1
|
Tufail MA, Jordan B, Hadjeras L, Gelhausen R, Cassidy L, Habenicht T, Gutt M, Hellwig L, Backofen R, Tholey A, Sharma CM, Schmitz RA. Uncovering the small proteome of Methanosarcina mazei using Ribo-seq and peptidomics under different nitrogen conditions. Nat Commun 2024; 15:8659. [PMID: 39370430 PMCID: PMC11456600 DOI: 10.1038/s41467-024-53008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
The mesophilic methanogenic archaeal model organism Methanosarcina mazei strain Gö1 is crucial for climate and environmental research due to its ability to produce methane. Here, we establish a Ribo-seq protocol for M. mazei strain Gö1 under two growth conditions (nitrogen sufficiency and limitation). The translation of 93 previously annotated and 314 unannotated small ORFs, coding for proteins ≤ 70 amino acids, is predicted with high confidence based on Ribo-seq data. LC-MS analysis validates the translation for 62 annotated small ORFs and 26 unannotated small ORFs. Epitope tagging followed by immunoblotting analysis confirms the translation of 13 out of 16 selected unannotated small ORFs. A comprehensive differential transcription and translation analysis reveals that 29 of 314 unannotated small ORFs are differentially regulated in response to nitrogen availability at the transcriptional and 49 at the translational level. A high number of reported small RNAs are emerging as dual-function RNAs, including sRNA154, the central regulatory small RNA of nitrogen metabolism. Several unannotated small ORFs are conserved in Methanosarcina species and overproducing several (small ORF encoded) small proteins suggests key physiological functions. Overall, the comprehensive analysis opens an avenue to elucidate the function(s) of multitudinous small proteins and dual-function RNAs in M. mazei.
Collapse
Affiliation(s)
| | - Britta Jordan
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Lydia Hadjeras
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Tim Habenicht
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Lisa Hellwig
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.
| |
Collapse
|
2
|
Schulz V, Galea D, Herzberg M, Nies DH. Protecting the Achilles heel: three FolE_I-type GTP-cyclohydrolases needed for full growth of metal-resistant Cupriavidus metallidurans under a variety of conditions. J Bacteriol 2024; 206:e0039523. [PMID: 38226602 PMCID: PMC10882993 DOI: 10.1128/jb.00395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
In Cupriavidus metallidurans and other bacteria, biosynthesis of the essential biochemical cofactor tetrahydrofolate (THF) initiates from guanosine triphosphate (GTP). This step is catalyzed by FolE_I-type GTP cyclohydrolases, which are either zinc-dependent FolE_IA-type or metal-promiscuous FolE_IB-type enzymes. As THF is also essential for GTP biosynthesis, GTP and THF synthesis form a cooperative cycle, which may be influenced by the cellular homeostasis of zinc and other metal cations. Metal-resistant C. metallidurans harbors one FolE_IA-type and two FolE_IB-type enzymes. All three proteins were produced in Escherichia coli. FolE_IA was indeed zinc dependent and the two FolE_IB enzymes metal-promiscuous GTP cyclohydrolases in vitro, the latter, for example, functioning with iron, manganese, or cobalt. Single and double mutants of C. metallidurans with deletions in the folE_I genes were constructed to analyze the contribution of the individual FolE_I-type enzymes under various conditions. FolE_IA was required in the presence of cadmium, hydrogen peroxide, metal chelators, and under general metal starvation conditions. FolE_IB1 was important when zinc uptake was impaired in cells without the zinc importer ZupT (ZIP family) and in the presence of trimethoprim, an inhibitor of THF biosynthesis. FolE_IB2 was needed under conditions of low zinc and cobalt but high magnesium availability. Together, these data demonstrate that C. metallidurans requires all three enzymes to allow efficient growth under a variety of conditions.IMPORTANCETetrahydrofolate (THF) is an important cofactor in microbial biochemistry. This "Achilles heel" of metabolism has been exploited by anti-metabolites and antibiotics such as sulfonamide and trimethoprim. Since THF is essential for the synthesis of guanosine triphosphate (GTP) and THF biosynthesis starts from GTP, synthesis of both compounds forms a cooperative cycle. The first step of THF synthesis by GTP cyclohydrolases (FolEs) is metal dependent and catalyzed by zinc- or metal-promiscuous enzymes, so that the cooperative THF and GTP synthesis cycle may be influenced by the homeostasis of several metal cations, especially that of zinc. The metal-resistant bacterium C. metallidurans needs three FolEs to grow in environments with both high and low zinc and cadmium content. Consequently, bacterial metal homeostasis is required to guarantee THF biosynthesis.
Collapse
Affiliation(s)
- Vladislava Schulz
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Galea
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Martin Herzberg
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Dietrich H. Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
3
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
4
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
5
|
Small RNAs Activate Salmonella Pathogenicity Island 1 by Modulating mRNA Stability through the hilD mRNA 3' Untranslated Region. J Bacteriol 2023; 205:e0033322. [PMID: 36472436 PMCID: PMC9879128 DOI: 10.1128/jb.00333-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen associated with foodborne disease. Salmonella invades the intestinal epithelium using a type three secretion system encoded on Salmonella pathogenicity island 1 (SPI-1). SPI-1 genes are tightly regulated by a complex feed-forward loop to ensure proper spatial and temporal expression. Most regulatory input is integrated at HilD, through control of hilD mRNA translation or HilD protein activity. The hilD mRNA possesses a 310-nucleotide 3' untranslated region (UTR) that influences HilD and SPI-1 expression, and this regulation is dependent on Hfq and RNase E, cofactors known to mediate small RNA (sRNA) activities. Thus, we hypothesized that the hilD mRNA 3' UTR is a target for sRNAs. Here, we show that two sRNAs, SdsR and Spot 42, regulate SPI-1 by targeting different regions of the hilD mRNA 3' UTR. Regulatory activities of these sRNAs depended on Hfq and RNase E, in agreement with previous roles found for both at the hilD 3' UTR. Salmonella mutants lacking SdsR and Spot 42 had decreased virulence in a mouse model of infection. Collectively, this work suggests that these sRNAs targeting the hilD mRNA 3' UTR increase hilD mRNA levels by interfering with RNase E-dependent mRNA degradation and that this regulatory effect is required for Salmonella invasiveness. Our work provides novel insights into mechanisms of sRNA regulation at bacterial mRNA 3' UTRs and adds to our knowledge of post-transcriptional regulation of the SPI-1 complex feed-forward loop. IMPORTANCE Salmonella enterica serovar Typhimurium is a prominent foodborne pathogen, infecting millions of people a year. To express virulence genes at the correct time and place in the host, Salmonella uses a complex regulatory network that senses environmental conditions. Known for their role in allowing quick responses to stress and virulence conditions, we investigated the role of small RNAs in facilitating precise expression of virulence genes. We found that the 3' untranslated region of the hilD mRNA, encoding a key virulence regulator, is a target for small RNAs and RNase E. The small RNAs stabilize hilD mRNA to allow proper expression of Salmonella virulence genes in the host.
Collapse
|
6
|
Murphy RD, Garcia RV, Oh SJ, Wood TJ, Jo KD, Read de Alaniz J, Perkins E, Hawker CJ. Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207542. [PMID: 36305041 DOI: 10.1002/adma.202207542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3-arm diblock copolypeptide stars composed of an inner poly(l-glutamate) domain and outer poly(l-tyrosine) or poly(l-valine) blocks is described. Physical crosslinking due to ß-sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria-based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embedded Escherichia coli bacteria as demonstrated via isopropyl ß-d-1-thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D-printed biocomposites.
Collapse
Affiliation(s)
- Robert D Murphy
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ronnie V Garcia
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Seung J Oh
- Construction Engineering Research Laboratory (CERL), US Army Corps Engineers Engineering Research and Development Center (USACE ERDC), Champaign, IL, 61822, USA
| | - Tanner J Wood
- Construction Engineering Research Laboratory (CERL), US Army Corps Engineers Engineering Research and Development Center (USACE ERDC), Champaign, IL, 61822, USA
| | - Kyoo D Jo
- Construction Engineering Research Laboratory (CERL), US Army Corps Engineers Engineering Research and Development Center (USACE ERDC), Champaign, IL, 61822, USA
| | - Javier Read de Alaniz
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ed Perkins
- Environmental Laboratory (EL), USACE ERDC, Vicksburg, MS, 39180, USA
| | - Craig J Hawker
- Materials Research Laboratory (MRL), University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Materials Department, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
7
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
8
|
Enhancement of 2,3-Butanediol Production by Klebsiella pneumoniae: Emphasis on the Mediation of sRNA-SgrS on the Carbohydrate Utilization. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The demand for renewable energy is increasing. Klebsiella pneumoniae is one of the most promising strains to produce 2,3-butanediol (2,3-BD). Compared with chemical methods, the biological production of 2,3-BD has the characteristics of substrate safety, low cost, and low energy consumption. However, excessive glucose concentrations can cause damage to cells. Therefore, this study investigated the effect of sRNA-SgrS as a sugar transport regulator on the fermentative production of 2,3-BD by K. pneumoniae in response to sugar stress. We designed multiple mutants of K. pneumoniae HD79 to redistribute its carbon flux to produce 2,3-BD. It was found that the 2,3-BD yield of sgrS overexpressed strain decreased by 44% compared with the original strain. The results showed that a high concentration of sRNA-SgrS could accelerate the degradation of ptsG mRNA (encoding the glucose transporter EIICBGlc) and downregulate the expression levels of the budA gene (encoding the α-acetyllactate decarboxylase) and the budB gene (encoding the α-acetyllactate synthase) and budC gene (encoding the 2,3-BD dehydrogenase) but had no effect on the ack gene (encoding the acetate kinase) and the ldh gene (encoding the lactate dehydrogenase). It provides a theoretical basis and a technical reference for understanding the complex regulation mechanism of sRNA in microorganisms and the genetics and breeding in industrial fermentation engineering.
Collapse
|
9
|
Division of labor and collective functionality in Escherichia coli under acid stress. Commun Biol 2022; 5:327. [PMID: 35393532 PMCID: PMC8989999 DOI: 10.1038/s42003-022-03281-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
The acid stress response is an important factor influencing the transmission of intestinal microbes such as the enterobacterium Escherichia coli. E. coli activates three inducible acid resistance systems - the glutamate decarboxylase, arginine decarboxylase, and lysine decarboxylase systems to counteract acid stress. Each system relies on the activity of a proton-consuming reaction catalyzed by a specific amino acid decarboxylase and a corresponding antiporter. Activation of these three systems is tightly regulated by a sophisticated interplay of membrane-integrated and soluble regulators. Using a fluorescent triple reporter strain, we quantitatively illuminated the cellular individuality during activation of each of the three acid resistance (AR) systems under consecutively increasing acid stress. Our studies highlight the advantages of E. coli in possessing three AR systems that enable division of labor in the population, which ensures survival over a wide range of low pH values.
Collapse
|
10
|
Miyakoshi M, Okayama H, Lejars M, Kanda T, Tanaka Y, Itaya K, Okuno M, Itoh T, Iwai N, Wachi M. Mining RNA-seq data reveals the massive regulon of GcvB small RNA and its physiological significance in maintaining amino acid homeostasis in Escherichia coli. Mol Microbiol 2022; 117:160-178. [PMID: 34543491 PMCID: PMC9299463 DOI: 10.1111/mmi.14814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
Bacterial small RNAs regulate the expression of multiple genes through imperfect base-pairing with target mRNAs mediated by RNA chaperone proteins such as Hfq. GcvB is the master sRNA regulator of amino acid metabolism and transport in a wide range of Gram-negative bacteria. Recently, independent RNA-seq approaches identified a plethora of transcripts interacting with GcvB in Escherichia coli. In this study, the compilation of RIL-seq, CLASH, and MAPS data sets allowed us to identify GcvB targets with high accuracy. We validated 21 new GcvB targets repressed at the posttranscriptional level, raising the number of direct targets to >50 genes in E. coli. Among its multiple seed sequences, GcvB utilizes either R1 or R3 to regulate most of these targets. Furthermore, we demonstrated that both R1 and R3 seed sequences are required to fully repress the expression of gdhA, cstA, and sucC genes. In contrast, the ilvLXGMEDA polycistronic mRNA is targeted by GcvB through at least four individual binding sites in the mRNA. Finally, we revealed that GcvB is involved in the susceptibility of peptidase-deficient E. coli strain (Δpeps) to Ala-Gln dipeptide by regulating both Dpp dipeptide importer and YdeE dipeptide exporter via R1 and R3 seed sequences, respectively.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Haruna Okayama
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Maxence Lejars
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Takeshi Kanda
- Department of Biomedical ScienceFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yuki Tanaka
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Kaori Itaya
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Miki Okuno
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- Present address:
School of MedicineKurume UniversityKurumeJapan
| | - Takehiko Itoh
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Noritaka Iwai
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Masaaki Wachi
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
11
|
Abstract
Accumulation of phosphorylated intermediates during cellular metabolism can have wide-ranging toxic effects on many organisms, including humans and the pathogens that infect them. These toxicities can be induced by feeding an upstream metabolite (a sugar, for instance) while simultaneously blocking the appropriate metabolic pathway with either a mutation or an enzyme inhibitor. Here, we survey the toxicities that can arise in the metabolism of glucose, galactose, fructose, fructose-asparagine, glycerol, trehalose, maltose, mannose, mannitol, arabinose, and rhamnose. Select enzymes in these metabolic pathways may serve as novel therapeutic targets. Some are conserved broadly among prokaryotes and eukaryotes (e.g., glucose and galactose) and are therefore unlikely to be viable drug targets. However, others are found only in bacteria (e.g., fructose-asparagine, rhamnose, and arabinose), and one is found in fungi but not in humans (trehalose). We discuss what is known about the mechanisms of toxicity and how resistance is achieved in order to identify the prospects and challenges associated with targeted exploitation of these pervasive metabolic vulnerabilities.
Collapse
|
12
|
Kinetic modeling reveals additional regulation at co-transcriptional level by post-transcriptional sRNA regulators. Cell Rep 2021; 36:109764. [PMID: 34592145 PMCID: PMC8634553 DOI: 10.1016/j.celrep.2021.109764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Small RNAs (sRNAs) are important gene regulators in bacteria. Many sRNAs act post-transcriptionally by affecting translation and degradation of the target mRNAs upon base-pairing interactions. Here we present a general approach combining imaging and mathematical modeling to determine kinetic parameters at different levels of sRNA-mediated gene regulation that contribute to overall regulation efficacy. Our data reveal that certain sRNAs previously characterized as post-transcriptional regulators can regulate some targets co-transcriptionally, leading to a revised model that sRNA-mediated regulation can occur early in an mRNA’s lifetime, as soon as the sRNA binding site is transcribed. This co-transcriptional regulation is likely mediated by Rho-dependent termination when transcription-coupled translation is reduced upon sRNA binding. Our data also reveal several important kinetic steps that contribute to the differential regulation of mRNA targets by an sRNA. Particularly, binding of sRNA to the target mRNA may dictate the regulation hierarchy observed within an sRNA regulon. Reyer et al. use fluorescent microscopy and kinetic modeling to find that two sRNAs canonically described as post-transcriptional regulators can regulate their targets co-transcriptionally and determine the in vivo kinetic parameters that dictate differential regulation efficiency.
Collapse
|
13
|
Popella L, Jung J, Popova K, Ðurica-Mitić S, Barquist L, Vogel J. Global RNA profiles show target selectivity and physiological effects of peptide-delivered antisense antibiotics. Nucleic Acids Res 2021; 49:4705-4724. [PMID: 33849070 PMCID: PMC8096218 DOI: 10.1093/nar/gkab242] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Antisense peptide nucleic acids (PNAs) inhibiting mRNAs of essential genes provide a straight-forward way to repurpose our knowledge of bacterial regulatory RNAs for development of programmable species-specific antibiotics. While there is ample proof of PNA efficacy, their target selectivity and impact on bacterial physiology are poorly understood. Moreover, while antibacterial PNAs are typically designed to block mRNA translation, effects on target mRNA levels are not well-investigated. Here, we pioneer the use of global RNA-seq analysis to decipher PNA activity in a transcriptome-wide manner. We find that PNA-based antisense oligomer conjugates robustly decrease mRNA levels of the widely-used target gene, acpP, in Salmonella enterica, with limited off-target effects. Systematic analysis of several different PNA-carrier peptides attached not only shows different bactericidal efficiency, but also activation of stress pathways. In particular, KFF-, RXR- and Tat-PNA conjugates especially induce the PhoP/Q response, whereas the latter two additionally trigger several distinct pathways. We show that constitutive activation of the PhoP/Q response can lead to Tat-PNA resistance, illustrating the utility of RNA-seq for understanding PNA antibacterial activity. In sum, our study establishes an experimental framework for the design and assessment of PNA antimicrobials in the long-term quest to use these for precision editing of microbiota.
Collapse
Affiliation(s)
- Linda Popella
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Jakob Jung
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Kristina Popova
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Svetlana Ðurica-Mitić
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany.,Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany.,Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
14
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
15
|
Effects of individual base-pairs on in vivo target search and destruction kinetics of bacterial small RNA. Nat Commun 2021; 12:874. [PMID: 33558533 PMCID: PMC7870926 DOI: 10.1038/s41467-021-21144-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Base-pairing interactions mediate many intermolecular target recognition events. Even a single base-pair mismatch can cause a substantial difference in activity but how such changes influence the target search kinetics in vivo is unknown. Here, we use high-throughput sequencing and quantitative super-resolution imaging to probe the mutants of bacterial small RNA, SgrS, and their regulation of ptsG mRNA target. Mutations that disrupt binding of a chaperone protein, Hfq, and are distal to the mRNA annealing region still decrease the rate of target association, kon, and increase the dissociation rate, koff, showing that Hfq directly facilitates sRNA-mRNA annealing in vivo. Single base-pair mismatches in the annealing region reduce kon by 24-31% and increase koff by 14-25%, extending the time it takes to find and destroy the target by about a third. The effects of disrupting contiguous base-pairing are much more modest than that expected from thermodynamics, suggesting that Hfq buffers base-pair disruptions.
Collapse
|
16
|
Hawkins JS, Silvis MR, Koo BM, Peters JM, Osadnik H, Jost M, Hearne CC, Weissman JS, Todor H, Gross CA. Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships of Essential Genes in Escherichia coli and Bacillus subtilis. Cell Syst 2020; 11:523-535.e9. [PMID: 33080209 PMCID: PMC7704046 DOI: 10.1016/j.cels.2020.09.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022]
Abstract
Essential genes are the hubs of cellular networks, but lack of high-throughput methods for titrating gene expression has limited our understanding of the fitness landscapes against which their expression levels are optimized. We developed a modified CRISPRi system leveraging the predictable reduction in efficacy of imperfectly matched sgRNAs to generate defined levels of CRISPRi activity and demonstrated its broad applicability. Using libraries of mismatched sgRNAs predicted to span the full range of knockdown levels, we characterized the expression-fitness relationships of most essential genes in Escherichia coli and Bacillus subtilis. We find that these relationships vary widely from linear to bimodal but are similar within pathways. Notably, despite ∼2 billion years of evolutionary separation between E. coli and B. subtilis, most essential homologs have similar expression-fitness relationships with rare but informative differences. Thus, the expression levels of essential genes may reflect homeostatic or evolutionary constraints shared between the two organisms.
Collapse
Affiliation(s)
- John S Hawkins
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie R Silvis
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Jost
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cameron C Hearne
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
17
|
Efficient ammonia production from food by-products by engineered Escherichia coli. AMB Express 2020; 10:150. [PMID: 32809073 PMCID: PMC7434829 DOI: 10.1186/s13568-020-01083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/08/2020] [Indexed: 12/22/2022] Open
Abstract
Ammonia is used as a fertilizer for agriculture, chemical raw material, and carrier for transporting hydrogen, and with economic development, the demand for ammonia has increased. The Haber-Bosch process, which is the main method for producing ammonia, can produce ammonia with high efficiency. However, since it consumes a large amount of fossil energy, it is necessary to develop an alternative method for producing ammonia with less environmental impact. Ammonia production from food by-products is an appealing production process owing to unused resource usage, including waste, and mild reaction conditions. However, when food by-products and biomass are used as feedstocks, impurities often reduce productivity. Using metabolic profiling, glucose was identified as a potential inhibitor of ammonia production from impure food by-products. We constructed the recombinant Escherichia coli, in which glucose uptake was reduced by ptsG gene disruption and amino acid catabolism was promoted by glnA gene disruption. Ammonia production efficiency from okara, a food by-product, was improved in this strain; 35.4 mM ammonia was produced (47% yield). This study might provide a strategy for efficient ammonia production from food by-products.
Collapse
|
18
|
R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun 2020; 11:3392. [PMID: 32636376 PMCID: PMC7341879 DOI: 10.1038/s41467-020-17176-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/17/2020] [Indexed: 01/06/2023] Open
Abstract
G-quadruplex (G4) is a noncanonical secondary structure of DNA or RNA which can enhance or repress gene expression, yet the underlying molecular mechanism remains uncertain. Here we show that when positioned downstream of transcription start site, the orientation of potential G4 forming sequence (PQS), but not the sequence alters transcriptional output. Ensemble in vitro transcription assays indicate that PQS in the non-template increases mRNA production rate and yield. Using sequential single molecule detection stages, we demonstrate that while binding and initiation of T7 RNA polymerase is unchanged, the efficiency of elongation and the final mRNA output is higher when PQS is in the non-template. Strikingly, the enhanced elongation arises from the transcription-induced R-loop formation, which in turn generates G4 structure in the non-template. The G4 stabilized R-loop leads to increased transcription by a mechanism involving successive rounds of R-loop formation. G-quadruplex (G4) forming sequences are highly enriched in the human genome and function as important regulators of diverse range of biological processes. Here the authors show that while G4 structures on template strand block transcription, folding on the non-template strand enhances transcription by means of successive R-loop formation.
Collapse
|
19
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
20
|
Bobrovskyy M, Azam MS, Frandsen JK, Zhang J, Poddar A, Ma X, Henkin TM, Ha T, Vanderpool CK. Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS. Mol Microbiol 2019; 112:1199-1218. [PMID: 31340077 DOI: 10.1111/mmi.14355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
Small RNA (sRNA) regulators promote efficient responses to stress, but the mechanisms for prioritizing target mRNA regulation remain poorly understood. This study examines mechanisms underlying hierarchical regulation by the sRNA SgrS, found in enteric bacteria and produced under conditions of metabolic stress. SgrS posttranscriptionally coordinates a nine-gene regulon to restore growth and homeostasis. An in vivo reporter system quantified SgrS-dependent regulation of target genes and established that SgrS exhibits a clear target preference. Regulation of some targets is efficient even at low SgrS levels, whereas higher SgrS concentrations are required to regulate other targets. In vivo and in vitro analyses revealed that RNA structure and the number and position of base pairing sites relative to the start of translation impact the efficiency of regulation of SgrS targets. The RNA chaperone Hfq uses distinct modes of binding to different SgrS mRNA targets, which differentially influences positive and negative regulation. The RNA degradosome plays a larger role in regulation of some SgrS targets compared to others. Collectively, our results suggest that sRNA selection of target mRNAs and regulatory hierarchy are influenced by several molecular features and that the combination of these features precisely tunes the efficiency of regulation of multi-target sRNA regulons.
Collapse
Affiliation(s)
- Maksym Bobrovskyy
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Jane K Frandsen
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.,Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jichuan Zhang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Anustup Poddar
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xiangqian Ma
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| | - Tina M Henkin
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA.,Howard Hughes Medical Institute, Baltimore, MD, 21205, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL, 61801, USA
| |
Collapse
|
21
|
Lalaouna D, Prévost K, Laliberté G, Houé V, Massé E. Contrasting silencing mechanisms of the same target mRNA by two regulatory RNAs in Escherichia coli. Nucleic Acids Res 2019; 46:2600-2612. [PMID: 29294085 PMCID: PMC5861431 DOI: 10.1093/nar/gkx1287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Small RNAs are key components of complex regulatory networks. These molecules can integrate multiple cellular signals to control specific target mRNAs. The recent development of high-throughput methods tremendously helped to characterize the full targetome of sRNAs. Using MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we reveal the targetomes of two sRNAs, CyaR and RprA. Interestingly, both CyaR and RprA interact with the 5′-UTR of hdeD mRNA, which encodes an acid-resistance membrane protein. We demonstrate that CyaR classically binds to the RBS of hdeD, interfering with translational initiation. We identified an A/U-rich motif on hdeD, which is bound by the RNA chaperone Hfq. Our results indicate that binding of this motif by Hfq is required for CyaR-induced degradation of hdeD mRNA. Additional data suggest that two molecules of RprA must bind the 5′-UTR of hdeD to block translation initiation. Surprisingly, while both CyaR and RprA sRNAs bind to the same motif on hdeD mRNA, RprA solely acts at the translational level, leaving the target RNA intact. By interchanging the seed region of CyaR and RprA sRNAs, we also swap their regulatory behavior. These results suggest that slight changes in the seed region could modulate the regulation of target mRNAs.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Laliberté
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Houé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
22
|
Bronesky D, Desgranges E, Corvaglia A, François P, Caballero CJ, Prado L, Toledo-Arana A, Lasa I, Moreau K, Vandenesch F, Marzi S, Romby P, Caldelari I. A multifaceted small RNA modulates gene expression upon glucose limitation in Staphylococcus aureus. EMBO J 2019; 38:e99363. [PMID: 30760492 PMCID: PMC6418428 DOI: 10.15252/embj.201899363] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/10/2023] Open
Abstract
Pathogenic bacteria must rapidly adapt to ever-changing environmental signals resulting in metabolism remodeling. The carbon catabolite repression, mediated by the catabolite control protein A (CcpA), is used to express genes involved in utilization and metabolism of the preferred carbon source. Here, we have identified RsaI as a CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations. When glucose is consumed, RsaI represses translation initiation of mRNAs encoding a permease of glucose uptake and the FN3K enzyme that protects proteins against damage caused by high glucose concentrations. RsaI also binds to the 3' untranslated region of icaR mRNA encoding the transcriptional repressor of exopolysaccharide production and to sRNAs induced by the uptake of glucose-6 phosphate or nitric oxide. Furthermore, RsaI expression is accompanied by a decreased transcription of genes involved in carbon catabolism pathway and an activation of genes involved in energy production, fermentation, and nitric oxide detoxification. This multifaceted RNA can be considered as a metabolic signature when glucose becomes scarce and growth is arrested.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Emma Desgranges
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anna Corvaglia
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Department of Medical Specialties, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | | | - Laura Prado
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-GN, Navarra, Spain
| | | | - Inigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Karen Moreau
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre international de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Hospices Civils de Lyon, Univ Lyon, Lyon, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs. mSphere 2019; 4:4/1/e00561-18. [PMID: 30700509 PMCID: PMC6354806 DOI: 10.1128/msphere.00561-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Small RNAs (sRNAs) regulate gene expression in diverse bacteria by interacting with mRNAs to change their structure, stability, or translation. Hundreds of sRNAs have been identified in bacteria, but characterization of their regulatory functions is limited by difficulty with sensitive and accurate identification of mRNA targets. Thus, new robust methods of bacterial sRNA target identification are in demand. Here, we describe our small RNA target prediction organizing tool (SPOT), which streamlines the process of sRNA target prediction by providing a single pipeline that combines available computational prediction tools with customizable results filtering based on experimental data. SPOT allows the user to rapidly produce a prioritized list of predicted sRNA-target mRNA interactions that serves as a basis for further experimental characterization. This tool will facilitate elucidation of sRNA regulons in bacteria, allowing new discoveries regarding the roles of sRNAs in bacterial stress responses and metabolic regulation. Small RNAs (sRNAs) posttranscriptionally regulate mRNA targets, typically under conditions of environmental stress. Although hundreds of sRNAs have been discovered in diverse bacterial genomes, most sRNAs remain uncharacterized, even in model organisms. Identification of mRNA targets directly regulated by sRNAs is rate-limiting for sRNA functional characterization. To address this, we developed a computational pipeline that we named SPOT for sRNA target prediction organizing tool. SPOT incorporates existing computational tools to search for sRNA binding sites, allows filtering based on experimental data, and organizes the results into a standardized report. SPOT sensitivity (number of correctly predicted targets/number of total known targets) was equal to or exceeded any individual method when used on 12 characterized sRNAs. Using SPOT, we generated a set of target predictions for the sRNA RydC, which was previously shown to positively regulate cfa mRNA, encoding cyclopropane fatty acid synthase. SPOT identified cfa along with additional putative mRNA targets, which we then tested experimentally. Our results demonstrated that in addition to cfa mRNA, RydC also regulates trpE and pheA mRNAs, which encode aromatic amino acid biosynthesis enzymes. Our results suggest that SPOT can facilitate elucidation of sRNA target regulons to expand our understanding of the many regulatory roles played by bacterial sRNAs. IMPORTANCE Small RNAs (sRNAs) regulate gene expression in diverse bacteria by interacting with mRNAs to change their structure, stability, or translation. Hundreds of sRNAs have been identified in bacteria, but characterization of their regulatory functions is limited by difficulty with sensitive and accurate identification of mRNA targets. Thus, new robust methods of bacterial sRNA target identification are in demand. Here, we describe our small RNA target prediction organizing tool (SPOT), which streamlines the process of sRNA target prediction by providing a single pipeline that combines available computational prediction tools with customizable results filtering based on experimental data. SPOT allows the user to rapidly produce a prioritized list of predicted sRNA-target mRNA interactions that serves as a basis for further experimental characterization. This tool will facilitate elucidation of sRNA regulons in bacteria, allowing new discoveries regarding the roles of sRNAs in bacterial stress responses and metabolic regulation.
Collapse
|
24
|
Kwiatkowska J, Wroblewska Z, Johnson KA, Olejniczak M. The binding of Class II sRNA MgrR to two different sites on matchmaker protein Hfq enables efficient competition for Hfq and annealing to regulated mRNAs. RNA (NEW YORK, N.Y.) 2018; 24:1761-1784. [PMID: 30217864 PMCID: PMC6239178 DOI: 10.1261/rna.067777.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 05/08/2023]
Abstract
MgrR is an Hfq-dependent sRNA, whose transcription is controlled by the level of Mg2+ ions in Escherichia coli MgrR belongs to Class II sRNAs because its stability in the cell is affected by mutations in Hfq differently than canonical, Class I sRNAs. Here, we examined the effect of mutations in RNA binding sites of Hfq on the kinetics of the annealing of MgrR to two different target mRNAs, eptB and ygdQ, by global data fitting of the reaction kinetics monitored by gel electrophoresis of intermediates and products. The data showed that the mutation on the rim of the Hfq ring trapped MgrR on Hfq preventing the annealing of MgrR to either mRNA. The mutation in the distal face slowed the ternary complex formation and affected the release of MgrR-mRNA complexes from Hfq, while the mutation in the proximal face weakened the MgrR binding to Hfq and in this way affected the annealing. Moreover, competition assays established that MgrR bound to both faces of Hfq and competed against other sRNAs. Further studies showed that uridine-rich sequences located in less structurally stable regions served as Hfq binding sites in each mRNA. Overall, the data show that the binding of MgrR sRNA to both faces of the Hfq ring enables it to efficiently anneal to target mRNAs. It also confers on MgrR a competitive advantage over other sRNAs, which could contribute to efficient cellular response to changes in magnesium homeostasis.
Collapse
Affiliation(s)
- Joanna Kwiatkowska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Kenneth A Johnson
- Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
25
|
Knittel V, Vollmer I, Volk M, Dersch P. Discovering RNA-Based Regulatory Systems for Yersinia Virulence. Front Cell Infect Microbiol 2018; 8:378. [PMID: 30460205 PMCID: PMC6232918 DOI: 10.3389/fcimb.2018.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022] Open
Abstract
The genus Yersinia includes three human pathogenic species, Yersinia pestis, the causative agent of the bubonic and pneumonic plague, and enteric pathogens Y. enterocolitica and Y. pseudotuberculosis that cause a number of gut-associated diseases. Over the past years a large repertoire of RNA-based regulatory systems has been discovered in these pathogens using different RNA-seq based approaches. Among them are several conserved or species-specific RNA-binding proteins, regulatory and sensory RNAs as well as various RNA-degrading enzymes. Many of them were shown to control the expression of important virulence-relevant factors and have a very strong impact on Yersinia virulence. The precise targets, the molecular mechanism and their role for Yersinia pathogenicity is only known for a small subset of identified genus- or species-specific RNA-based control elements. However, the ongoing development of new RNA-seq based methods and data analysis methods to investigate the synthesis, composition, translation, decay, and modification of RNAs in the bacterial cell will help us to generate a more comprehensive view of Yersinia RNA biology in the near future.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Vollmer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018; 9:3796. [PMID: 30228271 PMCID: PMC6143558 DOI: 10.1038/s41467-018-06219-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Biological regulatory network architectures are multi-scale in their function and can adaptively acquire new functions. Gene knockout (KO) experiments provide an established experimental approach not just for studying gene function, but also for unraveling regulatory networks in which a gene and its gene product are involved. Here we study the regulatory architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE) to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema describing the process of adaptation whereby perturbations in metabolite concentrations lead regulatory networks to produce suboptimal states, whose function is subsequently altered and re-optimized through acquisition of mutations during ALE. These results indicate that metabolite levels, through metabolite-transcription factor interactions, have a dominant role in determining the function of a multi-scale regulatory architecture that has been molded by evolution. The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function.
Collapse
|
27
|
Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in Escherichia coli pgi Knockout Evolutions. Appl Environ Microbiol 2018; 84:AEM.00823-18. [PMID: 30054360 DOI: 10.1128/aem.00823-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
A mechanistic understanding of how new phenotypes develop to overcome the loss of a gene product provides valuable insight on both the metabolic and regulatory functions of the lost gene. The pgi gene, whose product catalyzes the second step in glycolysis, was deleted in a growth-optimized Escherichia coli K-12 MG1655 strain. The initial knockout (KO) strain exhibited an 80% drop in growth rate that was largely recovered in eight replicate, but phenotypically distinct, cultures after undergoing adaptive laboratory evolution (ALE). Multi-omic data sets showed that the loss of pgi substantially shifted pathway usage, leading to a redox and sugar phosphate stress response. These stress responses were overcome by unique combinations of innovative mutations selected for by ALE. Thus, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.IMPORTANCE A mechanistic understanding of how microbes are able to overcome the loss of a gene through regulatory and metabolic changes is not well understood. Eight independent adaptive laboratory evolution (ALE) experiments with pgi knockout strains resulted in eight phenotypically distinct endpoints that were able to overcome the gene loss. Utilizing multi-omics analysis, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.
Collapse
|
28
|
Tello M, Avalos F, Orellana O. Codon usage and modular interactions between messenger RNA coding regions and small RNAs in Escherichia coli. BMC Genomics 2018; 19:657. [PMID: 30189833 PMCID: PMC6127932 DOI: 10.1186/s12864-018-5038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background Small RNAs (sRNAs) are key regulators of gene expression in bacteria. In addition to modulating translation initiation, sRNAs can interact with mRNA coding regions to regulate mRNA stability and translation efficiency, enhancing or impeding progression of the ribosome along the mRNA. Since most amino acids are decoded by more than one codon (synonymous) we asked as to whether there is a codon bias in the interaction of sRNAs with coding regions of mRNAs. Therefore, we explored whether there are differences in codon usage or tRNA availability according to whether an mRNA is regulated by sRNAs or not. We also explored these parameters in the coding interaction regions in mRNAs. We focused our analysis on sRNAs that regulate multiple mRNAs. Results We found differences in codon adaptation index and tRNA adaptation index between sRNA-regulated and non-sRNA-regulated mRNAs. Interestingly, the sRNA-mRNA interacting regions tended to be enriched in unpreferred codons decoded by scarce tRNAs. We also found that sRNAs with multiple targets often contained modular segments capable of recognizing conserved motifs among these mRNAs. Conclusions Our results show that sRNAs in E. coli tend to recognize mRNA coding regions in which the ribosome is predicted to advance at low speeds. Identified motifs in interacting regions are conserved among mRNAs that are recognized by the same sRNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-5038-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mario Tello
- Centro de Biotecnología Acuícola, Departamento de Biología, Universidad de Santiago de Chile, Alameda 3363, 9170022, Estación Central, Chile
| | - Felipe Avalos
- Centro de Biotecnología Acuícola, Departamento de Biología, Universidad de Santiago de Chile, Alameda 3363, 9170022, Estación Central, Chile
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile. Independencia 1027, 8380453, Santiago, Chile.
| |
Collapse
|
29
|
Raina M, King A, Bianco C, Vanderpool CK. Dual-Function RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0032-2018. [PMID: 30191807 PMCID: PMC6130917 DOI: 10.1128/microbiolspec.rwr-0032-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Indexed: 12/30/2022] Open
Abstract
Bacteria are known to use RNA, either as mRNAs encoding proteins or as noncoding small RNAs (sRNAs), to regulate numerous biological processes. However, a few sRNAs have two functions: they act as base-pairing RNAs and encode a small protein with additional regulatory functions. Thus, these so called "dual-function" sRNAs can serve as both a riboregulator and an mRNA. In some cases, these two functions can act independently within the same pathway, while in other cases, the base-pairing function and protein function act in different pathways. Here, we discuss the five known dual-function sRNAs-SgrS from enteric species, RNAIII and Psm-mec from Staphylococcus aureus, Pel RNA from Streptococcus pyogenes, and SR1 from Bacillus subtilis-and review their mechanisms of action and roles in regulating diverse biological processes. We also discuss the prospect of finding additional dual-function sRNAs and future challenges in studying the overlap and competition between the functions.
Collapse
Affiliation(s)
- Medha Raina
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| | - Alisa King
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | - Colleen Bianco
- Department of Microbiology, University of Illinois, Urbana, IL 61801
| | | |
Collapse
|
30
|
Azam MS, Vanderpool CK. Translational regulation by bacterial small RNAs via an unusual Hfq-dependent mechanism. Nucleic Acids Res 2018; 46:2585-2599. [PMID: 29294046 PMCID: PMC5861419 DOI: 10.1093/nar/gkx1286] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Abstract
In bacteria, the canonical mechanism of translational repression by small RNAs (sRNAs) involves sRNA-mRNA base pairing that occludes the ribosome binding site (RBS), directly preventing translation. In this mechanism, the sRNA is the direct regulator, while the RNA chaperone Hfq plays a supporting role by stabilizing the sRNA. There are a few examples where the sRNA does not directly interfere with ribosome binding, yet translation of the target mRNA is still inhibited. Mechanistically, this non-canonical regulation by sRNAs is poorly understood. Our previous work demonstrated repression of the mannose transporter manX mRNA by the sRNA SgrS, but the regulatory mechanism was unknown. Here, we report that manX translation is controlled by a molecular role-reversal mechanism where Hfq, not the sRNA, is the direct repressor. Hfq binding adjacent to the manX RBS is required for sRNA-mediated translational repression. Translation of manX is also regulated by another sRNA, DicF, via the same non-canonical Hfq-dependent mechanism. Our results suggest that the sRNAs recruit Hfq to its binding site or stabilize the mRNA-Hfq complex. This work adds to the growing number of examples of diverse mechanisms of translational regulation by sRNAs in bacteria.
Collapse
Affiliation(s)
- Muhammad S Azam
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Durica-Mitic S, Göpel Y, Görke B. Carbohydrate Utilization in Bacteria: Making the Most Out of Sugars with the Help of Small Regulatory RNAs. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0013-2017. [PMID: 29573258 PMCID: PMC11633585 DOI: 10.1128/microbiolspec.rwr-0013-2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
Survival of bacteria in ever-changing habitats with fluctuating nutrient supplies requires rapid adaptation of their metabolic capabilities. To this end, carbohydrate metabolism is governed by complex regulatory networks including posttranscriptional mechanisms that involve small regulatory RNAs (sRNAs) and RNA-binding proteins. sRNAs limit the response to substrate availability and set the threshold or time required for induction and repression of carbohydrate utilization systems. Carbon catabolite repression (CCR) also involves sRNAs. In Enterobacteriaceae, sRNA Spot 42 cooperates with the transcriptional regulator cyclic AMP (cAMP)-receptor protein (CRP) to repress secondary carbohydrate utilization genes when a preferred sugar is consumed. In pseudomonads, CCR operates entirely at the posttranscriptional level, involving RNA-binding protein Hfq and decoy sRNA CrcZ. Moreover, sRNAs coordinate fluxes through central carbohydrate metabolic pathways with carbohydrate availability. In Gram-negative bacteria, the interplay between RNA-binding protein CsrA and its cognate sRNAs regulates glycolysis and gluconeogenesis in response to signals derived from metabolism. Spot 42 and cAMP-CRP jointly downregulate tricarboxylic acid cycle activity when glycolytic carbon sources are ample. In addition, bacteria use sRNAs to reprogram carbohydrate metabolism in response to anaerobiosis and iron limitation. Finally, sRNAs also provide homeostasis of essential anabolic pathways, as exemplified by the hexosamine pathway providing cell envelope precursors. In this review, we discuss the manifold roles of bacterial sRNAs in regulation of carbon source uptake and utilization, substrate prioritization, and metabolism.
Collapse
Affiliation(s)
- Svetlana Durica-Mitic
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
32
|
Thairu MW, Cheng S, Hansen AK. A sRNA in a reduced mutualistic symbiont genome regulates its own gene expression. Mol Ecol 2017; 27:1766-1776. [PMID: 29134727 DOI: 10.1111/mec.14424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023]
Abstract
Similar to other nutritional endosymbionts that are obligate for host survival, the mutualistic aphid endosymbiont, Buchnera, has a highly reduced genome with few regulatory elements. Until recently, it was thought that aphid hosts were primarily responsible for regulating their symbiotic relationship. However, we recently revealed that Buchnera displays differential protein regulation, but not mRNA expression. We also identified a number of conserved small RNAs (sRNAs) that are expressed among Buchnera taxa. In this study, we investigate whether differential protein regulation in Buchnera is the result of post-transcriptional gene regulation via sRNAs. We characterize the sRNA profile of two Buchnera life stages: (i) when Buchnera is transitioning from an extracellular proliferating state in aphid embryos and (ii) when Buchnera is in an intracellular nonproliferating state in aphid bacteriocytes (specialized symbiont cells). Overall, we identified 90 differentially expressed sRNAs, 97% of which were upregulated in aphid embryos. Of these sRNAs, the majority were predicted to be involved in the regulation of various metabolic processes, including arginine biosynthesis. Using a heterologous dual expression vector, we reveal for the first time that a Buchnera antisense sRNA can post-transcriptionally interact with its cognate Buchnera coding sequence, carB, a gene involved in arginine biosynthesis. These results corroborate our in vivo RNAseq and proteomic data, where the candidate antisense sRNA carB and the protein CarB are significantly upregulated in aphid embryos. Overall, we demonstrate that Buchnera may regulate gene expression independently from its host by utilizing sRNAs.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Siyuan Cheng
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Program in Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
33
|
Stringent Response Regulators Contribute to Recovery from Glucose Phosphate Stress in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.01636-17. [PMID: 28986375 DOI: 10.1128/aem.01636-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
In enteric bacteria such as Escherichia coli, the transcription factor SgrR and the small RNA SgrS regulate the response to glucose phosphate stress, a metabolic dysfunction that results in growth inhibition and stems from the intracellular accumulation of sugar phosphates. SgrR activates the transcription of sgrS, and SgrS helps to rescue cells from stress in part by inhibiting the uptake of stressor sugar phosphates. While the regulatory targets of this stress response are well described, less is known about how the SgrR-SgrS response itself is regulated. To further characterize the regulation of the glucose phosphate stress response, we screened global regulator gene mutants for growth changes during glucose phosphate stress. We found that deleting dksA, which encodes a regulator of the stringent response to nutrient starvation, decreases growth under glucose phosphate stress conditions. The stringent response alarmone regulator ppGpp (synthesized by RelA and SpoT) also contributes to recovery from glucose phosphate stress: as with dksA, mutating relA and spoT worsens the growth defect of an sgrS mutant during stress, although the sgrS relA spoT mutant defect was only detectable under lower stress levels. In addition, mutating dksA or relA and spoT lowers sgrS expression (as measured with a P sgrS -lacZ fusion), suggesting that the observed growth defects may be due to decreased induction of the glucose phosphate stress response or related targets. This regulatory effect could occur through altered sgrR transcription, as dksA and relA spoT mutants also exhibit decreased expression of a P sgrR -lacZ fusion. Taken together, this work supports a role for stringent response regulators in aiding the recovery from glucose phosphate stress.IMPORTANCE Glucose phosphate stress leads to growth inhibition in bacteria such as Escherichia coli when certain sugar phosphates accumulate in the cell. The transcription factor SgrR and the small RNA SgrS alleviate this stress in part by preventing further sugar phosphate transport. While the regulatory mechanisms of this response have been characterized, the regulation of the SgrR-SgrS response itself is not as well understood. Here, we describe a role for stringent response regulators DksA and ppGpp in the response to glucose phosphate stress. sgrS dksA and sgrS relA spoT mutants exhibit growth defects under glucose phosphate stress conditions. These defects may be due to a decrease in stress response induction, as deleting dksA or relA and spoT also results in decreased expression of sgrS and sgrR This research presents one of the first regulatory effects on the glucose phosphate stress response outside SgrR and SgrS and depicts a novel connection between these two metabolic stress responses.
Collapse
|
34
|
Abstract
Small RNAs (sRNAs) are central regulators of gene expression in bacteria, controlling target genes posttranscriptionally by base pairing with their mRNAs. sRNAs are involved in many cellular processes and have unique regulatory characteristics. In this review, we discuss the properties of regulation by sRNAs and how it differs from and combines with transcriptional regulation. We describe the global characteristics of the sRNA-target networks in bacteria using graph-theoretic approaches and review the local integration of sRNAs in mixed regulatory circuits, including feed-forward loops and their combinations, feedback loops, and circuits made of an sRNA and another regulator, both derived from the same transcript. Finally, we discuss the competition effects in posttranscriptional regulatory networks that may arise over shared targets, shared regulators, and shared resources and how they may lead to signal propagation across the network.
Collapse
Affiliation(s)
- Mor Nitzan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; .,Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rotem Rehani
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
| |
Collapse
|
35
|
Analysis of sucrose-induced small RNAs in Streptococcus mutans in the presence of different sucrose concentrations. Appl Microbiol Biotechnol 2017; 101:5739-5748. [PMID: 28567481 DOI: 10.1007/s00253-017-8346-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 01/09/2023]
Abstract
Streptococcus mutans (S. mutans) is the major pathogen contributing to dental caries. Sucrose is an important carbohydrate source for S. mutans and is crucial for dental caries. Small RNAs (sRNAs) are key post-transcriptional regulators of stress adaptation and virulence in bacteria. Here, for the first time, we created three replicate RNA libraries exposed to either 1 or 5% sucrose. The expression levels of sRNAs and target genes (gtfB, gtfC, and spaP) related to virulence were assessed. In addition, some phenotypic traits were evaluated. We obtained 2125 sRNA candidates with at least 100 average reads in 1% sucrose or 5% sucrose. Of these candidates, 2 were upregulated and 20 were downregulated in 1% sucrose. Six of these 22 differentially expressed sRNAs were validated by qRT-PCR. The expression level of target gene gtfB was higher in 1% sucrose. The adherence ratio of S. mutans was higher in 1% sucrose than in 5% sucrose. The synthesis of water-insoluble glucans (WIGs) was significantly higher in 5% sucrose than in 1% sucrose. These data suggest that a series of sRNAs can be induced in response to sucrose, and that some sRNAs might be involved in the regulation of phenotypes, providing new insight into the prevention of caries.
Collapse
|
36
|
The Small Protein SgrT Controls Transport Activity of the Glucose-Specific Phosphotransferase System. J Bacteriol 2017; 199:JB.00869-16. [PMID: 28289085 DOI: 10.1128/jb.00869-16] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/07/2017] [Indexed: 02/04/2023] Open
Abstract
The bacterial small RNA (sRNA) SgrS has been a fruitful model for discovery of novel RNA-based regulatory mechanisms and new facets of bacterial physiology and metabolism. SgrS is one of only a few characterized dual-function sRNAs. SgrS can control gene expression posttranscriptionally via sRNA-mRNA base-pairing interactions. Its second function is coding for the small protein SgrT. Previous work demonstrated that both functions contribute to relief of growth inhibition caused by glucose-phosphate stress, a condition characterized by disrupted glycolytic flux and accumulation of sugar phosphates. The base-pairing activity of SgrS has been the subject of numerous studies, but the activity of SgrT is less well characterized. Here, we provide evidence that SgrT acts to specifically inhibit the transport activity of the major glucose permease PtsG. Superresolution microscopy demonstrated that SgrT localizes to the cell membrane in a PtsG-dependent manner. Mutational analysis determined that residues in the N-terminal domain of PtsG are important for conferring sensitivity to SgrT-mediated inhibition of transport activity. Growth assays support a model in which SgrT-mediated inhibition of PtsG transport activity reduces accumulation of nonmetabolizable sugar phosphates and promotes utilization of alternative carbon sources by modulating carbon catabolite repression. The results of this study expand our understanding of a basic and well-studied biological problem, namely, how cells coordinate carbohydrate transport and metabolism. Further, this work highlights the complex activities that can be carried out by sRNAs and small proteins in bacteria.IMPORTANCE Sequencing, annotation and investigation of hundreds of bacterial genomes have identified vast numbers of small RNAs and small proteins, the majority of which have no known function. In this study, we explore the function of a small protein that acts in tandem with a well-characterized small RNA during metabolic stress to help bacterial cells maintain balanced metabolism and continue growing. Our results indicate that this protein acts on the glucose transport system, inhibiting its activity under stress conditions in order to allow cells to utilize alternative carbon sources. This work sheds new light on a key biological problem: how cells coordinate carbohydrate transport and metabolism. The study also expands our understanding of the functional capacities of small proteins.
Collapse
|
37
|
Abstract
The SgrS small RNA (sRNA) has been shown to protect against elevated levels of glucose phosphate by regulating the stability and translation of mRNAs encoding proteins involved in sugar transport and catabolism. The sRNA also was known to encode a protective 43-amino-acid protein, SgrT, but little was known about its mechanism of action. Lloyd et al. (J Bacteriol 199:e00869-16, 2017, https://doi.org/10.1128/JB.00869-16) use cell biological and genetic approaches to demonstrate that the small protein interacts with the PtsG importer to block glucose transport by this phosphotransferase system and promote utilization of nonpreferred carbon sources to maintain growth during glucose-phosphate stress.
Collapse
|
38
|
Noro E, Mori M, Makino G, Takai Y, Ohnuma S, Sato A, Tomita M, Nakahigashi K, Kanai A. Systematic characterization of artificial small RNA-mediated inhibition of Escherichia coli growth. RNA Biol 2016; 14:206-218. [PMID: 27981881 PMCID: PMC5324740 DOI: 10.1080/15476286.2016.1270001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A new screening system for artificial small RNAs (sRNAs) that inhibit the growth of Escherichia coli was constructed. In this system, we used a plasmid library to express RNAs of ∼120 nucleotides, each with a random 30-nucleotide sequence that can recognize its target mRNA(s). After approximately 60,000 independent colonies were screened, several plasmids that inhibited bacterial growth were isolated. To understand the inhibitory mechanism, we focused on one sRNA, S-20, that exerted a strong inhibitory effect. A time-course analysis of the proteome of S-20-expressing E. coli and a bioinformatic analysis were used to identify potential S-20 target mRNAs, and suggested that S-20 binds the translation initiation sites of several mRNAs encoding enzymes such as peroxiredoxin (osmC), glycyl-tRNA synthetase α subunit (glyQ), uncharacterized protein ygiM, and tryptophan synthase β chain (trpB). An in vitro translation analysis of chimeric luciferase-encoding mRNAs, each containing a potential S-20 target sequence, indicated that the translation of these mRNAs was inhibited in the presence of S-20. A gel shift analysis combined with the analysis of a series of S-20 mutants suggested that S-20 targets multiple mRNAs that are responsible for inhibiting E. coli growth. These data also suggest that S-20 acts like an endogenous sRNA and that E. coli can utilize artificial sRNAs.
Collapse
Affiliation(s)
- Emiko Noro
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Masaru Mori
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Gakuto Makino
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,c Faculty of Environment and Information Studies, Keio University , Fujisawa , Japan
| | - Yuki Takai
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Sumiko Ohnuma
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Asako Sato
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan
| | - Masaru Tomita
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan.,c Faculty of Environment and Information Studies, Keio University , Fujisawa , Japan
| | - Kenji Nakahigashi
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan
| | - Akio Kanai
- a Institute for Advanced Biosciences, Keio University , Tsuruoka , Japan.,b Systems Biology Program, Graduate School of Media and Governance, Keio University , Fujisawa , Japan.,c Faculty of Environment and Information Studies, Keio University , Fujisawa , Japan
| |
Collapse
|
39
|
Hawver LA, Giulietti JM, Baleja JD, Ng WL. Quorum Sensing Coordinates Cooperative Expression of Pyruvate Metabolism Genes To Maintain a Sustainable Environment for Population Stability. mBio 2016; 7:e01863-16. [PMID: 27923919 PMCID: PMC5142617 DOI: 10.1128/mbio.01863-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
Quorum sensing (QS) is a microbial cell-cell communication system that regulates gene expression in response to population density to coordinate collective behaviors. Yet, the role of QS in resolving the stresses caused by the accumulation of toxic metabolic by-products at high cell density is not well defined. In response to cell density, QS could be involved in reprogramming of the metabolic network to maintain population stability. Using unbiased metabolomics, we discovered that Vibrio cholerae mutants genetically locked in a low cell density (LCD) QS state are unable to alter the pyruvate flux to convert fermentable carbon sources into neutral acetoin and 2,3-butanediol molecules to offset organic acid production. As a consequence, LCD-locked QS mutants rapidly lose viability when grown with fermentable carbon sources. This key metabolic switch relies on the QS-regulated small RNAs Qrr1-4 but is independent of known QS regulators AphA and HapR. Qrr1-4 dictate pyruvate flux by translational repression of the enzyme AlsS, which carries out the first step in acetoin and 2,3-butanediol biosynthesis. Consistent with the idea that QS facilitates the expression of a common trait in the population, AlsS needs to be expressed cooperatively in a group of cells. Heterogeneous populations with high percentages of cells not expressing AlsS are unstable. All of the cells, regardless of their respective QS states, succumb to stresses caused by toxic by-product accumulation. Our results indicate that the ability of the bacteria to cooperatively control metabolic flux through QS is critical in maintaining a sustainable environment and overall population stability. IMPORTANCE Our work reveals a novel role for Vibrio cholerae quorum sensing (QS) in relieving the stresses caused by toxic metabolite accumulation when the population becomes crowded through metabolic reprogramming. QS enables V. cholerae switching from a low cell density energy-generating metabolism that is beneficial to individuals at the expense of the environment to a high cell density mode that preserves environmental habitability by sacrificing individual fitness. This cooperative switch provides a stable environment as the common good in maintaining the stability of the community. However, the common good can be exploited by uncooperative mutants that pollute the environment, causing population collapse. Our findings provide insights into the metabolic stress response of a major human pathogen, with implications for our understanding of microbial social biology and cooperation from an ecological and evolutionary perspective.
Collapse
Affiliation(s)
- Lisa A Hawver
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer M Giulietti
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James D Baleja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Abstract
Enteric pathogens of the family Enterobacteriaceae colonize various niches within animals and humans in which they compete with intestinal commensals and are attacked by the host immune system. To survive these hostile environments they possess complex, multilayer regulatory networks that coordinate the control of virulence factors, host-adapted metabolic functions and stress resistance. An important part of these intricate control networks are RNA-based control systems that enable the pathogen to fine-tune its responses. Recent next-generation sequencing approaches revealed a large repertoire of conserved and species-specific riboregulators, including numerous cis- and trans-acting non-coding RNAs, sensory RNA elements (RNA thermometers, riboswitches), regulatory RNA-binding proteins and RNA degrading enzymes which regulate colonization factors, toxins, host defense processes and virulence-relevant physiological and metabolic processes. All of which are important cues for pathogens to sense and respond to fluctuating conditions during the infection. This review covers infection-relevant riboregulators of E. coli, Salmonella, Shigella and Yersinia, highlights their versatile regulatory mechanisms, complex target regulons and functions, and discusses emerging topics and future challenges to fully understand and exploit RNA-based control to combat bacterial infections.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Aaron M Nuss
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Petra Dersch
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| |
Collapse
|
41
|
Fröhlich KS, Haneke K, Papenfort K, Vogel J. The target spectrum of SdsR small RNA in Salmonella. Nucleic Acids Res 2016; 44:10406-10422. [PMID: 27407104 PMCID: PMC5137417 DOI: 10.1093/nar/gkw632] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/11/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022] Open
Abstract
Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these ‘core sRNAs’ of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σS and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany.,Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Katharina Haneke
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| | - Kai Papenfort
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, D-97080 Würzburg, Germany
| |
Collapse
|
42
|
Wroblewska Z, Olejniczak M. Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA (NEW YORK, N.Y.) 2016; 22:979-94. [PMID: 27154968 PMCID: PMC4911921 DOI: 10.1261/rna.055251.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/01/2016] [Indexed: 05/23/2023]
Abstract
The bacterial protein Hfq participates in the regulation of translation by small noncoding RNAs (sRNAs). Several mechanisms have been proposed to explain the role of Hfq in the regulation by sRNAs binding to the 5'-untranslated mRNA regions. However, it remains unknown how Hfq affects those sRNAs that target the coding sequence. Here, the contribution of Hfq to the annealing of three sRNAs, RybB, SdsR, and MicC, to the coding sequence of Salmonella ompD mRNA was investigated. Hfq bound to ompD mRNA with tight, subnanomolar affinity. Moreover, Hfq strongly accelerated the rates of annealing of RybB and MicC sRNAs to this mRNA, and it also had a small effect on the annealing of SdsR. The experiments using truncated RNAs revealed that the contributions of Hfq to the annealing of each sRNA were individually adjusted depending on the structures of interacting RNAs. In agreement with that, the mRNA structure probing revealed different structural contexts of each sRNA binding site. Additionally, the annealing of RybB and MicC sRNAs induced specific conformational changes in ompD mRNA consistent with local unfolding of mRNA secondary structure. Finally, the mutation analysis showed that the long AU-rich sequence in the 5'-untranslated mRNA region served as an Hfq binding site essential for the annealing of sRNAs to the coding sequence. Overall, the data showed that the functional specificity of Hfq in the annealing of each sRNA to the ompD mRNA coding sequence was determined by the sequence and structure of the interacting RNAs.
Collapse
Affiliation(s)
- Zuzanna Wroblewska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| |
Collapse
|
43
|
A Prophage-Encoded Small RNA Controls Metabolism and Cell Division in Escherichia coli. mSystems 2016; 1:mSystems00021-15. [PMID: 27822514 PMCID: PMC5069750 DOI: 10.1128/msystems.00021-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/17/2016] [Indexed: 12/24/2022] Open
Abstract
Hundreds of small RNAs (sRNAs) have been identified in diverse bacterial species, and while the functions of most remain unknown, some regulate key processes, particularly stress responses. The sRNA DicF was identified over 25 years ago as an inhibitor of cell division but since then has remained uncharacterized. DicF consists of 53 nucleotides and is encoded by a gene carried on a prophage (Qin) in the genomes of many Escherichia coli strains. We demonstrated that DicF inhibits cell division via direct base pairing with ftsZ mRNA to repress translation and prevent new synthesis of the bacterial tubulin homolog FtsZ. Systems analysis using computational and experimental methods identified additional mRNA targets of DicF: xylR and pykA mRNAs, encoding the xylose uptake and catabolism regulator and pyruvate kinase, respectively. Genetic analyses showed that DicF directly base pairs with and represses translation of these targets. Phenotypes of cells expressing DicF variants demonstrated that DicF-associated growth inhibition is not solely due to repression of ftsZ, indicating that the physiological consequences of DicF-mediated regulation extend beyond effects on cell division caused by reduced FtsZ synthesis. IMPORTANCE sRNAs are ubiquitous and versatile regulators of bacterial gene expression. A number of well-characterized examples in E. coli are highly conserved and present in the E. coli core genome. In contrast, the sRNA DicF (identified over 20 years ago but remaining poorly characterized) is encoded by a gene carried on a defective prophage element in many E. coli genomes. Here, we characterize DicF in order to better understand how horizontally acquired sRNA regulators impact bacterial gene expression and physiology. Our data confirm the long-hypothesized DicF-mediated regulation of ftsZ, encoding the bacterial tubulin homolog required for cell division. We further uncover DicF-mediated posttranscriptional control of metabolic gene expression. Ectopic production of DicF is highly toxic to E. coli cells, but the toxicity is not attributable to DicF regulation of ftsZ. Further work is needed to reveal the biological roles of and benefits for the host conferred by DicF and other products encoded by defective prophages.
Collapse
|