1
|
Keitel L, Schick B, Pohen G, Yordanov S, Büchs J. Online monitored characterization of Phocaeicola vulgatus for organic acid production using anaerobic microtiter plate cultivations. Biotechnol Prog 2025; 41:e3526. [PMID: 39704382 PMCID: PMC12000641 DOI: 10.1002/btpr.3526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Phocaeicola vulgatus (formerly Bacteroides vulgatus), an anaerobic gut bacterium, produces several organic acids. Research on P. vulgatus is still in its infancy. However, a detailed understanding of P. vulgatus growth and metabolism is essential for its assessment as an organic acid producer. Media variations, including different initial glucose and NH4Cl concentrations and osmolalities, are significant means to yield higher organic acid titers. Furthermore, examining different nitrogen and carbon sources is important to evaluate the potential of P. vulgatus for growth on renewable resources. Cultivations were performed in an in-house built device for anaerobic online-monitoring of fluorescence and scattered light in microtiter plates. Results revealed that the highest organic acid concentrations were reached while using galactose, glucose, or xylose as a carbon source, high osmolalities, and 0.25 g L-1 NH4Cl. In addition, the organic acid composition changed with changing carbon and nitrogen sources. P. vulgatus was successfully further characterized, thereby contributing to a faster characterization of other anaerobic strains and paving the way for anaerobic organic acid production.
Collapse
Affiliation(s)
- Laura Keitel
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Benjamin Schick
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Gino Pohen
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Stanislav Yordanov
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| | - Jochen Büchs
- RWTH Aachen UniversityChair of Biochemical Engineering (AVT.BioVT)AachenGermany
| |
Collapse
|
2
|
Panwar D, Briggs J, Fraser ASC, Stewart WA, Brumer H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol 2025; 91:e0175924. [PMID: 39636128 PMCID: PMC11784079 DOI: 10.1128/aem.01759-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
There is growing interest in members of the genus Segatella (family Prevotellaceae) as members of a well-balanced human gut microbiota (HGM). Segatella are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in Segatella species is currently incomplete. Here, we used RNA sequencing (RNA-seq) of the type strain Segatella copri DSM 18205 (previously Prevotella copri CB7) to define precisely individual polysaccharide utilization loci (PULs) and associated carbohydrate-active enzymes (CAZymes) that are implicated in the catabolism of common fruit, vegetable, and grain polysaccharides (viz. mixed-linkage β-glucans, xyloglucans, xylans, pectins, and inulin). Although many commonalities were observed, several of these systems exhibited significant compositional and organizational differences vis-à-vis homologs in the better-studied Bacteroides (sister family Bacteroidaceae), which predominate in post-industrial HGM. Growth on β-mannans, β(1, 3)-galactans, and microbial β(1, 3)-glucans was not observed, due to an apparent lack of cognate PULs. Most notably, S. copri is unable to grow on starch, due to an incomplete starch utilization system (Sus). Subsequent transcriptional profiling of bellwether Ton-B-dependent transporter-encoding genes revealed that PUL upregulation is rapid and general upon transfer from glucose to plant polysaccharides, reflective of de-repression enabling substrate sensing. Distinct from previous observations of Bacteroides species, we were unable to observe clearly delineated substrate prioritization on a polysaccharide mixture designed to mimic in vitro diverse plant cell wall digesta. Finally, co-culture experiments generally indicated stable co-existence and lack of exclusive competition between S. copri and representative HGM Bacteroides species (Bacteroides thetaiotaomicron and Bacteroides ovatus) on individual polysaccharides, except in cases where corresponding PULs were obviously lacking. IMPORTANCE There is currently a great level of interest in improving the composition and function of the human gut microbiota (HGM) to improve health. The bacterium Segatella copri is prevalent in people who eat plant-rich diets and is therefore associated with a healthy lifestyle. On one hand, our study reveals the specific molecular systems that enable S. copri to proliferate on individual plant polysaccharides. On the other, a growing body of data suggests that the inability of S. copri to grow on starch and animal glycans, which dominate in post-industrial diets, as well as host mucin, contributes strongly to its displacement from the HGM by Bacteroides species, in the absence of direct antagonism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S. C. Fraser
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William A. Stewart
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Florêncio GP, Xavier AR, Natal ACDC, Sadoyama LP, Röder DVDDB, Menezes RDP, Sadoyama Leal G, Patrizzi LJ, Pena GDG. Synergistic Effects of Probiotics and Lifestyle Interventions on Intestinal Microbiota Composition and Clinical Outcomes in Obese Adults. Metabolites 2025; 15:70. [PMID: 39997695 PMCID: PMC11857521 DOI: 10.3390/metabo15020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity is a growing global epidemic. The composition of the intestinal microbiota can be influenced by several factors. Studies highlight the role of intestinal bacteria in the pathophysiology of obesity. So, the objective of this study was to investigate whether the use of probiotics, together with healthy lifestyle habits, contributes to weight reduction in obese individuals by analyzing the intestinal microbiota profile. METHODS A prospective study was carried out with 45 adults with obesity. Participants underwent guidance on healthy lifestyle habits, received a probiotic component containing different microbiological strains and were followed for 60 days. Clinical parameters, body composition, biochemical analysis, and intestinal microbiota assessment were performed before and after treatment. After 60 days, it was observed that the bacterial strains present in the probiotic were present in the patients' intestinal microbiota. Participants also showed improvements in physical activity, sleep quality, and anxiety management, as well as changes in some eating habits, such as a reduction in the consumption of processed foods and a significant increase in water intake. RESULTS A reduction in BMI, fasting glucose, insulin, HOMA-IR, LDL cholesterol, and triglycerides was observed, in addition to an increase in HDL cholesterol, improvement in bowel movement frequency, and stool consistency. Analysis of the intestinal microbiota revealed an increase in microbial diversity and a better balance between the bacterial phyla Firmicutes and Bacteroidetes. CONCLUSIONS The changes related to improving the composition of the intestinal microbiota, dietary habits, increased physical activity, reduced anxiety, and better sleep quality have significantly contributed to weight loss and improvements in physiological parameters in obese individuals.
Collapse
Affiliation(s)
- Glauber Pimentel Florêncio
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Analicy Rodrigues Xavier
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Ana Catarina de Castro Natal
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Lorena Prado Sadoyama
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | | | - Ralciane de Paula Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Geraldo Sadoyama Leal
- Institute of Biotechnology, Federal University of Catalão, Catalão 75704-020, GO, Brazil;
| | - Lislei Jorge Patrizzi
- Department of Physiotherapy, Federal University of Triângulo Mineiro, Uberaba 38025-350, MG, Brazil;
| | - Geórgia das Graças Pena
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| |
Collapse
|
4
|
Dera N, Kosińska-Kaczyńska K, Żeber-Lubecka N, Brawura-Biskupski-Samaha R, Massalska D, Szymusik I, Dera K, Ciebiera M. Impact of Early-Life Microbiota on Immune System Development and Allergic Disorders. Biomedicines 2025; 13:121. [PMID: 39857705 PMCID: PMC11762082 DOI: 10.3390/biomedicines13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: The shaping of the human intestinal microbiota starts during the intrauterine period and continues through the subsequent stages of extrauterine life. The microbiota plays a significant role in the predisposition and development of immune diseases, as well as various inflammatory processes. Importantly, the proper colonization of the fetal digestive system is influenced by maternal microbiota, the method of pregnancy completion and the further formation of the microbiota. In the subsequent stages of a child's life, breastfeeding, diet and the use of antibiotics influence the state of eubiosis, which determines proper growth and development from the neonatal period to adulthood. The literature data suggest that there is evidence to confirm that the intestinal microbiota of the infant plays an important role in regulating the immune response associated with the development of allergic diseases. However, the identification of specific bacterial species in relation to specific types of reactions in allergic diseases is the basic problem. Background: The main aim of the review was to demonstrate the influence of the microbiota of the mother, fetus and newborn on the functioning of the immune system in the context of allergies and asthma. Methods: We reviewed and thoroughly analyzed the content of over 1000 articles and abstracts between the beginning of June and the end of August 2024. Over 150 articles were selected for the detailed study. Results: The selection was based on the PubMed National Library of Medicine search engine, using selected keywords: "the impact of intestinal microbiota on the development of immune diseases and asthma", "intestinal microbiota and allergic diseases", "the impact of intrauterine microbiota on the development of asthma", "intrauterine microbiota and immune diseases", "intrauterine microbiota and atopic dermatitis", "intrauterine microbiota and food allergies", "maternal microbiota", "fetal microbiota" and "neonatal microbiota". The above relationships constituted the main criteria for including articles in the analysis. Conclusions: In the present review, we showed a relationship between the proper maternal microbiota and the normal functioning of the fetal and neonatal immune system. The state of eubiosis with an adequate amount and diversity of microbiota is essential in preventing the development of immune and allergic diseases. The way the microbiota is shaped, resulting from the health-promoting behavior of pregnant women, the rational conduct of the medical staff and the proper performance of the diagnostic and therapeutic process, is necessary to maintain the health of the mother and the child. Therefore, an appropriate lifestyle, rational antibiotic therapy as well as the way of completing the pregnancy are indispensable in the prevention of the above conditions. At the same time, considering the intestinal microbiota of the newborn in relation to the genera and phyla of bacteria that have a potentially protective effect, it is worth noting that the use of suitable probiotics and prebiotics seems to contribute to the protective effect.
Collapse
Affiliation(s)
- Norbert Dera
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
| | - Katarzyna Kosińska-Kaczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, 02-781 Warsaw, Poland;
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Robert Brawura-Biskupski-Samaha
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Diana Massalska
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Iwona Szymusik
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland; (N.D.); (K.K.-K.); (R.B.-B.-S.); (I.S.)
| | - Kacper Dera
- Pediatric Ward, Department of Pediatrics, Center of Postgraduate Medical Education, Bielański Hospital, 01-809 Warsaw, Poland
| | - Michał Ciebiera
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland; (D.M.); (M.C.)
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| |
Collapse
|
5
|
Alhasan MM, Landa MS, García SI, Gerlach RG, Harb H, Fahlbusch FB, Conrad ML, Barrientos G. Distinct gut microbial signature and altered short chain fatty acid metabolism at disease onset in a rat preclinical model of superimposed preeclampsia. Sci Rep 2024; 14:32137. [PMID: 39738527 PMCID: PMC11686345 DOI: 10.1038/s41598-024-83981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic hypertension is an increasingly prevalent condition that constitutes a risk factor for superimposed preeclampsia during pregnancy. In this study, we assessed the gut microbiome in a rat model of superimposed preeclampsia to characterize the microbial signature associated with defective placentation processes identified at the preclinical disease stage. The blood pressure profile, renal function parameters and fetal phenotype were evaluated in pregnant Stroke-prone Spontaneously Hypertensive Rats (SHRSP) and their normotensive controls. On gestation day (GD)14, feces were collected and gut microbiome composition and short-chain fatty acid concentrations were determined by 16S rRNA sequencing and gas chromatography respectively. At disease onset on GD14, the fecal gut microbiome of SHRSP showed a lower alpha diversity and significant differences in beta diversity when compared with control animals. In the feces, Prevotella, Bifidobacterium, Parasutterella and Roseburia were enriched in SHRSP pregnancies compared to controls, showing a strong correlation with clinical parameters. Bacteria from the families Ruminococcaceae, Oscillospiraceae and the genera Blautia and Faecalibacterium were depleted. Considering short-chain fatty acids, acetate, propionate and valerate were increased in the SHRSP model, showing a strong positive correlation with the relative abundance of enriched taxa. We show that on GD14, at the asymptomatic SPE onset stage, pregnant SHRSP display a distinct gut microbiome signature and altered short chain fatty acid metabolism compared to control animals.
Collapse
Affiliation(s)
- Moumen M Alhasan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - María S Landa
- Facultad de Medicina, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Cardiología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia I García
- Facultad de Medicina, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Cardiología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Laboratorio de Medicina Experimental, Hospital Alemán, Av. Pueyrredón 1640, C1118AAT, Ciudad Autónoma de Buenos Aires, Argentina
| | - Roman G Gerlach
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen and Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, Medical Faculty, TU Dresden, Dresden, Germany
| | - Fabian B Fahlbusch
- Neonatology and Pediatric Intensive Care, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
- Neonatology and Pediatric Intensive Care, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán, Av. Pueyrredón 1640, C1118AAT, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Xiong F, Zhang X, Jiang Y, Meng P, Zhou Y, Ji X, Chen J, Wu T, Hou Y. An Integrated Analysis of the Role of Gut Microbiome-Associated Metabolites in the Detection of MASH-Related Cirrhosis. Metabolites 2024; 14:681. [PMID: 39728462 DOI: 10.3390/metabo14120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND AND AIM The prevalence and adverse outcomes of metabolic dysfunction associated with steatotic liver disease (MAFLD) are increasing. The changes in the gut microbiota and metabolites associated with metabolic dysfunction-associated steatohepatitis (MASH) are regarded as an essential part of the progression of MAFLD. This study aimed to identify the gut microbiota and metabolites involved in the development of MAFLD in patients. METHOD This study enrolled 90 patients (healthy controls, HC: n = 30; MASH: n = 30; MASH-related cirrhosis, MC: n = 30), and their fecal samples were collected for 16S rRNA sequencing and non-targeted LC-MS/MS metabolomics analysis. Data preprocessing and statistical analyses were performed using QIIME2 software, Pynast, QIIME2 package, Progenesis QI, and R program. RESULTS The abundance of Prevotellaceae at the family level and Prevotella at the genus level was lower in the MASH and NC samples than in the HC samples. Both Prevotellaceae and Prevotella showed the strongest correlation with MASH progression via random forest analysis. Untargeted metabolomics was used to quantitatively screen for discrepant metabolites in the stool samples from the three groups. Linolenic acid (LA)-related metabolite levels were significantly lower in MASH and NC samples. Associations between Prevotella- or LA-related metabolites and liver function were discovered. A high abundance of Prevotella was associated with LA-related metabolites and MASH. CONCLUSION This study identified that gut microbiota and metabolites are associated with MASH-related metabolic dysfunction. LA and Prevotella are depleted during MASH progression, and additional supplementation with Prevotella may be a potential strategy for the future treatment of MAFLD.
Collapse
Affiliation(s)
- Feixiang Xiong
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Xuejie Zhang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Peipei Meng
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Yang Zhou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Xiaomin Ji
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Jialiang Chen
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Tong Wu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| | - Yixin Hou
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, No. 8 Jing Shun East Street, Beijing 100015, China
| |
Collapse
|
7
|
Kong J, Yang J, He C, Zhou B, Fang S, Salinas M, Mohabbat AB, Bauer BA, Wang X. Regulation of endotoxemia through the gut microbiota: The role of the Mediterranean diet and its components. APMIS 2024; 132:948-955. [PMID: 39370693 DOI: 10.1111/apm.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Endotoxemia is closely related to many diseases. As the largest endotoxin reservoir in the human body, the gut microbiota should be a key target for alleviating endotoxemia. The intestinal microbiota is believed to cause endotoxemia directly or indirectly by modifying the intestinal barrier function through dysbiosis, changing intestinal mucosal permeability and bacterial translocation. Diet is known to be the main environmental factor affecting the intestinal microbiota, and different diets and food components have a large impact on the gut microbiota. The Mediterranean diet, which received much attention in recent years, is believed to be able to regulate the gut microbiota, thereby maintaining the function of the intestinal barrier and alleviating endotoxemia. In this review, we focus on the relationship between the gut microbiota and endotoxemia, and how the Mediterranean dietary (MD) pattern can interfere with endotoxemia through the gut microbiota.
Collapse
Affiliation(s)
- Jing Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Juan Yang
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cong He
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingduo Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengquan Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manisha Salinas
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Arya B Mohabbat
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaosu Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Yang Y, Shu X, Javed HU, Wu Q, Liu H, Han J, Zhou H. Dietary supplementation of poly-dihydromyricetin-fused zinc nanoparticles alleviates fatty liver hemorrhagic syndrome by improving antioxidant capacity, intestinal health and lipid metabolism of laying hens. Poult Sci 2024; 103:104301. [PMID: 39306955 PMCID: PMC11447411 DOI: 10.1016/j.psj.2024.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Fatty liver hemorrhagic syndrome is the main cause of noninfectious death of laying hens and results in substantial economic losses to the poultry industry. This study focused on evaluating the effects of Poly-dihydromyricetin-fused zinc nanoparticles (PDMY-Zn NPs) on antioxidant capacity, liver lipid metabolism, and intestinal health in laying hens. A total of 288 Jingfen laying hens (52 wk old) with similar body weights were randomly divided into 4 dietary groups with 6 replicates in each group for 8 wk. The control group received a basal diet, while the treatment groups were supplemented with PDMY-Zn NPs at levels of 200, 400, and 600 mg/kg, respectively. The results indicate that PDMY-Zn NPs supplementation can enhance antioxidant parameters (P < 0.05) in the blood and liver of laying hens. Simultaneously, it can mitigate vacuolar degeneration and inflammatory necrosis in hepatocytes, improve the relative expression level of related parameters associated with liver lipid metabolism and key regulatory genes (P < 0.05). Furthermore, it has been observed to reshape the composition and diversity of cecum microbes by increasing beneficial probiotics such as Lactobacillus and Prevotella, while also enhancing villi height and villi/crypt ratio in the duodenum and ileum (P < 0.05). Additionally, it elevates liver bile acid content along with the relative expression of key genes involved in liver synthesis (P < 0.05). In summary, PDMY-Zn NPs showed potential to alleviate fatty liver hemorrhagic syndrome by enhancing antioxidant capacity, regulating liver lipid metabolism, and maintaining intestinal health.
Collapse
Affiliation(s)
- Yuanting Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China
| | - Hafiz Umer Javed
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Qun Wu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China.
| |
Collapse
|
9
|
Xiao X, Singh A, Giometto A, Brito IL. Segatella clades adopt distinct roles within a single individual's gut. NPJ Biofilms Microbiomes 2024; 10:114. [PMID: 39465298 PMCID: PMC11514259 DOI: 10.1038/s41522-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Segatella is a prevalent genus within individuals' gut microbiomes worldwide, especially in non-Western populations. Although metagenomic assembly and genome isolation have shed light on its genetic diversity, the lack of available isolates from this genus has resulted in a limited understanding of how members' genetic diversity translates into phenotypic diversity. Within the confines of a single gut microbiome, we have isolated 63 strains from diverse lineages of Segatella. We performed comparative analyses that exposed differences in cellular morphologies, preferences in polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates. We further show that exposure to Segatella isolates either evokes strong or muted transcriptional responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within related Segatella isolates, extending this to host-microbe interactions.
Collapse
Affiliation(s)
- Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Sun R, Yu P, Guo L, Huang Y, Nie Y, Yang Y. Improving the growth and intestinal colonization of Escherichia coli Nissle 1917 by strengthening its oligopeptides importation ability. Metab Eng 2024; 86:157-171. [PMID: 39389255 DOI: 10.1016/j.ymben.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Escherichia coli Nissle 1917 (EcN), the probiotic featured with well-established safety in different host, is emerging as a favored chassis for the construction of engineered probiotics for disease treatment. However, limited by the low intestinal colonization ability of EcN, repeated administration is required to maximize the health benefits of the EcN-derived engineered probiotics. Here, using fecal metabolites as "metabolites pool", we developed a metabolomic strategy to characterize the comprehensive metabolic profile of EcN. Compared with Prevotella copri DSM 18205 (P. copri), one of the dominant microbes in gut flora, EcN exhibited minor growth advantage under the fecal metabolites-containing condition for its lower metabolic capability towards fecal metabolites. Further study indicated that EcN lacked the ability to import the oligopeptides containing more than two amino acids. The shortage of oligopeptides-derived amino acids might limit the growth of EcN by restricting its purine metabolism. Assisted with the bioinformatic and qRT-PCR analyses, we identified a tripeptides-specific importer Pc-OPT in P. copri, which was mainly distributed in genera Prevotella and Bacteroides. Overexpression of Pc-OPT improved the tripeptides importation of EcN and promoted its growth and intestinal colonization. Notably, 16S rRNA gene amplicon sequencing results indicated that strengthening the oligopeptides importation ability of EcN might promote its intestinal colonization by adjusting the gut microbial composition. Our study reveals that the growth and intestinal colonization of EcN is limited by its insufficient oligopeptides importation and paves road for promoting the efficacy of the EcN-derived synthetic probiotics by improving their intestinal colonization ability.
Collapse
Affiliation(s)
- Ruxue Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yufei Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanhong Nie
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
11
|
Makiura T, Matsutani M, Tseng HC, Fujimoto N, Ohnishi A. Succinate-mediated symbiosis between Dialister hominis and an uncharacterized Segatella-like pectinophile. Anaerobe 2024; 89:102883. [PMID: 39038530 DOI: 10.1016/j.anaerobe.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVES Syntrophy has been documented between pectinophiles and methanol-utilizing bacteria, along with instances of cross-feeding between pectinophiles and methanogens. However, studies on the ecology of pectinophiles in anaerobic digestion (AD) are lacking. Therefore, in this study, we aimed to elucidate the ecology of pectinophiles by isolating novel pectinophile forms and conducting a comprehensive analysis of their physiology and ecology. METHODS Complex microbial communities from AD systems were enriched in a pectin-containing medium; subsequently, specific strains were isolated using a pectinophile isolation method. The carbon source assimilation and growth ability of the isolates, along with their symbiotic relationships, were evaluated using batch tests. RESULTS Strain LPYR103-Pre exhibited 16S rRNA gene sequence similarity and average nucleotide identity values of 94.3 % and 77.9 %, respectively, compared to its closest related species, Segatella cerevisiae. Strain LPYR103-Pre demonstrated attenuated growth in the presence of eight common sugars but exhibited remarkably high growth in the presence of pectin, d-galacturonate, and d-glucuronate, with succinate being identified as a primary metabolite. Accumulation of succinate inhibited the growth of strain LPYR103-Pre. However, this growth impediment was alleviated by Dialister hominis LPYG114-Dih, whose growth required succinate. CONCLUSIONS Our results elucidate the specific carbon source requirements of the Segatella-like strain LPYR103-Pre and succinate-mediated symbiosis involving D. hominis. These findings provide new insights into the degradation of pectin and its degradation products during AD, contributing to the identification of unknown pectinophiles.
Collapse
Affiliation(s)
- Tomoki Makiura
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Hou-Chia Tseng
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Naoshi Fujimoto
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akihiro Ohnishi
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
12
|
Mio K, Goto Y, Matsuoka T, Komatsu M, Ishii C, Yang J, Kobayashi T, Aoe S, Fukuda S. Barley β-glucan consumption improves glucose tolerance by increasing intestinal succinate concentrations. NPJ Sci Food 2024; 8:69. [PMID: 39349520 PMCID: PMC11444033 DOI: 10.1038/s41538-024-00311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/15/2024] [Indexed: 10/02/2024] Open
Abstract
Barley is rich in β-glucan, which can alter gut microbiota and metabolome profiles, potentially affecting host metabolism. However, the microbiota and metabolites increased by barley β-glucan remain unclear. In this study, we focused on the gut-microbiota-derived metabolite succinate and investigated the microbiome and metabolome profiles altered by barley β-glucan intake. C57BL/6 J mice were fed a standard or middle-fat diet containing barley flour rich in β-glucan or barley flour without β-glucan, and their gut microbiota and metabolome profiles were analyzed. The results showed increased Bacteroides, Parasutterella, and succinate due to barley β-glucan intake independent of diet differences. Next, we used mice lacking slc13a2, a gene that is involved in the cellular uptake of succinate. Wild-type mice showed improved glucose tolerance after the intake of barley β-glucan, but this effect was attenuated in the slc13a2-deficient mice. These results suggest that barley β-glucan intake increases succinate and succinate-producing bacteria and affects glucose metabolism.
Collapse
Affiliation(s)
- Kento Mio
- Research and Development Department, Hakubaku co., Ltd., Yamanashi, Japan.
| | - Yuka Goto
- Research and Development Department, Hakubaku co., Ltd., Yamanashi, Japan
| | - Tsubasa Matsuoka
- Research and Development Department, Hakubaku co., Ltd., Yamanashi, Japan
| | - Mitsuko Komatsu
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Jiayue Yang
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Toshiki Kobayashi
- Research and Development Department, Hakubaku co., Ltd., Yamanashi, Japan
| | - Seiichiro Aoe
- Graduate School of Studies in Human Culture, Otsuma Women's University, Tokyo, Japan.
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Metagen Inc., Tsuruoka, Yamagata, Japan.
| |
Collapse
|
13
|
Gindt ME, Lück R, Deppenmeier U. Genetic optimization of the human gut bacterium Phocaeicola vulgatus for enhanced succinate production. Appl Microbiol Biotechnol 2024; 108:465. [PMID: 39283347 PMCID: PMC11405475 DOI: 10.1007/s00253-024-13303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.
Collapse
Affiliation(s)
- Mélanie E Gindt
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Rebecca Lück
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
14
|
Sha Y, Liu X, Li X, Wang Z, Shao P, Jiao T, He Y, Zhao S. Succession of rumen microbiota and metabolites across different reproductive periods in different sheep breeds and their impact on the growth and development of offspring lambs. MICROBIOME 2024; 12:172. [PMID: 39267132 PMCID: PMC11397069 DOI: 10.1186/s40168-024-01892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND The microbiota and metabolites in the gastrointestinal tracts of female animals at different reproductive periods are very important to the growth, development, and health of themselves and their offspring. However, the changes in the gastrointestinal microbiota and metabolites throughout reproductive period of different sheep breeds and their effects on the growth and development of offspring lambs are still unclear. Hence, this study presents an assessment of the reproductive hormone levels, immune levels, rumen microbiota, and metabolites in Hu sheep and Suffolk ewes at different reproductive periods and their effects on the growth and development of offspring lambs. RESULTS Hu sheep and Suffolk during non-pregnancy, pregnancy, and lactation were used as the research objects to determine reproductive and immune indexes of ewes at different periods, analyze rumen microbiome and metabolome, and track the growth performance and development of offspring lambs. The results showed that the reproductive hormone and immune levels of Hu sheep and Suffolk underwent adaptive changes across different reproductive periods. Compared with non-pregnancy, the microbial energy metabolism and lipid metabolism function decreased during Hu sheep pregnancy, and energy metabolism function decreased during lactation. In Suffolk, energy metabolism, glycan biosynthesis, and metabolism function were enhanced during pregnancy, and the metabolism of cofactors and vitamins was enhanced during lactation. Prevotella increased in Suffolk during pregnancy and lactation (P < 0.05) and was positively correlated with the birth weight and body size of the lambs (P < 0.05). Moreover, the abundances of Butyrivibrio and Rikenellaceae_RC9_gut_group during pregnancy were positively correlated with the intestinal immunity of the offspring lambs (P < 0.05), thereby regulating the intestinal immunity level of the lambs. Metabolomic analysis revealed that the protein digestion, absorption, and amino acid metabolism of Hu sheep were enhanced during pregnancy, which provided amino acids for the growth and development of pregnant ewes and fetuses and was significantly correlated with the birth weight, body size, and intestinal immunity of lambs (P < 0.05). Simultaneously, there was an increase in acetate and propionate during the pregnancy and lactation period of both Hu sheep and Suffolk, providing energy for ewes during reproductive period. Moreover, the microbiota during the lactation period was significantly correlated with the milk quality and lambs daily gain (P < 0.05). CONCLUSIONS This study revealed the characteristic succession changes in the rumen microbiota and its metabolites at different reproductive periods in sheep breeds and their regulation of reproductive hormone and immune levels and identified their potential effects on the growth and development of offspring lambs. The findings provide valuable insights into the health and feeding management of different sheep breeds during the reproductive stage. Video Abstract.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhengwen Wang
- College of Pratacultural Science, Gansu Agricultural University / Key Laboratory for Grassland Ecosystem, Ministry of Education / Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, 730070, China
| | - Pengyang Shao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ting Jiao
- College of Pratacultural Science, Gansu Agricultural University / Key Laboratory for Grassland Ecosystem, Ministry of Education / Sino-US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
15
|
Rojas CA, Park B, Scarsella E, Jospin G, Entrolezo Z, Jarett JK, Martin A, Ganz HH. Species-level characterization of the core microbiome in healthy dogs using full-length 16S rRNA gene sequencing. Front Vet Sci 2024; 11:1405470. [PMID: 39286595 PMCID: PMC11404154 DOI: 10.3389/fvets.2024.1405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Despite considerable interest and research in the canine fecal microbiome, our understanding of its species-level composition remains incomplete, as the majority of studies have only provided genus-level resolution. Here, we used full-length 16S rRNA gene sequencing to characterize the fecal microbiomes of 286 presumed healthy dogs living in homes in North America who are devoid of clinical signs, physical conditions, medication use, and behavioral problems. We identified the bacterial species comprising the core microbiome and investigated whether a dog's sex & neuter status, age, body weight, diet, and geographic region predicted microbiome variation. Our analysis revealed that 23 bacterial species comprised the core microbiome, among them Collinsella intestinalis, Megamonas funiformis, Peptacetobacter hiranonis, Prevotella copri, and Turicibacter sanguinis. The 23 taxa comprised 75% of the microbiome on average. Sterilized females, dogs of intermediate body sizes, and those exclusively fed kibble tended to harbor the most core taxa. Host diet category, geographic region, and body weight predicted microbiome beta-diversity, but the effect sizes were modest. Specifically, the fecal microbiomes of dogs fed kibble were enriched in several core taxa, including C. intestinalis, P. copri, and Holdemanella biformis, compared to those fed raw or cooked food. Conversely, dogs on a raw food diet exhibited higher abundances of Bacteroides vulgatus, Caballeronia sordicola, and Enterococcus faecium, among others. In summary, our study provides novel insights into the species-level composition and drivers of the fecal microbiome in healthy dogs living in homes; however, extrapolation of our findings to different dog populations will require further study.
Collapse
|
16
|
Nilson R, Penumutchu S, Pagano FS, Belenky P. Metabolic changes associated with polysaccharide utilization reduce susceptibility to some β-lactams in Bacteroides thetaiotaomicron. mSphere 2024; 9:e0010324. [PMID: 39109911 PMCID: PMC11351048 DOI: 10.1128/msphere.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/07/2024] [Indexed: 08/29/2024] Open
Abstract
Antibiotic therapy alters bacterial abundance and metabolism in the gut microbiome, leading to dysbiosis and opportunistic infections. Bacteroides thetaiotaomicron (Bth) is both a commensal in the gut and an opportunistic pathogen in other body sites. Past work has shown that Bth responds to β-lactam treatment differently depending on the metabolic environment both in vitro and in vivo. Studies of other bacteria show that an increase in respiratory metabolism independent of growth rate promotes susceptibility to bactericidal antibiotics. We propose that Bth enters a protected state linked to an increase in polysaccharide utilization and a decrease in the use of simple sugars. Here, we apply antibiotic susceptibility testing, transcriptomic analysis, and genetic manipulation to characterize this polysaccharide-mediated tolerance (PM tolerance) phenotype. We found that a variety of mono- and disaccharides increased the susceptibility of Bth to several different β-lactams compared to polysaccharides. Transcriptomics indicated a metabolic shift from reductive to oxidative branches of the tricarboxylic acid cycle on polysaccharides. Accordingly, supplementation with intermediates of central carbon metabolism had varying effects on PM tolerance. Transcriptional analysis also showed a decrease in the expression of the electron transport chain (ETC) protein NQR and an increase in the ETC protein NUO, when given fiber versus glucose. Deletion of NQR increased Bth susceptibility while deletion of NUO and a third ETC protein NDH2 had no effect. This work confirms that carbon source utilization modulates antibiotic susceptibility in Bth and that anaerobic respiratory metabolism and the ETC play an essential role.IMPORTANCEAntibiotics are indispensable medications that revolutionized modern medicine. However, their effectiveness is challenged by a large array of resistance and tolerance mechanisms. Treatment with antibiotics also disrupts the gut microbiome which can adversely affect health. Bacteroides are prevalent in the gut microbiome and yet are frequently involved in anaerobic infections. Thus, understanding how antibiotics affect these bacteria is necessary to implement proper treatment. Recent work has investigated the role of metabolism in antibiotic susceptibility in distantly related bacteria such as Escherichia coli. Using antibiotic susceptibility testing, transcriptomics, and genetic manipulation, we demonstrate that polysaccharides reduce β-lactam susceptibility when compared to monosaccharides. This finding underscores the profound impact of metabolic adaptation on the therapeutic efficacy of antibiotics. In the long term, this work indicates that modulation of metabolism could make Bacteroides more susceptible during infections or protect them in the context of the microbiome.
Collapse
Affiliation(s)
- Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Francesco S. Pagano
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
17
|
Mabrok HB, Ramadan AA, Hamed IM, Mohamed DA. Obesity as Inducer of Cognitive Function Decline via Dysbiosis of Gut Microbiota in Rats. Brain Sci 2024; 14:807. [PMID: 39199499 PMCID: PMC11353248 DOI: 10.3390/brainsci14080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Diet-induced obesity is a global phenomenon that affects the population worldwide with manifestations at both the phenotypic and genotypic levels. Cognitive function decline is a major global health challenge. The relation between obesity and cognitive function is a debatable issue. The main goal of the current research was to study the implications of obesity on cognitive function and gut microbiota diversity and its impact on plasma and brain metabolic parameters in rats. Obesity was induced in rats by feeding on a high-fat (HF) or a high-fat/high-sucrose (HFHS) diet. The results reveal that both the HF (0.683) and HFHS (0.688) diets were effective as obesity inducers, which was confirmed by a significant increase in the body mass index (BMI). Both diet groups showed dyslipidemia and elevation of oxidative stress, insulin resistance (IR), and inflammatory markers with alterations in liver and kidney functions. Obesity led to a reduction in cognitive function through a reduction in short-term memory by 23.8% and 30.7% in the rats fed HF and HFHS diets, respectively, and learning capacity and visuo-spatial memory reduced by 8.9 and 9.7 s in the rats fed an HF or HFHS diet, respectively. Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Spirochaetes phyla were detected. The Firmicutes/Bacteroidetes ratio (F/B) significantly decreased in the HF group, while it increased in the HFHS group compared to the normal control. The two species, Bacteroides acidifaciens and Bacteroides ovatus, which are associated with IR, were drastically compromised by the high-fat/high-sucrose diet. Some species that have been linked to reduced inflammation showed a sharp decrease in the HFHS group, while Prevotella copri, which is linked to carbohydrate metabolism, was highly enriched. In conclusion: Obesity led to cognitive impairment through changes in short-term and visuo-spatial memory. A metagenomic analysis revealed alterations in the abundance of some microbial taxa associated with obesity, inflammation, and insulin resistance in the HF and HFHS groups.
Collapse
Grants
- a626035bfd925943, 4c6c6a0dc9645904, 175e6bf937114ef5, 18dca4e8f29e587c, aaf09103eb8bd6ee, 3740a1d4a23d772f, 1b07773fd3c8c954, 4f8fa1a570a3a4b7, 490e7e4e51713e71, 1e87a07edec11a96, 7642f29d62c1068b, c06bc3bf279a8491, c78b30a55528e880, e160d996ffb69ed4, 133 Discount Vouchers
Collapse
Affiliation(s)
| | | | | | - Doha A. Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo 12622, Egypt; (H.B.M.); (A.A.R.); (I.M.H.)
| |
Collapse
|
18
|
Batacan R, Briskey D, Bajagai YS, Smith C, Stanley D, Rao A. Effect of Palmitoylethanolamide Compared to a Placebo on the Gut Microbiome and Biochemistry in an Overweight Adult Population: A Randomised, Placebo Controlled, Double-Blind Study. Biomedicines 2024; 12:1620. [PMID: 39062193 PMCID: PMC11274356 DOI: 10.3390/biomedicines12071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18-65 years with a BMI range of 30-40 kg/m2 were recruited. Participants were randomised to receive PEA (n = 36) or a placebo (n = 22) for 12 weeks. Microbiota composition, richness, diversity, and metabolic functions, faecal short chain fatty acids and calprotectin, pathology markers, and health-related questionnaires were analysed throughout the 12 weeks of supplementation. PEA supplementation significantly reduced triglyceride levels and IL-2 concentrations. No significant differences were found in the overall microbiota composition between the groups, and microbiota richness and diversity remained consistent for both groups. Functional analysis demonstrated no differences in functional richness and diversity, but specific pathways were modified. PEA supplementation resulted in a decrease in the abundance of pathways related to aromatic compound degradation, NAD interconversion, and L-glutamate degradation, while pathways associated with molybdopterin biosynthesis and O-antigen building blocks exhibited increased abundance. Increased production of O-antigen results in smooth LPS associated with reduced pathogenic stealth and persistence. PEA supplementation may influence specific microbial species, metabolic pathways, and reduce serum triglyceride and IL-2 concentration, shedding light on the intricate relationship between PEA, the microbiome, and host health.
Collapse
Affiliation(s)
- Romeo Batacan
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (Y.S.B.); (D.S.)
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- RDC Clinical, Brisbane, QLD 4006, Australia;
| | - Yadav Sharma Bajagai
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (Y.S.B.); (D.S.)
| | - Chelsie Smith
- RDC Clinical, Brisbane, QLD 4006, Australia;
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Dana Stanley
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia (Y.S.B.); (D.S.)
| | - Amanda Rao
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- RDC Clinical, Brisbane, QLD 4006, Australia;
| |
Collapse
|
19
|
Döring C, Basen M. Propionate production by Bacteroidia gut bacteria and its dependence on substrate concentrations differs among species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:95. [PMID: 38987848 PMCID: PMC11238397 DOI: 10.1186/s13068-024-02539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Propionate is a food preservative and platform chemical, but no biological process competes with current petrochemical production routes yet. Although propionate production has been described for gut bacteria of the class Bacteroidia, which also carry great capacity for the degradation of plant polymers, knowledge on propionate yields and productivities across species is scarce. This study aims to compare propionate production from glucose within Bacteroidia and characterize good propionate producers among this group. RESULTS We collected published information on propionate producing Bacteroidia, and selected ten species to be further examined. These species were grown under defined conditions to compare their product formation. While propionate, acetate, succinate, lactate and formate were produced, the product ratios varied greatly among the species. The two species with highest propionate yield, B. propionicifaciens (0.39 gpro/ggluc) and B. graminisolvens (0.25 gpro/ggluc), were further examined. Product formation and growth behavior differed significantly during CO2-limited growth and in resting cells experiments, as only B. graminisolvens depended on external-added NaHCO3, while their genome sequences only revealed few differences in the major catabolic pathways. Carbon mass and electron balances in experiments with resting cells were closed under the assumption that the oxidative pentose pathway was utilized for glucose oxidation next to glycolysis in B. graminisolvens. Finally, during pH-controlled fed-batch cultivation B. propionicifaciens and B. graminisolvens grew up to cell densities (OD600) of 8.1 and 9.8, and produced 119 mM and 33 mM of propionate from 130 and 105 mM glucose, respectively. A significant production of other acids, particularly lactate (25 mM), was observed in B. graminisolvens only. CONCLUSIONS We obtained the first broad overview and comparison of propionate production in Bacteroidia strains. A closer look at two species with comparably high propionate yields, showed significant differences in their physiology. Further studies may reveal the molecular basis for high propionate yields in Bacteroidia, paving the road towards their biotechnological application for conversion of biomass-derived sugars to propionate.
Collapse
Affiliation(s)
- Carolin Döring
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Mirko Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
20
|
Gu N, Yan J, Tang W, Zhang Z, Wang L, Li Z, Wang Y, Zhu Y, Tang S, Zhong J, Cheng C, Sun X, Huang Z. Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury. J Neuroinflammation 2024; 21:147. [PMID: 38835057 DOI: 10.1186/s12974-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.
Collapse
Affiliation(s)
- Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Emergency Department, Chengdu First People's Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Rowe JC, Winston JA, Parker VJ, McCool KE, Suchodolski JS, Lopes R, Steiner JM, Gilor C, Rudinsky AJ. Gut microbiota promoting propionic acid production accompanies caloric restriction-induced intentional weight loss in cats. Sci Rep 2024; 14:11901. [PMID: 38789518 PMCID: PMC11126632 DOI: 10.1038/s41598-024-62243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for 7 days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during caloric restriction-induced weight loss (adjusted p < 0.05). Repeated measures correlation revealed the relative abundances of Prevotella 9 copri (correlation coefficient = 0.532, 95% CI (0.275, 0.717), p = 0.0002) significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during caloric restriction-induced weight loss.
Collapse
Affiliation(s)
- J C Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - J A Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA.
| | - V J Parker
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - K E McCool
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - J S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - R Lopes
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - J M Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University College of Veterinary Medicine, College Station, TX, USA
| | - C Gilor
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - A J Rudinsky
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| |
Collapse
|
22
|
Ye Q, Zhao Y, Zhao J, Ouyang Z, Feng Y, Hu J, Su X, Chen N, Chen Y, Tan L, Feng Y, Guo Y. Prevotella, a dominant bacterium in young people with stage Ⅲ periodontitis, related to the arachidonic acid metabolism pathway. Microbes Infect 2024; 26:105316. [PMID: 38423169 DOI: 10.1016/j.micinf.2024.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
OBJECTS As periodontitis progresses, the oral microbiome changes dynamically. The aim of this study is to evaluate the dominant bacteria of adults with stage III periodontitis and investigate potential pathways related to the dominant bacteria. MATERIALS AND METHODS 16S rRNA sequencing was carried out to detect the differences in the oral microbiome between adult with stage Ⅰ and stage Ⅲ periodontitis and find the dominant bacteria in each group. The inhibitor of the predominant pathway for stage Ⅲ periodontitis was used to investigate the role of the dominant bacteria in periodontitis in vivo and in vitro. RESULTS There was no significant difference in the α-diversity between the two groups. The results of β-diversity showed that the samples were divided into different groups according to the stage of periodontitis. The dominant bacteria in youths with stage Ⅲ periodontitis was Prevotella and may be related to the arachidonic acid metabolism pathway. Administration of SKF-86002 suppressed the expression of inflammation mediators in vivo and vitro. CONCLUSIONS Prevotella was the one dominant bacteria in young people with stage Ⅲ periodontitis and was related to the arachidonic acid metabolism pathway.
Collapse
Affiliation(s)
- Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yaqiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Zeyue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Xiaolin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Ningxin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| |
Collapse
|
23
|
Chen F, Liu L, Tang D, Zhang H, Wu N, Wang L, Li H, Xiao H, Zhou D. Treatment of Acute Wound Infections by Degradable Polymer Nanoparticle with a Synergistic Photothermal and Chemodynamic Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309624. [PMID: 38408124 PMCID: PMC11077640 DOI: 10.1002/advs.202309624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Indexed: 02/28/2024]
Abstract
Mild-heat photothermal antibacterial therapy avoids heat-induced damage to normal tissues but causes bacterial tolerance. The use of photothermal therapy in synergy with chemodynamic therapy is expected to address this issue. Herein, two pseudo-conjugated polymers PM123 with photothermal units and PFc with ferrocene (Fc) units are designed to co-assemble with DSPE-mPEG2000 into nanoparticle NPM123/Fc. NPM123/Fc under 1064 nm laser irradiation (NPM123/Fc+NIR-II) generates mild heat and additionally more toxic ∙OH from endogenous H2O2, displaying a strong synergistic photothermal and chemodynamic effect. NPM123/Fc+NIR-II gives >90% inhibition rates against MDR ESKAPE pathogens in vitro. Metabolomics analysis unveils that NPM123/Fc+NIR-II induces bacterial metabolic dysregulation including inhibited nucleic acid synthesis, disordered energy metabolism, enhanced oxidative stress, and elevated DNA damage. Further, NPM123/Fc+NIR-II possesses >90% bacteriostatic rates at infected wounds in mice, resulting in almost full recovery of infected wounds. Immunodetection and transcriptomics assays disclose that the therapeutic effect is mainly dependent on the inhibition of inflammatory reactions and the promotion of wound healing. What is more, thioketal bonds in NPM123/Fc are susceptible to ROS, making it degradable with highly favorable biosafety in vitro and in vivo. NPM123/Fc+NIR-II with a unique synergistic antibacterial strategy would be much less prone to select bacterial resistance and represent a promising antibiotics-alternative anti-infective measure.
Collapse
Affiliation(s)
- Fangzhou Chen
- Graduate SchoolGuangzhou Medical UniversityGuangzhou511436P. R. China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Lin Liu
- Department of StomatologyThe First Medical CenterChinese PLA General HospitalBeijing100853P. R. China
| | - Dongsheng Tang
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Hanchen Zhang
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Nier Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| | - Hongbo Li
- Department of StomatologyThe First Medical CenterChinese PLA General HospitalBeijing100853P. R. China
| | - Haihua Xiao
- Institute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071P. R. China
| |
Collapse
|
24
|
Walter J. Establishing microbiome causality to tackle malnutrition. Nat Microbiol 2024; 9:884-885. [PMID: 38503976 DOI: 10.1038/s41564-024-01653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Affiliation(s)
- Jens Walter
- APC Microbiome Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
26
|
Chamlagain M, Hu J, Sionov RV, Steinberg D. Anti-bacterial and anti-biofilm activities of arachidonic acid against the cariogenic bacterium Streptococcus mutans. Front Microbiol 2024; 15:1333274. [PMID: 38596377 PMCID: PMC11002910 DOI: 10.3389/fmicb.2024.1333274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Streptococcus mutans is a Gram-positive, facultative anaerobic bacterium, which causes dental caries after forming biofilms on the tooth surface while producing organic acids that demineralize enamel and dentin. We observed that the polyunsaturated arachidonic acid (AA) (ω-6; 20:4) had an anti-bacterial activity against S. mutans, which prompted us to investigate its mechanism of action. The minimum inhibitory concentration (MIC) of AA on S. mutans was 25 μg/ml in the presence of 5% CO2, while it was reduced to 6.25-12.5 μg/ml in the absence of CO2 supplementation. The anti-bacterial action was due to a combination of bactericidal and bacteriostatic effects. The minimum biofilm inhibitory concentration (MBIC) was the same as the MIC, suggesting that part of the anti-biofilm effect was due to the anti-bacterial activity. Gene expression studies showed decreased expression of biofilm-related genes, suggesting that AA also has a specific anti-biofilm effect. Flow cytometric analyses using potentiometric DiOC2(3) dye, fluorescent efflux pump substrates, and live/dead SYTO 9/propidium iodide staining showed that AA leads to immediate membrane hyperpolarization, altered membrane transport and efflux pump activities, and increased membrane permeability with subsequent membrane perforation. High-resolution scanning electron microscopy (HR-SEM) showed remnants of burst bacteria. Furthermore, flow cytometric analysis using the redox probe 2',7'-dichlorofluorescein diacetate (DCFHDA) showed that AA acts as an antioxidant in a dose-dependent manner. α-Tocopherol, an antioxidant that terminates the radical chain, counteracted the anti-bacterial activity of AA, suggesting that oxidation of AA in bacteria leads to the production of cytotoxic radicals that contribute to bacterial growth arrest and death. Importantly, AA was not toxic to normal Vero epithelial cells even at 100 μg/ml, and it did not cause hemolysis of erythrocytes. In conclusion, our study shows that AA is a potentially safe drug that can be used to reduce the bacterial burden of cariogenic S. mutans.
Collapse
Affiliation(s)
- Manoj Chamlagain
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jieni Hu
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ronit Vogt Sionov
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Sebastià C, Folch JM, Ballester M, Estellé J, Passols M, Muñoz M, García-Casco JM, Fernández AI, Castelló A, Sánchez A, Crespo-Piazuelo D. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2024; 9:e0104923. [PMID: 38095419 PMCID: PMC10804976 DOI: 10.1128/msystems.01049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.
Collapse
Affiliation(s)
- Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Josep M. Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Maria Ballester
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Ana I. Fernández
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Daniel Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| |
Collapse
|
28
|
Clausen U, Vital ST, Lambertus P, Gehler M, Scheve S, Wöhlbrand L, Rabus R. Catabolic Network of the Fermentative Gut Bacterium Phocaeicola vulgatus (Phylum Bacteroidota) from a Physiologic-Proteomic Perspective. Microb Physiol 2024; 34:88-107. [PMID: 38262373 DOI: 10.1159/000536327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Phocaeicola vulgatus (formerly Bacteroides vulgatus) is a prevalent member of human and animal guts, where it influences by its dietary-fiber-fueled, fermentative metabolism the microbial community as well as the host health. Moreover, the fermentative metabolism of P. vulgatus bears potential for a sustainable production of bulk chemicals. The aim of the present study was to refine the current understanding of the P. vulgatus physiology. METHODS P. vulgatus was adapted to anaerobic growth with 14 different carbohydrates, ranging from hexoses, pentoses, hemicellulose, via an uronic acid to deoxy sugars. These substrate-adapted cells formed the basis to define the growth stoichiometries by quantifying growth/fermentation parameters and to reconstruct the catabolic network by applying differential proteomics. RESULTS The determination of growth performance revealed, e.g., doubling times (h) from 1.39 (arabinose) to 14.26 (glucuronate), biomass yields (gCDW/mmolS) from 0.01 (fucose) to 0.27 (α-cyclodextrin), and ATP yields (mMATP/mMC) from 0.21 (rhamnose) to 0.60 (glucuronate/xylan). Furthermore, fermentation product spectra were determined, ranging from broad and balanced (with xylan: acetate, succinate, formate, and propanoate) to rather one sided (with rhamnose or fucose: mainly propane-1,2-diol). The fermentation network serving all tested compounds is composed of 56 proteins (all identified), with several peripheral reaction sequences formed with high substrate specificity (e.g., conversion of arabinose to d-xylulose-3-phosphate) implicating a fine-tuned regulation. By contrast, central modules (e.g., glycolysis or the reaction sequence from PEP to succinate) were constitutively formed. Extensive formation of propane-1,2-diol from rhamnose and fucose involves rhamnulokinase (RhaB), rhamnulose-1-phosphate kinase (RhaD), and lactaldehyde reductase (FucO). Furthermore, Sus-like systems are apparently the most relevant uptake systems and a complex array of transmembrane electron-transfer systems (e.g., Na+-pumping Rnf and Nqr complexes, fumarate reductase) as well as F- and V-type ATP-synthases were detected. CONCLUSIONS The present study provides insights into the potential contribution of P. vulgatus to the gut metabolome and into the strain's biotechnological potential for sustainable production of short-chain fatty acids and alcohols.
Collapse
Affiliation(s)
- Urte Clausen
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sören-Tobias Vital
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Pia Lambertus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Martina Gehler
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
29
|
Gong J, Zhang Q, Hu R, Yang X, Fang C, Yao L, Lv J, Wang L, Shi M, Zhang W, Ma S, Xiang H, Zhang H, Hou DX, Yin Y, He J, Peng L, Wu S. Effects of Prevotella copri on insulin, gut microbiota and bile acids. Gut Microbes 2024; 16:2340487. [PMID: 38626129 PMCID: PMC11028016 DOI: 10.1080/19490976.2024.2340487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
Obesity is becoming a major global health problem in children that can cause diseases such as type 2 diabetes and metabolic disorders, which are closely related to the gut microbiota. However, the underlying mechanism remains unclear. In this study, a significant positive correlation was observed between Prevotella copri (P. copri) and obesity in children (p = 0.003). Next, the effect of P. copri on obesity was explored by using fecal microbiota transplantation (FMT) experiment. Transplantation of P. copri. increased serum levels of fasting blood glucose (p < 0.01), insulin (p < 0.01) and interleukin-1β (IL-1β) (p < 0.05) in high-fat diet (HFD)-induced obese mice, but not in normal mice. Characterization of the gut microbiota indicated that P. copri reduced the relative abundance of the Akkermansia genus in mice (p < 0.01). Further analysis on bile acids (BAs) revealed that P. copri increased the primary BAs and ursodeoxycholic acid (UDCA) in HFD-induced mice (p < 0.05). This study demonstrated for the first time that P. copri has a significant positive correlation with obesity in children, and can increase fasting blood glucose and insulin levels in HFD-fed obese mice, which are related to the abundance of Akkermansia genus and bile acids.
Collapse
Affiliation(s)
- Jiatai Gong
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qianjin Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ruizhi Hu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chengkun Fang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Liping Yao
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Lv
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Wang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Mingkun Shi
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Wentao Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Siqi Ma
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongkun Xiang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongfu Zhang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - De-Xing Hou
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Yulong Yin
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lijun Peng
- Children’s Healthcare Institute, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
30
|
Steinbach E, Masi D, Ribeiro A, Serradas P, Le Roy T, Clément K. Upper small intestine microbiome in obesity and related metabolic disorders: A new field of investigation. Metabolism 2024; 150:155712. [PMID: 37884078 DOI: 10.1016/j.metabol.2023.155712] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The study of the gut microbiome holds great promise for understanding and treating metabolic diseases, as its functions and derived metabolites can influence the metabolic status of the host. While research on the fecal microbiome has provided valuable insights, it tells us only part of the story. This limitation arises from the substantial variations in microorganism distribution throughout the gastrointestinal tract due to changes in physicochemical conditions. Thus, relying solely on the fecal microbiome may not be sufficient to draw comprehensive conclusions about metabolic diseases. The proximal part of the small intestine, particularly the jejunum, indeed, serves as the crucial site for digestion and absorption of nutrients, suggesting a potential role of its microbiome in metabolic regulation. Unfortunately, it remains relatively underexplored due to limited accessibility. This review presents current evidence regarding the relationships between the microbiome in the upper small intestine and various phenotypes, focusing on obesity and type 2 diabetes, in both humans and rodents. Research on humans is still limited with variability in the population and methods used. Accordingly, to better understand the role of the whole gut microbiome in metabolic diseases, studies exploring the human microbiome in different niches are needed.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Sapienza University of Rome, Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, 00161 Rome, Italy
| | - Agnès Ribeiro
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Patricia Serradas
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches (NutriOmics) Research Unit, 75013, Paris, France; Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, 75013 Paris, France.
| |
Collapse
|
31
|
Hau JL, Schleicher L, Herdan S, Simon J, Seifert J, Fritz G, Steuber J. Functionality of the Na +-translocating NADH:quinone oxidoreductase and quinol:fumarate reductase from Prevotella bryantii inferred from homology modeling. Arch Microbiol 2023; 206:32. [PMID: 38127130 PMCID: PMC10739449 DOI: 10.1007/s00203-023-03769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Members of the family Prevotellaceae are Gram-negative, obligate anaerobic bacteria found in animal and human microbiota. In Prevotella bryantii, the Na+-translocating NADH:quinone oxidoreductase (NQR) and quinol:fumarate reductase (QFR) interact using menaquinone as electron carrier, catalyzing NADH:fumarate oxidoreduction. P. bryantii NQR establishes a sodium-motive force, whereas P. bryantii QFR does not contribute to membrane energization. To elucidate the possible mode of function, we present 3D structural models of NQR and QFR from P. bryantii to predict cofactor-binding sites, electron transfer routes and interaction with substrates. Molecular docking reveals the proposed mode of menaquinone binding to the quinone site of subunit NqrB of P. bryantii NQR. A comparison of the 3D model of P. bryantii QFR with experimentally determined structures suggests alternative pathways for transmembrane proton transport in this type of QFR. Our findings are relevant for NADH-dependent succinate formation in anaerobic bacteria which operate both NQR and QFR.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Lena Schleicher
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Sebastian Herdan
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
| | - Jörg Simon
- Microbial Energy Conservation and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jana Seifert
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Straße 8, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen-Weg 3, 70599, Stuttgart, Germany.
| |
Collapse
|
32
|
Liu M, Zhang J, Zhou Y, Xiong S, Zhou M, Wu L, Liu Q, Chen Z, Jiang H, Yang J, Liu Y, Wang Y, Chen C, Huang L. Gut microbiota affects the estrus return of sows by regulating the metabolism of sex steroid hormones. J Anim Sci Biotechnol 2023; 14:155. [PMID: 38115159 PMCID: PMC10731813 DOI: 10.1186/s40104-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Sex hormones play important roles in the estrus return of post-weaning sows. Previous studies have demonstrated a complex and bi-directional regulation between sex hormones and gut microbiota. However, the extent to which the gut microbiota affects estrus return of post-weaning sows is largely unknown. RESULTS In this study, we first screened 207 fecal samples from well-phenotyped sows by 16S rRNA gene sequencing and identified significant associations between microbes and estrus return of post-weaning sows. Using metagenomic sequencing data from 85 fecal samples, we identified 37 bacterial species that were significantly associated with estrus return. Normally returning sows were characterized by increased abundances of L. reuteri and P. copri and decreased abundances of B. fragilis, S. suis, and B. pseudolongum. The changes in gut microbial composition significantly altered the functional capacity of steroid hormone biosynthesis in the gut microbiome. The results were confirmed in a validation cohort. Significant changes in sex steroid hormones and related compounds were found between normal and non-return sows via metabolome analysis. An integrated analysis of differential bacterial species, metagenome, and fecal metabolome provided evidence that normal return-associated bacterial species L. reuteri and Prevotella spp. participated in the degradation of pregnenolone, progesterone, and testosterone, thereby promoting estrogen biosynthesis. Furthermore, the microbial metabolites related to sow energy and nutrient supply or metabolic disorders also showed relationships with sow estrus return. CONCLUSIONS An integrated analysis of differentially abundant bacterial species, metagenome, and fecal metabolome revealed the involvement of L. reuteri and Prevotella spp. in sow estrus return. These findings provide deep insight into the role of gut microbiota in the estrus return of post-weaning sows and the complex cross-talk between gut microbiota and sex hormones, suggesting that the manipulation of the gut microbiota could be an effective strategy to improve sow estrus return after weaning.
Collapse
Affiliation(s)
- Min Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jia Zhang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunyan Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuqi Xiong
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mengqing Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Wu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhe Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Jiang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxin Liu
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaxiang Wang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
33
|
Li T, Wang X, Li C, Fu Q, Shi X, Wang B. Investigation of Acid Tolerance Mechanism of Acetobacter pasteurianus under Different Concentrations of Substrate Acetic Acid Based on 4D Label-Free Proteomic Analysis. Foods 2023; 12:4471. [PMID: 38137274 PMCID: PMC10742644 DOI: 10.3390/foods12244471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Acetobacter pasteurianus is always used to brew vinegar because of its ability of producing and tolerating a high concentration of acetic acid. During vinegar fermentation, initial acetic acid contributes to acetic acid accumulation, which varies with initial concentrations. In this study, to investigate the mechanisms of tolerating and producing acetic acid of Acetobacter pasteurianus under different concentrations of substrate acetic acid, four-dimensional label-free proteomic technology has been used to analyze the protein profiles of Acetobacter pasteurianus at different growth stages (the lag and exponential phases) and different substrate acetic acid concentrations (0%, 3%, and 6%). A total of 2093 proteins were quantified in this study. The differentially expressed proteins were majorly involved in gene ontology terms of metabolic processes, cellular metabolic processes, and substance binding. Under acetic acid stress, strains might attenuate the toxicity of acetic acid by intensifying fatty acid metabolism, weakening the tricarboxylic acid cycle, glycerophospholipid and energy metabolism during the lag phase, while strains might promote the assimilation of acetic acid and inter-conversion of substances during the exponential phase by enhancing the tricarboxylic acid cycle, glycolysis, pyruvate, and energy metabolism to produce and tolerate acid. Besides, cell cycle regulation and protein translation might be potential acid tolerance pathways under high acid stress. The result contributes to the exploration of new potential acid tolerance mechanisms in Acetobacter pasteurianus from four-dimensional label-free relative quantitative proteomics analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China
| |
Collapse
|
34
|
Sha Y, Liu X, Pu X, He Y, Wang J, Zhao S, Shao P, Wang F, Xie Z, Chen X, Yang W. Characterizing the dynamics of the rumen microbiota, its metabolites, and blood metabolites across reproductive stages in Small-tailed Han sheep. Microbiol Spectr 2023; 11:e0286723. [PMID: 37948319 PMCID: PMC10715166 DOI: 10.1128/spectrum.02867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Our study illustrates the succession of the rumen microbiota and its metabolites in Small-tailed Han sheep at different reproductive stages. Among them, Firmicutes and Prevotella, which are related to energy metabolism, increased in abundance during pregnancy, while Fibrobacter, a fiber-degrading bacterium, increased in abundance during lactation. At the same time, the microbial metabolic profile and serum metabolic profile characteristics of different reproductive stages were revealed, and some functional pathways and metabolites related to energy and immunity were found. This study provides a reference for the health management of ruminants during non-pregnancy, pregnancy, and lactation.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoning Pu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaowei Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
35
|
Keitel L, Braun K, Finger M, Kosfeld U, Yordanov S, Büchs J. Carbon dioxide and trace oxygen concentrations impact growth and product formation of the gut bacterium Phocaeicola vulgatus. BMC Microbiol 2023; 23:391. [PMID: 38062358 PMCID: PMC10701953 DOI: 10.1186/s12866-023-03127-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The promising yet barely investigated anaerobic species Phocaeicola vulgatus (formerly Bacteroides vulgatus) plays a vital role for human gut health and effectively produces organic acids. Among them is succinate, a building block for high-value-added chemicals. Cultivating anaerobic bacteria is challenging, and a detailed understanding of P. vulgatus growth and metabolism is required to improve succinate production. One significant aspect is the influence of different gas concentrations. CO2 is required for the growth of P. vulgatus. However, it is a greenhouse gas that should not be wasted. Another highly interesting aspect is the sensitivity of P. vulgatus towards O2. In this work, the effects of varying concentrations of both gases were studied in the in-house developed Respiratory Activity MOnitoring System (RAMOS), which provides online monitoring of CO2, O2, and pressure under gassed conditions. The RAMOS was combined with a gas mixing system to test CO2 and O2 concentrations in a range of 0.25-15.0 vol% and 0.0-2.5 vol%, respectively. RESULTS Changing the CO2 concentration in the gas supply revealed a CO2 optimum of 3.0 vol% for total organic acid production and 15.0 vol% for succinate production. It was demonstrated that the organic acid composition changed depending on the CO2 concentration. Furthermore, unrestricted growth of P. vulgatus up to an O2 concentration of 0.7 vol% in the gas supply was proven. The viability decreased rapidly at concentrations larger than or equal to 1.3 vol% O2. CONCLUSIONS The study showed that P. vulgatus requires little CO2, has a distinct O2 tolerance and is therefore well suited for industrial applications.
Collapse
Affiliation(s)
- Laura Keitel
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Kristina Braun
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Maurice Finger
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Udo Kosfeld
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Stanislav Yordanov
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
36
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Zhang B, Lingga C, De Groot H, Hackmann TJ. The oxidoreductase activity of Rnf balances redox cofactors during fermentation of glucose to propionate in Prevotella. Sci Rep 2023; 13:16429. [PMID: 37777597 PMCID: PMC10542786 DOI: 10.1038/s41598-023-43282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
Propionate is a microbial metabolite formed in the gastrointestinal tract, and it affects host physiology as a source of energy and signaling molecule. Despite the importance of propionate, the biochemical pathways responsible for its formation are not clear in all microbes. For the succinate pathway used during fermentation, a key enzyme appears to be missing-one that oxidizes ferredoxin and reduces NAD. Here we show that Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)] is this key enzyme in two abundant bacteria of the rumen (Prevotella brevis and Prevotella ruminicola). We found these bacteria form propionate, succinate, and acetate with the classic succinate pathway. Without ferredoxin:NAD+ oxidoreductase, redox cofactors would be unbalanced; it would produce almost equal excess amounts of reduced ferredoxin and oxidized NAD. By combining growth experiments, genomics, proteomics, and enzyme assays, we point to the possibility that these bacteria solve this problem by oxidizing ferredoxin and reducing NAD with Rnf [ferredoxin-NAD+ oxidoreductase (Na+-transporting)]. Genomic and phenotypic data suggest many bacteria may use Rnf similarly. This work shows the ferredoxin:NAD+ oxidoreductase activity of Rnf is important to propionate formation in Prevotella species and other bacteria from the environment, and it provides fundamental knowledge for manipulating fermentative propionate production.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Hannah De Groot
- Department of Animal Science, University of California, Davis, CA, USA
| | | |
Collapse
|
38
|
Rowe JC, Winston JA, Parker VJ, McCool KE, Suchodolski JS, Lopes R, Steiner JM, Gilor C, Rudinsky AJ. Gut microbiota promoting propionic acid production accompanies diet-induced intentional weight loss in cats. RESEARCH SQUARE 2023:rs.3.rs-3273531. [PMID: 37693421 PMCID: PMC10491335 DOI: 10.21203/rs.3.rs-3273531/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Rodent models and human clinical studies have shown gut microbiota-derived short-chain fatty acids (SCFAs) play roles in obesity and insulin resistance. These roles have been minimally explored in cats, where in the USA an estimated 60% of cats are overweight or obese. Overweight/obese research cats (n = 7) were transitioned from a maintenance diet to a reduced calorie diet fed ad libitum for seven days, then calories were restricted to achieve 1-2% weight loss per week for an additional 77 days. Cats then received their original maintenance diet again for 14 days. Significant intentional weight loss was noted after calorie restriction (adjusted p < 0.0001). 16S rRNA gene amplicon sequencing and targeted SCFA metabolomics were performed on fecal samples. Fecal microbial community structure significantly differed between the four study phases (PERMANOVA p = 0.011). Fecal propionic acid was significantly higher during diet-induced weight loss (adjusted p < 0.05). Spearman correlation revealed the relative abundances of Prevotella 9 copri (ρ = 0.6385, p = 0.0006) and Blautia caecimuris (ρ = 0.5269, p = 0.0068) were significantly correlated with propionic acid composition. Like humans, obese cats experienced an altered microbial community structure and function, favoring propionic acid production, during diet-induced weight loss.
Collapse
Affiliation(s)
- J C Rowe
- The Ohio State University College of Veterinary Medicine
| | - J A Winston
- The Ohio State University College of Veterinary Medicine
| | - V J Parker
- The Ohio State University College of Veterinary Medicine
| | - K E McCool
- North Carolina State University College of Veterinary Medicine
| | | | - R Lopes
- Texas A&M University College of Veterinary Medicine
| | - J M Steiner
- Texas A&M University College of Veterinary Medicine
| | - C Gilor
- University of Florida College of Veterinary Medicine
| | - A J Rudinsky
- The Ohio State University College of Veterinary Medicine
| |
Collapse
|
39
|
Bhattacharyya C, Barman D, Tripathi D, Dutta S, Bhattacharya C, Alam M, Choudhury P, Devi U, Mahanta J, Rasaily R, Basu A, Paine SK. Influence of Maternal Breast Milk and Vaginal Microbiome on Neonatal Gut Microbiome: a Longitudinal Study during the First Year. Microbiol Spectr 2023; 11:e0496722. [PMID: 37067419 PMCID: PMC10269640 DOI: 10.1128/spectrum.04967-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/25/2023] [Indexed: 04/18/2023] Open
Abstract
It is believed that establishment of the gut microbiome starts very early in life and is crucial for growth, immunity, and long-term metabolic health. In this longitudinal study, we recruited 25 mothers in their third trimester, of whom 15 had vaginal delivery while 10 had an unplanned cesarean section (C-section). The mother-neonate pairs were followed for 1 year, and we generated 16S metagenomic data to study the neonatal gut microbiome along with mother's breast milk and vaginal microbiomes through 12 months after delivery, at 1, 3, 6, and 12 months. We inferred (i) mode of delivery is an important factor influencing both composition and entropy of the neonatal gut microbiome, and the genus Streptococcus plays an important role in the temporal differentiation. (ii) Microbial diversity monotonically increases with age, irrespective of the mode of delivery, and it is significantly altered once exclusive breastfeeding is stopped. (iii) We found little evidence in favor of the microflora of mother's breast milk and a vaginal swab being directly reflected in the offspring's gut microbiome; however, some distinction could be made in the gut microbiome of neonates whose mothers were classified as community state type III (CSTIII) and CSTIV, based on their vaginal microbiomes. (iv) A lot of the mature gut microbiome is possibly acquired from the environment, as the genera Prevotella and Faecalibacterium, two of the most abundant flora in the neonatal gut microbiome, are introduced after initiation of solidified food. The distinction between the gut microbiome of babies born by vaginal delivery and babies born by C-section becomes blurred after introduction of solid food, although the diversity in the gut microbiota drastically increases in both cases. IMPORTANCE Gut microbiome architecture seems to have a potential impact on host metabolism, health, and nutrition. Early life gut microbiome development is considered a crucial phenomenon for neonatal health as well as adulthood metabolic complications. In this longitudinal study, we examined the association of neonatal gut microbiome entropy and its temporal variation. The study revealed that adult-like gut microbiome architecture starts taking shape after initiation of solidified food. Further, we also observed that the difference of microbial diversity was reduced between vaginally delivered and C-section babies compared to exclusive breastfeeding tenure. We found evidence in favor of the inheritance of the microflora of mother's posterior vaginal wall to the offspring's gut microbiome.
Collapse
Affiliation(s)
| | - Diganta Barman
- Department of Paediatrics, Gauhati Medical College, Assam, India
| | | | - Soumita Dutta
- Regional Medical Research Centre, Indian Council of Medical Research, Assam, India
| | - Chandra Bhattacharya
- Regional Medical Research Centre, Indian Council of Medical Research, Assam, India
| | - Mahabub Alam
- National Institute of Biomedical Genomics, West Bengal, India
| | | | - Utpala Devi
- Regional Medical Research Centre, Indian Council of Medical Research, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, Indian Council of Medical Research, Assam, India
| | - Reeta Rasaily
- Maternal and Child Health, Indian Council of Medical Research, New Delhi, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, West Bengal, India
| | - Suman K. Paine
- National Institute of Biomedical Genomics, West Bengal, India
- Regional Medical Research Centre, Indian Council of Medical Research, Assam, India
| |
Collapse
|
40
|
Lv M, Zhang J, Deng J, Hu J, Zhong Q, Su M, Lin D, Xu T, Bai X, Li J, Guo X. Analysis of the relationship between the gut microbiota enterotypes and colorectal adenoma. Front Microbiol 2023; 14:1097892. [PMID: 37082183 PMCID: PMC10110881 DOI: 10.3389/fmicb.2023.1097892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionThe essence of enterotypes is to stratify the entire human gut microbiota, and dysregulation of gut microbiota is closely related to the development of colorectal adenoma. Enterotypes may therefore be a useful target for the prevention of colorectal adenoma. However, the relationship between gut microbiota and colorectal adenoma has not been fully elucidated. In this study, we aimed to analyze the differences in gut microbiome composition between adenoma and control populations.MethodsWe recruited 31 patients with colorectal adenoma and 71 non-adenoma controls. Patient demographics, risk factors, fecal samples from each subject were collected and metagenomic sequencing was performed. LEfSe analysis was used to reveal differences in intestinal microbiome composition. Multiple logistic regression analysis was used to determine the association between enterotypes and colorectal adenoma.ResultsThe results showed that Prevotella enterotype (enterotype 4) is only present in adenoma group. Logistic regression analysis showed that Prevotella enterotype was an independent risk factor for colorectal adenoma.DiscussionThe Prevotella enterotype may increase the occurrence of colorectal adenoma through inflammatory association and interference with glucose and lipid metabolism in human body. In conclusion, the differences we observed between different enterotypes add a new potential factor to the development of colorectal adenoma.
Collapse
Affiliation(s)
- Miwei Lv
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jiawei Zhang
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Deng
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiancong Hu
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Zhong
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingli Su
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dezheng Lin
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Xu
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Xuhao Bai
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Juan Li
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Juan Li,
| | - Xuefeng Guo
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xuefeng Guo,
| |
Collapse
|
41
|
Paunkov A, Hummel K, Strasser D, Sóki J, Leitsch D. Proteomic analysis of metronidazole resistance in the human facultative pathogen Bacteroides fragilis. Front Microbiol 2023; 14:1158086. [PMID: 37065137 PMCID: PMC10102347 DOI: 10.3389/fmicb.2023.1158086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
The anaerobic gut bacteria and opportunistic pathogen Bacteroides fragilis can cause life-threatening infections when leaving its niche and reaching body sites outside of the gut. The antimicrobial metronidazole is a mainstay in the treatment of anaerobic infections and also highly effective against Bacteroides spp. Although resistance rates have remained low in general, metronidazole resistance does occur in B. fragilis and can favor fatal disease outcomes. Most metronidazole-resistant Bacteroides isolates harbor nim genes, commonly believed to encode for nitroreductases which deactivate metronidazole. Recent research, however, suggests that the mode of resistance mediated by Nim proteins might be more complex than anticipated because they affect the cellular metabolism, e.g., by increasing the activity of pyruvate:ferredoxin oxidoreductase (PFOR). Moreover, although nim genes confer only low-level metronidazole resistance to Bacteroides, high-level resistance can be much easier induced in the laboratory in the presence of a nim gene than without. Due to these observations, we hypothesized that nim genes might induce changes in the B. fragilis proteome and performed comparative mass-spectrometric analyses with B. fragilis 638R, either with or without the nimA gene. Further, we compared protein expression profiles in both strains after induction of high-level metronidazole resistance. Interestingly, only few proteins were repeatedly found to be differentially expressed in strain 638R with the nimA gene, one of them being the flavodiiron protein FprA, an enzyme involved in oxygen scavenging. After induction of metronidazole resistance, a far higher number of proteins were found to be differentially expressed in 638R without nimA than in 638R with nimA. In the former, factors for the import of hemin were strongly downregulated, indicating impaired iron import, whereas in the latter, the observed changes were not only less numerous but also less specific. Both resistant strains, however, displayed a reduced capability of scavenging oxygen. Susceptibility to metronidazole could be widely restored in resistant 638R without nimA by supplementing growth media with ferrous iron sulfate, but not so in resistant 638R with the nimA gene. Finally, based on the results of this study, we present a novel hypothetic model of metronidazole resistance and NimA function.
Collapse
Affiliation(s)
- Ana Paunkov
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hummel
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Doris Strasser
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - József Sóki
- Faculty of Medicine, Institute of Medical Microbiology, University of Szeged, Szeged, Hungary
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: David Leitsch,
| |
Collapse
|
42
|
Fuke N, Yamashita T, Shimizu S, Matsumoto M, Sawada K, Jung S, Tokuda I, Misawa M, Suzuki S, Ushida Y, Mikami T, Itoh K, Suganuma H. Association of Plasma Lipopolysaccharide-Binding Protein Concentration with Dietary Factors, Gut Microbiota, and Health Status in the Japanese General Adult Population: A Cross-Sectional Study. Metabolites 2023; 13:250. [PMID: 36837869 PMCID: PMC9965710 DOI: 10.3390/metabo13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The influx of intestinal bacteria-derived lipopolysaccharide (LPS) into the blood has attracted attention as a cause of diseases. The aim of this study is investigating the associations between the influx of LPS, dietary factors, gut microbiota, and health status in the general adult population. Food/nutrient intake, gut microbiota, health status and plasma LPS-binding protein (LBP; LPS exposure indicator) were measured in 896 residents (58.1% female, mean age 54.7 years) of the rural Iwaki district of Japan, and each correlation was analyzed. As the results, plasma LBP concentration correlated with physical (right/left arms' muscle mass [β = -0.02, -0.03]), renal (plasma renin activity [β = 0.27], urine albumin creatinine ratio [β = 0.50]), adrenal cortical (cortisol [β = 0.14]), and thyroid function (free thyroxine [β = 0.05]), iron metabolism (serum iron [β = -0.14]), and markers of lifestyle-related diseases (all Qs < 0.20). Plasma LBP concentration were mainly negatively correlated with vegetables/their nutrients intake (all βs ≤ -0.004, Qs < 0.20). Plasma LBP concentration was positively correlated with the proportion of Prevotella (β = 0.32), Megamonas (β = 0.56), and Streptococcus (β = 0.65); and negatively correlated with Roseburia (β = -0.57) (all Qs < 0.20). Dietary factors correlated with plasma LBP concentration correlated with positively (all βs ≥ 0.07) or negatively (all βs ≤ -0.07) the proportion of these bacteria (all Qs < 0.20). Our results suggested that plasma LBP concentration in the Japanese general adult population was associated with various health issues, and that dietary habit was associated with plasma LBP concentration in relation to the intestinal bacteria.
Collapse
Affiliation(s)
- Nobuo Fuke
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Takahiro Yamashita
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Sunao Shimizu
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mai Matsumoto
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Kaori Sawada
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Songee Jung
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Digital Nutrition and Health Sciences, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Itoyo Tokuda
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Mina Misawa
- Center of Innovation Research Initiatives Organization, Hirosaki University, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shigenori Suzuki
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Hiroyuki Suganuma
- Innovation Division, KAGOME Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
| |
Collapse
|
43
|
Wu C, Yi H, Hu Y, Luo D, Tang Z, Wen X, Zhang Y, Tang M, Zhang L, Wu S, Chen M. Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis. Front Cell Infect Microbiol 2023; 13:1127916. [PMID: 37187470 PMCID: PMC10178494 DOI: 10.3389/fcimb.2023.1127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To determine the effects of second-line anti-tuberculosis (TB) drugs on the composition and functions of intestinal microbiota in patients with rifampicin-resistant TB (RR-TB). Methods In this cross-sectional study, stool samples and relevant clinical information were collected from patients with RR-TB admitted to the Drug-resistant Specialty Department at Hunan Chest Hospital (Hunan Institute For Tuberculosis Control). The composition and functions of intestinal microbiota were analyzed using metagenomic sequencing and bioinformatics methods. Results Altered structural composition of the intestinal microbiota was found when patients from the control, intensive phase treatment, and continuation phase treatment groups were compared (P<0.05). Second-line anti-TB treatment resulted in a decrease in the relative abundance of species, such as Prevotella copri, compared with control treatment. However, the relative abundance of Escherichia coli, Salmonella enterica, and 11 other conditionally pathogenic species increased significantly in the intensive phase treatment group. Based on differential functional analysis, some metabolism-related functions, such as the biosynthesises of phenylalanine, tyrosine, and tryptophan, were significantly inhibited during second-line anti-TB drug treatment, while other functions, such as phenylalanine metabolism, were significantly promoted during the intensive phase of treatment. Conclusion Second-line anti-TB drug treatment caused changes in the structural composition of the intestinal microbiota in patients with RR-TB. In particular, this treatment induced a significant increase in the relative abundance of 11 conditionally pathogenic species, including Escherichia coli. Functional analysis revealed significantly decreased biosynthesises of phenylalanine, tyrosine, and tryptophan and significantly increased phenylalanine metabolism.
Collapse
Affiliation(s)
- Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hengzhong Yi
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
- *Correspondence: Hengzhong Yi,
| | - Yanmei Hu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Danlin Luo
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Zhigang Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Xinmin Wen
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Yong Zhang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mi Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Lizhi Zhang
- Orthopedics and integration Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Shu Wu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Abed JY, Godon T, Mehdaoui F, Plante PL, Boissinot M, Bergeron MG, Bélanger RE, Muckle G, Poliakova N, Ayotte P, Corbeil J, Rousseau E. Gut metagenome profile of the Nunavik Inuit youth is distinct from industrial and non-industrial counterparts. Commun Biol 2022; 5:1415. [PMID: 36566300 PMCID: PMC9790006 DOI: 10.1038/s42003-022-04372-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Comparative metagenomics studies have highlighted differences in microbiome community structure among human populations over diverse lifestyles and environments. With their unique environmental and historical backgrounds, Nunavik Inuit have a distinctive gut microbiome with undocumented health-related implications. Using shotgun metagenomics, we explored the taxonomic and functional structure of the gut microbiome from 275 Nunavik Inuit ranging from 16 to 30-year-old. Whole-metagenome analyses revealed that Nunavik Inuit youths have a more diverse microbiome than their non-industrialized and industrialized counterparts. A comparison of k-mer content illustrated the uniqueness of the Nunavik gut microbiome. Short-chain fatty acids producing species, and carbohydrates degradation pathways dominated Inuit metagenomes. We identified a taxonomic and functional signature unique to the Nunavik gut microbiome contrasting with other populations using a random forest classifier. Here, we show that the Nunavik Inuit gut microbiome exhibits high diversity and a distinct community structure.
Collapse
Affiliation(s)
- Jehane Y. Abed
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Infectiologie de l’Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Centre de Recherche en Données Massives de l’Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de microbiologie-infectiologie et d’immunologie, Faculté de médecine, Université Laval, Québec City, QC Canada
| | - Thibaud Godon
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Infectiologie de l’Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Centre de Recherche en Données Massives de l’Université Laval, Québec City, QC Canada
| | - Fadwa Mehdaoui
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Infectiologie de l’Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département d’informatique et génie logiciel, Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, QC Canada
| | - Pier-Luc Plante
- grid.23856.3a0000 0004 1936 8390Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, QC Canada
| | - Maurice Boissinot
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Infectiologie de l’Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC Canada
| | - Michel G. Bergeron
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Infectiologie de l’Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de microbiologie-infectiologie et d’immunologie, Faculté de médecine, Université Laval, Québec City, QC Canada
| | - Richard E. Bélanger
- grid.23856.3a0000 0004 1936 8390Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de pédiatrie, Faculté de médecine, Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Centre mère-enfant Soleil, CHU de Québec-Université Laval, Département de pédiatrie, Québec City, QC Canada
| | - Gina Muckle
- grid.23856.3a0000 0004 1936 8390Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390École de psychologie, Faculté des sciences sociales, Université Laval, Québec City, QC Canada
| | - Natalia Poliakova
- grid.23856.3a0000 0004 1936 8390Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec City, QC Canada
| | - Pierre Ayotte
- grid.23856.3a0000 0004 1936 8390Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Hôpital du Saint-Sacrement, Québec City, QC Canada ,grid.434819.30000 0000 8929 2775Centre de Toxicologie du Québec, Institut national de santé publique du Québec (INSPQ), Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de médecine sociale et préventive, Faculté de médecine, Université Laval, Québec City, QC Canada
| | - Jacques Corbeil
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Infectiologie de l’Université Laval, Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Centre de Recherche en Données Massives de l’Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de Médecine Moléculaire, Faculté de médecine, Université Laval, Québec City, QC Canada
| | - Elsa Rousseau
- grid.23856.3a0000 0004 1936 8390Centre de Recherche en Données Massives de l’Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département d’informatique et génie logiciel, Université Laval, Québec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Centre Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, QC Canada
| |
Collapse
|
45
|
Chang Z, Bo S, Xiao Q, Wang Y, Wu X, He Y, Iqbal M, Ye Y, Shang P. Remodeling of the microbiota improves the environmental adaptability and disease resistance in Tibetan pigs. Front Microbiol 2022; 13:1055146. [DOI: 10.3389/fmicb.2022.1055146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionThe establishment of intestinal microbiota and the maintenance of its equilibrium structure plays an important role in Tibetan pigs during different growth stages. Understanding the structure and function of the intestinal microbiota at different growth stages of Tibetan pigs can provide a theoretical basis for guiding nutritional regulation and feeding management in different stages.MethodsFecal samples were collected from the Tibetan piglets at different growth stages, and the 16S rRNA was sequenced to analyze the changes of intestinal microbiota.ResultsAlpha and Beta diversity indexes showed that the diversity of the intestinal microbiota did not change during the three growth stages, and the main components of intestinal microbiota were not significantly different. At the phylum level, Firmicutes and Bacteroidetes were dominant and abundant at different growth stages and were not restricted by age. At the genus level, Streptococcus, Lactobacillus, and Bifidobacterium were the most dominant in the TP10d and TP40d groups, Streptococcus was the most dominant in the TP100d group, followed by Treponema_2 and Lactobacillus. Fusobacteria, Gluconobacter, and Synergistetes were found to be specific genera of 10-day-old Tibetan piglets by LEfSe combined with LDA score. The change of diet made Tenericutes and Epsilonbacteraeota, which are closely related to digestive fiber, become specific bacteria at the age of 40 days. With the consumption of oxygen in the intestine, obligate anaerobes, such as Verrucomicrobia, Fibrobacter, and Planctomycetes, were the characteristic genera of 100 days. KEGG function prediction analysis showed that the intestinal microbiota function of Tibetan pigs changed dynamically with the growth and development of Tibetan piglets.DiscussionIn conclusion, the structure and composition of the intestinal microbiota of Tibetan pigs are significantly different at different growth and development stages, which plays an important role in their immune performance.
Collapse
|
46
|
Fan X, Zang T, Dai J, Wu N, Hope C, Bai J, Liu Y. The associations of maternal and children's gut microbiota with the development of atopic dermatitis for children aged 2 years. Front Immunol 2022; 13:1038876. [PMID: 36466879 PMCID: PMC9714546 DOI: 10.3389/fimmu.2022.1038876] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND It is critical to investigate the underlying pathophysiological mechanisms in the development of atopic dermatitis. The microbiota hypothesis suggested that the development of allergic diseases may be attributed to the gut microbiota of mother-offspring pairs. The purpose of this study was to investigate the relationship among maternal-offspring gut microbiota and the subsequent development of atopic dermatitis in infants and toddlers at 2 years old. METHODS A total of 36 maternal-offspring pairs were enrolled and followed up to 2 years postpartum in central China. Demographic information and stool samples were collected perinatally from pregnant mothers and again postpartum from their respective offspring at the following time intervals: time of birth, 6 months, 1 year and 2 years. Stool samples were sequenced with the 16S Illumina MiSeq platform. Logistic regression analysis was used to explore the differences in gut microbiota between the atopic dermatitis group and control group. RESULTS Our results showed that mothers of infants and toddlers with atopic dermatitis had higher abundance of Candidatus_Stoquefichus and Pseudomonas in pregnancy and that infants and toddlers with atopic dermatitis had higher abundance of Eubacterium_xylanophilum_group at birth, Ruminococcus_gauvreauii_group at 1 year and UCG-002 at 2 years, and lower abundance of Gemella and Veillonella at 2 years. Additionally, the results demonstrated a lower abundance of Prevotella in mothers of infants and toddlers with atopic dermatitis compared to mothers of the control group, although no statistical difference was found in the subsequent analysis. CONCLUSION The results of this study support that gut microbiota status among mother-offspring pairs appears to be associated with the pathophysiological development of pediatric atopic dermatitis.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Tianzi Zang
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Jiamiao Dai
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Ni Wu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Chloe Hope
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, GA, United States
| | - Yanqun Liu
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| |
Collapse
|
47
|
林 一, 李 俊, 李 幼. [Metagenome-wide association of gut microbiome features in children with moderate-severe house dust mite allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:533-539. [PMID: 35822382 PMCID: PMC10128392 DOI: 10.13201/j.issn.2096-7993.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Objective:To draw a distinct gut microbiota pattern of children with moderate-severe dust mite-induced allergic rhinitis(DAR) and healthy children. Methods:3-10 years old moderate-severe DAR children(68 cases) and healthy children(38 cases) were involved in this study. General information was collected through questionnaires, and fecal samples were collected for metagenomic sequencing. MetaPhlAn3 was used to generate the microbiota composition abundance in detail, and Alpha and Beta diversity changes were calculated. The difference in species abundance at different taxonomic levels were compared. Differences in functional pathways were compared by LEfSe analysis. Results:The diversity of gut microbiota in children with moderate-severe DAR didn't change significantly compared with healthy children. A total of 37 microbial communities or species with significant abundance difference were found, mainly included Lachnoclostridium, Prevotella, Blautia wexlerae, Prevotella copri, Eubacterium eligens, Eubacterium sp CAG 180, etc. However, the metabolism functions of gut microbiota in children with moderate-severe DAR changed compared with healthy children. Various of fatty acids anabolism enhanced in DAR children. Conclusion:Compared with healthy children, there was no significant difference in gut microbial diversity in moderate-severe DAR children. The abundance of a series of specific microbe species had a marked alteration in DAR, accompanied with changes in certain microbial functional pathways.
Collapse
Affiliation(s)
- 一杭 林
- 上海交通大学医学院附属上海儿童医学中心耳鼻咽喉科(上海,200127)Department of Otolaryngology, Shanghai Children's Medical Center of Shanghai Jiao Tong University School of Medcine, Shanghai, 200127, China
| | - 俊阳 李
- 上海交通大学医学院附属上海儿童医学中心耳鼻咽喉科(上海,200127)Department of Otolaryngology, Shanghai Children's Medical Center of Shanghai Jiao Tong University School of Medcine, Shanghai, 200127, China
| | - 幼瑾 李
- 上海交通大学医学院附属上海儿童医学中心耳鼻咽喉科(上海,200127)Department of Otolaryngology, Shanghai Children's Medical Center of Shanghai Jiao Tong University School of Medcine, Shanghai, 200127, China
| |
Collapse
|
48
|
Therapeutic Benefits and Dietary Restrictions of Fiber Intake: A State of the Art Review. Nutrients 2022; 14:nu14132641. [PMID: 35807822 PMCID: PMC9268622 DOI: 10.3390/nu14132641] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout history, malnutrition and deficiency diseases have been a problem for our planet’s population. A balanced diet significantly influences everyone’s health, and fiber intake appears to play a more important role than previously thought. The natural dietary fibers are a category of carbohydrates in the constitution of plants that are not completely digested in the human intestine. High-fiber foods, such as fruits, vegetables and whole grains, have consistently been highly beneficial to health and effectively reduced the risk of disease. Although the mode of action of dietary fiber in the consumer body is not fully understood, nutritionists and health professionals unanimously recognize the therapeutic benefits. This paper presents the fiber consumption in different countries, the metabolism of fiber and the range of health benefits associated with fiber intake. In addition, the influence of fiber intake on the intestinal microbiome, metabolic diseases (obesity and diabetes), neurological aspects, cardiovascular diseases, autoimmune diseases and cancer prevention are discussed. Finally, dietary restrictions and excess fiber are addressed, which can cause episodes of diarrhea and dehydration and increase the likelihood of bloating and flatulence or even bowel obstruction. However, extensive studies are needed regarding the composition and required amount of fiber in relation to the metabolism of saprotrophic microorganisms from the enteral level and the benefits of the various pathologies with which they can be correlated.
Collapse
|
49
|
Wang W, Sang S. Biotransformation of Barley Phenolamide by Mice and the Human Gut Microbiota and Quantitative Analysis of the Major Metabolites in Mice. Mol Nutr Food Res 2022; 66:e2200134. [PMID: 35532207 DOI: 10.1002/mnfr.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
SCOPE This study investigates the metabolism of p-coumaroylagmatine (pCAA), one of the phenolamides in barley, in mice, and by human gut microbiota, and measures the concentrations of its main metabolites in mice. METHODS AND RESULTS Nine major metabolites are identified from fecal and urinary samples collected from pCAA treated mice via analysis of their LC chromatograms and tandem mass spectra compared to the commercial and synthesized standards. These nine metabolites are generated through four different biotransformation pathways: double bond reduction, amide bond hydrolyzation, cleavage of guanidine, and oxidation of guanidine. Furthermore, interindividual differences in the formation of dihydro-pCAA (M3), high and low metabolizers, are observed in human in vitro intestinal microbial conversion. Moreover, significant amount of pCAA is detected in mice (29.33 ± 1.58 µmol g-1 in feces and 2020.44 ± 130.07 µM in urine), and the concentrations of agmatine (M1) are increased to 177.6 times and 3.2 times in mouse feces and urine, respectively. CONCLUSION This study demonstrates that pCAA is metabolized in mice and by human gut microbiota to generate potential bioactive metabolites through four major metabolic pathways. pCAA and its metabolites have the potential to be used as the exposure biomarkers to reflect the intake of whole grain barley.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| |
Collapse
|
50
|
Gong H, Zeng R, Li Q, Liu Y, Zuo C, Ren J, Zhao L, Lin M. The profile of gut microbiota and central carbon-related metabolites in primary angle-closure glaucoma patients. Int Ophthalmol 2022; 42:1927-1938. [PMID: 35147832 DOI: 10.1007/s10792-021-02190-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To explore the profile of gut microbiota and central carbon-related metabolites in patients with primary angle-closure glaucoma (PACG). METHODS The fecal microbiotas of 30 PACG patients and 30 healthy participants were detected via 16S rRNA sequencing. Targeted liquid chromatography-mass spectrometry was used to examine serum central carbon-related metabolites. The correlations among metabolites, microbiotas and clinical presentations were also explored. RESULTS Although the α and β diversity between the PACG and control groups did not show a significant difference, the distribution of Blautia and Fusicatenibacter decreased significantly in the PACG group. Functional annotations of microbiota enrichment showed that the most dominant pathway was related to host metabolism. In the PACG patients, seven central carbon metabolites, namely adenosine 5'-diphosphate, dGDP, phosphoenolpyruvic acid, d-ribulose 5-phosphate, d-xylulose 5-phosphate, glucuronic acid, and malonic acid, decreased significantly, whereas two metabolites, citric acid and isocitrate, increased obviously. The mean RNFL thickness was positively correlated with phosphoenolpyruvic acid, the VF-MD was positively correlated with glucuronic acid, and the abundance of Blautia was negatively associated with citric acid. CONCLUSION Few species of gut microbiota were altered in the PACG patients compared to the healthy subjects. A distinct difference in the phenotype of the central carbon-related metabolites of PACG and their correlation with clinical presentations and microbiota suggests potential mechanisms of RGC impairment and novel intervention targets.
Collapse
Affiliation(s)
- Haijun Gong
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiguan Li
- Health Examination Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yao Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Chengguo Zuo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiawei Ren
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|