while Lachnoclostridium and Ruminococcus were significantly lower in the Aci group. Expression changes in the AXL gene were associated with the abundance variations of a high number of genera in jejunum. Our study provided a snapshot of the transcriptome changes in the jejunum and its associated meta-transcriptome changes in microbial communities in young calves with feed-induced acidosis.
Collapse
Affiliation(s)
- Naren Gaowa
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| | - Wenli Li
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Sonia Gelsinger
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Brianna Murphy
- Cell Wall Biology and Utilization Research Unit, US Dairy Forage Research Center, Agricultural Research Service, US Department of Agriculture, 1925 Linden Drive, Madison, WI 53706, USA;
| | - Shengli Li
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China;
| |
Collapse
|
7
|
Abstract
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction-modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
Collapse
Affiliation(s)
- Julia Carolin Golz
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| |
Collapse
|
8
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Genger C, Kløve S, Mousavi S, Bereswill S, Heimesaat MM. The conundrum of colonization resistance against Campylobacter reloaded: The gut microbota composition in conventional mice does not prevent from Campylobacter coli infection. Eur J Microbiol Immunol (Bp) 2020; 10:80-90. [PMID: 32590346 PMCID: PMC7391380 DOI: 10.1556/1886.2020.00004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 01/27/2023] Open
Abstract
The physiological colonization resistance exerted by the murine gut microbiota prevents conventional mice from Campylobacter jejuni infection. In the present study we addressed whether this also held true for Campylobacter coli. Following peroral application, C. coli as opposed to C.jejuni could stably establish within the gastrointestinal tract of conventionally colonized mice until 3 weeks post-challenge. Neither before nor after either Campylobacter application any changes in the gut microbiota composition could be observed. C. coli, but not C. jejuni challenge was associated with pronounced regenerative, but not apoptotic responses in colonic epithelia. At day 21 following C. coli versus C. jejuni application mice exhibited higher numbers of adaptive immune cells including T-lymphocytes and regulatory T-cells in the colonic mucosa and lamina propria that were accompanied by higher large intestinal interferon-γ (IFN-γ) concentrations in the former versus the latter but comparable to naive levels. Campylobacter application resulted in decreased splenic IFN-γ, tumor necrosis factor-α (TNF-α), and IL-6 concentrations, whereas IL-12p70 secretion was increased in the spleens at day 21 following C. coli application only. In either Campylobacter cohort decreased IL-10 concentrations could be measured in splenic and serum samples. In conclusion, the commensal gut microbiota prevents mice from C. jejuni, but not C. coli infection.
Collapse
Affiliation(s)
- Claudia Genger
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sigri Kløve
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Yeow M, Liu F, Ma R, Williams TJ, Riordan SM, Zhang L. Analyses of energy metabolism and stress defence provide insights into Campylobacter concisus growth and pathogenicity. Gut Pathog 2020; 12:13. [PMID: 32165925 PMCID: PMC7059363 DOI: 10.1186/s13099-020-00349-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/15/2020] [Indexed: 02/08/2023] Open
Abstract
Campylobacter concisus is an emerging enteric pathogen that is associated with inflammatory bowel disease. Previous studies demonstrated that C. concisus is non-saccharolytic and hydrogen gas (H2) is a critical factor for C. concisus growth. In order to understand the molecular basis of the non-saccharolytic and H2-dependent nature of C. concisus growth, in this study we examined the pathways involving energy metabolism and oxidative stress defence in C. concisus. Bioinformatic analysis of C. concisus genomes in comparison with the well-studied enteric pathogen Campylobacter jejuni was performed. This study found that C. concisus lacks a number of key enzymes in glycolysis, including glucokinase and phosphofructokinase, and the oxidative pentose phosphate pathway. C. concisus has an incomplete tricarboxylic acid cycle, with no identifiable succinyl-CoA synthase or fumarate hydratase. C. concisus was inferred to use fewer amino acids and have fewer candidate substrates as electron donors and acceptors compared to C. jejuni. The addition of DMSO or fumarate to media resulted in significantly increased growth of C. concisus in the presence of H2 as an electron donor, demonstrating that both can be used as electron acceptors. Catalase, an essential enzyme for oxidative stress defence in C. jejuni, and various nitrosative stress enzymes, were not found in the C. concisus genome. Overall, C. concisus is inferred to have a non-saccharolytic metabolism in which H2 is central to energy conservation, and a narrow selection of carboxylic acids and amino acids can be utilised as organic substrates. In conclusion, this study provides a molecular basis for the non-saccharolytic and hydrogen-dependent nature of C. concisus energy metabolism pathways, which provides insights into the growth requirements and pathogenicity of this species.
Collapse
Affiliation(s)
- Melissa Yeow
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Timothy J. Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| |
Collapse
|
11
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
12
|
The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Commun Biol 2020; 3:2. [PMID: 31925306 PMCID: PMC6946681 DOI: 10.1038/s42003-019-0727-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Although the gastrointestinal pathogen Campylobacter jejuni was considered asaccharolytic, >50% of sequenced isolates possess an operon for L-fucose utilization. In C. jejuni NCTC11168, this pathway confers L-fucose chemotaxis and competitive colonization advantages in the piglet diarrhea model, but the catabolic steps remain unknown. Here we solved the putative dehydrogenase structure, resembling FabG of Burkholderia multivorans. The C. jejuni enzyme, FucX, reduces L-fucose and D-arabinose in vitro and both sugars are catabolized by fuc-operon encoded enzymes. This enzyme alone confers chemotaxis to both sugars in a non-carbohydrate-utilizing C. jejuni strain. Although C. jejuni lacks fucosidases, the organism exhibits enhanced growth in vitro when co-cultured with Bacteroides vulgatus, suggesting scavenging may occur. Yet, when excess amino acids are available, C. jejuni prefers them to carbohydrates, indicating a metabolic hierarchy exists. Overall this study increases understanding of nutrient metabolism by this pathogen, and identifies interactions with other gut microbes.
Collapse
|
13
|
Van TTH, Lacey JA, Vezina B, Phung C, Anwar A, Scott PC, Moore RJ. Survival Mechanisms of Campylobacter hepaticus Identified by Genomic Analysis and Comparative Transcriptomic Analysis of in vivo and in vitro Derived Bacteria. Front Microbiol 2019; 10:107. [PMID: 30804905 PMCID: PMC6371046 DOI: 10.3389/fmicb.2019.00107] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/18/2019] [Indexed: 01/01/2023] Open
Abstract
Chickens infected with Campylobacter jejuni or Campylobacter coli are largely asymptomatic, however, infection with the closely related species, Campylobacter hepaticus, can result in Spotty Liver Disease (SLD). C. hepaticus has been detected in the liver, bile, small intestine and caecum of SLD affected chickens. The survival and colonization mechanisms that C. hepaticus uses to colonize chickens remain unknown. In this study, we compared the genome sequences of 14 newly sequenced Australian isolates of C. hepaticus, isolates from outbreaks in the United Kingdom, and reference strains of C. jejuni and C. coli, with the aim of identifying virulence genes associated with SLD. We also carried out global comparative transcriptomic analysis between C. hepaticus recovered from the bile of SLD infected chickens and C. hepaticus grown in vitro. This revealed how the bacteria adapt to proliferate in the challenging host environment in which they are found. Additionally, biochemical experiments confirmed some in silico metabolic predictions. We found that, unlike other Campylobacter sp., C. hepaticus encodes glucose and polyhydroxybutyrate metabolism pathways. This study demonstrated the metabolic plasticity of C. hepaticus, which may contribute to survival in the competitive, nutrient and energy-limited environment of the chicken. Transcriptomic analysis indicated that gene clusters associated with glucose utilization, stress response, hydrogen metabolism, and sialic acid modification may play an important role in the pathogenicity of C. hepaticus. An understanding of the survival and virulence mechanisms that C. hepaticus uses will help to direct the development of effective intervention methods to protect birds from the debilitating effects of SLD.
Collapse
Affiliation(s)
- Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ben Vezina
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Canh Phung
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Arif Anwar
- Scolexia Pty Ltd., Moonee Ponds, VIC, Australia
| | | | - Robert J Moore
- School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
14
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Mannion A, Shen Z, Fox JG. Comparative genomics analysis to differentiate metabolic and virulence gene potential in gastric versus enterohepatic Helicobacter species. BMC Genomics 2018; 19:830. [PMID: 30458713 PMCID: PMC6247508 DOI: 10.1186/s12864-018-5171-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
Background The genus Helicobacter are gram-negative, microaerobic, flagellated, mucus-inhabiting bacteria associated with gastrointestinal inflammation and classified as gastric or enterohepatic Helicobacter species (EHS) according to host species and colonization niche. While there are over 30 official species, little is known about the physiology and pathogenic mechanisms of EHS, which account for most in the genus, as well as what genetic factors differentiate gastric versus EHS, given they inhabit different hosts and colonization niches. The objective of this study was to perform a whole-genus comparative analysis of over 100 gastric versus EHS genomes in order to identify genetic determinants that distinguish these Helicobacter species and provide insights about their evolution/adaptation to different hosts, colonization niches, and mechanisms of virulence. Results Whole-genome phylogeny organized Helicobacter species according to their presumed gastric or EHS classification. Analysis of orthologs revealed substantial heterogeneity in physiological and virulence-related genes between gastric and EHS genomes. Metabolic reconstruction predicted that unlike gastric species, EHS appear asaccharolytic and dependent on amino/organic acids to fuel metabolism. Additionally, gastric species lack de novo biosynthetic pathways for several amino acids and purines found in EHS and instead rely on environmental uptake/salvage pathways. Comparison of virulence factor genes between gastric and EHS genomes identified overlapping yet distinct profiles and included canonical cytotoxins, outer membrane proteins, secretion systems, and survival factors. Conclusions The major differences in predicted metabolic function suggest gastric species and EHS may have evolved for survival in the nutrient-rich stomach versus the nutrient-devoid environments, respectively. Contrasting virulence factor gene profiles indicate gastric species and EHS may utilize different pathogenic mechanisms to chronically infect hosts and cause inflammation and tissue damage. The findings from this study provide new insights into the genetic differences underlying gastric versus EHS and support the need for future experimental studies to characterize these pathogens. Electronic supplementary material The online version of this article (10.1186/s12864-018-5171-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Lau SKP, Teng JLL, Chiu TH, Chan E, Tsang AKL, Panagiotou G, Zhai SL, Woo PCY. Differential Microbial Communities of Omnivorous and Herbivorous Cattle in Southern China. Comput Struct Biotechnol J 2018; 16:54-60. [PMID: 29686799 PMCID: PMC5910514 DOI: 10.1016/j.csbj.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 02/13/2018] [Indexed: 10/25/2022] Open
Abstract
In Hong Kong, cattle were traditionally raised by farmers as draft animals to plough rice fields. Due to urbanization in the 20th century, they were gradually abandoned and became wild cattle straying in suburban Hong Kong. Recently, these cattle were observed to have become omnivorous by eating leftover barbeque food waste in country parks. Microbiome analysis was performed on fecal samples of the omnivorous cattle using deep sequencing and the resulting microbiome was compared with that of traditional herbivorous cattle in Southern China. A more diverse gut microbiome was observed in the omnivorous cattle, suggesting that microbiota diversity increases as diet variation increases. At the genus level, the relative abundance of Anaeroplasma, Anaerovorax, Bacillus, Coprobacillus and Solibacillus significantly increased and those of Anaerofustis, Butyricimonas, Campylobacter, Coprococcus, Dehalobacterium, Phascolarctobacterium, rc4.4, RFN20, Succinivibrio and Turicibacter significantly decreased in the omnivorous group. The increase in microbial community levels of Bacillus and Anaerovorax likely attributes to the inclusion of meat in the diet; while the decrease in relative abundance of Coprococcus, Butyricimonas, Succinivibrio, Campylobacter and Phascolarctobacterium may reflect the reduction in grass intake. Furthermore, an increased consumption of resistant starch likely resulted in the increase in abundance of Anaeroplasma. In conclusion, a significant change in the gut microbial community was observed in the omnivorous cattle, suggesting that diet may be one of the factors that may signal an adaptation response by the cattle to maintain feed efficiency as a consequence of the change in environment.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, Hong Kong.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jade L L Teng
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, Hong Kong.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Hong Kong
| | - Tsz Ho Chiu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elaine Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alan K L Tsang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Group, School of Biological Sciences, Faculty of Sciences, The University of Hong Kong, Hong Kong, Hong Kong.,Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Shao-Lun Zhai
- Guangdong Key Laboratory of Animal Disease Prevention, Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, Hong Kong.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, Hong Kong.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
17
|
Complete Genome Sequence of the Campylobacter cuniculorum Type Strain LMG 24588. GENOME ANNOUNCEMENTS 2017; 5:5/24/e00543-17. [PMID: 28619810 PMCID: PMC5473279 DOI: 10.1128/genomea.00543-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Campylobacter cuniculorum is a thermotolerant species isolated from farmed rabbits (Oryctolagus cuniculus). Although C. cuniculorum is highly prevalent in rabbits farmed for human consumption, the pathogenicity of this organism in humans is still unknown. This study describes the whole-genome sequence of the C. cuniculorum type strain LMG 24588 (=CCUG 56289T).
Collapse
|
18
|
Gao B, Vorwerk H, Huber C, Lara-Tejero M, Mohr J, Goodman AL, Eisenreich W, Galán JE, Hofreuter D. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biol 2017; 15:e2001390. [PMID: 28542173 PMCID: PMC5438104 DOI: 10.1371/journal.pbio.2001390] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/24/2017] [Indexed: 01/07/2023] Open
Abstract
Campylobacter jejuni is one of the leading infectious causes of food-borne illness around the world. Its ability to persistently colonize the intestinal tract of a broad range of hosts, including food-producing animals, is central to its epidemiology since most infections are due to the consumption of contaminated food products. Using a highly saturated transposon insertion library combined with next-generation sequencing and a mouse model of infection, we have carried out a comprehensive genome-wide analysis of the fitness determinants for growth in vitro and in vivo of a highly pathogenic strain of C. jejuni. A comparison of the C. jejuni requirements to colonize the mouse intestine with those necessary to grow in different culture media in vitro, combined with isotopologue profiling and metabolic flow analysis, allowed us to identify its metabolic requirements to establish infection, including the ability to acquire certain nutrients, metabolize specific substrates, or maintain intracellular ion homeostasis. This comprehensive analysis has identified metabolic pathways that could provide the basis for the development of novel strategies to prevent C. jejuni colonization of food-producing animals or to treat human infections.
Collapse
Affiliation(s)
- Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Garching, Germany
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Juliane Mohr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (JEG); (DH)
| | - Dirk Hofreuter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (JEG); (DH)
| |
Collapse
|
19
|
Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence. mBio 2017; 8:mBio.00407-17. [PMID: 28487428 PMCID: PMC5424204 DOI: 10.1128/mbio.00407-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. Campylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or infection are largely lacking. By analyzing a C. jejuni acetogenesis mutant, we discovered a set of genes whose expression is modulated by lactate and short-chain fatty acids produced by the microbiota in the intestinal tract. These genes include those encoding catabolic enzymes and transport systems for amino acids that are required by C. jejuni for in vivo growth and intestinal colonization. We propose that gradients of these microbiota-generated metabolites are cues for spatial discrimination between areas of the intestines so that the bacterium can locate niches in the lower intestinal tract for optimal growth for commensalism in avian species and possibly infection of human hosts leading to diarrheal disease.
Collapse
|
20
|
Blokesch M. In and out-contribution of natural transformation to the shuffling of large genomic regions. Curr Opin Microbiol 2017; 38:22-29. [PMID: 28458094 DOI: 10.1016/j.mib.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 01/28/2023]
Abstract
Naturally competent bacteria can pull free DNA from their surroundings. This incoming DNA can serve various purposes, ranging from acting as a source of nutrients or DNA stretches for repair to the acquisition of novel genetic information. The latter process defines the natural competence for transformation as a mode of horizontal gene transfer (HGT) and led to its discovery almost a century ago. However, although it is widely accepted that natural competence can contribute to the spread of genetic material among prokaryotes, the question remains whether this mode of HGT can foster the transfer of larger DNA regions or only transfers shorter fragments, given that extracellular DNA is often heavily fragmented. Here, I outline examples of competence-mediated movement of large genomic segments. Moreover, I discuss a recent proposition that transformation is used to cure bacteria of selfish mobile genetic elements. Such a transformation-mediated genome maintenance mechanism could indeed be an important and underappreciated function of natural competence.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Vegge CS, Jansen van Rensburg MJ, Rasmussen JJ, Maiden MCJ, Johnsen LG, Danielsen M, MacIntyre S, Ingmer H, Kelly DJ. Glucose Metabolism via the Entner-Doudoroff Pathway in Campylobacter: A Rare Trait that Enhances Survival and Promotes Biofilm Formation in Some Isolates. Front Microbiol 2016; 7:1877. [PMID: 27920773 PMCID: PMC5118423 DOI: 10.3389/fmicb.2016.01877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
Isolates of the zoonotic pathogen Campylobacter are generally considered to be unable to metabolize glucose due to lack of key glycolytic enzymes. However, the Entner-Doudoroff (ED) pathway has been identified in Campylobacter jejuni subsp. doylei and a few C. coli isolates. A systematic search for ED pathway genes in a wide range of Campylobacter isolates and in the C. jejuni/coli PubMLST database revealed that 1.7% of >6,000 genomes encoded a complete ED pathway, including both C. jejuni and C. coli from diverse clinical, environmental and animal sources. In rich media, glucose significantly enhanced stationary phase survival of a set of ED-positive C. coli isolates. Unexpectedly, glucose massively promoted floating biofilm formation in some of these ED-positive isolates. Metabolic profiling by gas chromatography–mass spectrometry revealed distinct responses to glucose in a low biofilm strain (CV1257) compared to a high biofilm strain (B13117), consistent with preferential diversion of hexose-6-phosphate to polysaccharide in B13117. We conclude that while the ED pathway is rare amongst Campylobacter isolates causing human disease (the majority of which would be of agricultural origin), some glucose-utilizing isolates exhibit specific fitness advantages, including stationary-phase survival and biofilm production, highlighting key physiological benefits of this pathway in addition to energy conservation.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Melissa J Jansen van Rensburg
- Department of Zoology, University of OxfordOxford, UK; NIHR Health Protection Research Unit in Gastrointestinal InfectionsOxford, UK
| | - Janus J Rasmussen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Martin C J Maiden
- Department of Zoology, University of OxfordOxford, UK; NIHR Health Protection Research Unit in Gastrointestinal InfectionsOxford, UK
| | | | | | - Sheila MacIntyre
- School of Biological Sciences, University of Reading Reading, UK
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield Sheffield, UK
| |
Collapse
|
22
|
Llarena AK, Zhang J, Vehkala M, Välimäki N, Hakkinen M, Hänninen ML, Roasto M, Mäesaar M, Taboada E, Barker D, Garofolo G, Cammà C, Di Giannatale E, Corander J, Rossi M. Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion. Microb Genom 2016; 2:e000088. [PMID: 28348829 PMCID: PMC5359405 DOI: 10.1099/mgen.0.000088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ji Zhang
- Institute of Veterinary, Animal & Biomedical Sciences, College of Sciences, Massey University, Palmerstone North, New Zealand
| | - Minna Vehkala
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Marjaana Hakkinen
- Food and Feed Microbiology Research Unit, Research and Laboratory Department, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mati Roasto
- Department of Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mihkel Mäesaar
- Department of Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Veterinary and Food Laboratory, VFL, Tartu, Estonia
| | - Eduardo Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, c/o Animal Diseases Research Institute, Lethbridge, Canada
| | - Dillon Barker
- National Microbiology Laboratory, Public Health Agency of Canada, c/o Animal Diseases Research Institute, Lethbridge, Canada
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Cesare Cammà
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Elisabetta Di Giannatale
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Jukka Corander
- Institute of Basic Medical Sciences, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
24
|
Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AHM, Stintzi A, Szymanski CM. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 2016; 101:575-89. [PMID: 27145048 DOI: 10.1111/mmi.13409] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/15/2016] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jolene Garber
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Lin Xin Kin
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Annika Flint
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
25
|
Al-Haideri H, White MA, Kelly DJ. Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype ofCampylobacter jejuni. Environ Microbiol 2015; 18:721-35. [DOI: 10.1111/1462-2920.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Halah Al-Haideri
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Firth Court, Western Bank Sheffield S10 2TN UK
| | - Michael A. White
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Firth Court, Western Bank Sheffield S10 2TN UK
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Firth Court, Western Bank Sheffield S10 2TN UK
| |
Collapse
|
26
|
Szymanski CM. Are campylobacters now capable of carbo-loading? Mol Microbiol 2015; 98:805-8. [PMID: 26259768 DOI: 10.1111/mmi.13162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Campylobacters are a leading cause of gastrointestinal morbidity worldwide and the majority of human infections are triggered by eating foods contaminated with Campylobacter jejuni or Campylobacter coli. Campylobacters are equally notorious for their ability to mimic human glycoconjugate structures and for their capacity to synthesize both N- and O-linked glycoproteins. These species were once considered to be asaccharolytic, but it was recently shown that several strains possess a pathway for fucose uptake and metabolism, providing those isolates with a competitive advantage in vivo. Vorwerk et al. have now demonstrated through isotopologue profiling that certain strains of C. coli and C. jejuni are capable of glucose catabolism through the Entner-Doudoroff and pentose phosphate pathways. However, unlike the fate of fucose that has only been shown to be used for nutrition, glucose can be metabolized or incorporated into select amino acids and glycoconjugates. This discovery now provides researchers with the opportunity to introduce metabolically labeled sugars into campylobacters to study glycoconjugate biosynthesis within the cell. In addition, Vorwerk et al. add to the metabolic arsenal of campylobacters further highlighting the nutritional diversity among strains, even within the same species.
Collapse
Affiliation(s)
- Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|