1
|
Sim HS, Kwon YK, Song H, Hwang GS, Yeom J. Regulation of antibiotic persistence and pathogenesis in Acinetobacter baumannii by glutamate and histidine metabolic pathways. BMC Microbiol 2025; 25:74. [PMID: 39953398 PMCID: PMC11829494 DOI: 10.1186/s12866-024-03654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/15/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Metabolite production is essential for the proliferation and environmental adaptation of all living organisms. In pathogenic bacteria, metabolite exchange during host infection can regulate their physiology and virulence. However, there is still much unknown about which specific metabolic pathways in pathogenic bacteria respond to changes in the environment during infections. This study examines how pathogenic bacterium Acinetobacter baumannii uses particular metabolic pathways to regulate its ability to antibiotic persistence and pathogenesis. RESULTS To determine specific metabolic pathways in pathogenic antibiotic resistance bacteria, metabolite profiles of bacteria were constructed using ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry and multivariate statistical analysis. A. baumannii generates amino acid derivative metabolites, which are precursors for fatty acid production. Comparative genomic analysis identified specific genes regulating the production of these metabolites and fatty acids in A. baumannii. Inactivation of genes involved in glutamate metabolism, gdhA, aspB, murI1, and racD, impairs antibiotic persistence, while inactivation of the hisC gene, encoding histidinol - phosphate aminotransferase enzyme in histidine metabolic pathway, increases bacterial survival inside macrophages during infections. CONCLUSIONS This study reports that A. baumannii regulates antibiotic persistence and pathogenesis through glutamate and histidine metabolic pathways, respectively. These findings suggest that specific metabolic pathways regulate bacterial pathogenesis and antibiotic persistence during infections, providing potential therapeutic targets for pathogenic bacteria.
Collapse
Affiliation(s)
- Ho Seok Sim
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong-Kook Kwon
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
- Division of Food Safety Risk Assessment, National Institute of Food and Drug Safety Evaluation, Cheongju, 28159, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Hokyung Song
- Department of Environmental Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Jinki Yeom
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Yasugi M, Ohta A, Takano K, Yakubo K, Irie M, Miyake M. Serine affects engulfment during the sporulation process in Clostridium perfringens strain SM101. Anaerobe 2024; 90:102914. [PMID: 39368695 DOI: 10.1016/j.anaerobe.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVES Although Clostridium perfringens sporulation is a key event in the pathogenesis of food-borne illness, the molecules and underlying mechanisms responsible for regulating sporulation are incompletely understood. The present study sought to identify amino acids that affect sporulation in C. perfringens strain SM101. METHODS A C. perfringens strain was cultured in the chemically defined medium deficient in an amino acid. The bacterial growth was determined by spectrophotometrically measuring culture turbidity and by calculating colony-forming unit. Morphological characteristics were assessed by phase-contrast microscopy with fluorescent staining and by electron microscopy. RESULTS The amino acids Arg, Cys, Gly, His, Ile, Leu, Met, Phe, Thr, Trp, Tyr, and Val were important for sporulation, and furthermore, Ser reduced sporulation. The mechanism underlying Ser-induced prevention of sporulation was assessed morphologically. The numbers of bacterial cells in sporulation stage II were significantly higher in the presence than in the absence of Ser. In the presence of Ser, almost all cells were in stage II-III, characterized by polar septation-early engulfment, and did not proceed to late engulfment. CONCLUSIONS These results suggest that Ser accelerated the early stage of sporulation of C. perfringens strain SM101, but disturbed the engulfment process, resulting in reduction of sporulation. To the best of our knowledge, this is the first study reporting that an amino acid affects engulfment during the C. perfringens sporulation process.
Collapse
Affiliation(s)
- Mayo Yasugi
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Asian Health Science Research Institute, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Akinobu Ohta
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Keiko Takano
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Kanako Yakubo
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Michiko Irie
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Masami Miyake
- Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan; Research Center for Food Safety, Osaka Metropolitan University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
3
|
Peng F, Zou Y, Liu X, Yang Y, Chen J, Nie J, Huang D, Bai Z. The murein endopeptidase MepA regulated by MtrAB and MprAB participate in cell wall homeostasis. Res Microbiol 2024; 175:104188. [PMID: 38286394 DOI: 10.1016/j.resmic.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
The complete genome of Corynebacterium glutamicum contain a gene encoding murein endopeptidase MepA which maintain cell wall homeostasis by regulating peptidoglycan biosynthesis. In this study, we investigate the physiological function, localization and regulator of MepA. The result shows that mepA overexpression lead to peptidoglycan degradation and the defects in cell division. MepA-EGFP was shown to localizes exclusively at the cell cell septum. In addition, mepA overexpression increased cell permeability and reduced the resistance of cells to isoniazid, an antibiotic used to treat Mycobacterium tuberculosis infection. Furthermore, transcription analysis showed that mepA affected cell division and membrane transport pathways, and was coordinately regulated by the two-component systems MtrAB and MprAB(CgtS/R2).
Collapse
Affiliation(s)
- Feng Peng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Zou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Jianqi Nie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Danni Huang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Liu S, Laman P, Jensen S, van der Wel NN, Kramer G, Zaat SA, Brul S. Isolation and characterization of persisters of the pathogenic microorganism Staphylococcus aureus. iScience 2024; 27:110002. [PMID: 38868179 PMCID: PMC11166702 DOI: 10.1016/j.isci.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
The presence of antibiotic persisters is one of the leading causes of recurrent and chronic diseases. One challenge in mechanistic research on persisters is the enrichment of pure persisters. In this work, we validated a proposed method to isolate persisters with notorious Staphylococcus aureus cultures. With this, we analyzed the proteome profile of pure persisters and revealed the distinct mechanisms associated with vancomycin and enrofloxacin induced persisters. Furthermore, morphological and metabolic characterizations were performed, indicating further differences between these two persister populations. Finally, we assessed the effect of ATP repression, protein synthesis inhibition, and reactive oxygen species (ROS) level on persister formation. In conclusion, this work provides a comprehensive understanding of S. aureus vancomycin and enrofloxacin induced persisters, facilitating a better mechanistic understanding of persisters and the development of effective strategies to combat them.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Paul Laman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sean Jensen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gertjan Kramer
- Department of Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
5
|
Mardoukhi MSY, Rapp J, Irisarri I, Gunka K, Link H, Marienhagen J, de Vries J, Stülke J, Commichau FM. Metabolic rewiring enables ammonium assimilation via a non-canonical fumarate-based pathway. Microb Biotechnol 2024; 17:e14429. [PMID: 38483038 PMCID: PMC10938345 DOI: 10.1111/1751-7915.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Glutamate serves as the major cellular amino group donor. In Bacillus subtilis, glutamate is synthesized by the combined action of the glutamine synthetase and the glutamate synthase (GOGAT). The glutamate dehydrogenases are devoted to glutamate degradation in vivo. To keep the cellular glutamate concentration high, the genes and the encoded enzymes involved in glutamate biosynthesis and degradation need to be tightly regulated depending on the available carbon and nitrogen sources. Serendipitously, we found that the inactivation of the ansR and citG genes encoding the repressor of the ansAB genes and the fumarase, respectively, enables the GOGAT-deficient B. subtilis mutant to synthesize glutamate via a non-canonical fumarate-based ammonium assimilation pathway. We also show that the de-repression of the ansAB genes is sufficient to restore aspartate prototrophy of an aspB aspartate transaminase mutant. Moreover, in the presence of arginine, B. subtilis mutants lacking fumarase activity show a growth defect that can be relieved by aspB overexpression, by reducing arginine uptake and by decreasing the metabolic flux through the TCA cycle.
Collapse
Affiliation(s)
| | - Johanna Rapp
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Katrin Gunka
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Hannes Link
- Interfaculty Institute for Microbiology and Infection Medicine TübingenUniversity of TübingenTübingenGermany
| | - Jan Marienhagen
- Institute of Bio‐ and Geosciences, IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
- Institut of BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
- Campus Institute Data ScienceUniversity of GöttingenGöttingenGermany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMBGeorg‐August‐University GöttingenGöttingenGermany
| | - Fabian M. Commichau
- FG Molecular Microbiology, Institute for BiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
6
|
Alexander AM, Luu JM, Raghuram V, Bottacin G, van Vliet S, Read TD, Goldberg JB. Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001445. [PMID: 38426877 PMCID: PMC10999751 DOI: 10.1099/mic.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.
Collapse
Affiliation(s)
- Ashley M. Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin M. Luu
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Giulia Bottacin
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Quartier Unil-Sorge, 1015 Lausanne, Switzerland
| | - Timothy D. Read
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Ren F, Li Y, Zhang M, Chen W, Chen W, Chen H. Photocatalytic inactivation mechanism of nano-BiPO 4 against Vibrio parahaemolyticus and its application in abalone. Food Res Int 2024; 177:113806. [PMID: 38225110 DOI: 10.1016/j.foodres.2023.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is the main pathogenic bacteria in seafood that can cause serious food-borne illness. The annual incidence of V. parahaemolyticus infection in the United States exceeds 45,000 cases, indicating there are potential shortcomings in seafood sterilization techniques. Meanwhile, the ongoing emergence of antibiotic-resistant strains highlights the urgent need for novel bacteriostatic strategies to eliminate V. parahaemolyticus. Nano-BiPO4 is a semiconductor with high H2O2 production efficiency and has potential for photocatalytic bacterial inactivation. But the effectiveness and mechanism of BiPO4 photocatalytic inactivation of V. parahaemolyticus has not been reported. In this study, nano-BiPO4 synthesized in pure water (P1) was found to exhibit optimal H2O2 production efficiency (1203 μmol h-1g-1) and antibacterial activity (in 0.8 g/L). Under UV light irradiation, P1 induced alterations in bacterial cell morphology, elevation in intracellular levels of ROS, H2O2, O2-, GSSG and MDA, and reduction in GSH level. Meanwhile, metabolomic analysis revealed that P1 stimulates the arginine biosynthesis, TCA cycle and alanine, aspartate and glutamate metabolism. These abnormal changes in the oxidative stress indicators and metabolic pathways proved that the bacterial damage was related to the H2O2 produced by nano-BiPO4 photocatalysis. Moreover, sliced abalone and hemolysis assay were used to demonstrate the applicability and biosafety of P1. This study provides theoretical support for exploring nano-BiPO4 as a bacterial inhibitor against V. parahaemolyticus.
Collapse
Affiliation(s)
- Fei Ren
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - You Li
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Wenxue Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Weijun Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| |
Collapse
|
8
|
Lai D, Hedlund BP, Mau RL, Jiao JY, Li J, Hayer M, Dijkstra P, Schwartz E, Li WJ, Dong H, Palmer M, Dodsworth JA, Zhou EM, Hungate BA. Resource partitioning and amino acid assimilation in a terrestrial geothermal spring. THE ISME JOURNAL 2023; 17:2112-2122. [PMID: 37741957 PMCID: PMC10579274 DOI: 10.1038/s41396-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of 13C-acetate and 13C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling. Both 13C incorporation into DNA and changes in the abundance of taxa during incubations indicated strong resource partitioning and a significant phylogenetic signal for aspartate incorporation. Of the active amplicon sequence variants (ASVs) identified by qSIP, most could be matched with genomes from Gongxiaoshe Hot Spring or nearby springs with an average nucleotide similarity of 99.4%. Genomes corresponding to aspartate primary utilizers were smaller, near-universally encoded polar amino acid ABC transporters, and had codon preferences indicative of faster growth rates. The most active ASVs assimilating both substrates were not abundant, suggesting an important role for the rare biosphere in the community response to organic carbon addition. The broad incorporation of aspartate into DNA over acetate by the hot spring community may reflect dynamic cycling of cell lysis products in situ or substrates delivered during monsoon rains and may reflect N limitation.
Collapse
Affiliation(s)
- Dengxun Lai
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
- Nevada Institute for Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China and Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - En-Min Zhou
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University and Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
9
|
He B, Sachla AJ, Helmann JD. TerC proteins function during protein secretion to metalate exoenzymes. Nat Commun 2023; 14:6186. [PMID: 37794032 PMCID: PMC10550928 DOI: 10.1038/s41467-023-41896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA
| | - Ankita J Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, NY, 14853-8101, USA.
| |
Collapse
|
10
|
Alexander AM, Luu JM, Raghuram V, Bottacin G, van Vliet S, Read TD, Goldberg JB. Experimentally Evolved Staphylococcus aureus Survives in the Presence of Pseudomonas aeruginosa by Acquiring Mutations in the Amino Acid Transporter, GltT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550428. [PMID: 37546966 PMCID: PMC10402077 DOI: 10.1101/2023.07.24.550428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are the most common bacterial pathogens isolated from cystic fibrosis (CF) related lung infections. When both of these opportunistic pathogens are found in a coinfection, CF patients tend to have higher rates of pulmonary exacerbations and experience a more rapid decrease in lung function. When cultured together under standard laboratory conditions, it is often observed that P. aeruginosa effectively inhibits S. aureus growth. Previous work from our group revealed that S. aureus from CF infections have isolate-specific survival capabilities when cocultured with P. aeruginosa. In this study, we designed a serial transfer evolution experiment to identify mutations that allow S. aureus to adapt to the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa strain, PAO1. After 8 coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompete wild-type S. aureus when glutamate is absent from chemically-defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two bacteria are cultured together.
Collapse
Affiliation(s)
- Ashley M Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin M Luu
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Giulia Bottacin
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Quartier Unil-Sorge, 1015 Lausanne, Switzerland
| | - Timothy D Read
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. RESEARCH SQUARE 2023:rs.3.rs-2860473. [PMID: 37292672 PMCID: PMC10246235 DOI: 10.21203/rs.3.rs-2860473/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn2+-dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn2+-dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| |
Collapse
|
12
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
13
|
He B, Sachla AJ, Helmann JD. TerC Proteins Function During Protein Secretion to Metalate Exoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536223. [PMID: 37090602 PMCID: PMC10120614 DOI: 10.1101/2023.04.10.536223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cytosolic metalloenzymes acquire metals from buffered intracellular pools. How exported metalloenzymes are appropriately metalated is less clear. We provide evidence that TerC family proteins function in metalation of enzymes during export through the general secretion (Sec-dependent) pathway. Bacillus subtilis strains lacking MeeF(YceF) and MeeY(YkoY) have a reduced capacity for protein export and a greatly reduced level of manganese (Mn) in the secreted proteome. MeeF and MeeY copurify with proteins of the general secretory pathway, and in their absence the FtsH membrane protease is essential for viability. MeeF and MeeY are also required for efficient function of the Mn 2+ -dependent lipoteichoic acid synthase (LtaS), a membrane-localized enzyme with an extracytoplasmic active site. Thus, MeeF and MeeY, representative of the widely conserved TerC family of membrane transporters, function in the co-translocational metalation of Mn 2+ -dependent membrane and extracellular enzymes.
Collapse
Affiliation(s)
- Bixi He
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, 123 Wing Drive, Ithaca, New York 14853-8101, USA
| |
Collapse
|
14
|
Abstract
As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Lemos Rocha LF, Peters K, Biboy J, Depelteau JS, Briegel A, Vollmer W, Blokesch M. The VarA-CsrA regulatory pathway influences cell shape in Vibrio cholerae. PLoS Genet 2022; 18:e1010143. [PMID: 35344548 PMCID: PMC8989286 DOI: 10.1371/journal.pgen.1010143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.
Collapse
Affiliation(s)
- Leonardo F. Lemos Rocha
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Katharina Peters
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Jamie S. Depelteau
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Microbial Sciences, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Abstract
While many mechanisms governing bacterial envelope homeostasis have been identified, others remain poorly understood. To decipher these processes, we previously developed an assay in the Gram-negative model Escherichia coli to identify genes involved in maintenance of envelope integrity. One such gene was ElyC, which was shown to be required for envelope integrity and peptidoglycan synthesis at room temperature. ElyC is predicted to be an integral inner membrane protein with a highly conserved domain of unknown function (DUF218). In this study, and stemming from a further characterization of the role of ElyC in maintaining cell envelope integrity, we serendipitously discovered an unappreciated form of oxidative stress in the bacterial envelope. We found that cells lacking ElyC overproduce hydroxyl radicals (HO•) in their envelope compartment and that HO• overproduction is directly or indirectly responsible for the peptidoglycan synthesis arrest, cell envelope integrity defects, and cell lysis of the ΔelyC mutant. Consistent with these observations, we show that the ΔelyC mutant defect is suppressed during anaerobiosis. HO• is known to cause DNA damage but to our knowledge has not been shown to interfere with peptidoglycan synthesis. Thus, our work implicates oxidative stress as an important stressor in the bacterial cell envelope and opens the door to future studies deciphering the mechanisms that render peptidoglycan synthesis sensitive to oxidative stress. IMPORTANCE Oxidative stress is caused by the production and excessive accumulation of oxygen reactive species. In bacterial cells, oxidative stress mediated by hydroxyl radicals is typically associated with DNA damage in the cytoplasm. Here, we reveal the existence of a pathway for oxidative stress in the envelope of Gram-negative bacteria. Stemming from the characterization of a poorly characterized gene, we found that HO• overproduction specifically in the envelope compartment causes inhibition of peptidoglycan synthesis and eventually bacterial cell lysis.
Collapse
|
17
|
Aries ML, Cloninger MJ. NMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways Using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram-Positive Bacteria. Int J Mol Sci 2021; 22:ijms222413606. [PMID: 34948402 PMCID: PMC8715671 DOI: 10.3390/ijms222413606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Collapse
|
18
|
Delisle J, Cordier B, Audebert S, Pophillat M, Cluzel C, Espinosa L, Grangeasse C, Galinier A, Doan T. Characterization of TseB: A new actor in cell wall elongation in Bacillus subtilis. Mol Microbiol 2021; 116:1099-1112. [PMID: 34411374 DOI: 10.1111/mmi.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Penicillin-binding proteins (PBPs) are crucial enzymes of peptidoglycan assembly and targets of β-lactam antibiotics. However, little is known about their regulation. Recently, membrane proteins were shown to regulate the bifunctional transpeptidases/glycosyltransferases aPBPs in some bacteria. However, up to now, regulators of monofunctional transpeptidases bPBPs have yet to be revealed. Here, we propose that TseB could be such a PBP regulator. This membrane protein was previously found to suppress tetracycline sensitivity of a Bacillus subtilis strain deleted for ezrA, a gene encoding a regulator of septation ring formation. In this study, we show that TseB is required for B. subtilis normal cell shape, tseB mutant cells being shorter and wider than wild-type cells. We observed that TseB interacts with PBP2A, a monofunctional transpeptidase. While TseB is not required for PBP2A activity, stability, and localization, we show that the overproduction of PBP2A is deleterious in the absence of TseB. In addition, we showed that TseB is necessary not only for efficient cell wall elongation during exponential phase but also during spore outgrowth, as it was also observed for PBP2A. Altogether, our results suggest that TseB is a new member of the elongasome that regulates PBP2A function during cell elongation and spore germination.
Collapse
Affiliation(s)
- Jordan Delisle
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Baptiste Cordier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphane Audebert
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS/Université Lyon I, Lyon, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Université Lyon I, Lyon, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Thierry Doan
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Univ, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
19
|
Knoll KE, Lindeque Z, Adeniji AA, Oosthuizen CB, Lall N, Loots DT. Elucidating the Antimycobacterial Mechanism of Action of Ciprofloxacin Using Metabolomics. Microorganisms 2021; 9:microorganisms9061158. [PMID: 34071153 PMCID: PMC8228629 DOI: 10.3390/microorganisms9061158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
In the interest of developing more effective and safer anti-tuberculosis drugs, we used a GCxGC-TOF-MS metabolomics research approach to investigate and compare the metabolic profiles of Mtb in the presence and absence of ciprofloxacin. The metabolites that best describe the differences between the compared groups were identified as markers characterizing the changes induced by ciprofloxacin. Malic acid was ranked as the most significantly altered metabolite marker induced by ciprofloxacin, indicative of an inhibition of the tricarboxylic acid (TCA) and glyoxylate cycle of Mtb. The altered fatty acid, myo-inositol, and triacylglycerol metabolism seen in this group supports previous observations of ciprofloxacin action on the Mtb cell wall. Furthermore, the altered pentose phosphate intermediates, glycerol metabolism markers, glucose accumulation, as well as the reduction in the glucogenic amino acids specifically, indicate a flux toward DNA (as well as cell wall) repair, also supporting previous findings of DNA damage caused by ciprofloxacin. This study further provides insights useful for designing network whole-system strategies for the identification of possible modes of action of various drugs and possibly adaptations by Mtb resulting in resistance.
Collapse
Affiliation(s)
- Kirsten E. Knoll
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Zander Lindeque
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Adetomiwa A. Adeniji
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.B.O.); (N.L.)
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Du Toit Loots
- Department of Human Metabolomics, North-West University, Private Bag x6001, Box 269, Potchefstroom 2531, South Africa; (K.E.K.); (Z.L.); (A.A.A.)
- Correspondence: ; Tel.: +27-(0)18-299-1818
| |
Collapse
|
20
|
Sachla AJ, Helmann JD. Resource sharing between central metabolism and cell envelope synthesis. Curr Opin Microbiol 2021; 60:34-43. [PMID: 33581378 PMCID: PMC7988295 DOI: 10.1016/j.mib.2021.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Synthesis of the bacterial cell envelope requires a regulated partitioning of resources from central metabolism. Here, we consider the key metabolic junctions that provide the precursors needed to assemble the cell envelope. Peptidoglycan synthesis requires redirection of a glycolytic intermediate, fructose-6-phosphate, into aminosugar biosynthesis by the highly regulated branchpoint enzyme GlmS. MurA directs the downstream product, UDP-GlcNAc, specifically into peptidoglycan synthesis. Other shared resources required for cell envelope synthesis include the isoprenoid carrier lipid undecaprenyl phosphate and amino acids required for peptidoglycan cross-bridges. Assembly of the envelope requires a sharing of limited resources between competing cellular pathways and may additionally benefit from scavenging of metabolites released from neighboring cells or the formation of symbiotic relationships with a host.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, Wing Drive, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, Wing Drive, Ithaca, NY 14853-8101, USA.
| |
Collapse
|
21
|
c-di-AMP Accumulation Impairs Muropeptide Synthesis in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00307-20. [PMID: 33020220 DOI: 10.1128/jb.00307-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger among bacteria. c-di-AMP regulates many cellular pathways through direct binding to several molecular targets in bacterial cells. c-di-AMP depletion is well known to destabilize the bacterial cell wall, resulting in increased bacteriolysis and enhanced susceptibility to cell wall targeting antibiotics. Using the human pathogen Listeria monocytogenes as a model, we found that c-di-AMP accumulation also impaired cell envelope integrity. An L. monocytogenes mutant deleted for c-di-AMP phosphodiesterases (pdeA pgpH mutant) exhibited a 4-fold increase in c-di-AMP levels and several cell wall defects. For instance, the pdeA pgpH mutant was defective for the synthesis of peptidoglycan muropeptides and was susceptible to cell wall-targeting antimicrobials. Among different muropeptide precursors, we found that the pdeA pgpH strain was particularly impaired in the synthesis of d-Ala-d-Ala, which is required to complete the pentapeptide stem associated with UDP-N-acetylmuramic acid (MurNAc). This was consistent with an increased sensitivity to d-cycloserine, which inhibits the d-alanine branch of peptidoglycan synthesis. Finally, upon examining d-Ala:d-Ala ligase (Ddl), which catalyzes the conversion of d-Ala to d-Ala-d-Ala, we found that its activity was activated by K+ Based on previous reports that c-di-AMP inhibits K+ uptake, we propose that c-di-AMP accumulation impairs peptidoglycan synthesis, partially through the deprivation of cytoplasmic K+ levels, which are required for cell wall-synthetic enzymes.IMPORTANCE The bacterial second messenger c-di-AMP is produced by a large number of bacteria and conditionally essential to many species. Conversely, c-di-AMP accumulation is also toxic to bacterial physiology and pathogenesis, but its mechanisms are largely undefined. We found that in Listeria monocytogenes, elevated c-di-AMP levels diminished muropeptide synthesis and increased susceptibility to cell wall-targeting antimicrobials. Cell wall defects might be an important mechanism for attenuated virulence in bacteria with high c-di-AMP levels.
Collapse
|
22
|
Potter AD, Butrico CE, Ford CA, Curry JM, Trenary IA, Tummarakota SS, Hendrix AS, Young JD, Cassat JE. Host nutrient milieu drives an essential role for aspartate biosynthesis during invasive Staphylococcus aureus infection. Proc Natl Acad Sci U S A 2020; 117:12394-12401. [PMID: 32414924 PMCID: PMC7275739 DOI: 10.1073/pnas.1922211117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bacterial pathogen Staphylococcus aureus is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. S. aureus, like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive S. aureus infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive S. aureus infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of S. aureus mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that S. aureus requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and S. aureus instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by S. aureus Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.
Collapse
Affiliation(s)
- Aimee D Potter
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Casey E Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Caleb A Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Jacob M Curry
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Irina A Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Srivarun S Tummarakota
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew S Hendrix
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232;
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
23
|
Lysis of a Lactococcus lactis Dipeptidase Mutant and Rescue by Mutation in the Pleiotropic Regulator CodY. Appl Environ Microbiol 2020; 86:AEM.02937-19. [PMID: 32005740 PMCID: PMC7117943 DOI: 10.1128/aem.02937-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Lactococcus lactis subsp. cremoris MG1363 is a model for the lactic acid bacteria (LAB) used in the dairy industry. The proteolytic system, consisting of a proteinase, several peptide and amino acid uptake systems, and a host of intracellular peptidases, plays a vital role in nitrogen metabolism and is of eminent importance for flavor formation in dairy products. The dipeptidase PepV functions in the last stages of proteolysis. A link between nitrogen metabolism and peptidoglycan (PG) biosynthesis was underlined by the finding that deletion of the dipeptidase gene pepV (creating strain MGΔpepV) resulted in a prolonged lag phase when the mutant strain was grown with a high concentration of glycine. In addition, most MGΔpepV cells lyse and have serious defects in their shape. This phenotype is due to a shortage of alanine, since adding alanine can rescue the growth and shape defects. Strain MGΔpepV is more resistant to vancomycin, an antibiotic targeting peptidoglycan d-Ala-d-Ala ends, which confirmed that MGΔpepV has an abnormal PG composition. A mutant of MGΔpepV was obtained in which growth inhibition and cell shape defects were alleviated. Genome sequencing showed that this mutant has a single point mutation in the codY gene, resulting in an arginine residue at position 218 in the DNA-binding motif of CodY being replaced by a cysteine residue. Thus, this strain was named MGΔpepVcodY R218C Transcriptome sequencing (RNA-seq) data revealed a dramatic derepression in peptide uptake and amino acid utilization in MGΔpepVcodY R218C A model of the connections among PepV activity, CodY regulation, and PG synthesis of L. lactis is proposed.IMPORTANCE Precise control of peptidoglycan synthesis is essential in Gram-positive bacteria for maintaining cell shape and integrity as well as resisting stresses. Although neither the dipeptidase PepV nor alanine is essential for L. lactis MG1363, adequate availability of either ensures proper cell wall synthesis. We broaden the knowledge about the dipeptidase PepV, which acts as a linker between nitrogen metabolism and cell wall synthesis in L. lactis.
Collapse
|
24
|
Zhao H, Sachla AJ, Helmann JD. Mutations of the Bacillus subtilis YidC1 (SpoIIIJ) insertase alleviate stress associated with σM-dependent membrane protein overproduction. PLoS Genet 2019; 15:e1008263. [PMID: 31626625 PMCID: PMC6827917 DOI: 10.1371/journal.pgen.1008263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/04/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
In Bacillus subtilis, the extracytoplasmic function σ factor σM regulates cell wall synthesis and is critical for intrinsic resistance to cell wall targeting antibiotics. The anti-σ factors YhdL and YhdK form a complex that restricts the basal activity of σM, and the absence of YhdL leads to runaway expression of the σM regulon and cell death. Here, we report that this lethality can be suppressed by gain-of-function mutations in yidC1 (spoIIIJ), which encodes the major YidC membrane protein insertase in B. subtilis. B. subtilis PY79 YidC1 (SpoIIIJ) contains a single amino acid substitution in a functionally important hydrophilic groove (Q140K), and this allele suppresses the lethality of high σM. Analysis of a library of YidC1 variants reveals that increased charge (+2 or +3) in the hydrophilic groove can compensate for high expression of the σM regulon. Derepression of the σM regulon induces secretion stress, oxidative stress and DNA damage responses, all of which can be alleviated by the YidC1Q140K substitution. We further show that the fitness defect caused by high σM activity is exacerbated in the absence of the SecDF protein translocase or σM-dependent induction of the Spx oxidative stress regulon. Conversely, cell growth is improved by mutation of specific σM-dependent promoters controlling operons encoding integral membrane proteins. Collectively, these results reveal how the σM regulon has evolved to up-regulate membrane-localized complexes involved in cell wall synthesis, and to simultaneously counter the resulting stresses imposed by regulon induction. Bacteria frequently produce antibiotics that inhibit the growth of competitors, and many naturally occurring antibiotics target cell wall synthesis. In Bacillus subtilis, the alternative σ factor σM is induced by cell wall antibiotics, and upregulates genes for peptidoglycan and cell envelope synthesis. However, dysregulation of the σM regulon, resulting from loss of the YhdL anti-σM protein, is lethal. We here identify charge variants of the YidC1 (SpoIIIJ) membrane protein insertase that suppress the lethal effects of high σM activity. Further analyses reveal that induction of the σM regulon leads to high level expression of membrane proteins that trigger envelope stress, and this stress is countered by specific genes in the σM regulon.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Ankita J. Sachla
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Dormeyer M, Lentes S, Richts B, Heermann R, Ischebeck T, Commichau FM. Variants of the Bacillus subtilis LysR-Type Regulator GltC With Altered Activator and Repressor Function. Front Microbiol 2019; 10:2321. [PMID: 31649652 PMCID: PMC6794564 DOI: 10.3389/fmicb.2019.02321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive soil bacterium Bacillus subtilis relies on the glutamine synthetase and the glutamate synthase for glutamate biosynthesis from ammonium and 2-oxoglutarate. During growth with the carbon source glucose, the LysR-type transcriptional regulator GltC activates the expression of the gltAB glutamate synthase genes. With excess of intracellular glutamate, the gltAB genes are not transcribed because the glutamate-degrading glutamate dehydrogenases (GDHs) inhibit GltC. Previous in vitro studies revealed that 2-oxoglutarate and glutamate stimulate the activator and repressor function, respectively, of GltC. Here, we have isolated GltC variants with enhanced activator or repressor function. The majority of the GltC variants with enhanced activator function differentially responded to the GDHs and to glutamate. The GltC variants with enhanced repressor function were still capable of activating the PgltA promoter in the absence of a GDH. Using PgltA promoter variants (PgltA∗) that are active independent of GltC, we show that the wild type GltC and the GltC variants with enhanced repressor function inactivate PgltA∗ promoters in the presence of the native GDHs. These findings suggest that GltC may also act as a repressor of the gltAB genes in vivo. We discuss a model combining previous models that were derived from in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Miriam Dormeyer
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Björn Richts
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Till Ischebeck
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Zhao H, Roistacher DM, Helmann JD. Deciphering the essentiality and function of the anti-σ M factors in Bacillus subtilis. Mol Microbiol 2019; 112:482-497. [PMID: 30715747 PMCID: PMC6679829 DOI: 10.1111/mmi.14216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
Bacteria use alternative sigma factors to adapt to different growth and stress conditions. The Bacillus subtilis extracytoplasmic function sigma factor SigM regulates genes for cell wall synthesis and is crucial for maintaining cell wall homeostasis under stress conditions. The activity of SigM is regulated by its anti-sigma factor, YhdL, and the accessory protein YhdK. Here, we show that dysregulation of SigM caused by the absence of either component of the anti-sigma factor complex leads to toxic levels of SigM and severe growth defects. High SigM activity results from a dysregulated positive feedback loop, and can be suppressed by overexpression of the housekeeping sigma, SigA. Using a sigM merodiploid strain, we selected for suppressor mutations that allow survival of yhdL depletion strain. The recovered suppressor mutations map to the beta and beta-prime subunits of RNA polymerase core enzyme and selectively reduce SigM activity, and in some cases increase the activity of other alternative sigma factors. This work highlights the ability of mutations in RNA polymerase that remodel the sigma-core interface to differentially affect sigma factor activity, and thereby alter the transcriptional landscape of the cell.
Collapse
Affiliation(s)
- Heng Zhao
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| | | | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| |
Collapse
|
27
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
28
|
Wicke D, Schulz LM, Lentes S, Scholz P, Poehlein A, Gibhardt J, Daniel R, Ischebeck T, Commichau FM. Identification of the first glyphosate transporter by genomic adaptation. Environ Microbiol 2019; 21:1287-1305. [PMID: 30666812 DOI: 10.1111/1462-2920.14534] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/12/2023]
Abstract
The soil bacterium Bacillus subtilis can get into contact with growth-inhibiting substances, which may be of anthropogenic origin. Glyphosate is such a substance serving as a nonselective herbicide. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates an essential precursor for de novo synthesis of aromatic amino acids in plants, fungi, bacteria and archaea. Inhibition of the EPSP synthase by glyphosate results in depletion of the cellular levels of aromatic amino acids unless the environment provides them. Here, we have assessed the potential of B. subtilis to adapt to glyphosate at the genome level. In contrast to Escherichia coli, which evolves glyphosate resistance by elevating the production and decreasing the glyphosate sensitivity of the EPSP synthase, B. subtilis primarily inactivates the gltT gene encoding the high-affinity glutamate/aspartate symporter GltT. Further adaptation of the gltT mutants to glyphosate led to the inactivation of the gltP gene encoding the glutamate transporter GltP. Metabolome analyses confirmed that GltT is the major entryway of glyphosate into B. subtilis. GltP, the GltT homologue of E. coli also transports glyphosate into B. subtilis. Finally, we found that GltT is involved in uptake of the herbicide glufosinate, which inhibits the glutamine synthetase.
Collapse
Affiliation(s)
- Dennis Wicke
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Lisa M Schulz
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Sabine Lentes
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| | - Till Ischebeck
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center of Molecular Biosciences (GZMB), University of Goettingen, 37077, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany
| |
Collapse
|